1
|
Ma J, Ayres CM, Brambley CA, Chandran SS, Rosales TJ, Perera WWJG, Eldaly B, Murray WT, Corcelli SA, Kovrigin EL, Klebanoff CA, Baker BM. Dynamic allostery in the peptide/MHC complex enables TCR neoantigen selectivity. Nat Commun 2025; 16:849. [PMID: 39833157 PMCID: PMC11756396 DOI: 10.1038/s41467-025-56004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The inherent antigen cross-reactivity of the T cell receptor (TCR) is balanced by high specificity. Surprisingly, TCR specificity often manifests in ways not easily interpreted from static structures. Here we show that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen and its wild-type (WT) counterpart emerges from distinct motions within the HLA-A3 peptide binding groove that vary with the identity of the peptide's first primary anchor. These motions create a dynamic gate that, in the presence of the WT peptide, impedes a large conformational change required for TCR binding. The neoantigen is insusceptible to this limiting dynamic, and, with the gate open, upon TCR binding the central tryptophan can transit underneath the peptide backbone to the opposing side of the HLA-A3 peptide binding groove. Our findings thus reveal a novel mechanism driving TCR specificity for a cancer neoantigen that is rooted in the dynamic and allosteric nature of peptide/MHC-I binding grooves, with implications for resolving long-standing and often confounding questions about T cell specificity.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Cory M Ayres
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Chad A Brambley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Smita S Chandran
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
| | - Tatiana J Rosales
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - W W J Gihan Perera
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Bassant Eldaly
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - William T Murray
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Evgenii L Kovrigin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
- Center for Cell Engineering, MSKCC, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Clemen R, Miebach L, Singer D, Freund E, von Woedtke T, Weltmann K, Bekeschus S. Oxidized Melanoma Antigens Promote Activation and Proliferation of Cytotoxic T-Cell Subpopulations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404131. [PMID: 38958560 PMCID: PMC11434111 DOI: 10.1002/advs.202404131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Increasing evidence suggests the role of reactive oxygen and nitrogen species (RONS) in regulating antitumor immune effects and immunosuppression. RONS modify biomolecules and induce oxidative post-translational modifications (oxPTM) on proteins that can alarm phagocytes. However, it is unclear if and how protein oxidation by technical means could be a strategy to foster antitumor immunity and therapy. To this end, cold gas plasma technology producing various RONS simultaneously to oxidize the two melanoma-associated antigens MART and PMEL is utilized. Cold plasma-oxidized MART (oxMART) and PMEL (oxPMEL) are heavily decorated with oxPTMs as determined by mass spectrometry. Immunization with oxidized MART or PMEL vaccines prior to challenge with viable melanoma cells correlated with significant changes in cytokine secretion and altered T-cell differentiation of tumor-infiltrated leukocytes (TILs). oxMART promoted the activity of cytotoxic central memory T-cells, while oxPMEL led to increased proliferation of cytotoxic effector T-cells. Similar T-cell results are observed after incubating splenocytes of tumor-bearing mice with B16F10 melanoma cells. This study, for the first time, provides evidence of the importance of oxidative modifications of two melanoma-associated antigens in eliciting anticancer immunity.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Debora Singer
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of NeurosurgeryWien University Medical CenterVienna1090Austria
| | - Thomas von Woedtke
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineGreifswald University Medical CenterFerdinand‐Sauerbruch‐Str.17475GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 217489GreifswaldGermany
- Department of Dermatology and VenerologyRostock University Medical CenterStrempelstr. 1318057RostockGermany
| |
Collapse
|
4
|
Liu D, Liu L, Li X, Wang S, Wu G, Che X. Advancements and Challenges in Peptide-Based Cancer Vaccination: A Multidisciplinary Perspective. Vaccines (Basel) 2024; 12:950. [PMID: 39204073 PMCID: PMC11359700 DOI: 10.3390/vaccines12080950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous advancements in tumor immunotherapy, researchers are actively exploring new treatment methods. Peptide therapeutic cancer vaccines have garnered significant attention for their potential in improving patient outcomes. Despite its potential, only a single peptide-based cancer vaccine has been approved by the U.S. Food and Drug Administration (FDA). A comprehensive understanding of the underlying mechanisms and current development status is crucial for advancing these vaccines. This review provides an in-depth analysis of the production principles and therapeutic mechanisms of peptide-based cancer vaccines, highlights the commonly used peptide-based cancer vaccines, and examines the synergistic effects of combining these vaccines with immunotherapy, targeted therapy, radiotherapy, and chemotherapy. While some studies have yielded suboptimal results, the potential of combination therapies remains substantial. Additionally, we addressed the management and adverse events associated with peptide-based cancer vaccines, noting their relatively higher safety profile compared to traditional radiotherapy and chemotherapy. Lastly, we also discussed the roles of adjuvants and targeted delivery systems in enhancing vaccine efficacy. In conclusion, this review comprehensively outlines the current landscape of peptide-based cancer vaccination and underscores its potential as a pivotal immunotherapy approach.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xinghan Li
- Department of Stomatology, General Hospital of Northern Theater Command, Shenyang 110016, China;
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (L.L.); (S.W.)
| |
Collapse
|
5
|
Menon T, Illing PT, Chaurasia P, McQuilten HA, Shepherd C, Rowntree LC, Petersen J, Littler DR, Khuu G, Huang Z, Allen LF, Rockman S, Crowe J, Flanagan KL, Wakim LM, Nguyen THO, Mifsud NA, Rossjohn J, Purcell AW, van de Sandt CE, Kedzierska K. CD8 + T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nat Commun 2024; 15:3387. [PMID: 38684663 PMCID: PMC11059233 DOI: 10.1038/s41467-024-47576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Influenza B viruses (IBVs) cause substantive morbidity and mortality, and yet immunity towards IBVs remains understudied. CD8+ T-cells provide broadly cross-reactive immunity and alleviate disease severity by recognizing conserved epitopes. Despite the IBV burden, only 18 IBV-specific T-cell epitopes restricted by 5 HLAs have been identified currently. A broader array of conserved IBV T-cell epitopes is needed to develop effective cross-reactive T-cell based IBV vaccines. Here we identify 9 highly conserved IBV CD8+ T-cell epitopes restricted to HLA-B*07:02, HLA-B*08:01 and HLA-B*35:01. Memory IBV-specific tetramer+CD8+ T-cells are present within blood and tissues. Frequencies of IBV-specific CD8+ T-cells decline with age, but maintain a central memory phenotype. HLA-B*07:02 and HLA-B*08:01-restricted NP30-38 epitope-specific T-cells have distinct T-cell receptor repertoires. We provide structural basis for the IBV HLA-B*07:02-restricted NS1196-206 (11-mer) and HLA-B*07:02-restricted NP30-38 epitope presentation. Our study increases the number of IBV CD8+ T-cell epitopes, and defines IBV-specific CD8+ T-cells at cellular and molecular levels, across tissues and age.
Collapse
Affiliation(s)
- Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Patricia T Illing
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Priyanka Chaurasia
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Chloe Shepherd
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Grace Khuu
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Ziyi Huang
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- CSL Seqirus Ltd, Parkville, VIC, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, VIC, Australia
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Launceston General Hospital, Launceston, TAS, Australia
- School of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Nicole A Mifsud
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Carolien E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Liu S, Yu YP, Ren BG, Ben-Yehezkel T, Obert C, Smith M, Wang W, Ostrowska A, Soto-Gutierrez A, Luo JH. Long-read single-cell sequencing reveals expressions of hypermutation clusters of isoforms in human liver cancer cells. eLife 2024; 12:RP87607. [PMID: 38206124 PMCID: PMC10945587 DOI: 10.7554/elife.87607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.
Collapse
Affiliation(s)
- Silvia Liu
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Yan-Ping Yu
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Bao-Guo Ren
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | | | | | - Mat Smith
- Element Biosciences IncSan DiegoUnited States
| | - Wenjia Wang
- Biostatistics, University of PittsburghPittsburghUnited States
| | - Alina Ostrowska
- Department of Pathology, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| | - Jian-Hua Luo
- Department of Pathology, University of PittsburghPittsburghUnited States
- High Throughput Genome Center, University of PittsburghPittsburghUnited States
- Pittsburgh Liver Research Center, University of PittsburghPittsburghUnited States
| |
Collapse
|
7
|
Dhall A, Patiyal S, Kaur H, Raghava GPS. Risk assessment of cancer patients based on HLA-I alleles, neobinders and expression of cytokines. Comput Biol Med 2023; 167:107594. [PMID: 37918263 DOI: 10.1016/j.compbiomed.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Advancements in cancer immunotherapy have shown significant outcomes in treating cancers. To design effective immunotherapy, it's important to understand immune response of a patient based on its genomic profile. However, analyses to do that requires proficiency in the bioinformatic methods. Swiftly growing sequencing technologies and statistical methods create a blockage for the scientists who want to find the biomarkers for different cancers but don't have detailed knowledge of coding or tool. Here, we are providing a web-based resource that gives scientists with no bioinformatics expertise, the ability to obtain the prognostic biomarkers for different cancer types at different levels. We computed prognostic biomarkers from 8346 cancer patients for twenty cancer types. These biomarkers were computed based on i) presence of 352 Human leukocyte antigen class-I, ii) 660959 tumor-specific HLA1 neobinders, and iii) expression profile of 153 cytokines. It was observed that survival risk of cancer patients depends on presence of certain type of HLA-I alleles; for example, liver hepatocellular carcinoma patients with HLA-A*03:01 are at lower risk. Our analysis indicates that neobinders of HLA-I alleles have high correlation with overall survival of certain type of cancer patients. For example, HLA-B*07:02 binders have 0.49 correlation with survival of lung squamous cell carcinoma and -0.77 with kidney chromophobe patients. Additionally, we computed prognostic biomarkers based on cytokine expressions. Higher expression of few cytokines is survival favorable like IL-2 for bladder urothelial carcinoma, whereas IL-5R is survival unfavorable for kidney chromophobe patients. Freely accessible to public, CancerHLA-I maintains raw and analysed data (https://webs.iiitd.edu.in/raghava/cancerhla1/).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Harpreet Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, 110020, India.
| |
Collapse
|
8
|
Tirado-Herranz A, Guasp P, Pastor-Moreno A, Area-Navarro M, Alvarez I. Analysis of the different subpeptidomes presented by the HLA class I molecules of the B7 supertype. Cell Immunol 2023; 387:104707. [PMID: 36933326 DOI: 10.1016/j.cellimm.2023.104707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.
Collapse
Affiliation(s)
- Adrián Tirado-Herranz
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alba Pastor-Moreno
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - María Area-Navarro
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, 08193 Bellaterra, Spain; Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
9
|
Wang Z, Zhang T, Anderson A, Lee V, Szymura S, Dong Z, Kuang B, Oh E, Liu J, Neelapu SS, Kwak L, Cha SC. Immortalized B Cells Transfected with mRNA of Antigen Fused to MITD (IBMAM): An Effective Tool for Antigen-Specific T-Cell Expansion and TCR Validation. Biomedicines 2023; 11:biomedicines11030796. [PMID: 36979775 PMCID: PMC10045729 DOI: 10.3390/biomedicines11030796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Peripheral mononuclear blood cells (PBMCs) are the most widely used study materials for immunomonitoring and antigen-specific T-cell identification. However, limited patient PBMCs and low-frequency antigen-specific T cells remain as significant technical challenges. To address these limitations, we established a novel platform comprised of optimized HLA-matched immortalized B cells transfected with mRNA of a prototype viral or tumor antigen conjugated to MHC class-I trafficking domain protein (MITD) to increase the efficiency of epitope expression in antigen-presenting cells (APCs) essential to expanding antigen-specific T cells. When applied to CMV as a model, the IBMAM platform could successfully expand CMV-specific T cells from low-frequency CMV PBMCs from seropositive donors. Additionally, this platform can be applied to the validation of antigen specific TCRs. Together, compared to using APCs with synthesized peptides, this platform is an unlimited, highly efficient, and cost-effective resource in detecting and expanding antigen-specific T cells and validating antigen-specific TCRs.
Collapse
Affiliation(s)
- Zhe Wang
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Tiantian Zhang
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Aaron Anderson
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Vincent Lee
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Szymon Szymura
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Zhenyuan Dong
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Benjamin Kuang
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Elizabeth Oh
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sattva S. Neelapu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Larry Kwak
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Soung-chul Cha
- Toni Stephenson Lymphoma Center, Hematologic Malignancies Research Institute, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
10
|
A class-mismatched TCR bypasses MHC restriction via an unorthodox but fully functional binding geometry. Nat Commun 2022; 13:7189. [PMID: 36424374 PMCID: PMC9691722 DOI: 10.1038/s41467-022-34896-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3β loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.
Collapse
|
11
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Grace BE, Backlund CM, Morgan DM, Kang BH, Singh NK, Huisman BD, Rappazzo CG, Moynihan KD, Maiorino L, Dobson CS, Kyung T, Gordon KS, Holec PV, Mbah OCT, Garafola D, Wu S, Love JC, Wittrup KD, Irvine DJ, Birnbaum ME. Identification of Highly Cross-Reactive Mimotopes for a Public T Cell Response in Murine Melanoma. Front Immunol 2022; 13:886683. [PMID: 35812387 PMCID: PMC9260506 DOI: 10.3389/fimmu.2022.886683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
While immune checkpoint blockade results in durable responses for some patients, many others have not experienced such benefits. These treatments rely upon reinvigorating specific T cell-antigen interactions. However, it is often unknown what antigens are being recognized by T cells or how to potently induce antigen-specific responses in a broadly applicable manner. Here, we characterized the CD8+ T cell response to a murine model of melanoma following combination immunotherapy to determine the basis of tumor recognition. Sequencing of tumor-infiltrating T cells revealed a repertoire of highly homologous TCR sequences that were particularly expanded in treated mice and which recognized an antigen from an endogenous retrovirus. While vaccination against this peptide failed to raise a protective T cell response in vivo, engineered antigen mimotopes induced a significant expansion of CD8+ T cells cross-reactive to the original antigen. Vaccination with mimotopes resulted in killing of antigen-loaded cells in vivo yet showed modest survival benefit in a prophylactic vaccine paradigm. Together, this work demonstrates the identification of a dominant tumor-associated antigen and generation of mimotopes which can induce robust functional T cell responses that are cross-reactive to the endogenous antigen across multiple individuals.
Collapse
Affiliation(s)
- Beth E. Grace
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Coralie M. Backlund
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Byong H. Kang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Nishant K. Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Brooke D. Huisman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - C. Garrett Rappazzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kelly D. Moynihan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Laura Maiorino
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Connor S. Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Taeyoon Kyung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Khloe S. Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick V. Holec
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Daniel Garafola
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - K. Dane Wittrup
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Michael E. Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- *Correspondence: Michael E. Birnbaum,
| |
Collapse
|
13
|
Bai H, Ma J, Mao W, Zhang X, Nie Y, Hao J, Wang X, Qin H, Zeng Q, Hu F, Qi X, Chen X, Li D, Zhang B, Shi B, Zhang C. Identification of TCR repertoires in asymptomatic COVID-19 patients by single-cell T-cell receptor sequencing. Blood Cells Mol Dis 2022; 97:102678. [PMID: 35716403 PMCID: PMC9162783 DOI: 10.1016/j.bcmd.2022.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 12/03/2022]
Abstract
The T cell-mediated immune responses associated with asymptomatic infection (AS) of SARS-CoV-2 remain largely unknown. The diversity of T-cell receptor (TCR) repertoire is essential for generating effective immunity against viral infections in T cell response. Here, we performed the single-cell TCR sequencing of the PBMC samples from five AS subjects, 33 symptomatic COVID-19 patients and eleven healthy controls to investigate the size and the diversity of TCR repertoire. We subsequently analyzed the TCR repertoire diversity, the V and J gene segment deference, and the dominant combination of αβ VJ gene pairing among these three study groups. Notably, we revealed significant TCR preference in the AS group, including the skewed usage of TRAV1-2-J33-TRBV6-4-J2-2 and TRAV1-2-J33-TRBV6-1-J2-3. Our findings may shed new light on understanding the immunopathogenesis of COVID-19 and help identify optimal TCRs for development of novel therapeutic strategies against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Han Bai
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Weikang Mao
- LC-BIO TECHNOLOGIES (HANGZHOU) CO., LTD., Hanghzhou 310000, China
| | - Xuan Zhang
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Yijun Nie
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Jingcan Hao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Qiqi Zeng
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Xiaobei Chen
- Department of Infectious Diseases, The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Dong Li
- Department of Clinical Laboratory, The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Binghong Zhang
- The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China; Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
14
|
Meeuwsen MH, Wouters AK, Hagedoorn RS, Kester MGD, Remst DFG, van der Steen DM, de Ru A, van Veelen PA, Rossjohn J, Gras S, Falkenburg JHF, Heemskerk MHM. Cutting Edge: Unconventional CD8 + T Cell Recognition of a Naturally Occurring HLA-A*02:01-Restricted 20mer Epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1851-1856. [PMID: 35379743 DOI: 10.4049/jimmunol.2101208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.
Collapse
Affiliation(s)
- Miranda H Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands;
| | - Anne K Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis F G Remst
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnoud de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; and
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia; and
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands;
| |
Collapse
|
15
|
Feizollahi P, Payandeh M, Samimi Z, Shahrokhvand SZ, Rezaei M, Mahdizadeh B, Taghadosi M. The association between killer cell immunoglobulin-like receptor-ligand (KIR-L) and breast cancer risk among the Kermanshahi women. Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Heather JM, Spindler MJ, Alonso M, Shui Y, Millar DG, Johnson D, Cobbold M, Hata A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e68. [PMID: 35325179 PMCID: PMC9262623 DOI: 10.1093/nar/gkac190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The study and manipulation of T cell receptors (TCRs) is central to multiple fields across basic and translational immunology research. Produced by V(D)J recombination, TCRs are often only recorded in the literature and data repositories as a combination of their V and J gene symbols, plus their hypervariable CDR3 amino acid sequence. However, numerous applications require full-length coding nucleotide sequences. Here we present Stitchr, a software tool developed to specifically address this limitation. Given minimal V/J/CDR3 information, Stitchr produces complete coding sequences representing a fully spliced TCR cDNA. Due to its modular design, Stitchr can be used for TCR engineering using either published germline or novel/modified variable and constant region sequences. Sequences produced by Stitchr were validated by synthesizing and transducing TCR sequences into Jurkat cells, recapitulating the expected antigen specificity of the parental TCR. Using a companion script, Thimble, we demonstrate that Stitchr can process a million TCRs in under ten minutes using a standard desktop personal computer. By systematizing the production and modification of TCR sequences, we propose that Stitchr will increase the speed, repeatability, and reproducibility of TCR research. Stitchr is available on GitHub.
Collapse
Affiliation(s)
- James M Heather
- To whom correspondence should be addressed. Tel: +1 617 724 0104;
| | | | | | | | - David G Millar
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron N Hata
- Correspondence may also be addressed to Aaron N. Hata. Tel: +1 617 724 3442;
| |
Collapse
|
17
|
Mauriello A, Cavalluzzo B, Manolio C, Ragone C, Luciano A, Barbieri A, Tornesello ML, Buonaguro FM, Tagliamonte M, Buonaguro L. Long-term memory T cells as preventive anticancer immunity elicited by TuA-derived heteroclitic peptides. J Transl Med 2021; 19:526. [PMID: 34952611 PMCID: PMC8709997 DOI: 10.1186/s12967-021-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
The host's immune system may be primed against antigens during the lifetime (e.g. microorganisms antigens-MoAs), and swiftly recalled upon growth of a tumor expressing antigens similar in sequence and structure. C57BL/6 mice were immunized in a preventive setting with tumor antigens (TuAs) or corresponding heteroclitic peptides specific for TC-1 and B16 cell lines. Immediately or 2-months after the end of the vaccination protocol, animals were implanted with cell lines. The specific anti-vaccine immune response as well as tumor growth were regularly evaluated for 2 months post-implantation. The preventive vaccination with TuA or their heteroclitic peptides (hPep) was able to delay (B16) or completely suppress (TC-1) tumor growth when cancer cells were implanted immediately after the end of the vaccination. More importantly, TC-1 tumor growth was significantly delayed, and suppressed in 6/8 animals, also when cells were implanted 2-months after the end of the vaccination. The vaccine-specific T cell response provided a strong immune correlate to the pattern of tumor growth. A preventive immunization with heteroclitic peptides resembling a TuA is able to strongly delay or even suppress tumor growth in a mouse model. More importantly, the same effect is observed also when tumor cells are implanted 2 months after the end of vaccination, which corresponds to 8 - 10 years in human life. The observed potent tumor control indicates that a memory T cell immunity elicited during the lifetime by a antigens similar to a TuA, i.e. viral antigens, may ultimately represent a great advantage for cancer patients and may lead to a novel preventive anti-cancer vaccine strategy.
Collapse
Affiliation(s)
- Angela Mauriello
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Beatrice Cavalluzzo
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Carmen Manolio
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Concetta Ragone
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Franco M Buonaguro
- Mol Biol and Viral Oncogenesis, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Naples, Italy
| | - Maria Tagliamonte
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy
| | - Luigi Buonaguro
- Lab of Innovative Immunological Models, Istituto Nazionale Tumori - IRCCS "Fondazione Pascale", Via Mariano Semmola, 52, 80131, Naples, Italy.
| |
Collapse
|
18
|
Wang X, Chen M, Dai L, Tan C, Hu L, Zhang Y, Xiao Y, Li F, Zeng C, Xiang Z, Wang Y, Zhang W, Zhang X, Ran Q, Li Z, Chen L. Potential biomarkers for inherited thrombocytopenia 2 identified by plasma proteomics. Platelets 2021; 33:443-450. [PMID: 34101524 DOI: 10.1080/09537104.2021.1937594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Inherited thrombocytopenia 2 (THC2) is difficult to diagnose due to the lack of specific clinical characteristics and diagnostic methods. To identify potential plasma protein biomarkers for THC2, we collected the plasma samples from a THC2 family (9 THC2 and 15 non-THC2 members), enriched the medium and low abundant proteins using Proteominer and analyzed the protein profiles using the liquid chromatography-mass spectrometry in data independent acquisition mode. Initially, we detected 784 proteins in the plasma samples of this family and identified 27 up-regulated and 36 down-regulated in the THC2 group compared to the non-THC2 group (|log2 ratio| >1 and p-value <0.05). To improve the predictive power, top eight dysregulated proteins (B7Z2B4, LTF, HP, ERN1, IGHV1-8, A0A0X9V9C4, VH6DJ, and D3JV41) were selected by an area under the curve-based random forest process to construct a clinical model. Multivariate analysis with random forest and support vector machine showed that the prediction model provided high discrimination ability for THC2 diagnosis (AUC: 1.000 and 0.967, respectively). The potential plasma protein biomarkers will be tested in more THC2 patients and other thrombocytopenia patients to further validate their specificity and sensitivity.
Collapse
Affiliation(s)
- Xiaojie Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Maoshan Chen
- Australian Centre for Blood Diseases (ACBD), Clinical Central School, Monash University, Melbourne, Australia
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Chengning Tan
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Lanyue Hu
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yichi Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yanni Xiao
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fengjie Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Cheng Zeng
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zheng Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yali Wang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weiwei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xiaomei Zhang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Ran
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Li Chen
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Wan J, Ling W, Zhengshan Z, Xianbo Z, Lian D, Kai W. Association of HLA-DQA2 and HLA-B With Moyamoya Disease in the Chinese Han Population. NEUROLOGY-GENETICS 2021; 7:e592. [PMID: 34095496 PMCID: PMC8176556 DOI: 10.1212/nxg.0000000000000592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
Objective An HLA imputation was conducted to explore the relationship between HLA and patients with moyamoya disease (MMD) in the Chinese Han population. Methods In this study, we performed an association analysis of the major histocompatibility complex region in 2,786 individuals of Chinese Han ancestry (2,031 controls and 755 patients with MMD), through a widely used HLA imputation method. Results We identified that the variant rs3129731 (odds ratio [OR] = 1.79, p = 3.69 × 10−16) located between the MTCO3P1 and HLA-DQA2 is a major genetic risk factor for MMD. In addition to this variant, found in the conditional association analysis, we also detected another independent signal, rs1071817 (OR = 0.62, p = 1.20 × 10−11), in HLA-B. Conclusions Our research suggests that the genetic polymorphism of HLA-DQA2 and HLA-B could be a genetic predisposing factor for MMD in Chinese Han. This may provide some evidence for further HLA-related studies of patients with MMD of Chinese Han ethnicity and indicates that MMD is an immune-related disease.
Collapse
Affiliation(s)
- Jiang Wan
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| | - Wei Ling
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| | - Zhang Zhengshan
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| | - Zuo Xianbo
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| | - Duan Lian
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| | - Wang Kai
- Department of Neurology (J.W.), the First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, Department of Neurology (J.W.), Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; the School of Mental Health and Psychological Sciences (W.L.), Anhui Medical University, Anhui Province, Institute of Artificial Intelligence (W.L.), Hefei Comprehensive National Science Center. Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.L.), Hefei; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.L), Anhui Province; Department of Neurosurgery (Z.Z.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; Department of Dermatology (Z.X.), the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui Province; Key Laboratory of Dermatology (Z.X.), Anhui Medical University, Ministry of Education, Hefei, Anhui Province; State Key Lab of Dermatology Incubation Center (Z.X.), Anhui Medical University, Hefei, China; Department of Neurosurgery (D.L.), the Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of PLA), Beijing; the School of Mental Health and Psychological Sciences (W.K.), Anhui Medical University, Anhui Province; Institute of Artificial Intelligence (W.K.), Hefei Comprehensive National Science Center; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders (W.K.), Hefei, Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health (W.K.), Anhui Province, China
| |
Collapse
|
20
|
Structures suggest an approach for converting weak self-peptide tumor antigens into superagonists for CD8 T cells in cancer. Proc Natl Acad Sci U S A 2021; 118:2100588118. [PMID: 34074778 PMCID: PMC8201969 DOI: 10.1073/pnas.2100588118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor vaccines using modified self-antigens that structurally enhance T cell receptor–peptide–major histocompatibility complex interactions greatly improve a T cell protective response against the tumor’s unmodified self-antigen. X-ray crystal structures of these interactions explain how the native and modified peptides can interact with the same T cell receptor, but with different affinities and abilities to drive T cell proliferation and differentiation. Tumors frequently express unmutated self-tumor–associated antigens (self-TAAs). However, trial results using self-TAAs as vaccine targets against cancer are mixed, often attributed to deletion of T cells with high-affinity receptors (TCRs) for self-TAAs during T cell development. Mutating these weak self-TAAs to produce higher affinity, effective vaccines is challenging, since the mutations may not benefit all members of the broad self-TAA–specific T cell repertoire. We previously identified a common weak murine self-TAA that we converted to a highly effective antitumor vaccine by a single amino acid substitution. In this case the modified and natural self-TAAs still raised very similar sets of CD8 T cells. Our structural studies herein show that the modification of the self-TAA resulted in a subtle change in the major histocompatibility complex I–TAA structure. This amino acid substitution allowed a dramatic conformational change in the peptide during subsequent TCR engagement, creating a large increase in TCR affinity and accounting for the efficacy of the modified self-TAA as a vaccine. These results show that carefully selected, well-characterized modifications to a poorly immunogenic self-TAA can rescue the immune response of the large repertoire of weakly responding natural self-TAA–specific CD8 T cells, driving them to proliferate and differentiate into functional effectors. Subsequently, the unmodified self-TAA on the tumor cells, while unable to drive this response, is nevertheless a sufficient target for the CD8 cytotoxic effectors. Our results suggest a pathway for more efficiently identifying variants of common self-TAAs, which could be useful in vaccine development, complementing other current nonantigen-specific immunotherapies.
Collapse
|
21
|
Pettmann J, Huhn A, Abu Shah E, Kutuzov MA, Wilson DB, Dustin ML, Davis SJ, van der Merwe PA, Dushek O. The discriminatory power of the T cell receptor. eLife 2021; 10:e67092. [PMID: 34030769 PMCID: PMC8219380 DOI: 10.7554/elife.67092] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/15/2021] [Indexed: 12/20/2022] Open
Abstract
T cells use their T cell receptors (TCRs) to discriminate between lower-affinity self and higher-affinity non-self peptides presented on major histocompatibility complex (pMHC) antigens. Although the discriminatory power of the TCR is widely believed to be near-perfect, technical difficulties have hampered efforts to precisely quantify it. Here, we describe a method for measuring very low TCR/pMHC affinities and use it to measure the discriminatory power of the TCR and the factors affecting it. We find that TCR discrimination, although enhanced compared with conventional cell-surface receptors, is imperfect: primary human T cells can respond to pMHC with affinities as low as KD ∼ 1 mM. The kinetic proofreading mechanism fit our data, providing the first estimates of both the time delay (2.8 s) and number of biochemical steps (2.67) that are consistent with the extraordinary sensitivity of antigen recognition. Our findings explain why self pMHC frequently induce autoimmune diseases and anti-tumour responses, and suggest ways to modify TCR discrimination.
Collapse
Affiliation(s)
- Johannes Pettmann
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | - Anna Huhn
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Enas Abu Shah
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Mikhail A Kutuzov
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Daniel B Wilson
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
- Boston University, Department of Mathematics and StatisticsBostonUnited States
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of OxfordOxfordUnited Kingdom
| | - Simon J Davis
- Radcliffe Department of Medicine, Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of OxfordOxfordUnited Kingdom
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
22
|
Lineburg KE, Grant EJ, Swaminathan S, Chatzileontiadou DSM, Szeto C, Sloane H, Panikkar A, Raju J, Crooks P, Rehan S, Nguyen AT, Lekieffre L, Neller MA, Tong ZWM, Jayasinghe D, Chew KY, Lobos CA, Halim H, Burrows JM, Riboldi-Tunnicliffe A, Chen W, D'Orsogna L, Khanna R, Short KR, Smith C, Gras S. CD8 + T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 2021; 54:1055-1065.e5. [PMID: 33945786 PMCID: PMC8043652 DOI: 10.1016/j.immuni.2021.04.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 04/09/2021] [Indexed: 01/16/2023]
Abstract
Efforts are being made worldwide to understand the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic, including the impact of T cell immunity and cross-recognition with seasonal coronaviruses. Screening of SARS-CoV-2 peptide pools revealed that the nucleocapsid (N) protein induced an immunodominant response in HLA-B7+ COVID-19-recovered individuals that was also detectable in unexposed donors. A single N-encoded epitope that was highly conserved across circulating coronaviruses drove this immunodominant response. In vitro peptide stimulation and crystal structure analyses revealed T cell-mediated cross-reactivity toward circulating OC43 and HKU-1 betacoronaviruses but not 229E or NL63 alphacoronaviruses because of different peptide conformations. T cell receptor (TCR) sequencing indicated that cross-reactivity was driven by private TCR repertoires with a bias for TRBV27 and a long CDR3β loop. Our findings demonstrate the basis of selective T cell cross-reactivity for an immunodominant SARS-CoV-2 epitope and its homologs from seasonal coronaviruses, suggesting long-lasting protective immunity.
Collapse
Affiliation(s)
- Katie E Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Emma J Grant
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Srividhya Swaminathan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Archana Panikkar
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Jyothy Raju
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Pauline Crooks
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sweera Rehan
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lea Lekieffre
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Michelle A Neller
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Hanim Halim
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Jacqueline M Burrows
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | | | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA 6150, Australia; School of Medicine, University of Western Australia, Nedlands, WA 6009, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
23
|
Clemen R, Freund E, Mrochen D, Miebach L, Schmidt A, Rauch BH, Lackmann J, Martens U, Wende K, Lalk M, Delcea M, Bröker BM, Bekeschus S. Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003395. [PMID: 34026437 PMCID: PMC8132054 DOI: 10.1002/advs.202003395] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Indexed: 05/04/2023]
Abstract
Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
Collapse
Affiliation(s)
- Ramona Clemen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Eric Freund
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Daniel Mrochen
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Lea Miebach
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
- Department of GeneralVisceralThoracicand Vascular SurgeryUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Anke Schmidt
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Bernhard H. Rauch
- Institute of Pharmacology (C_Dat)University Medicine GreifswaldFelix‐Hausdorff‐Str. 1Greifswald17489Germany
| | - Jan‐Wilm Lackmann
- CECAD proteomics facilityUniversity of CologneJoseph‐Stelzmann‐Str. 26Cologne50931Germany
| | - Ulrike Martens
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Kristian Wende
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| | - Michael Lalk
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Mihaela Delcea
- ZIK HIKEUniversity of GreifswaldFleischmannstr. 42–44Greifswald17489Germany
- Institute of BiochemistryUniversity of GreifswaldFelix‐Hausdorff‐Str. 4Greifswald17489Germany
| | - Barbara M. Bröker
- Department of ImmunologyUniversity Medicine GreifswaldSauerbruchstr. DZ7Greifswald17475Germany
| | - Sander Bekeschus
- ZIK plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix‐Hausdorff‐Str. 2Greifswald17489Germany
| |
Collapse
|
24
|
Gibadullin R, Randall CJ, Sidney J, Sette A, Gellman SH. Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. J Am Chem Soc 2021; 143:6470-6481. [PMID: 33881854 DOI: 10.1021/jacs.1c00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
CD8+ T cells express T cell receptors (TCRs) that recognize short peptide antigens in the context of major histocompatibility class I (MHC I) molecules. This recognition process produces an array of cytokine-mediated signals that help to govern immunological responses. Design of biostable MHC I peptide vaccines containing unnatural subunits is desirable, and synthetic antigens in which a native α-amino acid residue is replaced by a homologous β-amino acid residue (native side chain but extended backbone) might be useful in this regard. We have evaluated the impact of α-to-β backbone modification at a single site on T cell-mediated recognition of six clinically important viral and tumor-associated antigens bound to an MHC I. Effects of this modification on MHC I affinity and T cell activation were measured. Many of these modifications diminish or prevent T cell response. However, a number of α/β-peptide antigens were found to mimic the activity of natural antigens or to enhance maximal T cell response, as measured by interferon-γ release. Results from this broad exploratory study advance our understanding of immunological responses to antigens bearing unnatural modifications and suggest that α/β-peptides could be a source of potent and proteolytically stable variants of native antigens.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caleb J Randall
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California 92037, United States.,Department of Medicine, University of California, San Diego, California 92093, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
25
|
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale"-IRCCS, Via Mariano Semmola, 52, 80131 Naples, Italy.
| | - Vincenzo Cerullo
- Drug Research Program ImmunoViroTherapy Lab (IVTLAb), Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Translational Immunology Program (TRIMM), University of Helsinki, Helsinki, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II," S. Pansini 5, Italy.
| |
Collapse
|
26
|
A comprehensive screening of the whole proteome of hantavirus and designing a multi-epitope subunit vaccine for cross-protection against hantavirus: Structural vaccinology and immunoinformatics study. Microb Pathog 2020; 150:104705. [PMID: 33352214 DOI: 10.1016/j.micpath.2020.104705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022]
Abstract
Hantaviruses are an emerging zoonotic group of rodent-borne viruses that are having serious implications on global public health due to the increase in outbreaks. Since there is no permanent cure, there is increasing interest in developing a vaccine against the hantavirus. This research aimed to design a robust cross-protective subunit vaccine using a novel immunoinformatics approach. After careful evaluation, the best predicted cytotoxic & helper T-cell and B-cell epitopes from nucleocapsid proteins, glycoproteins, RdRp proteins, and non-structural proteins were considered as potential vaccine candidates. Among the four generated vaccine models with different adjuvant, the model with toll-like receptor-4 (TLR-4) agonist adjuvant was selected because of its high antigenicity, non-allergenicity, and structural quality. The selected model was 654 amino acids long and had a molecular weight of 70.5 kDa, which characterizes the construct as a good antigenic vaccine candidate. The prediction of the conformational B-lymphocyte (CBL) epitope secured its ability to induce the humoral response. Thereafter, disulfide engineering improved vaccine stability. Afterwards, the molecular docking confirmed a good binding affinity of -1292 kj/mol with considered immune receptor TLR-4 and the dynamics simulation showed high stability of the vaccine-receptor complex. Later, the in silico cloning confirmed the better expression of the constructed vaccine protein in E. coli K12. Finally, in in silico immune simulation, significantly high levels of immunoglobulin M (IgM), immunoglobulin G1 (IgG1), cytotoxic & helper T lymphocyte (CTL & HTL) populations, and numerous cytokines such as interferon-γ (IFN-γ), interleukin-2 (IL-2) etc. were found as coherence with actual immune response and also showed faster antigen clearance for repeated exposures. Nonetheless, experimental validation can demonstrate the safety and cross-protective ability of the proposed vaccine to fight against hantavirus infection.
Collapse
|
27
|
TCR Recognition of Peptide-MHC-I: Rule Makers and Breakers. Int J Mol Sci 2020; 22:ijms22010068. [PMID: 33374673 PMCID: PMC7793522 DOI: 10.3390/ijms22010068] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
T cells are a critical part of the adaptive immune system that are able to distinguish between healthy and unhealthy cells. Upon recognition of protein fragments (peptides), activated T cells will contribute to the immune response and help clear infection. The major histocompatibility complex (MHC) molecules, or human leukocyte antigens (HLA) in humans, bind these peptides to present them to T cells that recognise them with their surface T cell receptors (TCR). This recognition event is the first step that leads to T cell activation, and in turn can dictate disease outcomes. The visualisation of TCR interaction with pMHC using structural biology has been crucial in understanding this key event, unravelling the parameters that drive this interaction and their impact on the immune response. The last five years has been the most productive within the field, wherein half of current unique TCR-pMHC-I structures to date were determined within this time. Here, we review the new insights learned from these recent TCR-pMHC-I structures and their impact on T cell activation.
Collapse
|
28
|
Hò GGT, Hiemisch W, Pich A, Behrens GMN, Blasczyk R, Bade-Doeding C. The Loss of HLA-F/KIR3DS1 Ligation Is Mediated by Hemoglobin Peptides. Int J Mol Sci 2020; 21:ijms21218012. [PMID: 33126487 PMCID: PMC7672607 DOI: 10.3390/ijms21218012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
The human leukocyte antigen (HLA)-Ib molecule, HLA-F, is known as a CD4+ T-cell protein and mediator of HIV progression. While HLA-Ia molecules do not have the chance to select and present viral peptides for immune recognition due to protein downregulation, HLA-F is upregulated. Post HIV infection, HLA-F loses the affinity to its activating receptor KIR3DS1 on NK cells leading to progression of the HIV infection. Several studies aimed to solve the question of the biophysical interface between HLA ligands and their cognate receptors. It became clear that even an invariant HLA molecule can be structurally modified by the variability of the bound peptide. We recently discovered the ability of HLA-F to select and present peptides and the HLA-F allele-specific peptide selection from the proteomic content using soluble HLA (sHLA) technology and a sophisticated MS method. We established recombinant K562 cells that express membrane-bound HLA-F*01:01, 01:03 or 01:04 complexes. While a recombinant soluble form of KIR3DS1 did not bind to the peptide-HLA-F complexes, acid elution of the peptides resulted in the presentation of HLA-F open conformers, and the binding of the soluble KIR3DS1 receptor increased. We used CD4+/HIV− and CD4+/HIV+ cells and performed an MS proteome analysis. We could detect hemoglobin as significantly upregulated in CD4+ T-cells post HIV infection. The expression of cellular hemoglobin in nonerythroid cells has been described, yet HLA-Ib presentation of hemoglobin-derived peptides is novel. Peptide sequence analysis from HLA-F allelic variants featured hemoglobin peptides as dominant and shared. The reciprocal experiment of binding hemoglobin peptide fractions to the HLA-F open conformers resulted in significantly diminished receptor recognition. These results underpin the molecular involvement of HLA-F and its designated peptide ligand in HIV immune escape.
Collapse
Affiliation(s)
- Gia-Gia T. Hò
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Wiebke Hiemisch
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
- German Center for Infections Research, partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
| | - Christina Bade-Doeding
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (G.-G.T.H.); (W.H.); (R.B.)
- Correspondence: ; Tel.: +49-511-532-9744; Fax: +49-511-532-2079
| |
Collapse
|
29
|
Picarda E, Bézie S, Usero L, Ossart J, Besnard M, Halim H, Echasserieau K, Usal C, Rossjohn J, Bernardeau K, Gras S, Guillonneau C. Cross-Reactive Donor-Specific CD8 + Tregs Efficiently Prevent Transplant Rejection. Cell Rep 2020; 29:4245-4255.e6. [PMID: 31875536 DOI: 10.1016/j.celrep.2019.11.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 10/14/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
To reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition.
Collapse
Affiliation(s)
- Elodie Picarda
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Séverine Bézie
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Lorena Usero
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jason Ossart
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Marine Besnard
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Hanim Halim
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Klara Echasserieau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Claire Usal
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Karine Bernardeau
- Plateforme de protéines recombinantes P2R IFR26, CRCNA-UMR892 INSERM, Nantes, France
| | - Stéphanie Gras
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Carole Guillonneau
- Nantes Université, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France.
| |
Collapse
|
30
|
Marino F, Semilietof A, Michaux J, Pak HS, Coukos G, Müller M, Bassani-Sternberg M. Biogenesis of HLA Ligand Presentation in Immune Cells Upon Activation Reveals Changes in Peptide Length Preference. Front Immunol 2020; 11:1981. [PMID: 32983136 PMCID: PMC7485268 DOI: 10.3389/fimmu.2020.01981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
Induction of an effective tumor immunity is a complex process that includes the appropriate presentation of the tumor antigens, activation of specific T cells, and the elimination of malignant cells. Potent and efficient T cell activation is dependent on multiple factors, such as timely expression of co-stimulatory molecules, the differentiation state of professional antigen presenting cells (e.g., dendritic cells; DCs), the functionality of the antigen processing and presentation machinery (APPM), and the repertoire of HLA class I and II-bound peptides (termed immunopeptidome) presented to T cells. So far, how molecular perturbations underlying DCs maturation and differentiation affect the in vivo cross-presented HLA class I and II immunopeptidomes is largely unknown. Yet, this knowledge is crucial for further development of DC-based immunotherapy approaches. We applied a state-of-the-art sensitive MS-based immunopeptidomics approach to characterize the naturally presented HLA-I and -II immunopeptidomes eluted from autologous immune cells having distinct functional and biological states including CD14+ monocytes, immature DC (ImmDC) and mature DC (MaDC) monocyte-derived DCs and naive or activated T and B cells. We revealed a presentation of significantly longer HLA peptides upon activation that is HLA allotype specific. This was apparent in the self-peptidome upon cell activation and in the context of presentation of exogenously loaded antigens, suggesting that peptide length is an important feature with potential implications on the rational design of anti-cancer vaccines.
Collapse
Affiliation(s)
- Fabio Marino
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Aikaterini Semilietof
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Justine Michaux
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Hui-Song Pak
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - George Coukos
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Markus Müller
- Vital IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Agora Center, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
31
|
High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc Natl Acad Sci U S A 2020; 117:12826-12835. [PMID: 32461371 DOI: 10.1073/pnas.1921964117] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complete cancer regression occurs in a subset of patients following adoptive T cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). However, the low success rate presents a great challenge to broader clinical application. To provide insight into TIL-based immunotherapy, we studied a successful case of ACT where regression was observed against tumors carrying the hotspot mutation G12D in the KRAS oncogene. Four T cell receptors (TCRs) made up the TIL infusion and recognized two KRAS-G12D neoantigens, a nonamer and a decamer, all restricted by human leukocyte antigen (HLA) C*08:02. Three of them (TCR9a, 9b, and 9c) were nonamer-specific, while one was decamer-specific (TCR10). We show that only mutant G12D but not the wild-type peptides stabilized HLA-C*08:02 due to the formation of a critical anchor salt bridge to HLA-C. Therapeutic TCRs exhibited high affinities, ranging from nanomolar to low micromolar. Intriguingly, TCR binding affinities to HLA-C inversely correlated with their persistence in vivo, suggesting the importance of antigenic affinity in the function of therapeutic T cells. Crystal structures of TCR-HLA-C complexes revealed that TCR9a to 9c recognized G12D nonamer with multiple conserved contacts through shared CDR2β and CDR3α. This allowed CDR3β variation to confer different affinities via a variable HLA-C contact, generating an oligoclonal response. TCR10 recognized an induced and distinct G12D decamer conformation. Thus, this successful case of ACT included oligoclonal TCRs of high affinity recognizing distinct conformations of neoantigens. Our study revealed the potential of a structural approach to inform clinical efforts in targeting KRAS-G12D tumors by immunotherapy and has general implications for T cell-based immunotherapies.
Collapse
|
32
|
Coles CH, Mulvaney RM, Malla S, Walker A, Smith KJ, Lloyd A, Lowe KL, McCully ML, Martinez Hague R, Aleksic M, Harper J, Paston SJ, Donnellan Z, Chester F, Wiederhold K, Robinson RA, Knox A, Stacey AR, Dukes J, Baston E, Griffin S, Jakobsen BK, Vuidepot A, Harper S. TCRs with Distinct Specificity Profiles Use Different Binding Modes to Engage an Identical Peptide-HLA Complex. THE JOURNAL OF IMMUNOLOGY 2020; 204:1943-1953. [PMID: 32102902 DOI: 10.4049/jimmunol.1900915] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022]
Abstract
The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1157-165-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles. The third TCR engaged a flipped peptide conformation, leading to the recognition of off-target peptides sharing little similarity with the cognate peptide. These data show that TCRs specific for a cognate peptide recognize discrete peptide repertoires and reconciles how an individual's limited TCR repertoire following negative selection in the thymus is able to recognize a vastly larger antigenic pool.
Collapse
Affiliation(s)
- Charlotte H Coles
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Rachel M Mulvaney
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Sunir Malla
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Andrew Walker
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Kathrine J Smith
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Angharad Lloyd
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Kate L Lowe
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | | | | | - Milos Aleksic
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Jane Harper
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Samantha J Paston
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Zoe Donnellan
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Fiona Chester
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Katrin Wiederhold
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Ross A Robinson
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Andrew Knox
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Andrea R Stacey
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Joseph Dukes
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Emma Baston
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Sue Griffin
- GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bent K Jakobsen
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Annelise Vuidepot
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| | - Stephen Harper
- Immunocore, Ltd., Abingdon, Oxfordshire OX14 4RY, United Kingdom; and
| |
Collapse
|
33
|
van de Sandt CE, Clemens EB, Grant EJ, Rowntree LC, Sant S, Halim H, Crowe J, Cheng AC, Kotsimbos TC, Richards M, Miller A, Tong SYC, Rossjohn J, Nguyen THO, Gras S, Chen W, Kedzierska K. Challenging immunodominance of influenza-specific CD8 + T cell responses restricted by the risk-associated HLA-A*68:01 allomorph. Nat Commun 2019; 10:5579. [PMID: 31811120 PMCID: PMC6898063 DOI: 10.1038/s41467-019-13346-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022] Open
Abstract
Although influenza viruses lead to severe illness in high-risk populations, host genetic factors associated with severe disease are largely unknown. As the HLA-A*68:01 allele can be linked to severe pandemic 2009-H1N1 disease, we investigate a potential impairment of HLA-A*68:01-restricted CD8+ T cells to mount robust responses. We elucidate the HLA-A*68:01+CD8+ T cell response directed toward an extended influenza-derived nucleoprotein (NP) peptide and show that only ~35% individuals have immunodominant A68/NP145+CD8+ T cell responses. Dissecting A68/NP145+CD8+ T cells in low vs. medium/high responders reveals that high responding donors have A68/NP145+CD8+ memory T cells with clonally expanded TCRαβs, while low-responders display A68/NP145+CD8+ T cells with predominantly naïve phenotypes and non-expanded TCRαβs. Single-cell index sorting and TCRαβ analyses link expansion of A68/NP145+CD8+ T cells to their memory potential. Our study demonstrates the immunodominance potential of influenza-specific CD8+ T cells presented by a risk HLA-A*68:01 molecule and advocates for priming CD8+ T cell compartments in HLA-A*68:01-expressing individuals for establishment of pre-existing protective memory T cell pools.
Collapse
Affiliation(s)
- C E van de Sandt
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX, Amsterdam, Netherlands
| | - E B Clemens
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - E J Grant
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Infection and Immunity Program, Monash University, Clayton, VIC, 3800, Australia
| | - L C Rowntree
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - S Sant
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - H Halim
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - J Crowe
- Deepdene Surgery, Deepdene, VIC, 3103, Australia
| | - A C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.,Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC, 3004, Australia
| | - T C Kotsimbos
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, 3004, Australia.,Department of Medicine, Monash University, Central Clinical School, The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - M Richards
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3050, Australia
| | - A Miller
- Indigenous Research Network, Griffith University, Brisbane, QLD, 4222, Australia.,Office of Indigenous Engagement, CQUniversity, Townsvillle, QLD, Australia
| | - S Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3050, Australia.,Menzies School of Health Research, Charles Darwin University, Darwin, NT, 0811, Australia
| | - J Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - T H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia
| | - S Gras
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - W Chen
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - K Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
34
|
Oh J, Warshaviak DT, Mkrtichyan M, Munguia ML, Lin A, Chai F, Pigott C, Kang J, Gallo M, Kamb A. Single variable domains from the T cell receptor β chain function as mono- and bifunctional CARs and TCRs. Sci Rep 2019; 9:17291. [PMID: 31754147 PMCID: PMC6872726 DOI: 10.1038/s41598-019-53756-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/31/2019] [Indexed: 01/21/2023] Open
Abstract
Cell therapy using T cell receptors (TCRs) and chimeric antigen receptors (CARs) represents a new wave of immunotherapies garnering considerable attention and investment. Further progress in this area of medicine depends in part on improving the functional capabilities of the engineered components, while maintaining the overall size of recombinant constructs to ensure their compatibility with existing gene delivery vehicles. We describe a single-variable-domain TCR (svd TCR) that utilizes only the variable domain of the β chain (Vβ). This Vβ module not only works in TCR and CAR formats, but also can be used to create single-chain bispecific CARs and TCRs. Comparison of individual ligand-binding Vβ domains in different formats suggests that the lone Vβ sequence controls the sensitivity and a major part of the specificity of the CAR or TCR construct, regardless of signaling format, in Jurkat and primary T cells.
Collapse
Affiliation(s)
- Julyun Oh
- A2 Biotherapeutics, Inc. 30301 Agoura Rd., Agoura Hills, CA, 91301, USA
| | | | | | | | - Abby Lin
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Falene Chai
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Craig Pigott
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Jaspal Kang
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Michael Gallo
- Innovative Targeting Solutions, Inc. 290-2985 Virtual Way, Vancouver, BC, V5M 4X7, Canada
| | - Alexander Kamb
- A2 Biotherapeutics, Inc. 30301 Agoura Rd., Agoura Hills, CA, 91301, USA.
| |
Collapse
|
35
|
HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. Int J Mol Sci 2019; 20:ijms20225572. [PMID: 31717259 PMCID: PMC6888383 DOI: 10.3390/ijms20225572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Peptide-dependent engagement between human leucocyte antigens class I (HLA-I) molecules and their cognate receptors has been extensively analyzed. HLA-F belongs to the non-classical HLA-Ib molecules with marginal polymorphic nature and tissue restricted distribution. The three common allelic variants HLA-F*01:01/01:03/01:04 are distinguished by polymorphism outside the peptide binding pockets (residue 50, α1 or residue 251, α3) and are therefore not considered relevant for attention. However, peptide selection and presentation undergoes a most elaborated extraction from the whole available proteome. It is known that HLA-F confers a beneficial effect on disease outcome during HIV-1 infections. The interaction with the NK cell receptor initiates an antiviral downstream immune response and lead to delayed disease progression. During the time of HIV infection, HLA-F expression is upregulated, while its interaction with KIR3DS1 is diminished. The non-polymorphic nature of HLA-F facilitates the conclusion that understanding HLA-F peptide selection and presentation is essential to a comprehensive understanding of this dynamic immune response. Utilizing soluble HLA technology we recovered stable pHLA-F*01:01, 01:03 and 01:04 complexes from K562 cells and analyzed the peptides presented. Utilizing a sophisticated LC-MS-method, we analyzed the complete K562 proteome and matched the peptides presented by the respective HLA-F subtypes with detected proteins. All peptides featured a length of 8 to 24 amino acids and are not N-terminally anchored; the C-terminus is preferably anchored by Lys. To comprehend the alteration of the pHLA-F surface we structurally compared HLA-F variants bound to selected peptides. The peptides were selected from the same cellular content; however, no overlap between the proteomic source of F*01:01, 01:03 or 01:04 selected peptides could be observed. Recognizing the balance between HLA-F expression, HLA-F polymorphism and peptide selection will support to understand the role of HLA-F in viral pathogenesis.
Collapse
|
36
|
Bentzen AK, Hadrup SR. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. IMMUNO-ONCOLOGY AND TECHNOLOGY 2019; 2:1-10. [PMID: 35036898 PMCID: PMC8741623 DOI: 10.1016/j.iotech.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Adoptive transfer of T-cell-receptor (TCR)-transduced T cells has shown promising results for cancer treatment, but has also produced severe immunotoxicities caused by on-target as well as off-target TCR recognition. Off-target toxicities are related to the ability of a single T cell to cross-recognize and respond to several different peptide–major histocompatibility complex (pMHC) antigens; a property that is essential for providing broad antigenic coverage despite a confined number of unique TCRs in the human body. However, this degeneracy makes it incredibly difficult to account for the range of targets that any TCR might recognize, which represents a major challenge for the clinical development of therapeutic TCRs. The prospect of using affinity-optimized TCRs has been impeded due to observations that affinity enhancement might alter the specificity of a TCR, thereby increasing the risk that it will cross-recognize endogenous tissue. Strategies for selecting safe TCRs for the clinic have included functional assessment after individual incubations with tissue-derived primary cells or with peptides substituted with single amino acids. However, these strategies have not been able to predict cross-recognition sufficiently, leading to fatal cross-reactivity in clinical trials. Novel technologies have emerged that enable extensive characterization of the exact interaction points of a TCR with pMHC, which provides a foundation from which to make predictions of the cross-recognition potential of individual TCRs. This review describes current advances in strategies for dissecting the molecular interaction points of TCRs, focusing on their potential as tools for predicting cross-recognition of TCRs in clinical development. T-cell-receptor (TCR) degeneracy plays a fundamental role in the capacity of our immune systems to recognize foreign antigens. TCR cross-reactivity provides an inherent risk in TCR–gene transfer cell therapies. Advances in description of TCR cross-recognition can guide the selection process for TCRs into clinical use.
Collapse
|
37
|
Madura F, Rizkallah PJ, Legut M, Holland CJ, Fuller A, Bulek A, Schauenburg AJ, Trimby A, Hopkins JR, Wells SA, Godkin A, Miles JJ, Sami M, Li Y, Liddy N, Jakobsen BK, Loveridge EJ, Cole DK, Sewell AK. TCR-induced alteration of primary MHC peptide anchor residue. Eur J Immunol 2019; 49:1052-1066. [PMID: 31091334 PMCID: PMC6618058 DOI: 10.1002/eji.201948085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.
Collapse
Affiliation(s)
| | | | | | | | - Anna Fuller
- School of MedicineCardiff UniversityCardiffUK
| | - Anna Bulek
- School of MedicineCardiff UniversityCardiffUK
| | | | | | | | | | | | - John J. Miles
- School of MedicineCardiff UniversityCardiffUK
- Centre for Biodiscovery and Molecular Development of TherapeuticsAustralian Institute of Tropical Health and MedicineJames Cook UniversityCairnsQueenslandAustralia
| | | | - Yi Li
- Immunocore Ltd.AbingdonUK
| | | | | | - E. Joel Loveridge
- School of ChemistryCardiff UniversityCardiffUK
- Department of ChemistrySwansea UniversitySwanseaUK
| | - David K. Cole
- School of MedicineCardiff UniversityCardiffUK
- Immunocore Ltd.AbingdonUK
| | - Andrew K. Sewell
- School of MedicineCardiff UniversityCardiffUK
- Systems Immunity Research InstituteCardiff UniversityCardiffUK
| |
Collapse
|
38
|
Ji W, Niu L, Peng W, Zhang Y, Cheng H, Gao F, Shi Y, Qi J, Gao GF, Liu WJ. Salt bridge-forming residues positioned over viral peptides presented by MHC class I impacts T-cell recognition in a binding-dependent manner. Mol Immunol 2019; 112:274-282. [PMID: 31226552 PMCID: PMC7112684 DOI: 10.1016/j.molimm.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 11/28/2022]
Abstract
Crystal structure of HLA-B*4001 was determined. The salt bridges in HLA-B*4001 and H-2Kd have different structural characteristics. MHC I mutations that disrupt the salt bridge alleviate peptide binding. Mutations of the salt bridge-forming residues may impact TCR recognition, directly or indirectly.
The viral peptides presentation by major histocompatibility complex class I (MHC I) molecules play a pivotal role in T-cell recognition and the subsequent virus clearance. This process is delicately adjusted by the variant residues of MHC I, especially the residues in the peptide binding groove (PBG). In a series of MHC I molecules, a salt bridge is formed above the N-terminus of the peptides. However, the potential impact of the salt bridge on peptide binding and T-cell receptor (TCR) recognition of MHC I, as well as the corresponding molecular basis, are still largely unknown. Herein, we determined the structures of HLA-B*4001 and H-2Kd in which two different types of salt bridges (Arg62-Glu163 or Arg66-Glu163) across the PBG were observed. Although the two salt bridges led to different conformation shifts of both the MHC I α helix and the peptides, binding of the peptides with the salt bridge residues was relatively conserved. Furthermore, through a series of in vitro and in vivo investigations, we found that MHC I mutations that disrupt the salt bridge alleviate peptide binding and can weaken the TCR recognition of MHC I-peptide complexes. Our study may provide key references for understanding MHC I-restricted peptide recognition by T-cells.
Collapse
Affiliation(s)
- Wei Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Ling Niu
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyu Peng
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao Cheng
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - George F Gao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; CAS Key Laboratory for Pathogenic Microbiology and Immunology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| | - William J Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|