1
|
Gallo M, Ferrari E, Brugnoli F, Terrazzan A, Ancona P, Volinia S, Bertagnolo V, Bergamini CM, Spisni A, Pertinhez TA, Bianchi N. Metabolic Profiling of Breast Cancer Cell Lines: Unique and Shared Metabolites. Int J Mol Sci 2025; 26:969. [PMID: 39940737 PMCID: PMC11816582 DOI: 10.3390/ijms26030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Breast Cancer (BrCa) exhibits a high phenotypic heterogeneity, leading to the emergence of aggressive clones and the development of drug resistance. Considering the BrCa heterogeneity and that metabolic reprogramming is a cancer hallmark, we selected seven BrCa cell lines with diverse subtypes to provide their comprehensive metabolome characterization: five lines commonly used (SK-Br-3, T-47D, MCF-7, MDA-MB-436, and MDA-MB-231), and two patient-derived xenografts (Hbcx39 and Hbcx9). We characterized their endometabolomes using 1H-NMR spectroscopy. We found distinct metabolite profiles, with certain metabolites being common but differentially accumulated across the selected BrCa cell lines. High levels of glycine, lactate, glutamate, and formate, metabolites known to promote invasion and metastasis, were detected in all BrCa cells. In our experiment setting were identified unique metabolites to specific cell lines: xanthine and 2-oxoglutarate in SK-Br-3, 2-oxobutyrate in T-47D, cystathionine and glucose-1-phosphate in MCF-7, NAD+ in MDA-MB-436, isocitrate in MDA-MB-231, and NADP+ in Hbcx9. The unique and enriched metabolites enabled us to identify the metabolic pathways modulated in a cell-line-specific manner, which may represent potential candidate targets for therapeutic intervention. We believe this study may contribute to the functional characterization of BrCa cells and assist in selecting appropriate cell lines for drug-response studies.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| | - Carlo M. Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.B.); (A.T.); (P.A.); (V.B.); (N.B.)
| |
Collapse
|
2
|
Walvekar AS, Warmoes M, Cheung D, Sikora T, Seyedkatouli N, Gomez-Giro G, Perrone S, Dengler L, Unger F, Santos BFR, Gavotto F, Dong X, Becker-Kettern J, Kwon YJ, Jäger C, Schwamborn JC, Van Bergen NJ, Christodoulou J, Linster CL. Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells. Cell Mol Biol Lett 2025; 30:3. [PMID: 39789421 PMCID: PMC11715087 DOI: 10.1186/s11658-024-00681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively. METHODS To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments. RESULTS HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway. CONCLUSIONS Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.
Collapse
Affiliation(s)
- Adhish S Walvekar
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Marc Warmoes
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Dean Cheung
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Tim Sikora
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
| | - Najmesadat Seyedkatouli
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Sebastian Perrone
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Lisa Dengler
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - François Unger
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Bruno F R Santos
- Disease Modeling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux and Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Floriane Gavotto
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Xiangyi Dong
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Julia Becker-Kettern
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yong-Jun Kwon
- Disease Modeling and Screening Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux and Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Christian Jäger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Developmental and Cellular Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
| | - Carole L Linster
- Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.
| |
Collapse
|
3
|
Neises L, Delbrouck C, Schuster A, Rezaipour M, Eiden K, Oudin A, Fabian C, Niclou SP, Golebiewska A, Meiser J. Protocol using ex vivo mouse brain slice culture mimicking in vivo conditions to study tumor growth and cell motility of glioblastoma cells. STAR Protoc 2024; 5:103401. [PMID: 39425931 PMCID: PMC11532992 DOI: 10.1016/j.xpro.2024.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Herein, we present an ex vivo approach to study glioblastoma (GBM) cell motility in viable mouse brain slice cultures, closely mimicking in vivo features. We detail the preparation and culturing of mouse brain slices followed by tumor cell injection, allowing for the analysis of different aspects of the cellular migration and invasion process. Our assay facilitates testing diverse perturbations including genetic modifications and treatments in a physiological context. Thus, the protocol provides a compromise between in vitro assays and in vivo models. For complete details on the use and execution of this protocol, please refer to Delbrouck et al.1 and Schuster et al.2.
Collapse
Affiliation(s)
- Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Catherine Delbrouck
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Mahsa Rezaipour
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Kim Eiden
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Carina Fabian
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Simone P Niclou
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg.
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg.
| |
Collapse
|
4
|
Fernandes WM, Harris N, Zamalloa A, Adofina L, Srinivasan P, Menon K, Heaton N, Miquel R, Zen Y, Kelly G, Jarvis JA, Oregioni A, Chokshi S, Riva A, Cox IJ. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region. Int J Mol Sci 2024; 25:8924. [PMID: 39201610 PMCID: PMC11354908 DOI: 10.3390/ijms25168924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
The global burden of liver cancer is increasing. Timely diagnosis is important for optimising the limited available treatment options. Understanding the metabolic consequences of hepatocellular carcinoma (HCC) may lead to more effective treatment options. We aimed to document metabolite differences between HCC and matched surrounding tissues of varying aetiology, obtained at the time of liver resection, and to interpret metabolite changes with clinical findings. High-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) spectroscopy analyses of N = 10 paired HCC and surrounding non-tumour liver tissue samples were undertaken. There were marked HRMAS-NMR differences in lipid levels in HCC tissue compared to matched surrounding tissue and more subtle changes in low-molecular-weight metabolites, particularly when adjusting for patient-specific variability. Differences in lipid-CH3, lipid-CH2, formate, and acetate levels were of particular interest. The obvious differences in lipid content highlight the intricate interplay between metabolic adaptations and cancer cell survival in the complex microenvironment of liver cancer. Differences in formate and acetate might relate to bacterial metabolites. Therefore, documentation of metabolites in HCC tissue according to histology findings in patients is of interest for personalised medicine approaches and for tailoring targeted treatment strategies.
Collapse
Affiliation(s)
- Wendy M. Fernandes
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Nicola Harris
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Ane Zamalloa
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Lissette Adofina
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Parthi Srinivasan
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Krishna Menon
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Nigel Heaton
- Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Rosa Miquel
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Yoh Zen
- Liver Histopathology Laboratory, Institute of Liver Studies, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James A. Jarvis
- Randall Centre for Cell & Molecular Biophysics and Centre for Biomolecular Spectroscopy, King’s College London, London SE1 1UL, UK
| | - Alain Oregioni
- MRC Biomedical NMR Centre, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| | - I. Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, 111 Coldharbour Lane, London SE5 9NT, UK (A.R.)
- Faculty of Life Sciences & Medicine, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
5
|
Zhou Y, Han W, Feng Y, Wang Y, Sun T, Xu J. Microbial metabolites affect tumor progression, immunity and therapy prediction by reshaping the tumor microenvironment (Review). Int J Oncol 2024; 65:73. [PMID: 38847233 PMCID: PMC11173369 DOI: 10.3892/ijo.2024.5661] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
Several studies have indicated that the gut microbiome and tumor microbiota may affect tumors. Emerging metabolomics research illustrates the need to examine the variations in microbial metabolite composition between patients with cancer and healthy individuals. Microbial metabolites can impact the progression of tumors and the immune response by influencing a number of mechanisms, including modulation of the immune system, cancer or immune‑related signaling pathways, epigenetic modification of proteins and DNA damage. Microbial metabolites can also alleviate side effects and drug resistance during chemotherapy and immunotherapy, while effectively activating the immune system to exert tumor immunotherapy. Nevertheless, the impact of microbial metabolites on tumor immunity can be both beneficial and harmful, potentially influenced by the concentration of the metabolites or the specific cancer type. The present review summarizes the roles of various microbial metabolites in different solid tumors, alongside their influence on tumor immunity and treatment. Additionally, clinical trials evaluating the therapeutic effects of microbial metabolites or related microbes on patients with cancer have been listed. In summary, studying microbial metabolites, which play a crucial role in the interaction between the microbiota and tumors, could lead to the identification of new supplementary treatments for cancer. This has the potential to improve the effectiveness of cancer treatment and enhance patient prognosis.
Collapse
Affiliation(s)
- Yuhang Zhou
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Wenjie Han
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yun Feng
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Yue Wang
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Oncology Medicine, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Breast Medicine 1, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Pharmacology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
- Department of Breast Medicine, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
6
|
Hou R, Huang W, Lin Y, Li W, Dong J, Huang X, Xu M, Li Q, Zhang Y, Yang Y. Screening of postoperative adjuvant chemotherapy-related serum metabolic markers in breast cancer patients based on 1H NMR metabonomics. Transl Cancer Res 2024; 13:2721-2734. [PMID: 38988914 PMCID: PMC11231764 DOI: 10.21037/tcr-23-2352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/07/2024] [Indexed: 07/12/2024]
Abstract
Background Breast cancer (BC) has the highest incidence rate among female malignant tumors. Adjuvant chemotherapy is commonly used to reduce micrometastasis in postoperative patients. However, monitoring the efficacy of chemotherapy in BC is a major challenge in clinical practice. In this study, 1H nuclear magnetic resonance (NMR) metabonomics was performed to explore the serum metabolic characteristics of BC patients before and after adjuvant chemotherapy. Methods In this study, we collected serum samples from 51 healthy controls and 61 BC patients before and after chemotherapy for 1H NMR metabolomic analysis, and tested the performance of each metabolite and combination segment by the receiver operating characteristic (ROC) curves. Results Nine metabolites, namely glutamine, citrate, creatine, glycerophosphatidylcholine/phosphatidylcholine, glycine, 1-methylhistidine, lactate, pyruvate and formate had significant changes in BC patients before chemotherapy compared with healthy controls. Lactate, pyruvate, 1-methylhistidine and formate were found to be inversely regulated by chemotherapy. ROC analysis showed that a combination of the four metabolites had good prediction for chemotherapy efficacy with area under the curve of 0.958, sensitivity of 98.36% and specificity of 91.30%. There was no significant correlation between chemotherapy-related metabolites and clinical indicators of cancer patients, indicating that they can be used to evaluate the chemotherapy efficacy of patients with different clinical indicators. Conclusions Effectively, dynamic and non-invasive metabolic markers for the evaluation of the efficacy of chemotherapy were identified in this study.
Collapse
Affiliation(s)
- Ranran Hou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yufeng Lin
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiping Li
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwei Dong
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinping Huang
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Man Xu
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian Li
- School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxia Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Traditional Chinese Medicine (TCM) Precision Medicine Big Data Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
7
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Rork AM, Bala AS, Renner T. Dynamic evolution of the mTHF gene family associated with primary metabolism across life. BMC Genomics 2024; 25:432. [PMID: 38693486 PMCID: PMC11064299 DOI: 10.1186/s12864-024-10159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The folate cycle of one-carbon (C1) metabolism, which plays a central role in the biosynthesis of nucleotides and amino acids, demonstrates the significance of metabolic adaptation. We investigated the evolutionary history of the methylenetetrahydrofolate dehydrogenase (mTHF) gene family, one of the main drivers of the folate cycle, across life. RESULTS Through comparative genomic and phylogenetic analyses, we found that several lineages of Archaea lacked domains vital for folate cycle function such as the mTHF catalytic and NAD(P)-binding domains of FolD. Within eukaryotes, the mTHF gene family diversified rapidly. For example, several duplications have been observed in lineages including the Amoebozoa, Opisthokonta, and Viridiplantae. In a common ancestor of Opisthokonta, FolD and FTHFS underwent fusion giving rise to the gene MTHFD1, possessing the domains of both genes. CONCLUSIONS Our evolutionary reconstruction of the mTHF gene family associated with a primary metabolic pathway reveals dynamic evolution, including gene birth-and-death, gene fusion, and potential horizontal gene transfer events and/or amino acid convergence.
Collapse
Affiliation(s)
- Adam M Rork
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
- Department of Entomology, Purdue University, West Lafayette, Indiana, 47907, USA.
| | - Arthi S Bala
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, 20007, USA
- School of Medicine, Georgetown University, Washington, DC, 20007, USA
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| |
Collapse
|
9
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
10
|
Crossley SW, Tenney L, Pham VN, Xie X, Zhao MW, Chang CJ. A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells. J Am Chem Soc 2024; 146:8865-8876. [PMID: 38470125 PMCID: PMC11487638 DOI: 10.1021/jacs.3c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.
Collapse
Affiliation(s)
- Steven W.M. Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Michelle W. Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
11
|
Li L, Qin Y, Chen Y. The enzymes of serine synthesis pathway in cancer metastasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119697. [PMID: 38382845 DOI: 10.1016/j.bbamcr.2024.119697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Metastasis, the major cause of cancer mortality, requires cancer cells to reprogram their metabolism to adapt to and thrive in different environments, thereby leaving metastatic cells metabolic characteristics different from their parental cells. Mounting research has revealed that the de novo serine synthesis pathway (SSP), a glycolytic branching pathway that consumes glucose carbons for serine makeup and α-ketoglutarate generation and thus supports the proliferation, survival, and motility of cancer cells, is one such reprogrammed metabolic pathway. During different metastatic cascades, the SSP enzyme proteins or their enzymatic activity are both dynamically altered; manipulating their expression or catalytic activity could effectively prevent the progression of cancer metastasis; and the SSP enzymatic proteins could even conduce to metastasis via their nonenzymatic functions. In this article we overview the SSP dynamics during cancer metastasis and put the focuses on the regulatory role of the SSP in metastasis and the underlying mechanisms that mainly involve cellular anabolism/catabolism, redox balance, and epigenetics, aiming to provide a theoretical basis for the development of therapeutic strategies for targeting metastatic lesions.
Collapse
Affiliation(s)
- Lei Li
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Zarou MM, Rattigan KM, Sarnello D, Shokry E, Dawson A, Ianniciello A, Dunn K, Copland M, Sumpton D, Vazquez A, Helgason GV. Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing. Nat Commun 2024; 15:1931. [PMID: 38431691 PMCID: PMC10908830 DOI: 10.1038/s41467-024-46114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Engy Shokry
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Amy Dawson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
13
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
14
|
Hipólito A, Xavier R, Brito C, Tomás A, Lemos I, Cabaço LC, Silva F, Oliva A, Barral DC, Vicente JB, Gonçalves LG, Pojo M, Serpa J. BRD9 status is a major contributor for cysteine metabolic remodeling through MST and EAAT3 modulation in malignant melanoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166983. [PMID: 38070581 DOI: 10.1016/j.bbadis.2023.166983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Cutaneous melanoma (CM) is the most aggressive skin cancer, showing globally increasing incidence. Hereditary CM accounts for a significant percentage (5-15 %) of all CM cases. However, most familial cases remain without a known genetic cause. Even though, BRD9 has been associated to CM as a susceptibility gene. The molecular events following BRD9 mutagenesis are still not completely understood. In this study, we disclosed BRD9 as a key regulator in cysteine metabolism and associated altered BRD9 to increased cell proliferation, migration and invasiveness, as well as to altered melanin levels, inducing higher susceptibility to melanomagenesis. It is evident that BRD9 WT and mutated BRD9 (c.183G>C) have a different impact on cysteine metabolism, respectively by inhibiting and activating MPST expression in the metastatic A375 cell line. The effect of the mutated BRD9 variant was more evident in A375 cells than in the less invasive WM115 line. Our data point out novel molecular and metabolic mechanisms dependent on BRD9 status that potentially account for the increased risk of developing CM and enhancing CM aggressiveness. Moreover, our findings emphasize the role of cysteine metabolism remodeling in melanoma progression and open new queues to follow to explore the role of BRD9 as a melanoma susceptibility or cancer-related gene.
Collapse
Affiliation(s)
- Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Renato Xavier
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Cheila Brito
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Ana Tomás
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Isabel Lemos
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal; Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís C Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Fernanda Silva
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Abel Oliva
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Duarte C Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Tecnológica (ITQB) António Xavier da Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisboa, Portugal.
| |
Collapse
|
15
|
Ramos L, Henriksson M, Helleday T, Green AC. Targeting MTHFD2 to Exploit Cancer-Specific Metabolism and the DNA Damage Response. Cancer Res 2024; 84:9-16. [PMID: 37922465 DOI: 10.1158/0008-5472.can-23-1290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
The one-carbon folate enzyme methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2 (MTHFD2) is a promising therapeutic target in cancer. MTHFD2 is upregulated across numerous cancer types, promotes growth and metastasis of cancer, and correlates with poorer survival. Recent studies have developed small-molecule inhibitors to the isozymes MTHFD2 and MTHFD1 that show promise as anticancer agents through different mechanisms. This review discusses the current understanding of the function of MTHFD2 in cancer and the status of inhibitors for treating MTHFD2-overexpressing cancers.
Collapse
Affiliation(s)
- Louise Ramos
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Vancouver Prostate Centre and Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Thomas Helleday
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Alanna C Green
- Weston Park Cancer Centre and Division of Clinical Medicine, School of Medicine and Population Health, Faculty of Health, University of Sheffield, Sheffield, United Kingdom
- Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Chavdoula E, Anastas V, La Ferlita A, Aldana J, Carota G, Spampinato M, Soysal B, Cosentini I, Parashar S, Sircar A, Nigita G, Sehgal L, Freitas MA, Tsichlis PN. Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4. Metabolism 2024; 150:155719. [PMID: 37935302 DOI: 10.1016/j.metabol.2023.155719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. METHODS We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. RESULTS The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. CONCLUSIONS The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.
Collapse
Affiliation(s)
- Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States.
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States; Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Julian Aldana
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Sameer Parashar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Anuvrat Sircar
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States; Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Lalit Sehgal
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States; Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Philip N Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States; The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States.
| |
Collapse
|
17
|
Rather GM. Folate trapping is lethal to cancer cells. Chem Biol Drug Des 2023; 102:1588-1591. [PMID: 37620162 DOI: 10.1111/cbdd.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Regulation of formate flux by a key folate enzyme, MTHFD2 (methylene tetrahydrofolate dehydrogenase 2) in cancer cells remains poorly understood. Green et al. (Nature Metabolism, 2023; 5: 642-659) showed an interesting phenomenon of "folate trapping" toxicity leads to cancer cell kill using a potent inhibitor (TH9619) against the dehydrogenase and cyclohydrolase (DC) activities of cytosolic methylenetetrahydrofolate dehydrogenase 1 (cMTHFD1) and nuclear methylenetetrahydrofolate dehydrogenase 2 (nMTHFD2), but not the mitochondrial MTHFD2 (mTHFD2). But, mMTHFD2 is required for formate flow to cytosol which leads to the trapping of 10-formyl tetrahydrofolate and causes toxicity by TH9619 treatment, to kill cancer cells expressing mMTHFD2. This article opens new avenues to be evaluated for therapeutic benefits of cancer patients where MTHFD2 shows overexpression viz-a-viz breast, prostate, colorectal, acute myeloid leukemia, and other cancer types.
Collapse
|
18
|
Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem 2023; 299:105457. [PMID: 37949226 PMCID: PMC10758965 DOI: 10.1016/j.jbc.2023.105457] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Adam G Maynard
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
19
|
Delbrouck C, Kiweler N, Chen O, Pozdeev VI, Haase L, Neises L, Oudin A, Fouquier d'Hérouël A, Shen R, Schlicker L, Halder R, Lesur A, Schuster A, Lorenz NI, Jaeger C, Feucherolles M, Frache G, Szpakowska M, Chevigne A, Ronellenfitsch MW, Moussay E, Piraud M, Skupin A, Schulze A, Niclou SP, Letellier E, Meiser J. Formate promotes invasion and metastasis in reliance on lipid metabolism. Cell Rep 2023; 42:113034. [PMID: 37651228 DOI: 10.1016/j.celrep.2023.113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Metabolic rewiring is essential for cancer onset and progression. We previously showed that one-carbon metabolism-dependent formate production often exceeds the anabolic demand of cancer cells, resulting in formate overflow. Furthermore, we showed that increased extracellular formate concentrations promote the in vitro invasiveness of glioblastoma cells. Here, we substantiate these initial observations with ex vivo and in vivo experiments. We also show that exposure to exogeneous formate can prime cancer cells toward a pro-invasive phenotype leading to increased metastasis formation in vivo. Our results suggest that the increased local formate concentration within the tumor microenvironment can be one factor to promote metastases. Additionally, we describe a mechanistic interplay between formate-dependent increased invasiveness and adaptations of lipid metabolism and matrix metalloproteinase activity. Our findings consolidate the role of formate as pro-invasive metabolite and warrant further research to better understand the interplay between formate and lipid metabolism.
Collapse
Affiliation(s)
- Catherine Delbrouck
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Oleg Chen
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Vitaly I Pozdeev
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Lara Haase
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Neises
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Aymeric Fouquier d'Hérouël
- Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Ruolin Shen
- Helmholtz AI Central Unit, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rashi Halder
- RNAseq Platform, Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Anne Schuster
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Nadja I Lorenz
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany
| | - Christian Jaeger
- Metabolomics Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maureen Feucherolles
- Molecular and Thermal Analysis Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Gilles Frache
- Molecular and Thermal Analysis Group, Materials Research and Technology, Luxembourg Institute of Science and Technology, 4422 Belvaux, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigne
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur-Alzette, Luxembourg
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany; University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Etienne Moussay
- Tumor-Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Marie Piraud
- Helmholtz AI Central Unit, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Alexander Skupin
- Integrative Cell Signaling Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Department of Neurosciences, University of California San Diego, La Jolla, CA 92092, USA; Department of Physics and Material Science, University of Luxembourg, 1511 Luxembourg, Luxembourg
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simone P Niclou
- Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, 4362 Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Faculty of Science, Technology and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, 1210 Luxembourg, Luxembourg.
| |
Collapse
|
20
|
Vetritti L, Kopyra J, Wierzbicka P, Varella MTDN. Fragmentation of the DNA Lesion 8-oxo-Guanine by Low-Energy Electrons. J Phys Chem A 2023; 127:7470-7478. [PMID: 37661383 DOI: 10.1021/acs.jpca.3c03704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
8-oxo-Guanine is a mutagenic lesion produced by reactions involving reactive oxygen species and guanine in DNA. Its production induces mispairing between the canonical nucleobases during DNA replication such that various types of cancers are associated with the DNA lesion. Since radiation therapy is used in some cases, the interaction of low-energy electrons with 8-oxo-guanine can in turn produce other reactive species, which in principle could have either a detrimental or protective effect on the organism. Motivated by these facts, we report a comparative experimental study of electron-induced fragmentation of guanine and 8-oxo-guanine, along with a theoretical study of the π* shape resonances and bound anion states, which may trigger those dissociation reactions. The electron-induced fragmentation of 8-oxo-guanine is remarkably distinct from the native form. More complex reactions were observed for the oxidized species, which may produce several anion fragments at very low energies (∼0 eV). The dehydrogenated parent anion, which is already a minor fragment in guanine, was completely suppressed in 8-oxo-guanine. The calculated thermodynamical thresholds also suggest that NH2 elimination in guanine, at sub-excitation energies, proceeds via a complex reaction involving rearrangement steps.
Collapse
Affiliation(s)
- Leonardo Vetritti
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil
| | - Janina Kopyra
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Paulina Wierzbicka
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Márcio T do N Varella
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Chavdoula E, Anastas V, Ferlita AL, Aldana J, Carota G, Spampinato M, Soysal B, Cosentini I, Parashar S, Sircar A, Nigita G, Sehgal L, Freitas MA, Tsichlis PN. Transcriptional regulation of amino acid metabolism by KDM2B, in the context of ncPRC1.1 and in concert with MYC and ATF4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548031. [PMID: 37461630 PMCID: PMC10350079 DOI: 10.1101/2023.07.07.548031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Introduction KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. Methods We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. Results The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. Conclusions The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.
Collapse
Affiliation(s)
- Evangelia Chavdoula
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Vollter Anastas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Tufts Graduate School of Biomedical Sciences, Program in Genetics, Boston, MA, United States
| | - Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Julian Aldana
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Giuseppe Carota
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariarita Spampinato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Burak Soysal
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Ilaria Cosentini
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Sameer Parashar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Anuvrat Sircar
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Lalit Sehgal
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| | - Philip N. Tsichlis
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
22
|
Hennequart M, Pilley SE, Labuschagne CF, Coomes J, Mervant L, Driscoll PC, Legrave NM, Lee Y, Kreuzaler P, Macintyre B, Panina Y, Blagih J, Stevenson D, Strathdee D, Schneider-Luftman D, Grönroos E, Cheung EC, Yuneva M, Swanton C, Vousden KH. ALDH1L2 regulation of formate, formyl-methionine, and ROS controls cancer cell migration and metastasis. Cell Rep 2023; 42:112562. [PMID: 37245210 DOI: 10.1016/j.celrep.2023.112562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.
Collapse
Affiliation(s)
- Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven E Pilley
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christiaan F Labuschagne
- Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchesfstoom 2531, South Africa
| | - Jack Coomes
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Loic Mervant
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Paul C Driscoll
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Younghwan Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Kreuzaler
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Yulia Panina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Julianna Blagih
- Department of Obstetrics-Gynaecology, University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | | | | | | | - Eva Grönroos
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Eric C Cheung
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Charles Swanton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
23
|
Polachini GM, de Castro TB, Smarra LFS, Henrique T, de Paula CHD, Severino P, López RVM, Carvalho AL, de Mattos Zeri AC, Silva IDCG, Tajara EH. Plasma metabolomics of oral squamous cell carcinomas based on NMR and MS approaches provides biomarker identification and survival prediction. Sci Rep 2023; 13:8588. [PMID: 37237049 DOI: 10.1038/s41598-023-34808-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolomics has proven to be an important omics approach to understand the molecular pathways underlying the tumour phenotype and to identify new clinically useful markers. The literature on cancer has illustrated the potential of this approach as a diagnostic and prognostic tool. The present study aimed to analyse the plasma metabolic profile of patients with oral squamous cell carcinoma (OSCC) and controls and to compare patients with metastatic and primary tumours at different stages and subsites using nuclear magnetic resonance and mass spectrometry. To our knowledge, this is the only report that compared patients at different stages and subsites and replicates collected in diverse institutions at different times using these methodologies. Our results showed a plasma metabolic OSCC profile suggestive of abnormal ketogenesis, lipogenesis and energy metabolism, which is already present in early phases but is more evident in advanced stages of the disease. Reduced levels of several metabolites were also associated with an unfavorable prognosis. The observed metabolomic alterations may contribute to inflammation, immune response inhibition and tumour growth, and may be explained by four nonexclusive views-differential synthesis, uptake, release, and degradation of metabolites. The interpretation that assimilates these views is the cross talk between neoplastic and normal cells in the tumour microenvironment or in more distant anatomical sites, connected by biofluids, signalling molecules and vesicles. Additional population samples to evaluate the details of these molecular processes may lead to the discovery of new biomarkers and novel strategies for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Giovana Mussi Polachini
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Luis Fabiano Soares Smarra
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Carlos Henrique Diniz de Paula
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | | | | | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José Do Rio Preto - FAMERP, Av. Brigadeiro Faria Lima, 5416, Vila São Pedro, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Green AC, Marttila P, Kiweler N, Chalkiadaki C, Wiita E, Cookson V, Lesur A, Eiden K, Bernardin F, Vallin KSA, Borhade S, Long M, Ghahe EK, Jiménez-Alonso JJ, Jemth AS, Loseva O, Mortusewicz O, Meyers M, Viry E, Johansson AI, Hodek O, Homan E, Bonagas N, Ramos L, Sandberg L, Frödin M, Moussay E, Slipicevic A, Letellier E, Paggetti J, Sørensen CS, Helleday T, Henriksson M, Meiser J. Formate overflow drives toxic folate trapping in MTHFD1 inhibited cancer cells. Nat Metab 2023; 5:642-659. [PMID: 37012496 PMCID: PMC10132981 DOI: 10.1038/s42255-023-00771-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/28/2023] [Indexed: 04/05/2023]
Abstract
Cancer cells fuel their increased need for nucleotide supply by upregulating one-carbon (1C) metabolism, including the enzymes methylenetetrahydrofolate dehydrogenase-cyclohydrolase 1 and 2 (MTHFD1 and MTHFD2). TH9619 is a potent inhibitor of dehydrogenase and cyclohydrolase activities in both MTHFD1 and MTHFD2, and selectively kills cancer cells. Here, we reveal that, in cells, TH9619 targets nuclear MTHFD2 but does not inhibit mitochondrial MTHFD2. Hence, overflow of formate from mitochondria continues in the presence of TH9619. TH9619 inhibits the activity of MTHFD1 occurring downstream of mitochondrial formate release, leading to the accumulation of 10-formyl-tetrahydrofolate, which we term a 'folate trap'. This results in thymidylate depletion and death of MTHFD2-expressing cancer cells. This previously uncharacterized folate trapping mechanism is exacerbated by physiological hypoxanthine levels that block the de novo purine synthesis pathway, and additionally prevent 10-formyl-tetrahydrofolate consumption for purine synthesis. The folate trapping mechanism described here for TH9619 differs from other MTHFD1/2 inhibitors and antifolates. Thus, our findings uncover an approach to attack cancer and reveal a regulatory mechanism in 1C metabolism.
Collapse
Affiliation(s)
- Alanna C Green
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Petra Marttila
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nicole Kiweler
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Christina Chalkiadaki
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Victoria Cookson
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Antoine Lesur
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Kim Eiden
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - François Bernardin
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Karl S A Vallin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RISE Research Institutes of Sweden, Södertälje, Sweden
| | - Sanjay Borhade
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- RedGlead Discover, Lund, Sweden
| | - Maeve Long
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Elahe Kamali Ghahe
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Julio J Jiménez-Alonso
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Oliver Mortusewicz
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Marianne Meyers
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elodie Viry
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Evert Homan
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Nadilly Bonagas
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | - Louise Ramos
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Lars Sandberg
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Moussay
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ana Slipicevic
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- One-carbon Therapeutics AB, Stockholm, Sweden
| | - Elisabeth Letellier
- Faculty of Science, Technology and Medicine, Department of Life Sciences and Medicine, Molecular Disease Mechanisms Group, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jérôme Paggetti
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Thomas Helleday
- Weston Park Cancer Centre and Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK.
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| |
Collapse
|
25
|
Liang F, Huang W, Wu L, Wu Y, Zhang T, He X, Wang Z, Yu X, Li Y, Qian S. A NIR fluorescent probe for dual imaging of mitochondrial viscosity and FA in living cells and zebrafish. Analyst 2023; 148:1437-1441. [PMID: 36919562 DOI: 10.1039/d2an01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Formaldehyde (FA) and viscosity play multiple roles in human health and diseases, and viscosity has great regional differences due to the diversity of subcellular organelles. However, it is challenging to achieve dual detection of viscosity and FA in subcellular organelles. Herein, we developed a near infrared (NIR) fluorescent probe FA-Cy, which can simultaneously monitor the viscosity and FA concentration of mitochondria in living cells. The probe could detect mitochondrial viscosity and exogenous and endogenous FA in living cells and zebrafish.
Collapse
Affiliation(s)
- Feng Liang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Wanyun Huang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Lei Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Yihong Wu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Xiaolong He
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Zhouyu Wang
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Xiaoqi Yu
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu 610091, China
| | - Shan Qian
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu 610039, China. .,Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, China
| |
Collapse
|
26
|
Gargiulo E, Viry E, Morande PE, Largeot A, Gonder S, Xian F, Ioannou N, Benzarti M, Kleine Borgmann FB, Mittelbronn M, Dittmar G, Nazarov PV, Meiser J, Stamatopoulos B, Ramsay AG, Moussay E, Paggetti J. Extracellular Vesicle Secretion by Leukemia Cells In Vivo Promotes CLL Progression by Hampering Antitumor T-cell Responses. Blood Cancer Discov 2023; 4:54-77. [PMID: 36108149 PMCID: PMC9816815 DOI: 10.1158/2643-3230.bcd-22-0029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/04/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023] Open
Abstract
Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Elodie Viry
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Pablo Elías Morande
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Instituto de Medicina Experimental (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Anne Largeot
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Susanne Gonder
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Feng Xian
- Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Nikolaos Ioannou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Mohaned Benzarti
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Felix Bruno Kleine Borgmann
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Michel Mittelbronn
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Luxembourg Centre of Neuropathology, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Luxembourg Centre of Neuropathology, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,National Center of Pathology, Laboratoire national de santé (LNS), Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Proteomics of Cellular Signaling, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Petr V. Nazarov
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Basile Stamatopoulos
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Alan G. Ramsay
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Etienne Moussay
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| | - Jérôme Paggetti
- Tumor–Stroma Interactions Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg City, Luxembourg.,Corresponding Authors: Jérôme Paggetti, Department of Cancer Research, Luxembourg Institute of Health, 6, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg. Phone: 352-26970-344; E-mail: ; and Etienne Moussay. Phone: 352-26970-232; E-mail:
| |
Collapse
|
27
|
Bae G, Berezhnoy G, Koch A, Cannet C, Schäfer H, Kommoss S, Brucker S, Beziere N, Trautwein C. Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers. Front Mol Biosci 2023; 10:1158330. [PMID: 37168255 PMCID: PMC10166069 DOI: 10.3389/fmolb.2023.1158330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Traditional diagnosis is based on histology or clinical-stage classification which provides no information on tumor metabolism and inflammation, which, however, are both hallmarks of cancer and are directly associated with prognosis and severity. This project was an exploratory approach to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) for identifying additional useful serum markers and stratifying ovarian cancer patients in the future. Methods: This project included 201 serum samples of which 50 were received from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively. All the serum samples were validated and phenotyped by 1H-NMR-based metabolomics with in vitro diagnostics research (IVDr) standard operating procedures generating quantitative data on 38 metabolites, 112 lipoprotein parameters, and 5 inflammation markers. Uni- and multivariate statistics were applied to identify NMR-based alterations. Moreover, biomarker analysis was carried out with all NMR parameters and CA-125. Results: Ketone bodies, glutamate, 2-hydroxybutyrate, glucose, glycerol, and phenylalanine levels were significantly higher in HGSOC, while the same tumors showed significantly lower levels of alanine and histidine. Furthermore, alanine and histidine and formic acid decreased and increased, respectively, over the clinical stages. Inflammatory markers glycoproteins A and B (GlycA and GlycB) increased significantly over the clinical stages and were higher in HGSOC, alongside significant changes in lipoproteins. Lipoprotein subfractions of VLDLs, IDLs, and LDLs increased significantly in HGSOC and over the clinical stages, while total plasma apolipoprotein A1 and A2 and a subfraction of HDLs decreased significantly over the clinical stages. Additionally, LDL triglycerides significantly increased in advanced ovarian cancer. In biomarker analysis, glycoprotein inflammation biomarkers behaved in the same way as the established clinical biomarker CA-125. Moreover, CA-125/GlycA, CA-125/GlycB, and CA-125/Glycs are potential biomarkers for diagnosis, prognosis, and treatment response of epithelial ovarian cancer (EOC). Last, the quantitative inflammatory parameters clearly displayed unique patterns of metabolites, lipoproteins, and CA-125 in BOT and HGSOC with clinical stages I-IV. Conclusion: 1H-NMR-based metabolomics with commercial IVDr assays could detect and identify altered metabolites and lipoproteins relevant to EOC development and progression and show that inflammation (based on glycoproteins) increased along with malignancy. As inflammation is a hallmark of cancer, glycoproteins, thereof, are promising future serum biomarkers for the diagnosis, prognosis, and treatment response of EOC. This was supported by the definition and stratification of three different inflammatory serum classes which characterize specific alternations in metabolites, lipoproteins, and CA-125, implicating that future diagnosis could be refined not only by diagnosed histology and/or clinical stages but also by glycoprotein classes.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - André Koch
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Stefan Kommoss
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Sara Brucker
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Christoph Trautwein,
| |
Collapse
|
28
|
Yang Q, Bae G, Nadiradze G, Castagna A, Berezhnoy G, Zizmare L, Kulkarni A, Singh Y, Weinreich FJ, Kommoss S, Reymond MA, Trautwein C. Acidic ascites inhibits ovarian cancer cell proliferation and correlates with the metabolomic, lipidomic and inflammatory phenotype of human patients. J Transl Med 2022; 20:581. [PMID: 36503580 PMCID: PMC9743551 DOI: 10.1186/s12967-022-03763-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The poor prognosis of ovarian cancer patients is strongly related to peritoneal metastasis with the production of malignant ascites. However, it remains largely unclear how ascites in the peritoneal cavity influences tumor metabolism and recurrence. This study is an explorative approach aimed at for a deeper molecular and physical-chemical characterization of malignant ascites and to investigate their effect on in vitro ovarian cancer cell proliferation. METHODS This study included 10 malignant ascites specimens from patients undergoing ovarian cancer resection. Ascites samples were deeply phenotyped by 1H-NMR based metabolomics, blood-gas analyzer based gas flow analysis and flow cytomertry based a 13-plex cytokine panel. Characteristics of tumor cells were investigated in a 3D spheroid model by SEM and metabolic activity, adhesion, anti-apoptosis, migratory ability evaluated by MTT assay, adhesion assay, flowcytometry and scratch assay. The effect of different pH values was assessed by adding 10% malignant ascites to the test samples. RESULTS The overall extracellular (peritoneal) environment was alkaline, with pH of ascites at stage II-III = 7.51 ± 0.16, and stage IV = 7.78 ± 0.16. Ovarian cancer spheroids grew rapidly in a slightly alkaline environment. Decreasing pH of the cell culture medium suppressed tumor features, metabolic activity, adhesion, anti-apoptosis, and migratory ability. However, 10% ascites could prevent tumor cells from being affected by acidic pH. Metabolomics analysis identified stage IV patients had significantly higher concentrations of alanine, isoleucine, phenylalanine, and glutamine than stage II-III patients, while stage II-III patients had significantly higher concentrations of 3-hydroxybutyrate. pH was positively correlated with acetate, and acetate positively correlated with lipid compounds. IL-8 was positively correlated with lipid metabolites and acetate. Glutathione and carnitine were negatively correlated with cytokines IL-6 and chemokines (IL-8 & MCP-1). CONCLUSION Alkaline malignant ascites facilitated ovarian cancer progression. Additionally, deep ascites phenotyping by metabolomics and cytokine investigations allows for a refined stratification of ovarian cancer patients. These findings contribute to the understanding of ascites pathology in ovarian cancer.
Collapse
Affiliation(s)
- Qianlu Yang
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Gyuntae Bae
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Giorgi Nadiradze
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Arianna Castagna
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Laimdota Zizmare
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Aditi Kulkarni
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- grid.411544.10000 0001 0196 8249Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Frank J. Weinreich
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany
| | - Stefan Kommoss
- grid.411544.10000 0001 0196 8249Research Institute of Women’s Health, Women’s Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Marc A. Reymond
- National Center for Pleura and Peritoneum, NCT South-West Germany, Tübingen, Germany ,grid.411544.10000 0001 0196 8249Department of General and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- grid.411544.10000 0001 0196 8249Present Address: Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Guyon J, Fernandez‐Moncada I, Larrieu CM, Bouchez CL, Pagano Zottola AC, Galvis J, Chouleur T, Burban A, Joseph K, Ravi VM, Espedal H, Røsland GV, Daher B, Barre A, Dartigues B, Karkar S, Rudewicz J, Romero‐Garmendia I, Klink B, Grützmann K, Derieppe M, Molinié T, Obad N, Léon C, Seano G, Miletic H, Heiland DH, Marsicano G, Nikolski M, Bjerkvig R, Bikfalvi A, Daubon T. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol Med 2022; 14:e15343. [PMID: 36278433 PMCID: PMC9728051 DOI: 10.15252/emmm.202115343] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.
Collapse
Affiliation(s)
- Joris Guyon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | | | | | | | | | - Johanna Galvis
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Audrey Burban
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany
| | - Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,Center of Advanced Surgical Tissue Analysis (CAST)University of FreiburgFreiburgGermany,Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| | - Heidi Espedal
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | | | - Aurélien Barre
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Slim Karkar
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Justine Rudewicz
- Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | | | - Barbara Klink
- Department of OncologyLuxembourg Institute of HealthLuxembourgLuxembourg,German Cancer Consortium (DKTK)DresdenGermany,Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | - Konrad Grützmann
- Core Unit for Molecular Tumor Diagnostics (CMTD)National Center for Tumor Diseases (NCT)DresdenGermany
| | | | | | - Nina Obad
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | - Céline Léon
- University Bordeaux, INSERM U1312, BRICPessacFrance
| | - Giorgio Seano
- Institut Curie, INSERM U1021, CNRS UMR3347, Tumor Microenvironment LabUniversity Paris‐SaclayOrsayFrance
| | - Hrvoje Miletic
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway,Department of PathologyHaukeland University HospitalBergenNorway
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical CenterUniversity of FreiburgFreiburgGermany,Department of Neurosurgery, Medical CenterUniversity of FreiburgFreiburgGermany,Faculty of Medicine, University of FreiburgFreiburgGermany,Translational NeuroOncology Research Group, Medical CenterUniversity of FreiburgFreiburgGermany,German Cancer Consortium (DKTK), partner site FreiburgFreiburgGermany
| | | | - Macha Nikolski
- University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance,Bordeaux Bioinformatic Center CBiBUniversity of BordeauxBordeauxFrance
| | - Rolf Bjerkvig
- NorLux Neuro‐Oncology, Department of BiomedicineUniversity of BergenBergenNorway
| | | | - Thomas Daubon
- University Bordeaux, INSERM U1312, BRICPessacFrance,University Bordeaux, CNRS, IBGC, UMR 5095BordeauxFrance
| |
Collapse
|
30
|
Sah N, Stenhouse C, Halloran KM, Moses RM, Seo H, Burghardt RC, Johnson GA, Wu G, Bazer FW. Inhibition of SHMT2 mRNA translation increases embryonic mortality in sheep. Biol Reprod 2022; 107:1279-1295. [DOI: 10.1093/biolre/ioac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The one-carbon metabolism (OCM) pathway provides purines and thymidine for synthesis of nucleic acids required for cell division, and S-adenosyl methionine for polyamine and creatine syntheses and the epigenetic regulation of gene expression. This study aimed to determine if serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in the OCM pathway, is critical for ovine trophectoderm (oTr) cell function and conceptus development by inhibiting translation of SHMT2 mRNA using a morpholino antisense oligonucleotide (MAO). In vitro treatment of oTr cells with MAO-SHMT2 decreased expression of SHMT2 protein, which was accompanied by reduced proliferation (P = 0.053) and migration (P < 0.05) of those cells. Intrauterine injection of MAO-SHMT2 in ewes on Day 11 post-breeding tended to decrease the overall pregnancy rate (on Days 16 and 18) compared to MAO-control (3/10 vs 7/10, P = 0.07). The three viable conceptuses (n = 2 on Day 16 and n = 1 on Day 18) recovered from MAO-SHMT2 ewes had only partial inhibition of SHMT2 mRNA translation. Conceptuses from the three pregnant MAO-SHMT2 ewes had similar levels of expression of mRNAs and proteins involved in OCM as compared to conceptuses from MAO-control ewes. These results indicate that knockdown of SHMT2 protein reduces proliferation and migration of oTr cells (in vitro) to decrease elongation of blastocysts from spherical to elongated forms. These in vitro effects suggest that increased embryonic deaths in ewes treated with MAO-SHMT2 are the result of decreased SHMT2-mediated trophectoderm cell proliferation and migration supporting a role for the OCM pathway in survival and development of ovine conceptuses.
Collapse
Affiliation(s)
- Nirvay Sah
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Claire Stenhouse
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | | | - Robyn M Moses
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences , College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science , Texas A&M University, College Station, TX, USA
| |
Collapse
|
31
|
Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X, Liu B, Dong B, Gao H. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. Lab Invest 2022; 20:275. [PMID: 35715864 PMCID: PMC9205125 DOI: 10.1186/s12967-022-03478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Background Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. Methods In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Results Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. Conclusions Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03478-5.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Binrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| |
Collapse
|
32
|
Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat Commun 2022; 13:2698. [PMID: 35577785 PMCID: PMC9110385 DOI: 10.1038/s41467-022-30362-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Purine nucleotides are necessary for various biological processes related to cell proliferation. Despite their importance in DNA and RNA synthesis, cellular signaling, and energy-dependent reactions, the impact of changes in cellular purine levels on cell physiology remains poorly understood. Here, we find that purine depletion stimulates cell migration, despite effective reduction in cell proliferation. Blocking purine synthesis triggers a shunt of glycolytic carbon into the serine synthesis pathway, which is required for the induction of cell migration upon purine depletion. The stimulation of cell migration upon a reduction in intracellular purines required one-carbon metabolism downstream of de novo serine synthesis. Decreased purine abundance and the subsequent increase in serine synthesis triggers an epithelial-mesenchymal transition (EMT) and, in cancer models, promotes metastatic colonization. Thus, reducing the available pool of intracellular purines re-routes metabolic flux from glycolysis into de novo serine synthesis, a metabolic change that stimulates a program of cell migration. Nucleotides are essential for different biological processes and have been also associated to cancer development. Depleting cellular nucleotides is a strategy commonly employed to target cancers. Here, the authors show that purine depletion induces serine synthesis to promote cancer cell migration and metastasis.
Collapse
|
33
|
Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nat Commun 2022; 13:2699. [PMID: 35577770 PMCID: PMC9110368 DOI: 10.1038/s41467-022-30363-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the most common cause of death in cancer patients. Canonical drugs target mainly the proliferative capacity of cancer cells, which leaves slow-proliferating, persistent cancer cells unaffected. Metabolic determinants that contribute to growth-independent functions are still poorly understood. Here we show that antifolate treatment results in an uncoupled and autarkic mitochondrial one-carbon (1C) metabolism during cytosolic 1C metabolism impairment. Interestingly, antifolate dependent growth-arrest does not correlate with decreased migration capacity. Therefore, using methotrexate as a tool compound allows us to disentangle proliferation and migration to profile the metabolic phenotype of migrating cells. We observe that increased serine de novo synthesis (SSP) supports mitochondrial serine catabolism and inhibition of SSP using the competitive PHGDH-inhibitor BI-4916 reduces cancer cell migration. Furthermore, we show that sole inhibition of mitochondrial serine catabolism does not affect primary breast tumor growth but strongly inhibits pulmonary metastasis. We conclude that mitochondrial 1C metabolism, despite being dispensable for proliferative capacities, confers an advantage to cancer cells by supporting their motility potential. Chemotherapeutic antifolates, such as methotrexate (MTX), impair cancer cell proliferation by inhibiting nucleotide synthesis. Here, the authors show that MTX sustains an autarkic mitochondrial one-carbon metabolism leading to serine synthesis to promote cancer cell migration and metastasis.
Collapse
|
34
|
Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A, Rodriguez F, Delbrouck C, Gaigneaux A, Ginolhac A, Nguyen TTD, Grandmougin L, Frachet-Bour A, Martin-Gallausiaux C, Pacheco M, Neuberger-Castillo L, Miranda P, Zuegel N, Ferrand JY, Gantenbein M, Sauter T, Slade DJ, Thiele I, Meiser J, Haan S, Wilmes P, Letellier E. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab 2022; 4:458-475. [PMID: 35437333 PMCID: PMC9046088 DOI: 10.1038/s42255-022-00558-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Vitaly Igorevich Pozdeev
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Marianne Meyers
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Eric Koncina
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Sura Atatri
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Maryse Schmoetten
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Almut Heinken
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Catherine Delbrouck
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anthoula Gaigneaux
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Aurelien Ginolhac
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Tam Thuy Dan Nguyen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Lea Grandmougin
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Audrey Frachet-Bour
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Camille Martin-Gallausiaux
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Maria Pacheco
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Paulo Miranda
- National Center of Pathology, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Nikolaus Zuegel
- Department of Surgery, Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Jean-Yves Ferrand
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Manon Gantenbein
- Clinical and Epidemiological Investigation Center, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Thomas Sauter
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Daniel Joseph Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland
- Ryan Institute, National University of Galway, Galway, Ireland
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- APC Microbiome, Cork, Ireland
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
- Systems Ecology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
35
|
Hsu FY, Liou JY, Tang FY, Sou NL, Peng JH, Chiang EPI. Ketogenic Diet Consumption Inhibited Mitochondrial One-Carbon Metabolism. Int J Mol Sci 2022; 23:ijms23073650. [PMID: 35409009 PMCID: PMC8998878 DOI: 10.3390/ijms23073650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Given the popularity of ketogenic diets, their potential long-term consequences deserve to be more carefully monitored. Mitochondrially derived formate has a critical role in mammalian one-carbon (1C) metabolism and development. The glycine cleavage system (GCS) accounts for another substantial source for mitochondrially derived 1C units. Objective: We investigated how the ketogenic state modulates mitochondrial formate generation and partitioning of 1C metabolic fluxes. Design: HepG2 cells treated with physiological doses (1 mM and 10 mM) of β-hydroxybutyrate (βHB) were utilized as the in vitro ketogenic model. Eight-week male C57BL/6JNarl mice received either a medium-chain fatty-acid-enriched ketogenic diet (MCT-KD) or a control diet AIN 93M for 8 weeks. Stable isotopic labeling experiments were conducted. Results and Conclusions: MCT-KD is effective in weight and fat loss. Deoxythymidine (dTMP) synthesis from the mitochondrial GCS-derived formate was significantly suppressed by βHB and consumption of MCT-KD. Consistently, plasma formate concentrations, as well as the metabolic fluxes from serine and glycine, were suppressed by MCT-KD. MCT-KD also decreased the fractional contribution of mitochondrially derived formate in methionine synthesis from serine. With the worldwide application, people and medical professionals should be more aware of the potential metabolic perturbations when practicing a long-term ketogenic diet.
Collapse
Affiliation(s)
- Fan-Yu Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
| | - Jia-Ying Liou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
| | - Feng-Yao Tang
- Biomedical Science Laboratory, Department of Nutrition, China Medical University, Taichung 402, Taiwan;
| | - Nga-Lai Sou
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
| | - Jian-Hau Peng
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; (F.-Y.H.); (J.-Y.L.); (N.-L.S.); (J.-H.P.)
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-22853049
| |
Collapse
|
36
|
Biagiotti M, Bassani GA, Chiarini A, Vincoli VT, Dal Prà I, Cosentino C, Alessandrino A, Taddei P, Freddi G. Electrospun Silk Fibroin Scaffolds for Tissue Regeneration: Chemical, Structural, and Toxicological Implications of the Formic Acid-Silk Fibroin Interaction. Front Bioeng Biotechnol 2022; 10:833157. [PMID: 35155396 PMCID: PMC8829063 DOI: 10.3389/fbioe.2022.833157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 01/11/2023] Open
Abstract
The dissolution of Bombyx mori silk fibroin (SF) films in formic acid (FA) for the preparation of electrospinning dopes is widely exploited to produce electrospun SF scaffolds. The SILKBridge® nerve conduit is an example of medical device having in its wall structure an electrospun component produced from an FA spinning dope. Though highly volatile, residual FA remains trapped into the bulk of the SF nanofibers. The purpose of this work is to investigate the type and strength of the interaction between FA and SF in electrospun mats, to quantify its amount and to evaluate its possible toxicological impact on human health. The presence of residual FA in SF mats was detected by FTIR and Raman spectroscopy (new carbonyl peak at about 1,725 cm−1) and by solid state NMR, which revealed a new carbonyl signal at about 164.3 ppm, attributed to FA by isotopic 13C substitution. Changes occurred also in the spectral ranges of hydroxylated amino acids (Ser and Thr), demonstrating that FA interacted with SF by forming formyl esters. The total amount of FA was determined by HS-GC/MS analysis and accounted for 247 ± 20 μmol/g. The greatest part was present as formyl ester, a small part (about 3%) as free FA. Approximately 17% of the 1,500 μmol/g of hydroxy amino acids (Ser and Thr) theoretically available were involved in the formation of formyl esters. Treatment with alkali (Na2CO3) succeeded to remove the greatest part of FA, but not all. Alkali-treated electrospun SF mats underwent morphological, physical, and mechanical changes. The average diameter of the fibers increased from about 440 nm to about 480 nm, the mat shrunk, became stiffer (the modulus increased from about 5.5 MPa to about 7 MPa), and lost elasticity (the strain decreased from about 1 mm/mm to about 0.8 mm/mm). Biocompatibility studies with human adult dermal fibroblasts did not show significant difference in cell proliferation (313 ± 18 and 309 ± 23 cells/mm2 for untreated and alkali-treated SF mat, respectively) and metabolic activity. An in-depth evaluation of the possible toxicological impact of residual FA was made using the SILKBridge® nerve conduit as case study, following the provisions of the ISO 10993-1 standard. The Potential Patient Daily Intake, calculated from the total amount of FA determined by HS-GC/MS, was 2.4 mg/day and the Tolerable Exposure level was set to 35.4 mg/day. This allowed to obtain a value of the Margin of Safety of 15, indicating that the amount of FA left on SF mats after electrospinning does not raise concerns for human health.
Collapse
Affiliation(s)
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Human Histology and Embryology Unit, Medical School, University of Verona, Verona, Italy
| | | | | | - Paola Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuliano Freddi
- Silk Biomaterials S.r.l, Lomazzo, Italy
- *Correspondence: Giuliano Freddi,
| |
Collapse
|
37
|
Quevedo-Ocampo J, Escobedo-Calvario A, Souza-Arroyo V, Miranda-Labra RU, Bucio-Ortiz L, Gutiérrez-Ruiz MC, Chávez-Rodríguez L, Gomez-Quiroz LE. Folate Metabolism in Hepatocellular Carcinoma. What Do We Know So Far? Technol Cancer Res Treat 2022; 21:15330338221144446. [PMID: 36503290 DOI: 10.1177/15330338221144446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer cells are characterized by accelerated proliferation and an outstanding adaptation of their metabolic pathways to meet energy demands. The folate cycle, also known as folate metabolism or one-carbon metabolism, through enzymatic interconversions, provides metabolites necessary for nucleotide synthesis, methylation, and reduction power, helping to maintain the high rate of proliferation; therefore, the study of this metabolic pathway is of great importance in the study of cancer. Moreover, multiple enzymes involved in this cycle have been implicated in different types of cancer, corroborating the cell's adaptations under this pathology. During the last decade, nonalcoholic fatty liver disease has emerged as the leading etiology related to the rise in the incidence and deaths of hepatocellular carcinoma. Specifically, cholesterol accumulation has been a determinant promoter of tumor formation, with solid evidence that an enriched-cholesterol diet plays a crucial role in accelerating the development of an aggressive subtype of hepatocellular carcinoma compared to other models. In this review, we will discuss the most recent findings to understand the contribution of folate metabolism to cancer cells and tumor microenvironment while creating a link between the dynamics given by cholesterol and methylenetetrahydrofolate dehydrogenase 1-like, a key enzyme of the cycle located in the mitochondrial compartment.
Collapse
Affiliation(s)
- Jaqueline Quevedo-Ocampo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María C Gutiérrez-Ruiz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Lisette Chávez-Rodríguez
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metrolitana-Iztapalapa, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, 27786Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.,Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
38
|
Moses RM, Kramer AC, Seo H, Wu G, Johnson GA, Bazer FW. A Role for Fructose Metabolism in Development of Sheep and Pig Conceptuses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:49-62. [PMID: 34807436 DOI: 10.1007/978-3-030-85686-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.
Collapse
Affiliation(s)
- Robyn M Moses
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Avery C Kramer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Heewon Seo
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Departments of Animal Science and Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
39
|
Urinary Metabolic Markers of Bladder Cancer: A Reflection of the Tumor or the Response of the Body? Metabolites 2021; 11:metabo11110756. [PMID: 34822414 PMCID: PMC8621503 DOI: 10.3390/metabo11110756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
This work will review the metabolic information that various studies have obtained in recent years on bladder cancer, with particular attention to discovering biomarkers in urine for the diagnosis and prognosis of this disease. In principle, they would be capable of complementing cystoscopy, an invasive but nowadays irreplaceable technique or, in the best case, of replacing it. We will evaluate the degree of reproducibility that the different experiments have shown in the indication of biomarkers, and a synthesis will be attempted to obtain a consensus list that is more likely to become a guideline for clinical practice. In further analysis, we will inquire into the origin of these dysregulated metabolites in patients with bladder cancer. For this purpose, it will be helpful to compare the imbalances measured in urine with those known inside tumor cells or tissues. Although the urine analysis is sometimes considered a liquid biopsy because of its direct contact with the tumor in the bladder wall, it contains metabolites from all organs and tissues of the body, and the tumor is separated from urine by the most impermeable barrier found in mammals. The distinction between the specific and systemic responses can help understand the disease and its consequences in more depth.
Collapse
|
40
|
Yamagishi JF, Hatakeyama TS. Microeconomics of Metabolism: The Warburg Effect as Giffen Behaviour. Bull Math Biol 2021; 83:120. [PMID: 34718881 PMCID: PMC8558188 DOI: 10.1007/s11538-021-00952-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Metabolic behaviours of proliferating cells are often explained as a consequence of rational optimization of cellular growth rate, whereas microeconomics formulates consumption behaviours as optimization problems. Here, we pushed beyond the analogy to precisely map metabolism onto the theory of consumer choice. We thereby revealed the correspondence between long-standing mysteries in both fields: the Warburg effect, a seemingly wasteful but ubiquitous strategy where cells favour aerobic glycolysis over more energetically efficient oxidative phosphorylation, and Giffen behaviour, the unexpected consumer behaviour where a good is demanded more as its price rises. We identified the minimal, universal requirements for the Warburg effect: a trade-off between oxidative phosphorylation and aerobic glycolysis and complementarity, i.e. impossibility of substitution for different metabolites. Thus, various hypotheses for the Warburg effect are integrated into an identical optimization problem with the same universal structure. Besides, the correspondence between the Warburg effect and Giffen behaviour implies that oxidative phosphorylation is counter-intuitively stimulated when its efficiency is decreased by metabolic perturbations such as drug administration or mitochondrial dysfunction; the concept of Giffen behaviour bridges the Warburg effect and the reverse Warburg effect. This highlights that the application of microeconomics to metabolism can offer new predictions and paradigms for both biology and economics.
Collapse
Affiliation(s)
- Jumpei F Yamagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tetsuhiro S Hatakeyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
41
|
Oncogenic Ras expression increases cellular formate production. Amino Acids 2021; 53:1589-1595. [PMID: 34550462 DOI: 10.1007/s00726-021-03078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
One-carbon units, critical intermediates for cell growth, may be produced by a variety of means, one of which is via the production of formate. Excessive formate accumulation, known as formate overflow and a characteristic of oxidative cancer, has been observed in cancer cells. However, the basis for this high rate of formate production is unknown. We examined the effect of elevated expression of oncogenic Ras (RasV12), on formate production in NIH-3T3 cells (mouse fibroblasts) cultured with either labelled 13C-serine or 13C-glycine. Formate accumulation by the fibroblasts transformed by RasV12 was increased two-threefold over those by vector control (Babe) cells. The production of formate exceeded the rate of utilization in both cell types. 13C-formate was produced almost exclusively from the #3 carbon of 13C-serine. Virtually no labelled formate was produced from either the #2 carbon of serine or the #2 carbon of glycine. The increased formate production by RasV12 cells was associated with increased mRNA abundances for enzymes of formate production in both the mitochondria and the cytosol. Thus, we find the oncogenic RasV12 significantly increases formate overflow and may be one way for tumor cells to produce one-carbon units required for enhanced proliferation of these cells and/or for other processes which have not been identified.
Collapse
|
42
|
Metformin Is a Pyridoxal-5'-phosphate (PLP)-Competitive Inhibitor of SHMT2. Cancers (Basel) 2021; 13:cancers13164009. [PMID: 34439169 PMCID: PMC8393646 DOI: 10.3390/cancers13164009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The mitochondrial enzyme serine hydroxymethyltransferase (SHMT2), which converts serine into glycine and generates 1C units for cell growth, is one of the most consistently overexpressed metabolic enzymes in cancer. Here, we reveal that the anti-diabetic biguanide metformin operates as a novel class of non-catalytic SHMT2 inhibitor that disrupts the pyridoxal-5′-phosphate (PLP)-dependent SHMT2 oligomerization process and ultimately SHMT2 activity. As SHMT2 inhibitors have not yet reached the clinic, these findings may aid the rational design of PLP-competitive SHMT2 inhibitors based on the biguanide skeleton of metformin. Abstract The anticancer actions of the biguanide metformin involve the functioning of the serine/glycine one-carbon metabolic network. We report that metformin directly and specifically targets the enzymatic activity of mitochondrial serine hydroxymethyltransferase (SHMT2). In vitro competitive binding assays with human recombinant SHMT1 and SHMT2 isoforms revealed that metformin preferentially inhibits SHMT2 activity by a non-catalytic mechanism. Computational docking coupled with molecular dynamics simulation predicted that metformin could occupy the cofactor pyridoxal-5′-phosphate (PLP) cavity and destabilize the formation of catalytically active SHMT2 oligomers. Differential scanning fluorimetry-based biophysical screening confirmed that metformin diminishes the capacity of PLP to promote the conversion of SHMT2 from an inactive, open state to a highly ordered, catalytically competent closed state. CRISPR/Cas9-based disruption of SHMT2, but not of SHMT1, prevented metformin from inhibiting total SHMT activity in cancer cell lines. Isotope tracing studies in SHMT1 knock-out cells confirmed that metformin decreased the SHMT2-channeled serine-to-formate flux and restricted the formate utilization in thymidylate synthesis upon overexpression of the metformin-unresponsive yeast equivalent of mitochondrial complex I (mCI). While maintaining its capacity to inhibit mitochondrial oxidative phosphorylation, metformin lost its cytotoxic and antiproliferative activity in SHMT2-null cancer cells unable to produce energy-rich NADH or FADH2 molecules from tricarboxylic acid cycle (TCA) metabolites. As currently available SHMT2 inhibitors have not yet reached the clinic, our current data establishing the structural and mechanistic bases of metformin as a small-molecule, PLP-competitive inhibitor of the SHMT2 activating oligomerization should benefit future discovery of biguanide skeleton-based novel SHMT2 inhibitors in cancer prevention and treatment.
Collapse
|
43
|
Newman AC, Falcone M, Huerta Uribe A, Zhang T, Athineos D, Pietzke M, Vazquez A, Blyth K, Maddocks ODK. Immune-regulated IDO1-dependent tryptophan metabolism is source of one-carbon units for pancreatic cancer and stellate cells. Mol Cell 2021; 81:2290-2302.e7. [PMID: 33831358 PMCID: PMC8189438 DOI: 10.1016/j.molcel.2021.03.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/31/2022]
Abstract
Cancer cells adapt their metabolism to support elevated energetic and anabolic demands of proliferation. Folate-dependent one-carbon metabolism is a critical metabolic process underpinning cellular proliferation supplying carbons for the synthesis of nucleotides incorporated into DNA and RNA. Recent research has focused on the nutrients that supply one-carbons to the folate cycle, particularly serine. Tryptophan is a theoretical source of one-carbon units through metabolism by IDO1, an enzyme intensively investigated in the context of tumor immune evasion. Using in vitro and in vivo pancreatic cancer models, we show that IDO1 expression is highly context dependent, influenced by attachment-independent growth and the canonical activator IFNγ. In IDO1-expressing cancer cells, tryptophan is a bona fide one-carbon donor for purine nucleotide synthesis in vitro and in vivo. Furthermore, we show that cancer cells release tryptophan-derived formate, which can be used by pancreatic stellate cells to support purine nucleotide synthesis.
Collapse
MESH Headings
- Allografts
- Animals
- Antineoplastic Agents/pharmacology
- Carbon/immunology
- Carbon/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Cell Line, Tumor
- Formates/immunology
- Formates/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Oximes/pharmacology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/immunology
- Serine/immunology
- Serine/metabolism
- Serine/pharmacology
- Signal Transduction
- Sulfonamides/pharmacology
- Tryptophan/immunology
- Tryptophan/metabolism
- Tryptophan/pharmacology
- Tumor Escape/drug effects
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/immunology
Collapse
Affiliation(s)
- Alice Clare Newman
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Mattia Falcone
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Alejandro Huerta Uribe
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Tong Zhang
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Dimitris Athineos
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Matthias Pietzke
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Alexei Vazquez
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK; Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Blyth
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK; Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Oliver David Kenneth Maddocks
- Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
44
|
Zarou MM, Vazquez A, Vignir Helgason G. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 2021; 35:1539-1551. [PMID: 33707653 PMCID: PMC8179844 DOI: 10.1038/s41375-021-01189-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates.
Collapse
Affiliation(s)
- Martha M Zarou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alexei Vazquez
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Beatson Institute, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
45
|
Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, Forte P, Fanizzi FP, Mazzocca A, Rombouts K, Galli A, Carloni V. DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer. Cancer Res 2021; 81:2861-2873. [PMID: 33762357 DOI: 10.1158/0008-5472.can-20-3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies. SIGNIFICANCE: This study uncovers a link between a central effector of DNA damage response, CHK2, and cellular metabolism, revealing potential therapeutic strategies for targeting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", General Pathology Unit, University of Florence, Florence, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Caecilia Sukowati
- Fondazione Italiana Fegato, AREA Science Park, Trieste, Italy, Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Krista Rombouts
- University College London (UCL) Institute for Liver & Digestive Health, London, United Kingdom
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
46
|
One-carbon metabolism in cancer cells: a critical review based on a core model of central metabolism. Biochem Soc Trans 2021; 49:1-15. [PMID: 33616629 DOI: 10.1042/bst20190008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/25/2022]
Abstract
One-carbon metabolism (1C-metabolism), also called folate metabolism because the carbon group is attached to folate-derived tetrahydrofolate, is crucial in metabolism. It is at the heart of several essential syntheses, particularly those of purine and thymidylate. After a short reminder of the organization of 1C-metabolism, I list its salient features as reported in the literature. Then, using flux balance analysis, a core model of central metabolism and the flux constraints for an 'average cancer cell metabolism', I explore the fundamentals underlying 1C-metabolism and its relationships with the rest of metabolism. Some unreported properties of 1C-metabolism emerge, such as its potential roles in mitochondrial NADH exchange with cytosolic NADPH, participation in NADH recycling, and optimization of cell proliferation.
Collapse
|
47
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
48
|
Lee WD, Pirona AC, Sarvin B, Stern A, Nevo-Dinur K, Besser E, Sarvin N, Lagziel S, Mukha D, Raz S, Aizenshtein E, Shlomi T. Tumor Reliance on Cytosolic versus Mitochondrial One-Carbon Flux Depends on Folate Availability. Cell Metab 2021; 33:190-198.e6. [PMID: 33326752 DOI: 10.1016/j.cmet.2020.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/23/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
Folate metabolism supplies one-carbon (1C) units for biosynthesis and methylation and has long been a target for cancer chemotherapy. Mitochondrial serine catabolism is considered the sole contributor of folate-mediated 1C units in proliferating cancer cells. Here, we show that under physiological folate levels in the cell environment, cytosolic serine-hydroxymethyltransferase (SHMT1) is the predominant source of 1C units in a variety of cancers, while mitochondrial 1C flux is overly repressed. Tumor-specific reliance on cytosolic 1C flux is associated with poor capacity to retain intracellular folates, which is determined by the expression of SLC19A1, which encodes the reduced folate carrier (RFC). We show that silencing SHMT1 in cells with low RFC expression impairs pyrimidine biosynthesis and tumor growth in vivo. Overall, our findings reveal major diversity in cancer cell utilization of the cytosolic versus mitochondrial folate cycle across tumors and SLC19A1 expression as a marker for increased reliance on SHMT1.
Collapse
Affiliation(s)
- Won Dong Lee
- Faculty of Biology, Technion, 32000 Haifa, Israel; Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anna Chiara Pirona
- Faculty of Biology, Technion, 32000 Haifa, Israel; Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Faculty of Bioscience, University of Heidelberg, Heidelberg 69120, Germany
| | - Boris Sarvin
- Faculty of Biology, Technion, 32000 Haifa, Israel
| | - Alon Stern
- Faculty of Computer Science, Technion, 32000 Haifa, Israel
| | | | | | | | - Shoval Lagziel
- Faculty of Computer Science, Technion, 32000 Haifa, Israel
| | | | - Shachar Raz
- Faculty of Biology, Technion, 32000 Haifa, Israel
| | - Elina Aizenshtein
- Lokey Center for Life Science and Engineering, Technion, 32000 Haifa, Israel
| | - Tomer Shlomi
- Faculty of Biology, Technion, 32000 Haifa, Israel; Faculty of Computer Science, Technion, 32000 Haifa, Israel; Lokey Center for Life Science and Engineering, Technion, 32000 Haifa, Israel.
| |
Collapse
|
49
|
Cai X, Chen S, Liang J, Tang M, Wang S. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food Chem Toxicol 2021; 148:111965. [PMID: 33388406 DOI: 10.1016/j.fct.2020.111965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Peptides derived from crimson snapper scales (CSSPs) were reported to possess excellent free radical scavenging activities in vitro. In present study, the anti-aging and anti-oxidative stress effects of CSSPs were evaluated in Drosophila melanogaster models. Results showed that the addition of CSSPs in the diets of normal Drosophila could effectively extend their lifespan and improve the motor ability of aged Drosophila. Moreover, CSSPs could protect Drosophila from oxidative damage induced by H2O2, paraquat and UV irradiation. The extension of lifespan was found to be associated with the effects of CSSPs in improving the antioxidant defense system of Drosophila, manifesting as the reduction of oxidation products MDA and PCO, the elevated activities of T-SOD, CAT and GSH-Px, and the upregulated expression of antioxidant related genes after CSSPs supplemented. Furthermore, CSSPs at 6 mg/mL significantly downregulated mTOR signaling pathway and activated autophagy in aged male Drosophila, and the inhibition on mTOR activation was probably mediated by the antioxidant effects of CSSPs. Our findings suggest that CSSPs have the potential in making dietary supplements against natural aging and oxidative stress in organisms.
Collapse
Affiliation(s)
- Xixi Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shengyang Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Jieping Liang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Mingyu Tang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
50
|
The Interplay between Oxidative Phosphorylation and Glycolysis as a Potential Marker of Bladder Cancer Progression. Int J Mol Sci 2020; 21:ijms21218107. [PMID: 33143087 PMCID: PMC7662640 DOI: 10.3390/ijms21218107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Urothelial bladder cancer (UBC) is the most common tumor of the urinary system. One of the biggest problems related to this disease is the lack of markers that can anticipate the progression of the cancer. Genomics and transcriptomics have greatly improved the prediction of risk of recurrence and progression. Further progress can be expected including information from other omics sciences such as metabolomics. In this study, we used 1H-NMR to characterize the intake of nutrients and the excretion of products in the extracellular medium of three UBC cell lines, which are representatives of low-grade tumors, RT4, high-grade, 5637, and a cell line that shares genotypic features with both, RT112. We have observed that RT4 cells show an activated oxidative phosphorylation, 5637 cells depend mostly on glycolysis to grow, while RT112 cells show a mixed metabolic state. Our results reveal the relative importance of glycolysis and oxidative phosphorylation in the growth and maintenance of different UBC cell lines, and the relationship with their genomic signatures. They suggest that cell lines associated with a low risk of progression present an activated oxidative metabolic state, while those associated with a high risk present a non-oxidative state and high glycolytic activity.
Collapse
|