1
|
Nourazarian A, Aghaei-Zarch SM, Panahi Y. Delayed complications of sulfur mustard poisoning: a focus on inflammation and telomere footprint. Arch Toxicol 2025:10.1007/s00204-025-04033-z. [PMID: 40335638 DOI: 10.1007/s00204-025-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Sulfur mustard (SM), a potent alkylating agent, has been widely used in chemical warfare, causing severe acute and long-term health complications. While its immediate toxic effects are well documented, the late-onset complications remain poorly understood. Chronic exposure to SM has been linked to persistent oxidative stress, inflammation, and genomic instability, contributing to the progression of various diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and cancer. This review explores the emerging role of telomere biology in the delayed pathophysiology of SM exposure. Evidence suggests that telomere shortening and dysregulation of telomeric repeat-containing RNA (TERRA) may serve as key molecular indicators of SM-induced aging and cellular dysfunction. Furthermore, inflammatory pathways, particularly NF-κB and TGF-β signaling, appear to be closely associated with telomere attrition, perpetuating chronic inflammation and fibrosis. By integrating oxidative stress, inflammation, and telomere dynamics, we propose a novel model linking telomere biology to SM-induced late complications. Understanding these mechanisms could pave the way for targeted therapeutic strategies, including antioxidant and epigenetic interventions, to mitigate long-term effects. Future research should focus on validating telomere-based biomarkers for early detection and exploring novel interventions to alleviate SM-induced chronic health conditions.
Collapse
Affiliation(s)
- Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasin Panahi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, 58147-43343, Iran.
| |
Collapse
|
2
|
Rahmatallah Y, Glazko G. Improving data interpretability with new differential sample variance gene set tests. BMC Bioinformatics 2025; 26:103. [PMID: 40229677 PMCID: PMC11998189 DOI: 10.1186/s12859-025-06117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Gene set analysis methods have played a major role in generating biological interpretations of omics data such as gene expression datasets. However, most methods focus on detecting homogenous pattern changes in mean expression while methods detecting pattern changes in variance remain poorly explored. While a few studies attempted to use gene-level variance analysis, such approach remains under-utilized. When comparing two phenotypes, gene sets with distinct changes in subgroups under one phenotype are overlooked by available methods although they reflect meaningful biological differences between two phenotypes. Multivariate sample-level variance analysis methods are needed to detect such pattern changes. RESULTS We used ranking schemes based on minimum spanning tree to generalize the Cramer-Von Mises and Anderson-Darling univariate statistics into multivariate gene set analysis methods to detect differential sample variance or mean. We characterized the detection power and Type I error rate of these methods in addition to two methods developed earlier using simulation results with different parameters. We applied the developed methods to microarray gene expression dataset of prednisolone-resistant and prednisolone-sensitive children diagnosed with B-lineage acute lymphoblastic leukemia and bulk RNA-sequencing gene expression dataset of benign hyperplastic polyps and potentially malignant sessile serrated adenoma/polyps. One or both of the two compared phenotypes in each of these datasets have distinct molecular subtypes that contribute to within phenotype variability and to heterogeneous differences between two compared phenotypes. Our results show that methods designed to detect differential sample variance provide meaningful biological interpretations by detecting specific hallmark gene sets associated with the two compared phenotypes as documented in available literature. CONCLUSIONS The results of this study demonstrate the usefulness of methods designed to detect differential sample variance in providing biological interpretations when biologically relevant but heterogeneous changes between two phenotypes are prevalent in specific signaling pathways. Software implementation of the methods is available with detailed documentation from Bioconductor package GSAR. The available methods are applicable to gene expression datasets in a normalized matrix form and could be used with other omics datasets in a normalized matrix form with available collection of feature sets.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| |
Collapse
|
3
|
Park AY, Lee JO, Jang YN, Kim SY, Heo JH, Kim YJ, Lee JM, Yoon DW, Kim BJ, Seok J. Ameliorative Effects of Escin on Inflammation via Glucocorticoid Receptor (GR) in Atopic Dermatitis (AD) Mouse Model. J Microbiol Biotechnol 2025; 35:e2410025. [PMID: 40081901 PMCID: PMC11930568 DOI: 10.4014/jmb.2410.10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 03/16/2025]
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease characterized by intense itching. Escin, derived from Aesculus hippocastanum, has several pharmacological functions, including anti-inflammatory and anti-viral effects, and exhibits glucocorticoid-like actions in inflammatory responses. However, its impact on AD has not been extensively studied. We investigated the anti-inflammatory effects of escin on AD and elucidate its underlying mechanism of actions in the dermatophagoides farinae extract (DFE)-induced AD mouse model. The AD-induced group treated with escin showed a significant reduction in immunoglobulin E (IgE) levels, ear thickness, epidermal thickness, and mast cell infiltration compared to the AD group. Additionally, escin significantly reduced the dermatitis score and the sizes of the spleen and lymph nodes. Notably, escin inhibited the reduction of filaggrin expression induced by DFE, while suppressing the upregulation of thymic stromal lymphopoietin (TSLP), interleukin (IL)-4, IL-13, IL-1β, and tumor necrosis factor (TNF)-α. Escin also significantly suppressed DFE-induced NF-κB expression. Interestingly, pre-treatment with RU486, a glucocorticoid receptor (GR) antagonist, attenuated the therapeutic effects of escin. In line with these findings, escin modulated the IFN-γ/TNF-α-mediated changes in TSLP and filaggrin expression in HaCaT keratinocyte cells. Furthermore, escin inhibited the lipopolysaccharide (LPS)-induced overproduction of nitric oxide (NO), protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mRNA expression of IL-6 and IL-1β in RAW 264.7 cells. These results indicate that escin may offer therapeutic potential in treating AD through the GR.
Collapse
Affiliation(s)
- A Yeon Park
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jung Ok Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - You Na Jang
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Su-Young Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 06974, Republic of Korea
| | - Ji Hye Heo
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 06974, Republic of Korea
| | - Yu-Jin Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Jung Min Lee
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 06974, Republic of Korea
| | - Dae Won Yoon
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 06974, Republic of Korea
| | - Joon Seok
- Department of Medicine, Graduate School, Chung-Ang University, Seoul 06973, Republic of Korea
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Nguyen LNT, Pyburn JS, Nguyen NL, Schank MB, Zhao J, Wang L, Leshaodo TO, El Gazzar M, Moorman JP, Yao ZQ. Epigenetic Regulation by lncRNA GAS5/miRNA/mRNA Network in Human Diseases. Int J Mol Sci 2025; 26:1377. [PMID: 39941145 PMCID: PMC11818527 DOI: 10.3390/ijms26031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
The interplay between long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) is crucial in the epigenetic regulation of mRNA and protein expression, impacting the development and progression of a plethora of human diseases, such as cancer, cardiovascular disease, inflammatory-associated diseases, and viral infection. Among the many lncRNAs, growth arrest-specific 5 (GAS5) has garnered substantial attention for its evident role in the regulation of significant biological processes such as proliferation, differentiation, senescence, and apoptosis. Through miRNA-mediated signaling pathways, GAS5 modulates disease progression in a cell-type-specific manner, typically by influencing proteins involved in inflammation and cell death. While GAS5 is recognized as a tumor suppressor in cancer, recent reports highlight its broader regulatory capacity in non-cancerous diseases. Its modulation of protein expression through the GAS5/miRNA network has been shown to both mitigate and exacerbate disease, depending on the specific context. Furthermore, the therapeutic potential of GAS5 manipulation, via knockdown or overexpression, offers promising avenues for targeted interventions across human diseases. This review explores the dualistic impacts of the GAS5/miRNA network in conditions such as cancer, cardiovascular disease, viral infections, and inflammatory disorders. Through the evaluation of current evidence, we aim to provide insight into GAS5's biological functions and its implications for future research and therapeutic development.
Collapse
Affiliation(s)
- Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jaeden S. Pyburn
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Nhat Lam Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Madison B. Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tabitha O. Leshaodo
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (L.N.T.N.); (J.S.P.); (N.L.N.); (M.B.S.); (J.Z.); (L.W.); (T.O.L.); (M.E.G.); (J.P.M.)
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| |
Collapse
|
5
|
Kuklina EM. Mechanisms of Glucocorticoid Resistance in Nonclassical T Helper Populations Th17.1/Ex-Th17. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:188-199. [PMID: 40254398 DOI: 10.1134/s0006297924604222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 04/22/2025]
Abstract
The nonclassical population of Th1-polarized Th17 lymphocytes (Th17.1/ex-Th17) is currently in the focus of researchers' attention. These cells possess a unique proinflammatory potential and ability to penetrate blood-tissue barriers and play a key role in the pathogenesis of many inflammatory diseases, primarily autoimmune ones. Th1-polarized Th17 lymphocytes prevail in the autoimmune lesion foci and are considered to be a promising therapeutic target in these pathologies. At the same time, recent studies have shown another distinctive feature of Th1-polarized Th17 - their selective resistance to glucocorticoids. Since glucocorticoids are the first-line drugs for the treatment of the autoimmune disease exacerbation, understanding the causes of this phenomenon is crucial for predicting patients' response to therapy and improving the treatment effectiveness. This review analyzes the mechanisms of drug resistance of Th1-polarized Th17 cells, compares these mechanisms with those typical of nonpathogenic classical Th17 cells, and discusses the role of glucocorticoid resistance in the body's response to glucocorticoid therapy.
Collapse
Affiliation(s)
- Elena M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
6
|
Degner KN, Bell JL, Jones SD, Won H. Just a SNP away: The future of in vivo massively parallel reporter assay. CELL INSIGHT 2025; 4:100214. [PMID: 39618480 PMCID: PMC11607654 DOI: 10.1016/j.cellin.2024.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 04/03/2025]
Abstract
The human genome is largely noncoding, yet the field is still grasping to understand how noncoding variants impact transcription and contribute to disease etiology. The massively parallel reporter assay (MPRA) has been employed to characterize the function of noncoding variants at unprecedented scales, but its application has been largely limited by the in vitro context. The field will benefit from establishing a systemic platform to study noncoding variant function across multiple tissue types under physiologically relevant conditions. However, to date, MPRA has been applied to only a handful of in vivo conditions. Given the complexity of the central nervous system and its widespread interactions with all other organ systems, our understanding of neuropsychiatric disorder-associated noncoding variants would be greatly advanced by studying their functional impact in the intact brain. In this review, we discuss the importance, technical considerations, and future applications of implementing MPRA in the in vivo space with the focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Katherine N. Degner
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica L. Bell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sean D. Jones
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Cheng M, Yu X, Qi S, Yang K, Lu M, Cao F, Yu G. Development of Organ Targeting Lipid Nanoparticles with Low Immunogenicity and Their Application in the Treatment of Pulmonary Fibrosis. Angew Chem Int Ed Engl 2024; 63:e202407398. [PMID: 39082226 DOI: 10.1002/anie.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/25/2024]
Abstract
As the most advanced non-viral delivery system, lipid nanoparticles (LNPs) were approved by the FDA, propelling the advancements of gene therapy. However, their clinical applications are hampered by the potential immunogenicity of the lipid components that trigger immune-related adverse events, like inflammation and allergy. Herein, we formulate various dLNPs with diminished immunogenicity by incorporating dexamethasone (Dex) into liver-, spleen-, and lung-targeting LNPs formulations that exhibit excellent abilities to target specific organs and deliver various types of RNA, such as mRNA and siRNA. In vivo investigations demonstrate unparalleled advantages in safety as compared to conventional LNPs, showing promising potential in the development of RNA therapeutics. Intriguingly, the encapsulation of runt-related transcription factor-1 siRNA (siRUNX1) into lung-targeting dLNPs (dLNPs@siRUNX1) demonstrates remarkable advantages in the treatment of pulmonary fibrosis through the synergy of gene therapy and drug therapy. This research establishes secure and universal platforms for the precise delivery of nucleic acid therapeutics, showcasing promising clinical applications in gene therapy.
Collapse
Affiliation(s)
- Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Meixin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fangfang Cao
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Curci D, Stankovic B, Kotur N, Pugnetti L, Gasic V, Romano M, Zukic B, Decorti G, Stocco G, Lucafò M, Pavlovic S. The long non-coding RNA GAS5 contributes to the suppression of inflammatory responses by inhibiting NF-κB activity. Front Pharmacol 2024; 15:1448136. [PMID: 39444615 PMCID: PMC11496153 DOI: 10.3389/fphar.2024.1448136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Nuclear factor kappa B (NF-κB) is a key regulator of immune and inflammatory responses. Glucocorticoid drugs (GC) act through the glucocorticoid receptor (GR) as immunosuppressant also in pediatric patients inhibiting NF-κB activity. The long non-coding RNA GAS5 interacts with the GR, influencing GC activity. No data on the role of GAS5 on GR-dependent inhibition of NF-κB activity have been published. METHODS This study investigated the impact of GAS5 on NF-κB activity in HeLa cells overexpressing GAS5, both under basal conditions and during GC treatment. The study used EMSA, RNA-immunoprecipitation (RIP), Western blotting, and bioinformatic analyses to assess NF-κB DNA binding, GAS5-p65 interaction, and NF-κB signaling pathway modulation. RESULTS GAS5 overexpression increased NF-κB DNA binding activity in untreated cells. RNA-IP confirmed a direct interaction between GAS5 and the NF-κB subunit p65, suggesting a potential regulatory mechanism. GAS5 overexpression led to downregulation of NF-κB target genes, TNF-α, and NR3C1. GC treatment reduced NF-κB DNA binding activity in GAS5-overexpressing cells, indicating a potential synergistic effect. Furthermore, GAS5 overexpression increased IκB levels and reduced p-p65/pan-p65 levels during GC treatment. DISCUSSION GAS5 appears to modulate NF-κB activity in a complex manner, influencing both basal and GC-induced signaling. The interaction between GAS5, GCs, and NF-κB is multi-faceted, and further research is needed to fully elucidate the underlying mechanisms. These findings suggest that GAS5 could be a potential target for personalized therapy, particularly in pediatric patients with inflammatory conditions.
Collapse
Affiliation(s)
- Debora Curci
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Biljana Stankovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nikola Kotur
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Letizia Pugnetti
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Vladimir Gasic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Branka Zukic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Giuliana Decorti
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Laboratory of Advanced Translational Diagnostics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medicine Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Sonja Pavlovic
- Group for Molecular Biomedicine, Department of Human Molecular Genetics and Genomics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Li Y, Zhuang Y, Chen Y, Wang G, Tang Z, Zhong Y, Zhang Y, Wu L, Ji X, Zhang Q, Pan B, Luo Y. Euphorbia factor L2 alleviated gouty inflammation by specifically suppressing both the priming and activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 138:112598. [PMID: 38981223 DOI: 10.1016/j.intimp.2024.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1β production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Zhuang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuehong Chen
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 6a004a, Sichuan, China
| | - Zhigang Tang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zhong
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Sichuan Institute of Food Inspection, Chengdu, Sichuan, China
| | - Liang Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xing Ji
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Pan
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Rahmatallah Y, Glazko G. Improving data interpretability with new differential sample variance gene set tests. RESEARCH SQUARE 2024:rs.3.rs-4888767. [PMID: 39315246 PMCID: PMC11419169 DOI: 10.21203/rs.3.rs-4888767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background Gene set analysis methods have played a major role in generating biological interpretations from omics data such as gene expression datasets. However, most methods focus on detecting homogenous pattern changes in mean expression and methods detecting pattern changes in variance remain poorly explored. While a few studies attempted to use gene-level variance analysis, such approach remains under-utilized. When comparing two phenotypes, gene sets with distinct changes in subgroups under one phenotype are overlooked by available methods although they reflect meaningful biological differences between two phenotypes. Multivariate sample-level variance analysis methods are needed to detect such pattern changes. Results We use ranking schemes based on minimum spanning tree to generalize the Cramer-Von Mises and Anderson-Darling univariate statistics into multivariate gene set analysis methods to detect differential sample variance or mean. We characterize these methods in addition to two methods developed earlier using simulation results with different parameters. We apply the developed methods to microarray gene expression dataset of prednisolone-resistant and prednisolone-sensitive children diagnosed with B-lineage acute lymphoblastic leukemia and bulk RNA-sequencing gene expression dataset of benign hyperplastic polyps and potentially malignant sessile serrated adenoma/polyps. One or both of the two compared phenotypes in each of these datasets have distinct molecular subtypes that contribute to heterogeneous differences. Our results show that methods designed to detect differential sample variance are able to detect specific hallmark signaling pathways associated with the two compared phenotypes as documented in available literature. Conclusions The results in this study demonstrate the usefulness of methods designed to detect differential sample variance in providing biological interpretations when biologically relevant but heterogeneous changes between two phenotypes are prevalent in specific signaling pathways. Software implementation of the developed methods is available with detailed documentation from Bioconductor package GSAR. The available methods are applicable to gene expression datasets in a normalized matrix form and could be used with other omics datasets in a normalized matrix form with available collection of feature sets.
Collapse
Affiliation(s)
- Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
Sevilla LM, Pons-Alonso O, Gallego A, Azkargorta M, Elortza F, Pérez P. Glucocorticoid receptor controls atopic dermatitis inflammation via functional interactions with P63 and autocrine signaling in epidermal keratinocytes. Cell Death Dis 2024; 15:535. [PMID: 39069531 DOI: 10.1038/s41419-024-06926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Atopic dermatitis (AD), a prevalent chronic inflammatory disease with multifactorial etiology, features epidermal barrier defects and immune overactivation. Synthetic glucocorticoids (GCs) are widely prescribed for treating AD due to their anti-inflammatory actions; however, mechanisms are incompletely understood. Defective local GC signaling due to decreased production of endogenous ligand and/or GC receptor (GR) levels was reported in prevalent inflammatory skin disorders; whether this is a consequence or contributing factor to AD pathology is unclear. To identify the chromatin-bound cell-type-specific GR protein interactome in keratinocytes, we used rapid immunoprecipitation of endogenous proteins and mass spectrometry identifying 145 interactors that increased upon dexamethasone treatment. GR-interacting proteins were enriched in p53/p63 signaling, including epidermal transcription factors with critical roles in AD pathology. Previous analyses indicating mirrored AD-like phenotypes between P63 overexpression and GR loss in epidermis, and our data show an intricate relationship between these transcription factors in human keratinocytes, identifying TP63 as a direct GR target. Dexamethasone treatment counteracted transcriptional up-regulation of inflammatory markers by IL4/IL13, known to mimic AD, causing opposite shifts in GR and P63 genomic binding. Indeed, IL4/IL13 decreased GR and increased P63 levels in cultured keratinocytes and human epidermal equivalents (HEE), consistent with GR down-regulation and increased P63 expression in AD lesions vs normal skin. Moreover, GR knockdown (GRKD) resulted in constitutive increases in P63, phospho-P38 and S100A9, IL6, and IL33. Also, GRKD culture supernatants showed increased autocrine production of TH2-/TH1-/TH17-TH22-associated factors including IL4, CXCL10, CXCL11, and CXCL8. GRKD HEEs showed AD-like features including hyperplasia and abnormal differentiation, resembling phenotypes observed with GR antagonist or IL4/IL13 treatment. The simultaneous GR/P63 knockdown partially reversed constitutive up-regulation of inflammatory genes in GRKD. In summary, our data support a causative role for GR loss in AD pathogenesis via functional interactions with P63 and autocrine signaling in epidermal keratinocytes.
Collapse
Affiliation(s)
- Lisa M Sevilla
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Omar Pons-Alonso
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Andrea Gallego
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, Derio, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV-CSIC), Department of Pathology and Molecular and Cell Therapy, Valencia, Spain.
| |
Collapse
|
12
|
Hiltunen J, Helminen L, Paakinaho V. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol (Lausanne) 2024; 15:1437179. [PMID: 39027480 PMCID: PMC11254642 DOI: 10.3389/fendo.2024.1437179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies and is primarily driven by aberrant androgen receptor (AR) signaling. While AR-targeted therapies form the cornerstone of prostate cancer treatment, they often inadvertently activate compensatory pathways, leading to therapy resistance. This resistance is frequently mediated through changes in transcription factor (TF) crosstalk, reshaping gene regulatory programs and ultimately weakening treatment efficacy. Consequently, investigating TF interactions has become crucial for understanding the mechanisms driving therapy-resistant cancers. Recent evidence has highlighted the crosstalk between the glucocorticoid receptor (GR) and AR, demonstrating that GR can induce prostate cancer therapy resistance by replacing the inactivated AR, thereby becoming a driver of the disease. In addition to this oncogenic role, GR has also been shown to act as a tumor suppressor in prostate cancer. Owing to this dual role and the widespread use of glucocorticoids as adjuvant therapy, it is essential to understand GR's actions across different stages of prostate cancer development. In this review, we explore the current knowledge of GR in prostate cancer, with a specific focus on its crosstalk with other TFs. GR can directly and indirectly interact with a variety of TFs, and these interactions vary significantly depending on the type of prostate cancer cells. By highlighting these crosstalk interactions, we aim to provide insights that can guide the research and development of new GR-targeted therapies to mitigate its harmful effects in prostate cancer.
Collapse
Affiliation(s)
| | | | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Oliver T, Nguyen NY, Tully CB, McCormack NM, Sun CM, Fiorillo AA, Heier CR. The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease. Dis Model Mech 2024; 17:dmm050397. [PMID: 38770680 PMCID: PMC11139035 DOI: 10.1242/dmm.050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/28/2024] [Indexed: 05/22/2024] Open
Abstract
Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.
Collapse
MESH Headings
- Animals
- Mice
- Cardiomyopathies/pathology
- Cardiomyopathies/metabolism
- Dystrophin/metabolism
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Myocardium/pathology
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/drug effects
- Phenotype
- Receptors, Glucocorticoid/metabolism
Collapse
Affiliation(s)
- Trinitee Oliver
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Biology, Howard University, Washington, DC 20059, USA
- Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Nhu Y. Nguyen
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Nikki M. McCormack
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Christina M. Sun
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
| | - Alyson A. Fiorillo
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Christopher R. Heier
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20037, USA
- Center for Inherited Muscle Research, Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
14
|
Lim J, Park J, Lee W, Choi HJ. GSK4716 enhances 5-HT1AR expression by glucocorticoid receptor signaling in hippocampal HT22 cells. Neurol Res 2024; 46:398-405. [PMID: 38555524 DOI: 10.1080/01616412.2024.2322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The serotonin (5-hydroxytryptamine, 5-HT) receptor 1A (5-HT1AR) is closely associated with serotonergic neurotransmission in the brain, being the most prevalent and widely distributed receptor of its kind. The purpose of this study is to investigate the regulation mechanism of 5-HT1AR by GSK4716. METHODS To investigate the mechanism of GSK4716-mediated 5-HT1AR regulation, we used hippocampus-derived HT22 cells expressing 5-HT1AR. The expression level of 5-HT1AR and associated proteins, were detected by reporter gene assay and western blotting. RESULTS GSK4716, an estrogen-related receptor gamma agonist increased 5-HT1AR expression by interacting with the GR, a repressor of 5-HT1AR transcription. Dexamethasone, a GR agonist, decreased the GSK4716-induced increase in 5-HT1AR, which was associated with an alteration in nuclear GR. Furthermore, GR antagonist RU486 reversed the effects induced by dexamethasone, including the elevation of nuclear GR levels and the reduction of 5-HT1AR transcription and expression. CONCLUSION The results could provide insight into the potential applications of small molecules, such as GSK4716, in the regulation of 5-HT1AR expression, which plays a role in serotonergic neurotransmission.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Clarisse D, Van Moortel L, Van Leene C, Gevaert K, De Bosscher K. Glucocorticoid receptor signaling: intricacies and therapeutic opportunities. Trends Biochem Sci 2024; 49:431-444. [PMID: 38429217 DOI: 10.1016/j.tibs.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
The glucocorticoid receptor (GR) is a major nuclear receptor (NR) drug target for the treatment of inflammatory disorders and several cancers. Despite the effectiveness of GR ligands, their systemic action triggers a plethora of side effects, limiting long-term use. Here, we discuss new concepts of and insights into GR mechanisms of action to assist in the identification of routes toward enhanced therapeutic benefits. We zoom in on the communication between different GR domains and how this is influenced by different ligands. We detail findings on the interaction between GR and chromatin, and highlight how condensate formation and coregulator confinement can perturb GR transcriptional responses. Last, we discuss the potential of novel ligands and the therapeutic exploitation of crosstalk with other NRs.
Collapse
Affiliation(s)
- Dorien Clarisse
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Chloé Van Leene
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
16
|
Laulhé M, Kuhn E, Bouligand J, Amazit L, Perrot J, Lebigot E, Kamenickỷ P, Lombès M, Fagart J, Viengchareun S, Martinerie L. A novel mutation in the NR3C1 gene associated with reversible glucocorticoid resistance. Eur J Endocrinol 2024; 190:284-295. [PMID: 38584335 DOI: 10.1093/ejendo/lvae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE Glucocorticoid resistance is a rare endocrine disease caused by variants of the NR3C1 gene encoding the glucocorticoid receptor (GR). We identified a novel heterozygous variant (GRR569Q) in a patient with uncommon reversible glucocorticoid resistance syndrome. METHODS We performed ex vivo functional characterization of the variant in patient fibroblasts and in vitro through transient transfection in undifferentiated HEK 293T cells to assess transcriptional activity, affinity, and nuclear translocation. We studied the impact of the variant on the tertiary structure of the ligand-binding domain through 3D modeling. RESULTS The patient presented initially with an adrenal adenoma with mild autonomous cortisol secretion and undetectable adrenocorticotropin hormone (ACTH) levels. Six months after surgery, biological investigations showed elevated cortisol and ACTH (urinary free cortisol 114 µg/24 h, ACTH 10.9 pmol/L) without clinical symptoms, evoking glucocorticoid resistance syndrome. Functional characterization of the GRR569Q showed decreased expression of target genes (in response to 100 nM cortisol: SGK1 control +97% vs patient +20%, P < .0001) and impaired nuclear translocation in patient fibroblasts compared to control. Similar observations were made in transiently transfected cells, but higher cortisol concentrations overcame glucocorticoid resistance. GRR569Q showed lower ligand affinity (Kd GRWT: 1.73 nM vs GRR569Q: 4.61 nM). Tertiary structure modeling suggested a loss of hydrogen bonds between H3 and the H1-H3 loop. CONCLUSION This is the first description of a reversible glucocorticoid resistance syndrome with effective negative feedback on corticotroph cells regarding increased plasma cortisol concentrations due to the development of mild autonomous cortisol secretion.
Collapse
Affiliation(s)
- Margaux Laulhé
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Emmanuelle Kuhn
- Unité Hypophyse, Hôpital Pitié-Salpêtrière, AP-HP, Paris 75013, France
| | - Jérôme Bouligand
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Larbi Amazit
- UMS 44/Institut Biomédical du Val de Bièvre, Université Paris-Saclay, Le Kremlin Bicêtre 94276, France
| | - Julie Perrot
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Elise Lebigot
- Service de Biochimie, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin Bicêtre 94270, France
| | - Peter Kamenickỷ
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Service d'Endocrinologie et des Maladies de la Reproduction, Hôpital Bicêtre APHP Paris Saclay, Le Kremlin-Bicêtre 94270, France
| | - Marc Lombès
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Jérôme Fagart
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Say Viengchareun
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, 94276 Le Kremlin-Bicêtre, France
- Endocrinologie Pédiatrique, Centre de Référence Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Robert-Debré APHP Nord, Paris 75019, France
- Faculté de Santé, Université Paris Cité, UFR de Médecine, Paris 75006, France
| |
Collapse
|
17
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Huang P, Sun R, Xu C, Jiang Z, Zuo M, Li Y, Liu R, Gong P, Han Y, Fang J, Li P, Shao C, Shi Y. Glucocorticoid activates STAT3 and NF-κB synergistically with inflammatory cytokines to enhance the anti-inflammatory factor TSG6 expression in mesenchymal stem/stromal cells. Cell Death Dis 2024; 15:70. [PMID: 38238297 PMCID: PMC10796730 DOI: 10.1038/s41419-024-06430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024]
Abstract
Glucocorticoid (GC) is essential for maintaining immune homeostasis. While GC is known to regulate the expression of genes related to inflammation in immune cells, the effects of GC, especially in the presence of inflammation, on non-immune cells remain largely unexplored. In particular, the impact of GC on inflammatory cytokine-induced immune modulatory responses of tissue stromal cells is unknown, though it has been widely used to modulate tissue injuries. Here we found that GC could enhance the expression of TSG6, a vital tissue repair effector molecule, in IFNγ and TNFα treated human umbilical cord (UC)-MSCs. NF-κB activation was found to be required for GC-augmented TSG6 upregulation. STAT3, but not STAT1, was also found to be required for the TSG6 upregulation in MSCs exposed to IFNγ, TNFα and GC. Moreover, the phosphorylation (activation) of STAT3 was attenuated when NF-κB was knocked down. Importantly, human UC-MSCs pretreated with a cocktail containing GC, IFNγ, and TNFα could significantly enhance the therapeutic effect of human UC-MSCs in an acute lung injury mouse model, as reflected by reduced infiltration of immune cells and down-regulation of iNOS in macrophages in the lung. Together, the findings reveal a novel link between GR, NF-κB and STAT3 in regulating the immunomodulatory and regenerative properties of MSCs, providing novel information for the understanding and treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Peiqing Huang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Rongrong Sun
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Chenchang Xu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Zixuan Jiang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Muqiu Zuo
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Yinghong Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Rui Liu
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Pixia Gong
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Yuyi Han
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Jiankai Fang
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Peishan Li
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China.
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, China.
| |
Collapse
|
19
|
Meyer M, Meijer O, Hunt H, Belanoff J, Lima A, de Kloet ER, Gonzalez Deniselle MC, De Nicola AF. Stress-induced Neuroinflammation of the Spinal Cord is Restrained by Cort113176 (Dazucorilant), A Specific Glucocorticoid Receptor Modulator. Mol Neurobiol 2024; 61:1-14. [PMID: 37566177 DOI: 10.1007/s12035-023-03554-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Glucocorticoids exert antiinflammatory, antiproliferative and immunosupressive effects. Paradoxically they may also enhance inflammation particularly in the nervous system, as shown in Cushing´ syndrome and neurodegenerative disorders of humans and models of human diseases. ."The Wobbler mouse model of amyotrophic lateral sclerosis shows hypercorticoidism and neuroinflammation which subsided by treatment with the glucocorticoid receptor (GR) modulator Dazucorilant (CORT113176). This effect suggests that GR mediates the chronic glucocorticoid unwanted effects. We now tested this hypothesis using a chronic stress model resembling the condition of the Wobbler mouse Male NFR/NFR mice remained as controls or were subjected to a restraining / rotation stress protocol for 3 weeks, with a group of stressed mice receiving CORT113176 also for 3 weeks. We determined the mRNAS or reactive protein for the proinflamatory factors HMGB1, TLR4, NFkB, TNFα, markers of astrogliosis (GFAP, SOX9 and acquaporin 4), of microgliosis (Iba, CD11b, P2RY12 purinergic receptor) as well as serum IL1β and corticosterone. We showed that chronic stress produced high levels of serum corticosterone and IL1β, decreased body and spleen weight, produced microgliosis and astrogliosis and increased proinflammatory mediators. In stressed mice, modulation of the GR with CORT113176 reduced Iba + microgliosis, CD11b and P2RY12 mRNAs, immunoreactive HMGB1 + cells, GFAP + astrogliosis, SOX9 and acquaporin expression and TLR4 and NFkB mRNAs vs. stress-only mice. The effects of CORT113176 indicate that glucocorticoids are probably involved in neuroinflammation. Thus, modulation of the GR would become useful to dampen the inflammatory component of neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - Onno Meijer
- Dept. of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, Ca, USA
| | | | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - E Ronald de Kloet
- Dept. of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Dept. of Physiology, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina.
- Dept. of Human Biochemiistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Chen L, Fan X, Yang L, Han L, Wang N, Bian K. Research progress of glucocorticoid resistance in chronic rhinosinusitis with nasal polyps: A review. Medicine (Baltimore) 2023; 102:e36024. [PMID: 37986338 PMCID: PMC10659647 DOI: 10.1097/md.0000000000036024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the common chronic inflammatory diseases in otolaryngology. Glucocorticoid (GC) acts as the first-line drug for the treatment of CRSwNP in clinical practice, and they play an irreplaceable role in reducing nasal mucosal inflammation and restoring the normal physiological function of the nasal mucosa. However, many patients are still insensitive to GC treatment, known as GC resistance, which leads to poor control of the disease, and the underlying mechanisms are still not fully elucidated. This article provides a comprehensive overview of the research progress of GC resistance of patients with CRSwNP in recent years.
Collapse
Affiliation(s)
- Langlang Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
- Medicine College of Yan’an University, Yan’an, China
| | - Xin Fan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| | - Lina Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, Air Fourth Medical University, Xi’an, China
| | - Lu Han
- Medicine College of Yan’an University, Yan’an, China
| | - Ningbo Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Fourth Medical University, Xi’an, China
| |
Collapse
|
21
|
Pofi R, Caratti G, Ray DW, Tomlinson JW. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good From the Bad? Endocr Rev 2023; 44:975-1011. [PMID: 37253115 PMCID: PMC10638606 DOI: 10.1210/endrev/bnad016] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/01/2023]
Abstract
It is estimated that 2% to 3% of the population are currently prescribed systemic or topical glucocorticoid treatment. The potent anti-inflammatory action of glucocorticoids to deliver therapeutic benefit is not in doubt. However, the side effects associated with their use, including central weight gain, hypertension, insulin resistance, type 2 diabetes (T2D), and osteoporosis, often collectively termed iatrogenic Cushing's syndrome, are associated with a significant health and economic burden. The precise cellular mechanisms underpinning the differential action of glucocorticoids to drive the desirable and undesirable effects are still not completely understood. Faced with the unmet clinical need to limit glucocorticoid-induced adverse effects alongside ensuring the preservation of anti-inflammatory actions, several strategies have been pursued. The coprescription of existing licensed drugs to treat incident adverse effects can be effective, but data examining the prevention of adverse effects are limited. Novel selective glucocorticoid receptor agonists and selective glucocorticoid receptor modulators have been designed that aim to specifically and selectively activate anti-inflammatory responses based upon their interaction with the glucocorticoid receptor. Several of these compounds are currently in clinical trials to evaluate their efficacy. More recently, strategies exploiting tissue-specific glucocorticoid metabolism through the isoforms of 11β-hydroxysteroid dehydrogenase has shown early potential, although data from clinical trials are limited. The aim of any treatment is to maximize benefit while minimizing risk, and within this review we define the adverse effect profile associated with glucocorticoid use and evaluate current and developing strategies that aim to limit side effects but preserve desirable therapeutic efficacy.
Collapse
Affiliation(s)
- Riccardo Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Giorgio Caratti
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX37LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| |
Collapse
|
22
|
Liang Y, Jiang Q, Zou H, Zhao J, Zhang J, Ren L. Withaferin A: A potential selective glucocorticoid receptor modulator with anti-inflammatory effect. Food Chem Toxicol 2023; 179:113949. [PMID: 37467946 DOI: 10.1016/j.fct.2023.113949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Glucocorticoids have been widely applied to various clinical treatment, however some serious side effects may occur during the treatment. It is widely known that glucocorticoids produce a marked effect through binding to glucocorticoid receptor (GR). As withaferin A can provide multiple health benefits, this work aims to confirm withaferin A as a potential selective GR modulator with anti-inflammatory effect. Fluorescence polarization assay confirmed that withaferin A could steadily bind to GR with an IC50 value of 203.80 ± 0.36 μM. Meanwhile, glucocorticoid receptor translocation of withaferin A was measured by nuclear fractionation assay. Dual luciferase reporter assay showed that withaferin A did not activate GR transcription. Furthermore, withaferin A decreased the GR-related protein expression with less side effects. The result of molecular docking showed that hydrogen-bonding and hydrophobic interactions contributed to the binding of withaferin A with GR. In addition, the GR-withaferin A complex maintained a stable binding throughout the dynamics simulation process. Enzyme-linked immunosorbent assay showed that withaferin A inhibited the production of cytokines, confirming its anti-inflammatory effect. These findings indicate that withaferin A is a potential selective GR modulator and this work may provide a research basis for developing dietary supplements and nutraceuticals against inflammation.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
23
|
Bhimsaria D, Rodríguez-Martínez JA, Mendez-Johnson JL, Ghoshdastidar D, Varadarajan A, Bansal M, Daniels DL, Ramanathan P, Ansari AZ. Hidden modes of DNA binding by human nuclear receptors. Nat Commun 2023; 14:4179. [PMID: 37443151 PMCID: PMC10345098 DOI: 10.1038/s41467-023-39577-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human nuclear receptors (NRs) are a superfamily of ligand-responsive transcription factors that have central roles in cellular function. Their malfunction is linked to numerous diseases, and the ability to modulate their activity with synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate distinct gene networks, however they often function from genomic sites that lack known binding motifs. Here, to annotate genomic binding sites of known and unexamined NRs more accurately, we use high-throughput SELEX to comprehensively map DNA binding site preferences of all full-length human NRs, in complex with their ligands. Furthermore, to identify non-obvious binding sites buried in DNA-protein interactomes, we develop MinSeq Find, a search algorithm based on the MinTerm concept from electrical engineering and digital systems design. The resulting MinTerm sequence set (MinSeqs) reveal a constellation of binding sites that more effectively annotate NR-binding profiles in cells. MinSeqs also unmask binding sites created or disrupted by 52,106 single-nucleotide polymorphisms associated with human diseases. By implicating druggable NRs as hidden drivers of multiple human diseases, our results not only reveal new biological roles of NRs, but they also provide a resource for drug-repurposing and precision medicine.
Collapse
Affiliation(s)
- Devesh Bhimsaria
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | | | | | | | - Ashwin Varadarajan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Danette L Daniels
- Promega Corporation, Madison, WI, 53711, USA
- Foghorn Therapeutics, Cambridge, MA, 02139, USA
| | - Parameswaran Ramanathan
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Aseem Z Ansari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
24
|
Deploey N, Van Moortel L, Rogatsky I, Peelman F, De Bosscher K. The Biologist's Guide to the Glucocorticoid Receptor's Structure. Cells 2023; 12:1636. [PMID: 37371105 PMCID: PMC10297449 DOI: 10.3390/cells12121636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The glucocorticoid receptor α (GRα) is a member of the nuclear receptor superfamily and functions as a glucocorticoid (GC)-responsive transcription factor. GR can halt inflammation and kill off cancer cells, thus explaining the widespread use of glucocorticoids in the clinic. However, side effects and therapy resistance limit GR's therapeutic potential, emphasizing the importance of resolving all of GR's context-specific action mechanisms. Fortunately, the understanding of GR structure, conformation, and stoichiometry in the different GR-controlled biological pathways is now gradually increasing. This information will be crucial to close knowledge gaps on GR function. In this review, we focus on the various domains and mechanisms of action of GR, all from a structural perspective.
Collapse
Affiliation(s)
- Nick Deploey
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Laura Van Moortel
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Z. Rosensweig Genomics Center, New York, NY 10021, USA;
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Frank Peelman
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; (N.D.); (L.V.M.); (F.P.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Translational Nuclear Receptor Research (TNRR) Laboratory, VIB, 9052 Ghent, Belgium
| |
Collapse
|
25
|
Wilk EJ, Howton TC, Fisher JL, Oza VH, Brownlee RT, McPherson KC, Cleary HL, Yoder BK, George JF, Mrug M, Lasseigne BN. Prioritized polycystic kidney disease drug targets and repurposing candidates from pre-cystic and cystic mouse Pkd2 model gene expression reversion. Mol Med 2023; 29:67. [PMID: 37217845 PMCID: PMC10201779 DOI: 10.1186/s10020-023-00664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most prevalent monogenic human diseases. It is mostly caused by pathogenic variants in PKD1 or PKD2 genes that encode interacting transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2). Among many pathogenic processes described in ADPKD, those associated with cAMP signaling, inflammation, and metabolic reprogramming appear to regulate the disease manifestations. Tolvaptan, a vasopressin receptor-2 antagonist that regulates cAMP pathway, is the only FDA-approved ADPKD therapeutic. Tolvaptan reduces renal cyst growth and kidney function loss, but it is not tolerated by many patients and is associated with idiosyncratic liver toxicity. Therefore, additional therapeutic options for ADPKD treatment are needed. METHODS As drug repurposing of FDA-approved drug candidates can significantly decrease the time and cost associated with traditional drug discovery, we used the computational approach signature reversion to detect inversely related drug response gene expression signatures from the Library of Integrated Network-Based Cellular Signatures (LINCS) database and identified compounds predicted to reverse disease-associated transcriptomic signatures in three publicly available Pkd2 kidney transcriptomic data sets of mouse ADPKD models. We focused on a pre-cystic model for signature reversion, as it was less impacted by confounding secondary disease mechanisms in ADPKD, and then compared the resulting candidates' target differential expression in the two cystic mouse models. We further prioritized these drug candidates based on their known mechanism of action, FDA status, targets, and by functional enrichment analysis. RESULTS With this in-silico approach, we prioritized 29 unique drug targets differentially expressed in Pkd2 ADPKD cystic models and 16 prioritized drug repurposing candidates that target them, including bromocriptine and mirtazapine, which can be further tested in-vitro and in-vivo. CONCLUSION Collectively, these results indicate drug targets and repurposing candidates that may effectively treat pre-cystic as well as cystic ADPKD.
Collapse
Affiliation(s)
- Elizabeth J. Wilk
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Timothy C. Howton
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Jennifer L. Fisher
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Vishal H. Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Ryan T. Brownlee
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Biomedical Sciences, Mercer University, Macon, GA USA
| | - Kasi C. McPherson
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Hannah L. Cleary
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- University of Kentucky College of Medicine, Lexington, KY USA
| | - Bradley K. Yoder
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - James F. George
- The Department of Surgery, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Michal Mrug
- The Department of Medicine, HeersinkSchool of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
- Department of Veterans Affairs Medical Center, Birmingham, AL USA
| | - Brittany N. Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
26
|
Wei C, Wang Y, Hu C. Bioinformatic analysis and experimental validation of the potential gene in the airway inflammation of steroid-resistant asthma. Sci Rep 2023; 13:8098. [PMID: 37208441 DOI: 10.1038/s41598-023-35214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Steroid-resistant asthma is a troublesome clinical problem in public health. The pathogenesis of steroid-resistant asthma is complex and remains to be explored. In our work, the online Gene Expression Omnibus microarray dataset GSE7368 was used to explore differentially expressed genes (DEGs) between steroid-resistant asthma patients and steroid-sensitive asthma patients. Tissue-specific gene expression of DEGs was analyzed using BioGPS. The enrichment analyses were performed using GO, KEGG, and GSEA analysis. The protein-protein interaction network and key gene cluster were constructed using STRING, Cytoscape, MCODE, and Cytohubba. A steroid-resistant neutrophilic asthma mouse model was established using lipopolysaccharide (LPS) and ovalbumin (OVA). An LPS-stimulated J744A.1 macrophage model was prepared to validate the underlying mechanism of the interesting DEG gene using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 66 DEGs were identified, most of which were present in the hematologic/immune system. Enrichment analysis displayed that the enriched pathways were the IL-17 signaling pathway, MAPK signal pathway, Toll-like receptor signaling pathway, and so on. DUSP2, as one of the top upregulated DEGs, has not been clearly demonstrated in steroid-resistant asthma. In our study, we observed that the salubrinal administration (DUSP2 inhibitor) reversed neutrophilic airway inflammation and cytokine responses (IL-17A, TNF-α) in a steroid-resistant asthma mouse model. We also found that salubrinal treatment reduced inflammatory cytokines (CXCL10 and IL-1β) in LPS-stimulated J744A.1 macrophages. DUSP2 may be a candidate target for the therapy of steroid-resistant asthma.
Collapse
Affiliation(s)
- Chaochao Wei
- Department of Pulmonary and Critical Care Medicine, Hainan General Hospital, Haikou, People's Republic of China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hainan Hospital of Hainan Medical University, Haikou, People's Republic of China
- Department of Oncology, Xiangya Hospital Central South University, Changsha, People's Republic of China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Caratti G, Desgeorges T, Juban G, Stifel U, Fessard A, Koenen M, Caratti B, Théret M, Skurk C, Chazaud B, Tuckermann JP, Mounier R. Macrophagic AMPKα1 orchestrates regenerative inflammation induced by glucocorticoids. EMBO Rep 2023; 24:e55363. [PMID: 36520372 PMCID: PMC9900347 DOI: 10.15252/embr.202255363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.
Collapse
Affiliation(s)
- Giorgio Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Ulrich Stifel
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Aurélie Fessard
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Mascha Koenen
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
- Present address:
Laboratory of Molecular MetabolismThe Rockefeller UniversityNew YorkNYUSA
| | - Bozhena Caratti
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Marine Théret
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
- Present address:
Department of Medical GeneticsSchool of Biomedical Engineering and the Biomedical Research CentreVancouverBCCanada
| | - Carsten Skurk
- Department of CardiologyCharité Universitätsmedizin BerlinBerlinGermany
- Franklin/German Centre for Cardiovascular Research (DZHK), Partner Site Berlin/Institute of Health (BIH)BerlinGermany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| | - Jan P Tuckermann
- Institute of Comparative Molecular EndocrinologyUniversität UlmUlmGermany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217Université de LyonLyonFrance
| |
Collapse
|
28
|
Elhalag RH, Motawea KR, Talat NE, Rouzan SS, Shah J. Efficacy of vamorolone in treatment of Duchene muscle dystrophy. A meta-analysis. Front Neurol 2023; 14:1107474. [PMID: 36816559 PMCID: PMC9929286 DOI: 10.3389/fneur.2023.1107474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023] Open
Abstract
Background and aim Recent studies evaluated the role of vamorolone in treating Duchenne muscular dystrophy (DMD), so we aimed in our Meta-analysis to assess the efficacy of vamorolone in comparison with placebo and corticosteroids for treating DMD patients. Methods We searched PubMed, Web of Science, Scopus, and Cochrane library databases. We included any randomized control trials and controlled observational studies that investigated the role of vamorolone in treating DMD patients. We used RevMan software, version 5.4. to perform our meta-analysis. Results After a search of the literature, 4 studies were included in the meta-analysis; the total number of patients included in the study is 277 patients, 125 patients in the vamorolone group, 106 in the glucocorticoids group, and 46 in placebo (steroid naïve) group. The pooled analysis showed a statistically significant association between the vamorolone group and increased TTSTAND velocity, TTRW velocity and TTCLIMB velocity compared with the placebo group (MD = 0.04, 95% CI = 0.02-0.07, p = 0.002), (MD = 0.24, 95% CI = 0.11-0.37, p = 0.0003), and (MD = 0.06, 95% CI = 0.05-0.06, p < 0.00001), respectively. Also, the analysis showed a statistically significant association between vamorolone and increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid group (MD = -0.14, 95% CI = -0.26 to -0.01, p = 0.03) and (MD = 17.82, 95% CI = 3.89-31.75, p = 0.01), respectively. Conclusion Our study revealed a significant association between vamorolone and increased TTSTAND velocity, TTRW velocity, and TTCLIMB velocity compared with the placebo (steroid naïve), also showed a statistically significant association between increased TTRW velocity and increased Height percentile for age compared with the glucocorticoid that enhances the privilege of vamorolone over glucocorticoid in treating DMD patients. More multicenter randomized studies are needed to support our results.
Collapse
Affiliation(s)
| | | | | | - Samah S. Rouzan
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jaffer Shah
- New York State Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah ✉
| |
Collapse
|
29
|
Jeanneteau F, Meijer OC, Moisan MP. Structural basis of glucocorticoid receptor signaling bias. J Neuroendocrinol 2023; 35:e13203. [PMID: 36221223 DOI: 10.1111/jne.13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Dissociation between the healthy and toxic effects of cortisol, a major stress-responding hormone has been a widely used strategy to develop anti-inflammatory glucocorticoids with fewer side effects. Such strategy falls short when treating brain disorders as timing and activity state within large-scale neuronal networks determine the physiological and behavioral specificity of cortisol response. Advances in structural molecular dynamics posit the bases for engineering glucocorticoids with precision bias for select downstream signaling pathways. Design of allosteric and/or cooperative control for the glucocorticoid receptor could help promote the beneficial and reduce the deleterious effects of cortisol on brain and behavior in disease conditions.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Onno C Meijer
- Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
30
|
Pinheiro EDS, Preato AM, Petrucci TVB, dos Santos LS, Glezer I. Phase-separation: a possible new layer for transcriptional regulation by glucocorticoid receptor. Front Endocrinol (Lausanne) 2023; 14:1160238. [PMID: 37124728 PMCID: PMC10145926 DOI: 10.3389/fendo.2023.1160238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Glucocorticoids (GCs) are hormones involved in circadian adaptation and stress response, and it is also noteworthy that these steroidal molecules present potent anti-inflammatory action through GC receptors (GR). Upon ligand-mediated activation, GR translocates to the nucleus, and regulates gene expression related to metabolism, acute-phase response and innate immune response. GR field of research has evolved considerably in the last decades, providing varied mechanisms that contributed to the understanding of transcriptional regulation and also impacted drug design for treating inflammatory diseases. Liquid-liquid phase separation (LLPS) in cellular processes represents a recent topic in biology that conceptualizes membraneless organelles and microenvironments that promote, or inhibit, chemical reactions and interactions of protein or nucleic acids. The formation of these molecular condensates has been implicated in gene expression control, and recent evidence shows that GR and other steroid receptors can nucleate phase separation (PS). Here we briefly review the varied mechanisms of transcriptional control by GR, which are largely studied in the context of inflammation, and further present how PS can be involved in the control of gene expression. Lastly, we consider how the reported advances on LLPS during transcription control, specially for steroid hormone receptors, could impact the different modalities of GR action on gene expression, adding a new plausible molecular event in glucocorticoid signal transduction.
Collapse
|
31
|
Höllbacher B, Strickland B, Greulich F, Uhlenhaut NH, Heinig M. Machine learning reveals STAT motifs as predictors for GR-mediated gene repression. Comput Struct Biotechnol J 2023; 21:1697-1710. [PMID: 36879886 PMCID: PMC9984779 DOI: 10.1016/j.csbj.2023.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
Glucocorticoids are potent immunosuppressive drugs, but long-term treatment leads to severe side-effects. While there is a commonly accepted model for GR-mediated gene activation, the mechanism behind repression remains elusive. Understanding the molecular action of the glucocorticoid receptor (GR) mediated gene repression is the first step towards developing novel therapies. We devised an approach that combines multiple epigenetic assays with 3D chromatin data to find sequence patterns predicting gene expression change. We systematically tested> 100 models to evaluate the best way to integrate the data types and found that GR-bound regions hold most of the information needed to predict the polarity of Dex-induced transcriptional changes. We confirmed NF-κB motif family members as predictors for gene repression and identified STAT motifs as additional negative predictors.
Collapse
Affiliation(s)
- Barbara Höllbacher
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich 85764, Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, 85748 Garching, Germany
| | - Benjamin Strickland
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, Weihenstephan & ZIEL-Institute for Food & Health, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich 85764, Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, 85748 Garching, Germany
| |
Collapse
|
32
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
33
|
DBP-iDWT: Improving DNA-Binding Proteins Prediction Using Multi-Perspective Evolutionary Profile and Discrete Wavelet Transform. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2987407. [PMID: 36211019 PMCID: PMC9534628 DOI: 10.1155/2022/2987407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.
Collapse
|
34
|
Pang JP, Hu XP, Wang YX, Liao JN, Chai X, Wang XW, Shen C, Wang JJ, Zhang LL, Wang XY, Zhu F, Weng QJ, Xu L, Hou TJ, Li D. Discovery of a novel nonsteroidal selective glucocorticoid receptor modulator by virtual screening and bioassays. Acta Pharmacol Sin 2022; 43:2429-2438. [PMID: 35110698 PMCID: PMC8809242 DOI: 10.1038/s41401-021-00855-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022]
Abstract
Synthetic glucocorticoids (GCs) have been widely used in the treatment of a broad range of inflammatory diseases, but their clinic use is limited by undesired side effects such as metabolic disorders, osteoporosis, skin and muscle atrophies, mood disorders and hypothalamic-pituitary-adrenal (HPA) axis suppression. Selective glucocorticoid receptor modulators (SGRMs) are expected to have promising anti-inflammatory efficacy but with fewer side effects caused by GCs. Here, we reported HT-15, a prospective SGRM discovered by structure-based virtual screening (VS) and bioassays. HT-15 can selectively act on the NF-κB/AP1-mediated transrepression function of glucocorticoid receptor (GR) and repress the expression of pro-inflammation cytokines (i.e., IL-1β, IL-6, COX-2, and CCL-2) as effectively as dexamethasone (Dex). Compared with Dex, HT-15 shows less transactivation potency that is associated with the main adverse effects of synthetic GCs, and no cross activities with other nuclear receptors. Furthermore, HT-15 exhibits very weak inhibition on the ratio of OPG/RANKL. Therefore, it may reduce the side effects induced by normal GCs. The bioactive compound HT-15 can serve as a starting point for the development of novel therapeutics for high dose or long-term anti-inflammatory treatment.
Collapse
Affiliation(s)
- Jin-Ping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ping Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Xia Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Ning Liao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Wen Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jia Wang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Lu Zhang
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Yue Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Zhu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qin-Jie Weng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ting-Jun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Chen BY, Liou JC, Wu JL, Chen CH, Yang SL. Photoreceptor and vision protective effects of astragaloside IV in mice model with light-evoked retinal damage. Biomed Pharmacother 2022; 153:113404. [DOI: 10.1016/j.biopha.2022.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
36
|
Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Ballestar E, Martín J. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids. Ann Rheum Dis 2022; 81:1290-1300. [PMID: 35705375 PMCID: PMC9380516 DOI: 10.1136/annrheumdis-2022-222156] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.
Collapse
Affiliation(s)
- Elkyn Estupiñán-Moreno
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Lourdes Ortiz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jose Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Laura Carmen Terron-Camero
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Sergio Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Cinta Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
- Systemic Autoimmune Diseases Unit, Hospital Clinico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
37
|
Van Moortel L, Thommis J, Maertens B, Staes A, Clarisse D, De Sutter D, Libert C, Meijer OC, Eyckerman S, Gevaert K, De Bosscher K. Novel assays monitoring direct glucocorticoid receptor protein activity exhibit high predictive power for ligand activity on endogenous gene targets. Biomed Pharmacother 2022; 152:113218. [PMID: 35709653 DOI: 10.1016/j.biopha.2022.113218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Exogenous glucocorticoids are widely used in the clinic for the treatment of inflammatory disorders and auto-immune diseases. Unfortunately, their use is hampered by many side effects and therapy resistance. Efforts to find more selective glucocorticoid receptor (GR) agonists and modulators (called SEGRAMs) that are able to separate anti-inflammatory effects via gene repression from metabolic effects via gene activation, have been unsuccessful so far. In this study, we characterized a set of functionally diverse GR ligands in A549 cells, first using a panel of luciferase-based reporter gene assays evaluating GR-driven gene activation and gene repression. We expanded this minimal assay set with novel luciferase-based read-outs monitoring GR protein levels, GR dimerization and GR Serine 211 (Ser211) phosphorylation status and compared their outcomes with compound effects on the mRNA levels of known GR target genes in A549 cells and primary hepatocytes. We found that luciferase reporters evaluating GR-driven gene activation and gene repression were not always reliable predictors for effects on endogenous target genes. Remarkably, our novel assay monitoring GR Ser211 phosphorylation levels proved to be the most reliable predictor for compound effects on almost all tested endogenous GR targets, both driven by gene activation and repression. The integration of this novel assay in existing screening platforms running both in academia and industry may therefore boost chances to find novel GR ligands with an actual improved therapeutic benefit.
Collapse
Affiliation(s)
- Laura Van Moortel
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Brecht Maertens
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - An Staes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Claude Libert
- VIB Center for Inflammation Research (IRC), Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, the Netherlands.
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Kris Gevaert
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
38
|
Henning P, Conaway HH, Lerner UH. Stimulation of osteoclast formation and bone resorption by glucocorticoids: Synergistic interactions with the calcium regulating hormones parathyroid hormone and 1,25(OH) 2-vitamin D3. VITAMINS AND HORMONES 2022; 120:231-270. [PMID: 35953112 DOI: 10.1016/bs.vh.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.
Collapse
Affiliation(s)
- Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - H Herschel Conaway
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
39
|
Portuguez AS, Grbesa I, Tal M, Deitch R, Raz D, Kliker L, Weismann R, Schwartz M, Loza O, Cohen L, Marchenkov-Flam L, Sung MH, Kaplan T, Hakim O. Ep300 sequestration to functionally distinct glucocorticoid receptor binding loci underlie rapid gene activation and repression. Nucleic Acids Res 2022; 50:6702-6714. [PMID: 35713523 PMCID: PMC9262608 DOI: 10.1093/nar/gkac488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
The rapid transcriptional response to the transcription factor, glucocorticoid receptor (GR), including gene activation or repression, is mediated by the spatial association of genes with multiple GR binding sites (GBSs) over large genomic distances. However, only a minority of the GBSs have independent GR-mediated activating capacity, and GBSs with independent repressive activity were rarely reported. To understand the positive and negative effects of GR we mapped the regulatory environment of its gene targets. We show that the chromatin interaction networks of GR-activated and repressed genes are spatially separated and vary in the features and configuration of their GBS and other non-GBS regulatory elements. The convergence of the KLF4 pathway in GR-activated domains and the STAT6 pathway in GR-repressed domains, impose opposite transcriptional effects to GR, independent of hormone application. Moreover, the ROR and Rev-erb transcription factors serve as positive and negative regulators, respectively, of GR-mediated gene activation. We found that the spatial crosstalk between GBSs and non-GBSs provides a physical platform for sequestering the Ep300 co-activator from non-GR regulatory loci in both GR-activated and -repressed gene compartments. While this allows rapid gene repression, Ep300 recruitment to GBSs is productive specifically in the activated compartments, thus providing the basis for gene induction.
Collapse
Affiliation(s)
| | | | - Moran Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Rachel Deitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Dana Raz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Limor Kliker
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Ran Weismann
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Michal Schwartz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Leslie Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Libi Marchenkov-Flam
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat-Gan 5290002, Israel
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, NIA, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Ofir Hakim
- To whom correspondence should be addressed. Tel: +972 3 738 4295; Fax: +972 3 738 4296;
| |
Collapse
|
40
|
Ali F, Kumar H, Patil S, Kotecha K, Banjar A, Daud A. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Comput Biol Med 2022; 145:105533. [PMID: 35447463 DOI: 10.1016/j.compbiomed.2022.105533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
DNA-protein interaction is a critical biological process that performs influential activities, including DNA transcription and recombination. DBPs (DNA-binding proteins) are closely associated with different kinds of human diseases (asthma, cancer, and AIDS), while some of the DBPs are used in the production of antibiotics, steroids, and anti-inflammatories. Several methods have been reported for the prediction of DBPs. However, a more intelligent method is still highly desirable for the accurate prediction of DBPs. This study presents an intelligent computational method, Target-DBPPred, to improve DBPs prediction. Important features from primary protein sequences are investigated via a novel feature descriptor, called EDF-PSSM-DWT (Evolutionary difference formula position-specific scoring matrix-discrete wavelet transform) and several other multi-evolutionary methods, including F-PSSM (Filtered position-specific scoring matrix), EDF-PSSM (Evolutionary difference formula position-specific scoring matrix), PSSM-DPC (Position-specific scoring matrix-dipeptide composition), and Lead-BiPSSM (Lead-bigram-position specific scoring matrix) to encapsulate diverse multivariate features. The best feature set from the features of each descriptor is selected using sequential forward selection (SFS). Further, four models are trained using Adaboost, XGB (eXtreme gradient boosting), ERT (extremely randomized trees), and LiXGB (Light eXtreme gradient boosting) classifiers. LiXGB, with the best feature set of EDF-PSSM-DWT, has attained 6.69% and 15.07% higher performance in terms of accuracies using training and testing datasets, respectively. The obtained results verify the improved performance of our proposed predictor over the existing predictors.
Collapse
Affiliation(s)
- Farman Ali
- Department of Elementary and Secondary Education, Peshawar, Khyber Pakhtunkhwa, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Harish Kumar
- Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Shruti Patil
- Symbiosis Institute of Technology, Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International University, Pune, India
| | - Ketan Kotecha
- Symbiosis Institute of Technology, Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International University, Pune, India.
| | - Ameen Banjar
- Department of Information Systems, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ali Daud
- Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhoushan, 316022, China; Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
41
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
42
|
Luo Z, Dong J, Wu J. Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol 2022; 108:108861. [PMID: 35597118 DOI: 10.1016/j.intimp.2022.108861] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Herba Epimedii is a famous herb collected from China and Korea. It has been used for impotency, osteoporosis, and amnestic treatment for thousands of years. Icariin, a typical flavonoid compound isolated from Herba Epimedii, was reported as a potential anti-inflammatory drug. Icariside and icaritin are the two metabolites of icariin. Icariin and its metabolites have been used to treat a wide range of inflammatory diseases, such as atherosclerosis, Alzheimer's disease, depression, osteoarthritis, and asthma. They exert powerful suppression of proinflammatory signaling, such as NF-κB and MAPKs. More importantly, they can upregulate anti-inflammatory signaling, such as GR and Nrf2. In this study, we review the therapeutic effects and mechanisms of icariin and its metabolites in inflammatory diseases and provide novel insights into these potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
43
|
Hunter AL, Poolman TM, Kim D, Gonzalez FJ, Bechtold DA, Loudon ASI, Iqbal M, Ray DW. HNF4A modulates glucocorticoid action in the liver. Cell Rep 2022; 39:110697. [PMID: 35443180 PMCID: PMC9380254 DOI: 10.1016/j.celrep.2022.110697] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
The glucocorticoid receptor (GR) is a nuclear receptor critical to the regulation of energy metabolism and inflammation. The actions of GR are dependent on cell type and context. Here, we demonstrate the role of liver lineage-determining factor hepatocyte nuclear factor 4A (HNF4A) in defining liver specificity of GR action. In mouse liver, the HNF4A motif lies adjacent to the glucocorticoid response element (GRE) at GR binding sites within regions of open chromatin. In the absence of HNF4A, the liver GR cistrome is remodeled, with loss and gain of GR recruitment evident. Loss of chromatin accessibility at HNF4A-marked sites associates with loss of GR binding at weak GRE motifs. GR binding and chromatin accessibility are gained at sites characterized by strong GRE motifs, which show GR recruitment in non-liver tissues. The functional importance of these HNF4A-regulated GR sites is indicated by an altered transcriptional response to glucocorticoid treatment in the Hnf4a-null liver.
Collapse
Affiliation(s)
- A Louise Hunter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Toryn M Poolman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Donghwan Kim
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S I Loudon
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Mudassar Iqbal
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
44
|
Díez-Tercero L, Delgado LM, Perez RA. Modulation of Macrophage Response by Copper and Magnesium Ions in Combination with Low Concentrations of Dexamethasone. Biomedicines 2022; 10:biomedicines10040764. [PMID: 35453514 PMCID: PMC9030383 DOI: 10.3390/biomedicines10040764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Macrophages have been deemed crucial for correct tissue regeneration, which is a complex process with multiple overlapping phases, including inflammation. Previous studies have suggested that divalent ions are promising cues that can induce an anti-inflammatory response, since they are stable cues that can be released from biomaterials. However, their immunomodulatory potential is limited in a pro-inflammatory environment. Therefore, we investigated whether copper and magnesium ions combined with low concentrations of the anti-inflammatory drug, dexamethasone (dex), could have a synergistic effect in macrophage, with or without pro-inflammatory stimulus, in terms of morphology, metabolic activity and gene expression. Our results showed that the combination of copper and dex strongly decreased the expression of pro-inflammatory markers, while the combination with magnesium upregulated the expression of IL-10. Moreover, in the presence of a pro-inflammatory stimulus, the combination of copper and dex induced a strong TNF-α response, suggesting an impairment of the anti-inflammatory actions of dex. The combination of magnesium and dex in the presence of a pro-inflammatory stimulus did not promote any improvement in comparison to dex alone. The results obtained in this study could be relevant for tissue engineering applications and in the design of platforms with a dual release of divalent ions and small molecules.
Collapse
Affiliation(s)
- Leire Díez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (L.M.D.); (R.A.P.); Tel.: +34-935042000 (L.M.D. & R.A.P.)
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain;
- Basic Science Department, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
- Correspondence: (L.M.D.); (R.A.P.); Tel.: +34-935042000 (L.M.D. & R.A.P.)
| |
Collapse
|
45
|
Roy R, Soldin SJ, Stolze B, Barbieri M, Tawalbeh SM, Rouhana N, Fronczek AE, Nagaraju K, van den Anker J, Dang UJ, Hoffman EP. Acute serum protein and cytokine response of single dose of prednisone in adult volunteers. Steroids 2022; 178:108953. [PMID: 35026285 DOI: 10.1016/j.steroids.2021.108953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Pharmacological glucocorticoids are the most prescribed anti-inflammatory medications, and are chemical variants of cortisol, the circadian and stress hormone. Both endogenous and pharmacological glucocorticoids bind the glucocorticoid receptor (NR3C1) with high affinity, and both then bind downstream gene promoter elements (GRE) to drive positive gene transcription of many proteins. Glucocorticoid/GR complexes also bind distinct negative gene promoter elements (nGRE) to inhibit expression of genes involved in NF-κB innate immunity signaling. We sought to define the acute response of a single dose of prednisone (0.2 mg/kg) in young adult volunteers, with blood samples taken at baseline, 2, 3, 4 and 6 h post-oral dose. To control for circadian morning cortisol hitting the same molecular pathways, a day of blood draws was done without oral prednisone (same time of day), one day prior to drug day. Serum samples were processed for steroid hormone profiles (mass spectrometry; 9 steroidal hormones), proteomics (SOMAscan aptamer panels, 1,305 proteins), and inflammatory markers (Meso Scale Discovery; 10 pro-inflammatory cytokines). The pharmacological effect of the prednisone dose was shown by significant declines of adrenal steroids by 3 h after dosing. IL-10 showed drug-related increase to 4 hrs, then decrease to 6 hrs. IL-8 showed drug-related decrease in serum by 4 h, consistent with direct negative action of GR/ligand on IL-8 gene promoter. Proteomics data showed beta-2 microglobulin, TNFSF15, TSH, CST3, NBL1 to show time-related decreases with prednisone, while CXCL13 showed increases, although these require validation. In summary, a single low dose of prednisone leads to broad suppression of the adrenal axis within 3 h, and down-regulation of inflammatory serum proteins by 6 h.
Collapse
Affiliation(s)
- Runia Roy
- Department of Biomedical Engineering, Watson School of Engineering, Binghamton University - SUNY, Binghamton, NY, United States
| | - Steven J Soldin
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Brian Stolze
- Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Marissa Barbieri
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - SUNY, Binghamton, NY, United States
| | - Shefa M Tawalbeh
- Department of Biomedical Engineering, Watson School of Engineering, Binghamton University - SUNY, Binghamton, NY, United States
| | - Nicole Rouhana
- Decker College of Nursing and Health Sciences, Binghamton University - SUNY, Binghamton NY, United States
| | - Ann E Fronczek
- Decker College of Nursing and Health Sciences, Binghamton University - SUNY, Binghamton NY, United States
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - SUNY, Binghamton, NY, United States
| | | | - Utkarsh J Dang
- Department of Health Outcomes and Administrative Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - SUNY, Binghamton, NY, United States
| | - Eric P Hoffman
- Department of Biomedical Engineering, Watson School of Engineering, Binghamton University - SUNY, Binghamton, NY, United States; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - SUNY, Binghamton, NY, United States.
| |
Collapse
|
46
|
Jairath R, Raval NS, Musiek AC. SnapshotDx Quiz: January 2022. J Invest Dermatol 2022. [DOI: 10.1016/j.jid.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Greulich F, Bielefeld KA, Scheundel R, Mechtidou A, Strickland B, Uhlenhaut NH. Enhancer RNA Expression in Response to Glucocorticoid Treatment in Murine Macrophages. Cells 2021; 11:28. [PMID: 35011590 PMCID: PMC8744892 DOI: 10.3390/cells11010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are potent anti-inflammatory drugs; however, their molecular mode of action remains complex and elusive. They bind to the glucocorticoid receptor (GR), a nuclear receptor that controls gene expression in almost all tissues in a cell type-specific manner. While GR's transcriptional targets mediate beneficial reactions in immune cells, they also harbor the potential of adverse metabolic effects in other cell types such as hepatocytes. Here, we have profiled nascent transcription upon glucocorticoid stimulation in LPS-activated primary murine macrophages using 4sU-seq. We compared our results to publicly available nascent transcriptomics data from murine liver and bioinformatically identified non-coding RNAs transcribed from intergenic GR binding sites in a tissue-specific fashion. These tissue-specific enhancer RNAs (eRNAs) correlate with target gene expression, reflecting cell type-specific glucocorticoid responses. We further associate GR-mediated eRNA expression with changes in H3K27 acetylation and BRD4 recruitment in inflammatory macrophages upon glucocorticoid treatment. In summary, we propose a common mechanism by which GR-bound enhancers regulate target gene expression by changes in histone acetylation, BRD4 recruitment and eRNA expression. We argue that local eRNAs are potential therapeutic targets downstream of GR signaling which may modulate glucocorticoid response in a cell type-specific way.
Collapse
Affiliation(s)
- Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Kirsten Adele Bielefeld
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Ronny Scheundel
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
| | - Aikaterini Mechtidou
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| | - Benjamin Strickland
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
| | - Nina Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL Institute for Food & Health, Gregor-Mendel-Strasse 2, 85354 Freising, Germany; (F.G.); (R.S.); (B.S.)
- Helmholtz Diabetes Center (IDO, IDC, IDE), Helmholtz Center Munich HMGU, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany; (K.A.B.); (A.M.)
| |
Collapse
|
48
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
49
|
Structural insights into glucocorticoid receptor function. Biochem Soc Trans 2021; 49:2333-2343. [PMID: 34709368 DOI: 10.1042/bst20210419] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
Collapse
|
50
|
Flynn BP, Birnie MT, Kershaw YM, Pauza AG, Kim S, Baek S, Rogers MF, Paterson AR, Stavreva DA, Murphy D, Hager GL, Lightman SL, Conway-Campbell BL. Corticosterone pattern-dependent glucocorticoid receptor binding and transcriptional regulation within the liver. PLoS Genet 2021; 17:e1009737. [PMID: 34375333 PMCID: PMC8378686 DOI: 10.1371/journal.pgen.1009737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Ultradian glucocorticoid rhythms are highly conserved across mammalian species, however, their functional significance is not yet fully understood. Here we demonstrate that pulsatile corticosterone replacement in adrenalectomised rats induces a dynamic pattern of glucocorticoid receptor (GR) binding at ~3,000 genomic sites in liver at the pulse peak, subsequently not found during the pulse nadir. In contrast, constant corticosterone replacement induced prolonged binding at the majority of these sites. Additionally, each pattern further induced markedly different transcriptional responses. During pulsatile treatment, intragenic occupancy by active RNA polymerase II exhibited pulsatile dynamics with transient changes in enrichment, either decreased or increased depending on the gene, which mostly returned to baseline during the inter-pulse interval. In contrast, constant corticosterone exposure induced prolonged effects on RNA polymerase II occupancy at the majority of gene targets, thus acting as a sustained regulatory signal for both transactivation and repression of glucocorticoid target genes. The nett effect of these differences were consequently seen in the liver transcriptome as RNA-seq analysis indicated that despite the same overall amount of corticosterone infused, twice the number of transcripts were regulated by constant corticosterone infusion, when compared to pulsatile. Target genes that were found to be differentially regulated in a pattern-dependent manner were enriched in functional pathways including carbohydrate, cholesterol, glucose and fat metabolism as well as inflammation, suggesting a functional role for dysregulated glucocorticoid rhythms in the development of metabolic dysfunction. Adrenal glucocorticoid hormones are released in a characteristic ultradian rhythm that becomes dysregulated during chronic stress, disease, or synthetic corticosteroid treatment. Metabolic dysfunction is a comorbidity associated with all these conditions, but the role that altered glucocorticoid dynamics play is unknown. As the liver is a major site of glucocorticoid action on metabolic homeostasis regulated by the glucocorticoid receptor, we have assessed how different patterns of hormone replacement in adrenalectomised rats differentially regulate gene pathways involved in type II diabetes, cirrhosis, and fatty liver development, via altering the pattern of glucocorticoid receptor binding to regulatory sites. We believe our findings have important implications for therapies that can reproduce the endogenous glucocorticoid rhythm and thus minimize adverse metabolic side-effects in patients.
Collapse
Affiliation(s)
- Benjamin P. Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Audrys G. Pauza
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Mark F. Rogers
- Intelligent Systems Laboratory, University of Bristol, Bristol, United Kingdom
| | - Alex R. Paterson
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Diana A. Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - David Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Becky L. Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|