1
|
Li Z, Wang Y, Mo F, Wolter T, Hong R, Barrett A, Richmond N, Liu F, Chen Y, Yang X, Dempsey L, Hu Q. Engineering pyroptotic vesicles as personalized cancer vaccines. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01931-2. [PMID: 40379868 DOI: 10.1038/s41565-025-01931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/31/2025] [Indexed: 05/19/2025]
Abstract
Tumour vaccines are designed to stimulate the host's immune system against existing tumours or tumour recurrence. However, individual differences, tumour heterogeneity and side effects hinder the applications of current tumour vaccines and require the development of personalized cancer vaccines. To overcome these challenges, we engineered pyroptotic vesicles-extracellular vesicles formed during tumour cell pyroptosis-as a tumour vaccine platform. The extracted pyroptotic vesicles possess abundant tumour antigens and potent immune-stimulating ability and, loaded into a biocompatible hydrogel, they can be implanted into post-surgical tumour cavities to prevent tumour recurrence. The pyroptotic-vesicle-based vaccine outperforms both exosome- and apoptotic-body-based vaccines in inhibiting tumour recurrence and metastasis in different post-surgical mouse models. Mechanistic studies reveal that the pyroptotic-vesicle-based vaccine could stimulate robust antigen-specific dendritic cell and T cell immune responses against both artificial OVA antigens and cancer neoantigens. In sum, our vaccine platform can be tailored to stimulate robust antitumour immune responses for treating individual cancer patients.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Allie Barrett
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Richmond
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren Dempsey
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Xiao J, Feng N, Li Q, Cao X, Huang Q, Zhou B, Fan Z, Wei L, Liu Y. Mitochondria-specific GPX4 inhibition enhances ferroptosis and antitumor immunity. J Control Release 2025; 383:113841. [PMID: 40373937 DOI: 10.1016/j.jconrel.2025.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 05/03/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
Ferroptosis is gaining attention as a potential cancer immunotherapy strategy, as it can stimulate antitumor responses by enhancing dendritic cell (DC) activation and the infiltration of cytotoxic T cells (CTLs). However, cancer cells often develop resistance to ferroptosis, reducing the effectiveness of existing treatments. This study demonstrates a novel mitochondria-targeted ferroptosis inducer, designated mitoFePDA@R, which is engineered to achieve a "closed-loop" cancer immunotherapy strategy of ferroptosis induction, antitumor immune activation, and ferroptosis enhancement. In this strategy, mitoFePDA@R is designed to release Fe2+ and the mitoGPX4 inhibitor RSL3 within tumor mitochondria, thereby effectively inducing ferroptosis and activating strong antitumor immune responses. Additionally, interferon γ (IFN-γ) released from CTLs inhibits GSH synthesis, which further enhances the ferroptosis sensitivity of tumor cells to form a "closed-loop" strategy. In vitro studies indicated that mitoFePDA@R induced strong ferroptosis in tumor cells by accumulating lipid peroxides (LPO) in mitochondria (which lacks mitochondria targeting). Animal studies confirmed that mitoFePDA@R effectively triggered ferroptosis and activated subsequent antitumor immune responses, leading to significant tumor growth inhibition. This provides a viable and effective strategy for ferroptosis-associated cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Nana Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xianghui Cao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Biyu Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Zhenrui Fan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China.
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China; Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, Tianjin 300121, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Huang P, Liu Y, Zhao C, Wang C, Wang L, Luo M, Wang W, Shan W, Liu X, Li B, Wang Z, Deng H, Chen X. Permanent Efferocytosis Prevention by Terminating MerTK Recycle on Tumor-Associated Macrophages for Cancer Immunotherapy. J Am Chem Soc 2025; 147:15901-15914. [PMID: 40294287 DOI: 10.1021/jacs.5c05640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Efferocytosis of apoptotic tumor cells by tumor-associated macrophages mediated through the phosphatidylserine (PtdSer)/MER proto-oncogene tyrosine kinase (MerTK) axis can exacerbate tumor immunosuppression, and conversely, prevention of efferocytosis via blocking PtdSer-MerTK association using prevalent antibodies represents a promising strategy for reversing tumor immunosuppression and boosting antitumor immunity. However, it remains unclear whether the antibody blockade can induce durable efferocytosis prevention and achieve sustained tumor growth inhibition. Here, we have shown that utilizing PtdSer and MerTK antibodies induced only a transient rather than a persistent efferocytosis prevention effect, and little enhancement was observed even after improving antibody enrichment in tumor sites. Further mechanistic studies suggested that degradation of anti-MerTK antibody and recycling of the MerTK receptor to the cell membrane would compromise the therapeutic benefits of antibody blockade. Based on these findings, we developed a CRISPR/Cas9 gene editing system deployed using Cas9 mRNA and MerTK sgRNA to permanently knock out MerTK, which achieved durable efferocytosis prevention, elicited persistent in situ vaccination immune responses via enhancing X-ray irradiation-induced immunogenic cell death, and led to sustained tumor suppression effects together with anti-PtdSer antibody and X-ray irradiation treatment in multiple B16 melanoma tumor models. Our findings provide a reliable gene-editing-mediated strategy for long-term modulating MerTK homeostasis and overcoming MerTK-dependent cancer immune evasion, generating adaptive antitumor immune responses for sustained cancer immunotherapy.
Collapse
Affiliation(s)
- Pei Huang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Yiwen Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Caiyan Zhao
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Lirong Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Meng Luo
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoqing Liu
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Bingyu Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
4
|
Poudel K, Ji Z, Njauw CN, Rajadurai A, Bhayana B, Sullivan RJ, Kim JO, Tsao H. Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against Kit K641E -mutant melanoma. Bioact Mater 2025; 46:347-364. [PMID: 39834347 PMCID: PMC11742834 DOI: 10.1016/j.bioactmat.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.e., APCs and tumor cells). The imperative for novel cancer medicine is particularly pressing for less common but more devastating KIT-mutated acral and mucosal melanomas that are resistant to small molecule c-kit and immune checkpoint inhibitors. To overcome this challenge, we successfully engineered nanotechnology-enabled hybrid biomimetic nanovaccine (HBNV) comprised of membrane proteins (antigens to activate immunity and homing/targeting ligand to tumor microenvironment (TME) and lymphoid organs) from fused cells (of APCs and tumor cells) and immunoadjuvant. These HBNVs are efficiently internalized to the target cells, assisted in the maturation of APCs via antigens and adjuvant, activated the release of anti-tumor cytokines/inhibited the release of immunosuppressive cytokine, showed a homotypic effect on TME and lymph nodes, activated the anti-tumor immune cells/downregulated the immunosuppressive immune cells, reprogram the tumor microenvironment, and showed successful anti-tumor therapeutic and prophylactic effects.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ching-Ni Njauw
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anpuchchelvi Rajadurai
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan J. Sullivan
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Mass General Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Xue H, Jin J, Huang X, Tan Z, Zeng Y, Lu G, Hu X, Chen K, Su Y, Hu X, Peng X, Jiang L, Wu J. Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat Commun 2025; 16:2650. [PMID: 40102412 PMCID: PMC11920228 DOI: 10.1038/s41467-025-58075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Clinical approaches for cancer therapy face several interrelated challenges involving inefficient drug delivery, potential adverse side effects, and inconvenience. Here, we present an integrated wearable flexible ultrasound microneedle patch (wf-UMP) that serves as a portable platform for convenient, efficient, and minimally invasive cancer therapy. The wf-UMP adopts an all-in-one bioelectronic concept, which integrates a stretchable lead-free ultrasound transducer array for acoustic emission, a bioadhesive hydrogel elastomer for robust adhesion and acoustic coupling, and a dissolvable microneedle patch loaded with biocompatible piezoelectric nanoparticles for painless drug delivery and reactive oxygen species generation. With soft mechanical properties and enhanced electromechanical performance, wf-UMP can be robustly worn on curved and dynamic tissue surfaces for easy and effective manipulation. In preclinical studies involving mice, wf-UMP demonstrated notable anticancer effects by inducing tumor cell apoptosis, amplifying oxidative stress, and modulating immune cell proliferation. Furthermore, the synergistic immunotherapy induced by wf-UMP and Anti-PD1 further improved anticancer immunity by activating immunogenic cell death and regulating macrophages polarization, inhibiting distant tumor growth and tumor recurrence.
Collapse
Affiliation(s)
- Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhi Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xin Hu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keliang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.
- College of Physics, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Wang W, Wu H, Zhang X, Hong Y, Tao S, Cao X, Wang S, Zha L, Zha Z. Whole-Component Antigen Nanovaccines Combined With aTIGIT for Enhanced Innate and Adaptive Anti-tumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412800. [PMID: 39967373 DOI: 10.1002/smll.202412800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Using entire tumor cells or tissues that display both common and patient-specific antigens can potentially trigger a comprehensive and long-lasting anti-tumor immune response. However, the limited immunogenicity, low uptake efficiency, and susceptibility to degradation of whole-component antigens present significant challenges. In this study, we employed tumor lysates (TLs) as whole-component antigens, in conjunction with MgAl-layered double hydroxide (MA) as nanoadjuvants and Mn2+ as immunostimulants, to create personalized MMAT (Mn2+-MA-TLs) nanovaccines. After subcutaneous injection of MMAT nanovaccines, the high local concentrations of TLs and Mn2+ facilitated the recruitment and activation of antigen-presenting cells (APCs), thereby inducing a robust adaptive immune response. Remarkably, MMAT nanovaccines enabled lysosomal escape, enhanced antigen cross-presentation, and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in APCs. Furthermore, MMAT nanovaccines, when combined with the anti-TIGIT monoclonal antibody (aTIGIT), an immune checkpoint inhibitor, not only stimulated T-cell-based adaptive anti-tumor immune responses but also activated the NK-cell-based innate anti-tumor immunity, effectively suppressing tumor growth, recurrence, and metastasis. Thus, the ternary MMAT nanovaccines developed here introduced a pioneered paradigm for the rapid preparation of whole-component tumor antigens with nanoadjuvants and immunostimulants into nanovaccines, offering new prospects for clinical immunotherapies.
Collapse
Affiliation(s)
- Weitao Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Hong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shi Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shipeng Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Lisha Zha
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
7
|
Bai X, Li C, Qiu J, Wu L, Liu X, Yin T, Jin L, Hua Z. A "plug-and-display" nanoparticle based on attenuated outer membrane vesicles enhances the immunogenicity of protein antigens. J Control Release 2025; 378:687-700. [PMID: 39701455 DOI: 10.1016/j.jconrel.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
As natural nanoparticle, the bacterial outer membrane vesicles (OMV) hold great potential in protein vaccines because of its self-adjuvant properties and good biocompatibility. However, the inherent immunotoxicity seriously hampers the application of OMV as protein antigens delivery carrier. Here, an attenuated OMV was constructed by elimination of the flagella protein from its surface and removal of the phosphate group of LPS at position one via gene-editing strategy. The gene-edited outer membrane vesicles (EMV) effectively reduced the levels of pro-inflammatory factors TNF-α and IL-6 in mouse blood by at least 10-fold and 15-fold respectively, compared to wild type OMV (WT-OMV). Importantly, protein antigens are conveniently displayed on EMV by employing a plug-and-display procedure, whereby the exterior of biotinylated EMV can be readily decorated with a synthetic protein comprised of target antigen fused to a biotin-binding protein. EMV greatly increased the uptake of antigen by dendritic cells (DCs) and promoted their maturation. EMV-antigen complex induces a robust antigen-specific antibody responses and cellular immune responses. We propose that EMV have great potential as protein antigens delivery vehicle for preventing different infectious diseases.
Collapse
Affiliation(s)
- Xiaohui Bai
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Chenyang Li
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Jiahui Qiu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Leyang Wu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou 213164, China
| | - Xinqi Liu
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Te Yin
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Li Jin
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology and Department of Neurology of Nanjing Drum Tower Hospital, School of Life Sciences and The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210023, China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc, Changzhou 213164, China
| |
Collapse
|
8
|
Meng Y, Yao Z, Ke X, Hu M, Ren H, Gao S, Zhang H. Extracellular vesicles-based vaccines: Emerging immunotherapies against cancer. J Control Release 2025; 378:438-459. [PMID: 39667569 DOI: 10.1016/j.jconrel.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Cancer vaccines are promising therapeutic approaches to enhance specific T-cell immunity against most solid tumors. By stimulating anti-tumor immunity, clearing minimal residual disease, and minimizing adverse effects, these vaccines target tumor cells and are effective when combined with immune checkpoint blockade or other immunotherapies. However, the development of tumor cell-based vaccines faces quality issues due to poor immunogenicity, tumor heterogeneity, a suppressive tumor immune microenvironment, and ineffective delivery methods. In contrast, extracellular vesicles (EVs), naturally released by cells, are considered the ideal drug carriers and vaccine platforms. EVs offer highly organ-specific targeting, induce broader and more effective immune responses, and demonstrate superior tissue delivery ability. The development of EV vaccines is crucial for advancing cancer immunotherapy. Compared to cell-based vaccines, EV vaccines produced under Good Manufacturing Practices (GMP) offer advantages such as high safety, ease of preservation and transport, and a wide range of sources. This review summarizes the latest research findings on EV vaccine and potential applications in this field. It also highlights novel neoantigens for the development of EV vaccines against cancer.
Collapse
Affiliation(s)
- Yuhua Meng
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiurong Ke
- Department of Surgery, Laboratory for Translational Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mengyuan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongzheng Ren
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China
| | - Shegan Gao
- College of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan Key Laboratory of Cancer Epigenetics, Luoyang, Henan, China.
| | - Hao Zhang
- Gongli Hospital of Shanghai Pudong New Area, Department of Pathology, Shanghai, China; Department of Pathology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Department of Thoracic Surgery and General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Ma S, Zhang Y, Zhu Z, Wang D, Zhou X, Wang J, Bian W, Tang X. Nucleolus-Targeting Carbon Dot Nanocomplexes for Combined Photodynamic/Photothermal Therapy. Mol Pharm 2025; 22:958-971. [PMID: 39895310 DOI: 10.1021/acs.molpharmaceut.4c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The low cure rate and high mortality associated with cancer pose significant threats to human health. Photodynamic and photothermal therapies have emerged as promising treatment strategies for various types of cancers. In this study, we successfully synthesized a novel type of carbon dot (CD) using 1,2,4-aminobenzene and ethylenediamine as precursors. Surprisingly, these CDs exhibited outstanding nucleolus-targeting capabilities coupled with a remarkable photothermal effect. Through the integration of these nucleolus-targeting CDs with indocyanine green (ICG) and folic acid (FA), we created CDs-ICG-FA nanocomplexes suitable for combined photodynamic and photothermal therapy. In vitro experiments demonstrated that CDs-ICG-FA maintained a robust photothermal ability, achieving a conversion efficiency of up to 34.3%. Furthermore, CDs-ICG-FA generated abundant reactive oxygen species, effectively inducing cancer cell death and demonstrating its potential for photodynamic therapy. In MCF-7 cancer cells, CDs-ICG-FA exhibited a pronounced synergistic photothermal/photodynamic anticancer effect. Subsequent in vivo experiments in mice revealed that CDs-ICG-FA could selectively accumulate at tumor sites, significantly inhibiting tumor growth upon exposure to an 808 nm laser. These findings suggest that the developed nucleolus-targeting CDs-ICG-FA hold promising potential for cancer targeting and the application of combined photothermal/photodynamic therapy.
Collapse
Affiliation(s)
- Shaofang Ma
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Zhang
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Zihan Zhu
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Deping Wang
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Bian
- School of Basic Medical Science and Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Xiang Q, Yang X, Zhang Z, Yang J, Li Y, Du J, Wang J, Fan K, Yuan J, Zhang J, Xie J, Ju S. Fe/Mo-Based Lipid Peroxidation Nanoamplifier Combined with Adenosine Immunometabolism Regulation to Augment Anti-Breast Cancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419120. [PMID: 39763124 DOI: 10.1002/adma.202419120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 02/26/2025]
Abstract
Immunogenic cell death (ICD)-mediated immunization strategies have great potential against breast cancer. However, traditional strategies neglect the increase in the immunosuppressive metabolite, adenosine (ADO), during ICD, leading to insufficient therapeutic outcomes. In this study, it is found that the adenosine A2A receptor (A2AR) is significantly expressed in breast cancer and positively associated with regulatory T (Treg) cells. Herein, a strategy combining Fe/Mo-based lipid peroxidation (LPO) nanoamplifiers and A2AR blockade is reported to maximize ICD-mediated anti-tumor immunity. This LPO nanoamplifier causes LPO explosion by the Fe (II)-mediated Fenton reaction and Mo(V)-mediated Russell mechanism. Subsequently, it elicits the ICD magnification of tumor cells by inducing multiple regulated cell death patterns of ferroptosis, apoptosis, and necroptosis. Additionally, the A2AR antagonist (SCH58261), an immunometabolic checkpoint blocker, is found to relieve ADO-related immunosuppression, amplify anti-tumor immunological effects, and elicit immune memory responses. This robust anti-tumor immunity is observed in primary, distant, pulmonary metastatic, and recurrent tumors. This study provides a novel strategy for optimizing ICD-mediated immunotherapy and highlights the benefits of combining LPO explosion with A2AR blockade to enhance breast cancer immunotherapy.
Collapse
Affiliation(s)
- Qinyanqiu Xiang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Jie Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Yingbo Li
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Jue Wang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Kai Fan
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Jiaxin Yuan
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 DingJiaQiao Road, Nanjing, 210009, P. R. China
| |
Collapse
|
11
|
Li C, Lin W, Wang W, Wu J, Luo S, Chen L, Wu R, Shen Z, Wu ZS. Folding an RCA Scaffold into an Intelligent Coiled Nanosnake for Precise/Synergistic RNAi-/Chemotherapy of Cancer. Anal Chem 2025; 97:1107-1116. [PMID: 39783918 DOI: 10.1021/acs.analchem.4c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
An RCA product is a promising scaffold for the construction of DNA nanostructures, but so far, there is no RCA scaffold-based dynamic reconfigurable nanorobot for biological applications. In this contribution, we develop an intracellular stimuli-responsive reconfigurable coiled DNA nanosnake (N-Snake) by using incomplete aptamer-functionalized (A) DNA tetrahedrons (T) to fold a long tandemly repetitive DNA strand synthesized by rolling circle amplification reaction (R) with the help of palindromic fragment (P). A DNA-assembled product, ARTP, including spiked aptamers, can retain the structural integrity even if exposed to fetal bovine serum (FBS) for 24 h and displays substantially enhanced target molecule-dependent cellular internalization efficiency. ARTP contains tetrahedral containers and linear containers, so that there are 500 doxorubicins (DOXs) and 12.5 siRNAs per ARTP. Moreover, ARTP can precisely transport anticancer drugs to cancerous sites and controllably release via the structural reconfiguration upon intracellular stimuli, almost 100% inhibiting tumor growth without detectable systemic toxicity owing to the synergistic RNAi-/Chemotherapy. Apparently, coiled N-snake, DOX/siPlk1-loaded ARTP, can specifically enter tumor cells, uncoil upon intracellular stimuli, and attack the cells from the inside, exerting precise cancer therapy.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Ningde Road, Qingdao 266073, China
| | - Wenqing Lin
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Weijun Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingting Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shasha Luo
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Linhuan Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Rong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zai-Sheng Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
12
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Liu Z, Wu J, Luo Z, Hou Y, Xuan L, Xiao C, Chang J, Zhang D, Zheng G, Guo J, Tang G, Yu X. 3D Biofabrication of Microporous Hydrogels for Tissue Engineering. Adv Healthc Mater 2025; 14:e2403583. [PMID: 39641221 DOI: 10.1002/adhm.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Microporous hydrogels have been utilized in an unprecedented manner in the last few decades, combining materials science, biology, and medicine. Their microporous structure makes them suitable for wide applications, especially as cell carriers in tissue engineering and regenerative medicine. Microporous hydrogel scaffolds provide spatial and platform support for cell growth and proliferation, which can promote cell growth, migration, and differentiation, influencing tissue repair and regeneration. This review gives an overview of recent developments in the fabrication techniques and applications of microporous hydrogels. The fabrication of microporous hydrogels can be classified into two distinct categories: fabrication of non-injectable microporous hydrogels including freeze-drying microporous method, two-phase sacrificial strategy, 3D biofabrication technology, etc., and fabrication of injectable microporous hydrogels mainly including microgel assembly. Then, the biomedical applications of microporous hydrogels in cell carriers for tissue engineering, including but not limited to bone regeneration, nerve regeneration, vascular regeneration, and muscle regeneration are emphasized. Additionally, the ongoing and foreseeable applications and current limitations of microporous hydrogels in biomedical engineering are illustrated. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microporous hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Ziyang Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Zeyu Luo
- Department of Orthopedics, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Changyi Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jishuo Chang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Dongyang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Jie Guo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
14
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Qi F, Wang Y, Zhang H, Jiang H, Zhao J, Chen Z, Cao Y, Li C. Near-Infrared-II-Activated Transition Metal(II)-Coordinated Ligand Radical Primes Robust Anticancer Immunity. J Med Chem 2024; 67:21329-21343. [PMID: 39584465 DOI: 10.1021/acs.jmedchem.4c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Photoactivatable metallodrugs combining tumor cell eradication and immune stimulation hold immense promise for targeted cancer therapy. However, limitations such as oxygen dependence, narrow visible light responsiveness, and poor immunogenicity hinder their efficacy in deep solid tumors with hypoxic and immunosuppressive microenvironments. Herein, we present a novel design strategy for transition metal(II)-coordinated ligand radicals exhibiting intense near-infrared-II (NIR-II) absorption, unique endoplasmic reticulum-targeting capability, and oxygen-independent photothermal performance, effectively addressing these constraints. Proof-of-concept results demonstrate the potent efficacy of our cobalt(II)-coordinated ligand radical (BPDP-Co) in inducing highly immunogenic pyroptosis in tumor cells under both normoxic and severe hypoxic conditions upon 1064 nm laser irradiation. This NIR-II activation triggers the release of damage-associated molecular patterns (DAMPs) and proinflammatory cytokines, fueling a robust antitumor immune response. In vivo studies demonstrate that treatment with BPDP-Co/NIR-II significantly inhibited 4T1 tumor growth in BALB/c mice with a high inhibitory rate of 85.7%, highlighting its therapeutic potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Fan Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yaming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hong Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiahui Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zihui Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yahui Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024; 43:1419-1443. [PMID: 39307891 PMCID: PMC11554835 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Yang Y, Zhang B, Xu Y, Zhu W, Zhu Z, Zhang X, Wu W, Chen J, Yu Z. An immunotherapeutic hydrogel booster inhibits tumor recurrence and promotes wound healing for postoperative management of melanoma. Bioact Mater 2024; 42:178-193. [PMID: 39285910 PMCID: PMC11402546 DOI: 10.1016/j.bioactmat.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Low tumor immunogenicity, immunosuppressive tumor microenvironment, and bacterial infections have emerged as significant challenges in postsurgical immunotherapy and skin regeneration for preventing melanoma recurrence. Herein, an immunotherapeutic hydrogel booster (GelMA-CJCNPs) was developed to prevent postoperative tumor recurrence and promote wound healing by incorporating ternary carrier-free nanoparticles (CJCNPs) containing chlorine e6 (Ce6), a BRD4 inhibitor (JQ1), and a glutaminase inhibitor (C968) into methacrylic anhydride-modified gelatin (GelMA) dressings. GelMA-CJCNPs reduced glutathione production by inhibiting glutamine metabolism, thereby preventing the destruction of reactive oxygen species generated by photodynamic therapy, which could amplify oxidative stress to induce severe cell death and enhance immunogenic cell death. In addition, GelMA-CJCNPs reduced M2-type tumor-associated macrophage polarization by blocking glutamine metabolism to reverse the immunosuppressive tumor microenvironment, recruiting more tumor-infiltrating T lymphocytes. GelMA-CJCNPs also downregulated IFN-γ-induced expression of programmed cell death ligand 1 to mitigate acquired immune resistance. Benefiting from the amplified systemic antitumor immunity, GelMA-CJCNPs markedly inhibited the growth of both primary and distant tumors. Moreover, GelMA-CJCNPs demonstrated satisfactory photodynamic antibacterial effects against Staphylococcus aureus infections, thereby promoting postsurgical wound healing. Hence, this immunotherapeutic hydrogel booster, as a facile and effective postoperative adjuvant, possesses a promising potential for inhibiting tumor recurrence and accelerating skin regeneration.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Bo Zhang
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yangtao Xu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wenxiang Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zinian Zhu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Xibo Zhang
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Jierong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China
| |
Collapse
|
18
|
Li P, Du Y, Qiu J, Jiang Q, Chen W, Zhang X, Li G, Li D, Shan G. Immune Checkpoint-Modulating Photosensitizer That Targets BRD4 for Cancer Photoimmunotherapy. J Med Chem 2024; 67:18930-18942. [PMID: 39447075 DOI: 10.1021/acs.jmedchem.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photodynamic therapy is an efficient approach to promote cytotoxic T lymphocyte tumor infiltration to convert immunologically cold tumors into hot tumors through the induction of immunogenic cell death . However, tumors usually overexpress immune checkpoints such as PD-L1 to suppress T lymphocyte antitumor activity and evade immune surveillance. Therefore, the design of efficient photosensitizers to overcome checkpoint-mediated immune evasion is highly necessary. In this work, we report the design of BRD-PS, a BRD4-targeting photosensitizer, as a new class of immunomodulatory photosensitizer termed an immune checkpoint-modulating photosensitizer, to solve this issue. On one hand, BRD-PS induces immunogenic pyroptosis and ferroptosis to promote the activation and tumor infiltration of cytotoxic T cells. On the other hand, BRD-PS suppresses the expression of PD-L1 to avoid immune evasion. This work demonstrated the feasibility of utilizing a single photosensitizer to simultaneously induce immunogenic cell death and PD-L1 downregulation for synergistic cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Peixia Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Yayin Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Qiaoyun Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Weijia Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Gang Shan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| |
Collapse
|
19
|
Wang J, Sun X, Zhao Z, Wang G, Wang D, Li Y. Confined copper depletion via a hydrogel platform for reversing dabrafenib/cetuximab resistance in BRAF V600E-mutant colorectal cancer. J Control Release 2024; 375:643-653. [PMID: 39306044 DOI: 10.1016/j.jconrel.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BRAFV600E-mutant colorectal cancer (CRC) is resistant to most first-line therapeutics, including the BRAF inhibitor dabrafenib and epidermal growth factor receptor (EGFR) inhibitor cetuximab. Although copper depletion shows promise in reversing dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC, its application is limited by the potential for excessive copper depletion in non-tumor objects. In this study, we have developed a hydrogel platform for confined copper depletion in BRAFV600E-mutant CRC cells, which effectively reverses dabrafenib/cetuximab resistance and enhancing therapeutic efficiency. The hydrogel platform enables precise intracellular copper depletion through localized administration, acidity-triggered drug release, and oxidized activation of a copper prochelator. The dosage of this prochelator is 37.5 μg/kg in mouse models, which is significantly lower than the commonly used tetrathiomolybdate. Furthermore, both dabrafenib and the prochelator are preloaded into acid-responsive nanoparticles before being embedded in the hydrogel matrix to facilitate efficient endocytosis and acid-activatable drug release. Confined copper depletion inhibits MEK1 signaling and suppresses the MAPK signaling pathway when combined with BRAF and EGFR inhibitors. Moreover, the hydrogel platform inhibits tumor growth and prolongs survival in subcutaneous and postsurgical models of BRAFV600E-mutant CRC. This study provides an innovative strategy for overcoming dabrafenib/cetuximab resistance in BRAFV600E-mutant CRC through precise intracellular copper depletion.
Collapse
Affiliation(s)
- Jue Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dangge Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong 264117, China.
| |
Collapse
|
20
|
Li J, Yi H, Fu Y, Zhuang J, Zhan Z, Guo L, Zheng J, Yu X, Zhang DY. Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer. J Colloid Interface Sci 2024; 680:9-24. [PMID: 39488900 DOI: 10.1016/j.jcis.2024.10.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Hypoxia, which is a common characteristic of most solid tumors, not only contributes to the immunosuppressive nature of the tumor microenvironment (TME) but also reduces the efficacy of many oxygen-depleting therapies, including photodynamic therapy (PDT). In this study, we developed acidity-responsive biodegradable iridium-coordinated (IPC) nanodrugs consisting of iridium ions, the photosensitizer chlorin e6 (Ce6), and polyvinylpyrrolidone to potentiate the effects of PDT and immunotherapy by modulating the TME. IPC nanodrugs that accumulate at high levels in tumors catalyze excess hydrogen peroxide to produce oxygen while depleting glutathione levels within cancer cells; thus, the released Ce6 is more efficient at producing reactive oxygen species (ROS) in response to laser irradiation. In addition, IPC nanodrugs alleviate tumor hypoxia, induce more immunogenic cell death by amplifying PDT responses, and synergistically inhibit tumor growth by initiating robust antitumor immunity and reversing the immunosuppressive nature of the TME. As a result, IPC nanodrugs exert pronounced combined therapeutic effects in vitro and in vivo, without obvious toxic effects due to acidity-responsive degradation. These iridium-coordinated nanodrugs have the potential to modulate the TME, amplify the effects of PDT, and substantially inhibit tumors, and they are expected to provide novel ideas for combination therapy of hypoxic cancer.
Collapse
Affiliation(s)
- Jingyao Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huixi Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanyuan Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiani Zhuang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhixiong Zhan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Liyou Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China; State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400042, China.
| | - Xiyong Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Dong-Yang Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, The Fifth Affiliated Hospital and School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
21
|
Li Y, Wang J, Li Y, Luo Z, Peng T, Zou T. Nanomaterials based on hollow gold nanospheres for cancer therapy. Regen Biomater 2024; 11:rbae126. [PMID: 39664940 PMCID: PMC11631698 DOI: 10.1093/rb/rbae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 12/13/2024] Open
Abstract
Gold nanoparticles have recently been exploited as versatile nanocarriers in diagnostic and therapeutic drug delivery for cancer nanomedicine, owing to their biocompatibility, low biotoxicity, surface modifiability and plasma optical properties. A variety of gold nanoparticles have emerged for drug delivery, mainly including gold nanorods, gold nanocages, gold nanostars, gold solid nanospheres and hollow gold nanospheres (HGNs). Among these, HGNs have widely been studied for their higher photothermal conversion efficiency, wider spectral absorption range and stronger surface-enhanced Raman scattering compared with solid gold nanospheres. Therefore, nowadays, researchers prefer to use HGNs to other metal nanocarriers, which can not only play the role of controlled-release drugs but also act as photothermal agents for tumor therapy and diagnosis, due to their properties of surface modification. Combined with the Au-S bond on the surface of HGNs, the targeted preparation is loaded to achieve precise drug delivery. With the assistance of the photothermal characteristics of HGNs themselves, the efficacy of loaded drugs in HGNs is enhanced. In addition, HGNs also have vital values in the field of bioimaging, which serve as photothermal imaging agents and Raman scattering-guided preparations due to their surface-enhanced Raman scattering properties to assist researchers in achieving the purpose of tumor diagnosis. In this review, we summarize the synthesis methods of HGNs and the recent application of HGNs-based nanomaterials in the field of cancer diagnosis and therapy. In addition, the issues to be addressed were pointed out for a bright prospect of HGNs-based nanomaterials.
Collapse
Affiliation(s)
- You Li
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Ying Li
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Ziqiang Luo
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Tao Peng
- GEM (Wuhan) Urban Mining Industrial Group Co., Ltd, Wuhan 430415, P.R. China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| |
Collapse
|
22
|
Li Z, Zhan J, Zheng Y, Luo Y, Yu X, Chen H. Regulation of tumor antigens-Dependent immunotherapy via the hybrid M1 macrophage/tumor lysates Hydrogel. Heliyon 2024; 10:e37521. [PMID: 39309839 PMCID: PMC11414488 DOI: 10.1016/j.heliyon.2024.e37521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor treatment poses a significant obstacle in contemporary healthcare. Using components derived from a patient's own cellular and tissue materials to prepare hydrogels and other therapeutic systems has become a novel therapeutic approach, drawing considerable interest for their applicability in basic research on cancer immunotherapy. These hydrogels can engage with cellular components directly and offer a supportive scaffold, aiding in the normalization of tumor tissues. Additionally, their superior capability for encapsulating targeted anti-tumor medications amplifies treatment effectiveness. Given their origin from a patient's own cells, these hydrogels circumvent the risks of immune rejection by the body and severe side effects typically associated with foreign substance. In this study, we developed a composite hydrogel constructed by the cellular lysates of autologous tumor cells and M1 macrophages. This combination promoted the M2 macrophages polarization to the M1 phenotype. Subsequently, the polarized M1 macrophages infiltrated into the hydrogel and can directly capture tumor antigens. As antigen-presenting cells, M1 macrophages can stimulate the production of antigen-specific T cells to kill tumor cells. This work proposes a dual-benefit research strategy that not only polarizes M2 macrophages but also enhances immune activation, boosting T cell-mediated tumor-killing effects. This approach offers a new therapeutic option for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Zeyang Li
- Department of Ultrasonic Imaging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiani Zhan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yinuo Zheng
- Department of Thyroid and Breast Surgery, Oncological Surgery, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Yingli Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xiaoming Yu
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Haha Chen
- Department of Thyroid and Breast Surgery, Oncological Surgery, Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| |
Collapse
|
23
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
24
|
Kleiner S, Wulf V, Bisker G. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels. J Colloid Interface Sci 2024; 670:439-448. [PMID: 38772260 DOI: 10.1016/j.jcis.2024.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Hydrogels derived from fluorenylmethoxycarbonyl (Fmoc)-conjugated amino acids and peptides demonstrate remarkable potential in biomedical applications, including drug delivery, tissue regeneration, and tissue engineering. These hydrogels can be injectable, offering a minimally invasive approach to hydrogel implantation. Given their potential for prolonged application, there is a need for non-destructive evaluation of their properties over extended periods. Thus, we introduce a hydrogel characterization platform employing single-walled carbon nanotubes (SWCNTs) as near-infrared (NIR) fluorescent probes. Our approach involves generating supramolecular self-assembling hydrogels from aromatic Fmoc-amino acids. Integrating SWCNTs into the hydrogels maintains their structural and mechanical properties, establishing SWCNTs as optical probes for hydrogels. We demonstrate that the SWCNT NIR-fluorescence changes during the gelation process correlate to rheological changes within the hydrogels. Additionally, single particle tracking of SWCNTs incorporated in the hydrogels provides insights into differences in hydrogel morphologies. Furthermore, the disassembly process of the hydrogels can be monitored through the SWCNT fluorescence modulation. The unique attribute of SWCNTs as non-photobleaching fluorescent sensors, emitting at the biologically transparent window, offers a non-destructive method for studying hydrogel dynamics over extended periods. This platform could be applied to a wide range of self-assembling hydrogels to advance our understanding and applications of supramolecular assembly technologies.
Collapse
Affiliation(s)
- Shirel Kleiner
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Verena Wulf
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
25
|
Zhang J, Fu C, Luo Q, Qin X, Batur S, Xie Q, Kong L, Yang C, Zhang Z. A laponite-based immunologically active gel delivery system for long-acting tumor vaccine. J Control Release 2024; 373:201-215. [PMID: 39004104 DOI: 10.1016/j.jconrel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Traditional bolus vaccines typically require multiple doses, which complicates the vaccination process and may cause missed shots, leading to sub-optimal immunity and reduced vaccine effectiveness. Herein, a gel-based long-acting vaccine system with self-adjuvant properties based on laponite was constructed to simplify vaccination procedures and improve vaccine effectiveness. Firstly, the gel system could recruit multiple types of immune cells to form immune niches. Secondly, it could achieve sustained delivery of antigens to lymph nodes by active transport and passive drainage. Then, the gel system triggered the formation of a large number of germinal centers, which elicited enhanced and durable humoral immune responses, as well as strong cellular immune responses. As a result, it eventually showed good prophylactic and therapeutic effects in a variety of tumor models including melanoma, colorectal cancer and peritoneal metastasis models. By further combining the immunoadjuvant CpG ODN and cytokine IL-12, the effect of the gel-vaccine could be further enhanced. In a murine peritoneal metastasis model of colorectal carcinoma, a single administration of the gel-vaccine resulted in complete tumor eradication in 8/9 mice. In summary, this study developed an immunologically active gel-vaccine system. And as a robust and versatile vaccine platform, by loading different antigens and adjuvants, this gel-vaccine system is expected to realize its better therapeutic potential.
Collapse
Affiliation(s)
- Jiao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuansheng Fu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Luo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Samira Batur
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Xie
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China; National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
26
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
27
|
Li Y, Tong F, Wang Y, Wang J, Wu M, Li H, Guo H, Gao H. I n situ tumor vaccine with optimized nanoadjuvants and lymph node targeting capacity to treat ovarian cancer and metastases. Acta Pharm Sin B 2024; 14:4102-4117. [PMID: 39309485 PMCID: PMC11413692 DOI: 10.1016/j.apsb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor vaccine, a promising modality of tumor immunotherapy, needs to go through the process of tumor antigen generation and loading, antigen drainage to lymph nodes (LNs), antigen internalization by dendritic cells (DCs), DC maturation, and antigen cross-presentation to activate T-cells. However, tumor vaccines are often unable to satisfy all the steps, leading to the limitation of their application and efficacy. Herein, based on a smart nanogel system, an in situ nano-vaccine (CpG@Man-P/Tra/Gel) targeting LNs was constructed to induce potent anti-tumor immune effects and inhibit the recurrence and metastasis of ovarian cancer. The CpG@Man-P/Tra/Gel exhibited MMP-2-sensitive release of trametinib (Tra) and nano-adjuvant CPG@Man-P, which generated abundant in situ depot of whole-cell tumor antigens and formed in situ nano-vaccines with CpG@Man-P. Benefiting from mannose (Man) modification, the nano-vaccines targeted to LNs, promoted the uptake of antigens by DCs, further inducing the maturation of DCs and activation of T cells. Moreover, CpG@Man-P with different particle sizes were prepared and the effective size was selected to evaluate the antitumor effect and immune response in vivo. Notably, combined with PD-1 blocking, the vaccine effectively inhibited primary tumor growth and induced tumor-specific immune response against tumor recurrence and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Manqi Wu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
29
|
Ning J, Lu X, Dong J, Xue C, Ou C, Zhang Y, Zhang X, Gao F. Advanced Strategies for Strengthening the Immune Activation Effect of Traditional Antitumor Therapies. ACS Biomater Sci Eng 2024; 10:4701-4715. [PMID: 38959418 DOI: 10.1021/acsbiomaterials.4c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The utilization of traditional therapies (TTS), such as chemotherapy, reactive oxygen species-based therapy, and thermotherapy, to induce immunogenic cell death (ICD) in tumor cells has emerged as a promising strategy for the activation of the antitumor immune response. However, the limited effectiveness of most TTS in inducing the ICD effect of tumors hinders their applications in combination with immunotherapy. To address this challenge, various intelligent strategies have been proposed to strengthen the immune activation effect of these TTS, and then achieve synergistic antitumor efficacy with immunotherapy. These strategies primarily focus on augmenting the tumor ICD effect or facilitating the antigen (released by the ICD tumor cells) presentation process during TTS, and they are systematically summarized in this review. Finally, the existing bottlenecks and prospects of TTS in the application of tumor immune regulation are also discussed.
Collapse
Affiliation(s)
- Jingyi Ning
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xinxin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Jianhui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| |
Collapse
|
30
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
31
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Li Q, Yan Y, Wang C, Dong Z, Hao Y, Chen M, Liu Z, Feng L. Biomineralization-inspired synthesis of autologous cancer vaccines for personalized metallo-immunotherapy. iScience 2024; 27:110189. [PMID: 38989457 PMCID: PMC11233966 DOI: 10.1016/j.isci.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Autologous cancer vaccines represent a promising therapeutic approach against tumor relapse. Herein, a concise biomineralization strategy was developed to prepare an immunostimulatory autologous cancer vaccine through protein antigen-mediated growth of flower-like manganese phosphate (MnP) nanoparticles. In addition to inheriting the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING)-activating capacity of Mn2+, the resulting ovalbumin (OVA)-loaded MnP (OVA@MnP) nanoparticles with superior stability and pH-responsiveness enabled efficient priming of antigen-specific CD8+ T cell expansion through promoting the endo/lysosome escape and subsequent antigen cross-presentation of OVA. Resultantly, OVA@MnP vaccines upon subcutaneous vaccination elicited both prophylactic and therapeutic effects against OVA-expressing B16-F10 melanoma. Furthermore, the biomineralized autologous cancer vaccines prepared from the whole tumor cell lysates of the dissected tumors suppressed the growth of residual tumors, particularly in combination with anti-PD-1 immunotherapy. This study highlights a simple biomineralization approach for the controllable synthesis of cGAS-STING-activating autologous cancer vaccines to suppress postsurgical tumor relapse.
Collapse
Affiliation(s)
- Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yifan Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Minming Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
33
|
Yan Q, Liu H, Sun S, Yang Y, Fan D, Yang Y, Zhao Y, Song Z, Chen Y, Zhu R, Zhang Z. Adipose-derived stem cell exosomes loaded with icariin alleviates rheumatoid arthritis by modulating macrophage polarization in rats. J Nanobiotechnology 2024; 22:423. [PMID: 39026367 PMCID: PMC11256651 DOI: 10.1186/s12951-024-02711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyue Sun
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - DanPing Fan
- Institute of Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqin Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yukun Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanjing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Liu Y, Wang H, Ding M, Yao W, Wang K, Ullah I, Bulatov E, Yuan Y. Ultrasound-Activated PROTAC Prodrugs Overcome Immunosuppression to Actuate Efficient Deep-Tissue Sono-Immunotherapy in Orthotopic Pancreatic Tumor Mouse Models. NANO LETTERS 2024; 24:8741-8751. [PMID: 38953486 DOI: 10.1021/acs.nanolett.4c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Haiyang Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Mengchao Ding
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Wang Yao
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Kewei Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
| | - Ihsan Ullah
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
35
|
Duan X, Zhao Y, Hu H, Wang X, Yan J, Li S, Zhang Y, Jiao J, Zhang G. Amino Acid Metabolism-Regulated Nanomedicine for Enhanced Tumor Immunotherapy through Synergistic Regulation of Immune Microenvironment. Biomater Res 2024; 28:0048. [PMID: 38966855 PMCID: PMC11223770 DOI: 10.34133/bmr.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 07/06/2024] Open
Abstract
The reprogramming of tumor metabolism presents a substantial challenge for effective immunotherapy, playing a crucial role in developing an immunosuppressive microenvironment. In particular, the degradation of the amino acid L-tryptophan (Trp) to kynurenine (Kyn) by indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) is one of the most clinically validated pathways for immune suppression. Thus, regulating the Trp/Kyn metabolism by IDO1 inhibition represents a promising strategy for enhancing immunotherapy. Herein, metabolism-regulated nanoparticles are prepared through metal coordination-driven assembly of an IDO1 inhibitor (NLG919) and a stimulator of interferon genes (STING) agonist (MSA-2) for enhanced immunotherapy. After intravenous administration, the assembled nanoparticles could efficiently accumulate in tumors, enhancing the bioavailability of NLG919 and down-regulating the metabolism of Trp to Kyn to remodel the immunosuppressive tumor microenvironment. Meanwhile, the released MSA-2 evoked potent STING pathway activation in tumors, triggering an effective immune response. The antitumor immunity induced by nanoparticles significantly inhibited the development of primary and metastatic tumors, as well as B16 melanoma. Overall, this study provided a novel paradigm for enhancing tumor immunotherapy through synergistic amino acid metabolism and STING pathway activation.
Collapse
Affiliation(s)
- Xiuying Duan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- School of Life Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yilei Zhao
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Houyang Hu
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuechun Wang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jie Yan
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Songyan Li
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yueying Zhang
- School of Clinical and Basic Medical Sciences,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | - Guiqiang Zhang
- Medical Science and Technology Innovation Center,
Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
36
|
Hu K, Zhang D, Ma W, Gu Y, Zhao J, Mu X. Polydopamine-Based Nanoparticles for Synergistic Chemotherapy of Prostate Cancer. Int J Nanomedicine 2024; 19:6717-6730. [PMID: 38979530 PMCID: PMC11230127 DOI: 10.2147/ijn.s468946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction Immune regulatory small molecule JQ1 can block its downstream effector PD-L1 pathway and effectively reverse the PD-L1 upregulation induced by doxorubicin (DOX). So the synergistic administration of chemotherapeutic drug DOX and JQ1 is expected to increase the sensitivity of tumors to immune checkpoint therapy and jointly enhance the body's own immunity, thus effectively killing tumor cells. Therefore, a drug delivery system loaded with DOX and JQ1 was devised in this study. Methods Polydopamine nanoparticles (PDA NPs) were synthesized through spontaneous polymerization. Under appropriate pH conditions, DOX and JQ1 were loaded onto the surface of PDA NPs, and the release of DOX and JQ1 were measured using UV-Vis or high performance liquid chromatography (HPLC). The mechanism of fabricated nanocomplex in vitro was investigated by cell uptake experiment, cell viability assays, apoptosis assays, and Western blot analysis. Finally, the tumor-bearing mouse model was used to evaluate the tumor-inhibiting efficacy and the biosafety in vivo. Results JQ1 and DOX were successfully loaded onto PDA NPs. PDA-DOX/JQ1 NPs inhibited the growth of prostate cancer cells, reduced the expression of apoptosis related proteins and induced apoptosis in vitro. The in vivo biodistribution indicated that PDA-DOX/JQ1 NPs could accumulated at the tumor sites through the EPR effect. In tumor-bearing mice, JQ1 delivered with PDA-DOX/JQ1 NPs reduced PD-L1 expression at tumor sites, generating significant tumor suppression. Furthermore, PDA-DOX/JQ1 NPs could reduce the side effects, and produce good synergistic treatment effect in vivo. Conclusion We have successfully prepared a multifunctional platform for synergistic prostate cancer therapy.
Collapse
Affiliation(s)
- Kebang Hu
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, People’s Republic of China
| | - Weiran Ma
- College of Pharmacy, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanzhi Gu
- College of Pharmacy, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiang Zhao
- Department of Urology, Xi’an First Hospital, Xi’an, 710002, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
37
|
Xie D, Han C, Chen C, Liao Z, Campos de Souza S, Niu Y, Mano JF, Dong L, Wang C. A scaffold vaccine to promote tumor antigen cross-presentation via sustained toll-like receptor-2 (TLR2) activation. Bioact Mater 2024; 37:315-330. [PMID: 38694764 PMCID: PMC11061615 DOI: 10.1016/j.bioactmat.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer vaccination holds great promise for cancer treatment, but its effectiveness is hindered by suboptimal activation of CD8+ cytotoxic T lymphocytes, which are potent effectors to mediate anti-tumor immune responses. A possible solution is to switch antigen-presenting cells to present tumor antigens via the major histocompatibility complex class I (MHC-I) to CD8+ T cells - a process known as cross-presentation. To achieve this goal, we develop a three-dimensional (3D) scaffold vaccine to promote antigen cross-presentation by persisted toll-like receptor-2 (TLR2) activation after one injection. This vaccine comprises polysaccharide frameworks that "hook" TLR2 agonist (acGM) via tunable hydrophobic interactions and forms a 3D macroporous scaffold via click chemistry upon subcutaneous injection. Its retention-and-release of acGM enables sustained TLR2 activation in abundantly recruited dendritic cells in situ, inducing intracellular production of reactive oxygen species (ROS) in optimal kinetics that crucially promotes efficient antigen cross-presentation. The scaffold loaded with model antigen ovalbumin (OVA) or tumor specific antigen can generate potent immune responses against lung metastasis in B16-OVA-innoculated wild-type mice or spontaneous colorectal cancer in transgenic ApcMin/+ mice, respectively. Notably, it requires neither additional adjuvants nor external stimulation to function and can be adjusted to accommodate different antigens. The developed scaffold vaccine may represent a new, competent tool for next-generation personalized cancer vaccination.
Collapse
Affiliation(s)
- Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Congwei Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Chonghao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhencheng Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
- National Resource Center for Mutant Mice, Nanjing, 210093, China
- Chemistry and Biomedicine Innovative Center, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China
- Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
| |
Collapse
|
38
|
Mohanty A, Lee M, Mohapatra A, Lee H, Vasukutty A, Baek S, Lee JY, Park IK. "Three-in-one": A Photoactivable Nanoplatform Evokes Anti-Immune Response by Inhibiting BRD4-cMYC-PDL1 Axis to Intensify Photo-Immunotherapy. Adv Healthc Mater 2024; 13:e2304093. [PMID: 38409920 DOI: 10.1002/adhm.202304093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Combinatorial immuno-cancer therapy is recognized as a promising approach for efficiently treating malignant tumors. Yet, the development of multifunctional nanomedicine capable of precise tumor targeting, remote activation, and immune-regulating drug delivery remains a significant challenge. In this study, nanoparticles loaded with an immune checkpoint inhibitor (JQ-1) using polypyrrole/hyaluronic acid (PPyHA/JQ-1) are developed. These nanoparticles offer active tumor targeting, photothermal tumor ablation using near-infrared light, and laser-controlled JQ-1 release for efficient breast cancer treatment. When the molecular weight of HA varies (from 6.8 kDa to 3 MDa) in the PPyHA nanoparticles, it is found that the nanoparticles synthesized using 1 MDa HA, referred to as PPyHA (1 m), show the most suitable properties, including small hydrodynamic size, high surface HA contents, and colloidal stability. Upon 808 nm laser irradiation, PPyHA/JQ-1 elevates the temperature above 55 °C, which is sufficient for thermal ablation and active release of JQ-1 in the tumor microenvironment (TME). Notably, the controlled release of JQ-1 substantially inhibits the expression of cancer-promoting genes. Furthermore, PPyHA/JQ-1 effectively suppresses the expression of programmed cell death ligand 1 (PD-L1) and prolongs dendritic cell maturation and CD8+ T cell activation against the tumor both in vitro and in vivo. PPyHA/JQ-1 treatment simultaneously provides a significant tumor regression through photothermal therapy and immune checkpoint blockade, leading to a durable antitumor-immune response. Overall, "Three-in-one" immunotherapeutic photo-activable nanoparticles have the potential to be beneficial for a targeted combinatorial treatment approach for TNBC.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Adityanarayan Mohapatra
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Hwangjae Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Seonguk Baek
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
- DR Cure Inc., Hwasun, 58128, Republic of Korea
| |
Collapse
|
39
|
Zhu W, Zhou Z, Yang M, Chen X, Zhu S, Yu M, Yu Z, Wu W, Liu H. Injectable Nanocomposite Immune Hydrogel Dressings: Prevention of Tumor Recurrence and Anti-Infection after Melanoma Resection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309476. [PMID: 38348999 DOI: 10.1002/smll.202309476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Indexed: 07/13/2024]
Abstract
Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.
Collapse
Affiliation(s)
- Wenxiang Zhu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha, 410082, China
| | - Mengni Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xin Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shuai Zhu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Mengyi Yu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523058, China
| | - Wenze Wu
- Jingzhou Central Hospital, The Second Clinical Medical College of Yangtze University, Jingzhou, 434020, China
| | - Hairong Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
40
|
Li F, Ding J, Li Z, Rong Y, He C, Chen X. ROS-responsive thermosensitive polypeptide hydrogels for localized drug delivery and improved tumor chemoimmunotherapy. Biomater Sci 2024; 12:3100-3111. [PMID: 38712522 DOI: 10.1039/d4bm00241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we developed a ROS-responsive thermosensitive poly(ethylene glycol)-polypeptide hydrogel loaded with a chemotherapeutic drug, doxorubicin (Dox), an antiviral imidazoquinoline, resiquimod (R848), and antibody targeting programmed cell death protein 1 (aPD-1) for local chemoimmunotherapy. The hydrogel demonstrated controllable degradation and sustained drug release behavior according to the concentration of ROS in vitro. Following intratumoral injection into mice bearing B16F10 melanoma, the Dox/R848/aPD-1 co-loaded hydrogel effectively inhibited tumor growth, prolonged animal survival time and promoted anti-tumor immune responses with low systemic toxicity. In the postoperative model, the Dox/R848/aPD-1 co-loaded hydrogel exhibited enhanced tumor recurrence prevention and long-term immune memory effects. Thus, the hydrogel-based local chemoimmunotherapy system demonstrates potential for effective anti-tumor treatment and suppression of tumor recurrence.
Collapse
Affiliation(s)
- Fujiang Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junfeng Ding
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyu Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan Rong
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
41
|
Zeng F, Pan Y, Lu Q, Luan X, Qin S, Liu Y, Liu Z, Yang J, He B, Song Y. Self-Generating Gold Nanocatalysts in Autologous Tumor Cells for Targeted Catalytic Immunotherapy. Adv Healthc Mater 2024; 13:e2303683. [PMID: 38386961 DOI: 10.1002/adhm.202303683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Employing tumor whole cells for tumor immunotherapy is a promising tumor therapy proposed in the early stage, but its therapeutic efficacy is weakened by the methods of eliminating pathogenicity and the mass ratio of the effective antigen carried by itself. Here, by adding gold ion to live cancer cells in the microfluidic droplets, this work obtains dead tumor whole cells with NIR-controlled catalytic ability whose pathogenicity is removed while plenary tumor antigens, major structure, and homing ability are reserved. The engineered tumor cell (Cell-Au) with the addition of prodrug provides 1O2 in an O2-free Russell mechanism, which serves better in a hypoxic tumor microenvironment. This tumor whole-cell catalytic vaccine (TWCV) promotes the activation of dendritic cells and the transformation of macrophages into tumor suppressor phenotype. In 4T1 tumor-bearing mice, the Cell-Au-based vaccine supports the polarization of cytotoxicity T cells, resulting in tumor eradication and long-term animal survival. Compared with antigen vaccines or adoptive cell therapy which takes months to obtain, this TWCV can be prepared in just a few days with satisfactory immune activation and tumor therapeutic efficacy, which provides an alternative way for the preparation of personalized tumor vaccines across tumor types and gives immunotherapy a new path.
Collapse
Affiliation(s)
- Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Zhiyong Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Jingjing Yang
- School of Medicine & Holistic Integrative Medicine, Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
42
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
43
|
Wang J, Ma J, Xie F, Miao F, lv L, Huang Y, Zhang X, Yu J, Tai Z, Zhu Q, Bao L. Immunogenic cell death-based cancer vaccines: promising prospect in cancer therapy. Front Immunol 2024; 15:1389173. [PMID: 38745666 PMCID: PMC11092378 DOI: 10.3389/fimmu.2024.1389173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Tumor immunotherapy is a promising approach for addressing the limitations of conventional tumor treatments, such as chemotherapy and radiotherapy, which often have side effects and fail to prevent recurrence and metastasis. However, the effectiveness and sustainability of immune activation in tumor immunotherapy remain challenging. Tumor immunogenic cell death, characterized by the release of immunogenic substances, damage associated molecular patterns (DAMPs), and tumor associated antigens, from dying tumor cells (DTCs), offers a potential solution. By enhancing the immunogenicity of DTCs through the inclusion of more immunogenic antigens and stimulating factors, immunogenic cell death (ICD) based cancer vaccines can be developed as a powerful tool for immunotherapy. Integrating ICD nanoinducers into conventional treatments like chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, and radiotherapy presents a novel strategy to enhance treatment efficacy and potentially improve patient outcomes. Preclinical research has identified numerous potential ICD inducers. However, effectively translating these findings into clinically relevant applications remains a critical challenge. This review aims to contribute to this endeavor by providing valuable insights into the in vitro preparation of ICD-based cancer vaccines. We explored established tools for ICD induction, followed by an exploration of personalized ICD induction strategies and vaccine designs. By sharing this knowledge, we hope to stimulate further development and advancement in the field of ICD-based cancer vaccines.
Collapse
Affiliation(s)
- Jiandong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jinyuan Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Fangyuan Xie
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Lei lv
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yueying Huang
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, China
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Leilei Bao
- Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
44
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
45
|
Li B, Zhang P, Li J, Zhou R, Zhou M, Liu C, Liu X, Chen L, Li L. Allogeneic "Zombie Cell" as Off-The-Shelf Vaccine for Postsurgical Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307030. [PMID: 38279587 PMCID: PMC10987105 DOI: 10.1002/advs.202307030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/18/2023] [Indexed: 01/28/2024]
Abstract
Allogeneic tumor cell vaccines provide off-the-shelf convenience but lack patient specificity due to heterogeneity in tumor antigens. Here, allogeneic tumor cell corpses are converted into "zombie cells" capable of assimilating heterogeneous tumor by seizing cancer cells and spreading adjuvant infection. This causes pseudo-oncolysis of tumors, transforming them into immunogenic targets for enhanced phagocytosis. It is shown that in postoperative tumor models, localized delivery of premade "zombie cells" through stepwise gelation in resection cavity consolidates tumor surgery. Compared to analogous vaccines lacking "seizing" or "assimilating" capability, "zombie cell" platform effectively mobilizes T cell response against residual tumors, and establishes immunological memory against tumor re-challenge, showing less susceptibility to immune evasion. Despite using allogeneic sources, "zombie cell" platform functions as generalizable framework to produce long-term antitumor immunity in different tumor models, showing comparable effect to autologous vaccine. Together, with the potential of off-the-shelf availability and personalized relevance to heterogenous tumor antigens, this study suggests an alternative strategy for timely therapy after tumor surgery.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Ping Zhang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Junlin Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Rui Zhou
- NMPA Key Laboratory for Technical Research on Drug Products In Vitro and In Vivo CorrelationSichuan Institute for Drug ControlChengdu611730China
| | - Minglu Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Chendong Liu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Xi Liu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Liqiang Chen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| | - Lian Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan ProvinceSichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
46
|
Zheng A, Ning Z, Wang X, Li Z, Sun Y, Wu M, Zhang D, Liu X, Chen J, Zeng Y. Human serum albumin as the carrier to fabricate STING-activating peptide nanovaccine for antitumor immunotherapy. Mater Today Bio 2024; 25:100955. [PMID: 38312800 PMCID: PMC10835291 DOI: 10.1016/j.mtbio.2024.100955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024] Open
Abstract
Tumor vaccines are emerging as one of the most promising therapeutic strategies for cancer treatment. With the advantages of low toxicity, convenient production and stable quality control, peptide vaccines have been widely used in preclinical and clinical trials involving various malignancies. However, when used alone, they still suffer from significant challenges including poor stability and immunogenicity as well as the low delivery efficiency, leading to limited therapeutic success. Herein, the STING-activating peptide nanovaccine based on human serum albumin (HSA) and biodegradable MnO2 was constructed, which can improve the stability and immunogenicity of antigenic peptides as well as facilitate their uptake by dendritic cells (DCs). Meanwhile, Mn2+ degraded from the nanovaccine can activate the STING pathway and further promote DCs maturation. In this way, the prepared nanovaccine can efficiently mediate T-cell immune responses, thereby exerting the effects of tumor prevention and therapy. Moreover, the prepared nanovaccine possesses the advantages of low cost, convenient preparation and good biocompatibility, showing great potential for practical applications.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Zhaoyu Ning
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Zhenli Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Jianwu Chen
- Department of Radiotherapy, Fujian Medical University Union Hospital, Fuzhou, 350004, PR China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
47
|
Kan LLY, Chan BCL, Yue GGL, Li P, Hon SSM, Huang D, Tsang MSM, Lau CBS, Leung PC, Wong CK. Immunoregulatory and Anti-cancer Activities of Combination Treatment of Novel Four-Herb Formula and Doxorubicin in 4T1-Breast Cancer Bearing Mice. Chin J Integr Med 2024; 30:311-321. [PMID: 37594703 DOI: 10.1007/s11655-023-3745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE To investigate the in vivo immunomodulatory and anti-tumor mechanisms of the combined treatment of novel Four-Herb formula (4HF) and doxorubicin in triple-negative breast cancer (TNBC). METHODS Murine-derived triple-negative mammary carcinoma cell line, 4T1 cells, was cultured and inoculated into mouse mammary glands. Sixty-six mice were randomly assigned into 6 groups (n=11 in ench): naïve, control, LD 4HF (low dose 4HF), HD 4HF (high dose 4HF), LD 4HF + D (low dose and doxorubicin), and D (doxorubicin). Apart from the naïve group, each mouse received subcutaneous inoculation with 5 × 105 4T1 cells resuspended in 100 µL of normal saline in the mammary fat pads. Starting from the day of tumor cell inoculation, tumors were grown for 6 days. The LD and HD groups received daily oral gavage of 658 and 2,630 mg/kg 4HF, respectively. The LD 4HF+D group received daily oral gavage of 658 mg/kg 4HF and weekly intraperitoneal injection of doxorubicin (5 mg/kg). The D group received weekly intraperitoneal injections of doxorubicin (5 mg/kg). The treatment naïve mice received daily oral gavage of 0.2 mL double distilled water and 0.1 mL normal saline via intraperitoneal injection once a week. The control group received daily oral gavage of 0.2 mL double-distilled water. The treatment period was 30 days. At the end of treatment, mice organs were harvested to analyze immunological activities via immunophenotyping, gene and multiplex analysis, histological staining, and gut microbiota analysis. RESULTS Mice treated with the combination of 4HF and doxorubicin resulted in significantly reduced tumor and spleen burdens (P<0.05), altered the hypoxia and overall immune lymphocyte landscape, and manipulated gut microbiota to favor the anti-tumor immunological activities. Moreover, immunosuppressive genes, cytokines, and chemokines such as C-C motif chemokine 2 and interleukin-10 of tumors were significantly downregulated (P<0.05). 4HF-doxorubicin combination treatment demonstrated synergetic activities and was most effective in activating the anti-tumor immune response (P<0.05). CONCLUSION The above results provide evidence for evaluating the immune regulating mechanisms of 4HF in breast cancer and support its clinical significance in its potential as an adjunctive therapeutic agent or immune supplement.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Clara Bik-San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong SAR, Hong Kong, China.
| |
Collapse
|
48
|
Tittarelli A, Pereda C, Gleisner MA, López MN, Flores I, Tempio F, Lladser A, Achour A, González FE, Durán-Aniotz C, Miranda JP, Larrondo M, Salazar-Onfray F. Long-Term Survival and Immune Response Dynamics in Melanoma Patients Undergoing TAPCells-Based Vaccination Therapy. Vaccines (Basel) 2024; 12:357. [PMID: 38675738 PMCID: PMC11053591 DOI: 10.3390/vaccines12040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer vaccines present a promising avenue for treating immune checkpoint blockers (ICBs)-refractory patients, fostering immune responses to modulate the tumor microenvironment. We revisit a phase I/II trial using Tumor Antigen-Presenting Cells (TAPCells) (NCT06152367), an autologous antigen-presenting cell vaccine loaded with heat-shocked allogeneic melanoma cell lysates. Initial findings showcased TAPCells inducing lysate-specific delayed-type hypersensitivity (DTH) reactions, correlating with prolonged survival. Here, we extend our analysis over 15 years, categorizing patients into short-term (<36 months) and long-term (≥36 months) survivors, exploring novel associations between clinical outcomes and demographic, genetic, and immunologic parameters. Notably, DTHpos patients exhibit a 53.1% three-year survival compared to 16.1% in DTHneg patients. Extended remissions are observed in long-term survivors, particularly DTHpos/M1cneg patients. Younger age, stage III disease, and moderate immune events also benefit short-term survivors. Immunomarkers like increased C-type lectin domain family 2 member D on CD4+ T cells and elevated interleukin-17A were detected in long-term survivors. In contrast, toll-like receptor-4 D229G polymorphism and reduced CD32 on B cells are associated with reduced survival. TAPCells achieved stable long remissions in 35.2% of patients, especially M1cneg/DTHpos cases. Conclusions: Our study underscores the potential of vaccine-induced immune responses in melanoma, emphasizing the identification of emerging biological markers and clinical parameters for predicting long-term remission.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - Cristian Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - María A. Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Fabián Tempio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Alvaro Lladser
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile;
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 8580702, Chile
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile;
| | - Claudia Durán-Aniotz
- Latin American Brain Health Institute (BrainLat), Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago 7941169, Chile;
| | | | - Milton Larrondo
- Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile;
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
49
|
Zeng F, Pan Y, Wu M, Lu Q, Qin S, Gao Y, Luan X, Chen R, He G, Wang Y, He B, Chen Z, Song Y. Self-Metallized Whole Cell Vaccines Prepared by Microfluidics for Bioorthogonally Catalyzed Antitumor Immunotherapy. ACS NANO 2024; 18:7923-7936. [PMID: 38445625 DOI: 10.1021/acsnano.3c09871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.
Collapse
Affiliation(s)
- Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Mengnan Wu
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Ruiyue Chen
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratoty of Flexible Electronics& Institute of Advanced Materials, Nanjing Technology University, Nanjing 211816, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zhaowei Chen
- College of Chemistry, Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
50
|
Mozafari N, Jahanbekam S, Ashrafi H, Shahbazi MA, Azadi A. Recent Biomaterial-Assisted Approaches for Immunotherapeutic Inhibition of Cancer Recurrence. ACS Biomater Sci Eng 2024; 10:1207-1234. [PMID: 38416058 DOI: 10.1021/acsbiomaterials.3c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Biomaterials possess distinctive properties, notably their ability to encapsulate active biological products while providing biocompatible support. The immune system plays a vital role in preventing cancer recurrence, and there is considerable demand for an effective strategy to prevent cancer recurrence, necessitating effective strategies to address this concern. This review elucidates crucial cellular signaling pathways in cancer recurrence. Furthermore, it underscores the potential of biomaterial-based tools in averting or inhibiting cancer recurrence by modulating the immune system. Diverse biomaterials, including hydrogels, particles, films, microneedles, etc., exhibit promising capabilities in mitigating cancer recurrence. These materials are compelling candidates for cancer immunotherapy, offering in situ immunostimulatory activity through transdermal, implantable, and injectable devices. They function by reshaping the tumor microenvironment and impeding tumor growth by reducing immunosuppression. Biomaterials facilitate alterations in biodistribution, release kinetics, and colocalization of immunostimulatory agents, enhancing the safety and efficacy of therapy. Additionally, how the method addresses the limitations of other therapeutic approaches is discussed.
Collapse
Affiliation(s)
- Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Sheida Jahanbekam
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, 71468 64685 Shiraz, Iran
| |
Collapse
|