1
|
Lin H, Huang J, Li T, Li W, Wu Y, Yang T, Nian Y, Lin X, Wang J, Wang R, Zhao X, Su N, Zhang J, Wu X, Fan M. Structure and mechanism of the plastid/parasite ATP/ADP translocator. Nature 2025; 641:797-804. [PMID: 40074904 DOI: 10.1038/s41586-025-08743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Adenosine triphosphate (ATP) is the principal energy currency of all living cells1,2. Metabolically impaired obligate intracellular parasites, such as the human pathogens Chlamydia trachomatis and Rickettsia prowazekii, can acquire ATP from their host cells through a unique ATP/adenosine diphosphate (ADP) translocator, which mediates the import of ATP into and the export of ADP and phosphate out of the parasite cells, thus allowing the exploitation of the energy reserves of host cells (also known as energy parasitism). This type of ATP/ADP translocator also exists in the obligate intracellular endosymbionts of protists and the plastids of plants and algae and has been implicated to play an important role in endosymbiosis3-31. The plastid/parasite type of ATP/ADP translocator is phylogenetically and functionally distinct from the mitochondrial ATP/ADP translocator, and its structure and transport mechanism are still unknown. Here we report the cryo-electron microscopy structures of two plastid/parasite types of ATP/ADP translocators in the apo and substrate-bound states. The ATP/ADP-binding pocket is located at the interface between the N and C domains of the translocator, and a conserved asparagine residue within the pocket is critical for substrate specificity. The translocator operates through a rocker-switch alternating access mechanism involving the relative rotation of the two domains as rigid bodies. Our results provide critical insights for understanding ATP translocation across membranes in energy parasitism and endosymbiosis and offer a structural basis for developing drugs against obligate intracellular parasites.
Collapse
Affiliation(s)
- Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Jian Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Yutong Wu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiangqin Wang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Zhao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Nannan Su
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Lim ZH, Zheng P, Quek C, Nowrousian M, Aachmann FL, Jedd G. Diatom heterotrophy on brown algal polysaccharides emerged through horizontal gene transfer, gene duplication, and neofunctionalization. PLoS Biol 2025; 23:e3003038. [PMID: 40168346 PMCID: PMC11960938 DOI: 10.1371/journal.pbio.3003038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
A major goal of evolutionary biology is to identify the genetic basis for the emergence of complex adaptive traits. Diatoms are ancestrally photosynthetic microalgae. However, in the genus Nitzschia, loss of photosynthesis led to a group of free-living secondary heterotrophs whose manner of acquiring chemical energy is unclear. Here, we sequence the genome of the non-photosynthetic diatom Nitzschia sing1 and identify the genetic basis for its catabolism of the brown algal cell wall polysaccharide alginate. N. sing1 obtained an endolytic alginate lyase enzyme by horizontal gene transfer (HGT) from a marine bacterium. Subsequent gene duplication through unequal crossing over and transposition led to 91 genes in three distinct gene families. One family retains the ancestral endolytic enzyme function. By contrast, the two others underwent domain duplication, gain, loss, rearrangement, and mutation to encode novel functions that can account for oligosaccharide import through the endomembrane system and the exolytic production of alginate monosaccharides. Together, our results show how a single HGT event followed by substantial gene duplication and neofunctionalization led to alginate catabolism and access to a new ecological niche.
Collapse
Affiliation(s)
- Zeng Hao Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peng Zheng
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, Bochum, Germany
| | - Finn L. Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Haridevamuthu B, Sudhakaran G, Rajagopal R, Alfarhan A, Arshad A, Arockiaraj J. Host-Parasite Interactions and Integrated Management Strategies for Ecytonucleospora Hepatopenaei Infection in Shrimp. Acta Parasitol 2025; 70:67. [PMID: 40050501 DOI: 10.1007/s11686-025-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/25/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Ecytonucleospora hepatopenaei (EHP) is a major parasitic pathogen in shrimp causing hepatopancreatic microsporidiosis, which leads to significant growth retardation and global economic losses. This pathogen employs various immune evasion strategies that complicate treatment and management. PURPOSE This review examines the complex host-parasite interactions, focusing on the immune evasion mechanisms used by EHP. The study explores how EHP manipulates host immune pathways, including NF-κB, JAK/STAT, Toll, and IMD, to suppress immune responses, inhibit antimicrobial peptide production, and avoid detection, thus ensuring its persistence in the host. METHODS The authors reviewed recent research from databases like PubMed, Scopus, and Web of Science, including studies up to 2024. The keywords Ecytonucleospora hepatopenaei, immune evasion, EHP treatment, and associated words with topics were used in this search. RESULTS EHP induces oxidative stress, which weakens the host immune system while simultaneously upregulating antioxidant responses to favor its survival. The parasite also alters the gut microbiota and disrupts key cellular processes, such as cell cycle regulation, further enhancing its ability to sustain infection. CONCLUSION This review highlights the need for integrated management strategies, including disease-resistant breeding, microbiota modulation, and advanced diagnostics, to combat EHP. By providing an overview of EHP's immune evasion tactics, this study aims to advance knowledge in the field and support efforts to improve shrimp health and aquaculture sustainability.
Collapse
Affiliation(s)
- Balasubramanian Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Zhou M, Zhang X, Chen S, Xin Z, Zhang J. Non-coding RNAs and regulatory networks involved in the Ameson portunus (Microsporidia)-Portunus trituberculatus interaction. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110162. [PMID: 39884408 DOI: 10.1016/j.fsi.2025.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ameson portunus, the causative agent of "toothpaste disease" in Portunus trituberculatus and "slurry-like syndrome" in Scylla paramamosain, has resulted in considerable economic losses in the marine crab aquaculture industry in China. Practical control strategies are yet unavailable. Non-coding RNAs (ncRNAs) are crucial components of gene regulation of intracellular parasites, however, their roles in regulating the microsporidia-host interaction remain limited. Here we conducted a whole-transcriptome RNA-seq analysis to identify ncRNAs and to establish the interaction regulatory networks to get further insights into the A. portunus-P. trituberculatus interaction. Totally, 2805 mRNAs, 484 lncRNAs, 5 circRNAs, and 496 miRNAs were identified from A. portunus. These ncRNAs are possibly important regulators for its own energy and substrate metabolism, thereby supporting the intracellular survival and proliferation of A. portunus. DNA replication-associated mRNAs were significantly up-regulated after P. trituberculatus infection with A. portunus. It can be hypothesized that up-regulated lncRNAs may be responsible for the up-regulation of these DNA replication-related genes by miRNAs in P. trituberculatus. The downregulation of metabolic pathways is one of possible strategies of P. trituberculatus to respond the infection of A. portunus. Cross-species miRNAs were suggested to play important roles in the cross-talk of P. trituberculatus-A. portunus, e.g. the disruption of the cytoskeletal organization and normal cell function of host by this microsporidian. The results enrich the knowledge of ncRNAs in microsporidia and offer new insights into microsporidia-host interactions.
Collapse
Affiliation(s)
- Min Zhou
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Xintong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Shuqi Chen
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Zhaozhe Xin
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
5
|
Dong Z, Wu Q, Zhang P, Fang W, Lei X, Deng B, Hu N, Chen P, Huang X, Lu C, Pan M. Development of a novel anti-microsporidia strategy by inhibiting parasite and host glucose metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106276. [PMID: 40015868 DOI: 10.1016/j.pestbp.2024.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025]
Abstract
Microsporidia are obligate intracellular parasites that infect most types of animals. Exploring how microsporidia utilize energy substrates in infected host cells is important for human health and the development of the agricultural economy. In this study, transcriptomics was used to systematically analyze the enriched pathways involving ATP/ADP transporters and energy metabolism during the schizont proliferation period of Nosema bombycis. A Nosema bombycis ADP/ATP carrier 1 (NbAAC1) protein function characteristics of the adenine nucleotide translocase family were identified after infection with N. bombycis. NbAAC1 could inhibit ATP production and affect Nosema bombycis proliferation based on RNA interference in vivo and in vitro. Meanwhile, an effective gene-edited line targeted editing of the Bombyx mori hexokinase (BmHXK) gene of the host glycolytic metabolism pathway could inhibit N. bombycis infection was established. These findings provide new therapeutic approaches to controlling microsporidia infections by inhibiting intracellular parasitic fungi and host energy metabolism.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Pengcheng Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaocui Lei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xuhua Huang
- The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
6
|
Gilchrist D, Islam M, Akram MS, Dean P. Determination of protein transporter function using Raman spectroscopy. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 39928562 DOI: 10.1099/mic.0.001526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Transporter proteins are essential across the tree of life as they provide a cell with a means of exchanging vital metabolites with the external milieu. Characterizing the function of transporters is challenging and traditionally uses methods involving radiolabelled substrates, which requires prolonged exposure times and specialist equipment. Here, we provide an alternative method to the classical uptake assay using Raman spectroscopy to detect the uptake of alkyne-labelled substrates and determine transporter function. As a proof of principle, we demonstrate the method using a candidate nucleotide transporter (ThNTT4) expressed in Escherichia coli, which is shown to transport alkyne-labelled ATP molecules (N6pATP), which was readily detected using Raman spectroscopy. We show that ATP transport can be detected in a time-dependent manner using alkyne labels and demonstrate the substrate specificity of the transporter for purine but not pyrimidine substrates. This work establishes that Raman spectroscopy is an excellent alternative to using radioactive substrates in analysing, not only pathogen transporters, but potentially any transporter in which its substrate can be alkyne tagged.
Collapse
Affiliation(s)
- Dominic Gilchrist
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
- National Horizons Centre, 38 John Dixon Lane, Darlington DL1 1HG, UK
| | - Meez Islam
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
- National Horizons Centre, 38 John Dixon Lane, Darlington DL1 1HG, UK
| | - Paul Dean
- School of Health and Life Sciences, Teesside University, Campus Heart, Middlesbrough TS1 3BX, UK
| |
Collapse
|
7
|
He S, Zheng S, Zhu H, Hu Y, Yu B, Wei J, Pan G, Zhou Z, Li C. A novel ATP-binding cassette protein (NoboABCG1.3) plays a role in the proliferation of Nosema bombycis. Parasitol Res 2024; 123:413. [PMID: 39699667 DOI: 10.1007/s00436-024-08440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
ATP-binding cassette (ABC) transporter proteins, one of the largest families of membrane transport proteins, participate in almost all biological processes and widely exist in living organisms. Microsporidia are intracellular parasites; they can reduce crop yields and pose a threat to human health. The ABC proteins are also present in microsporidia and play a critical role in their proliferation and energy transport. In this study, a novel ABC transporter protein of Nosema bombycis named NoboABCG1.3 was identified. The NoboABCG1.3 protein is comprised of 640 amino acids, which contain six transmembrane domains and one nucleotide-binding domain. After N. bombycis infection of cells or tissues, quantitative reverse transcription polymerase chain reaction analysis revealed a progressive elevation in the transcript levels of NoboABCG1.3. Downregulation of NoboABCG1.3 expression significantly inhibited N. bombycis proliferation. Subsequently, a transgenic cell line stably expressing an interfering fragment of NoboABCG1.3 was established, which exhibited extreme inhibition on the proliferation of N. bombycis. These findings indicate that NoboABCG1.3 plays a role in the proliferation of N. bombycis and holds promise as a target for developing N. bombycis-resistant silkworms.
Collapse
Affiliation(s)
- Shaogang He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Shiyi Zheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Affiliated Jinhua HospitalZhejiang University of MedicineJinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Honglin Zhu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Yuanke Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the Host: Understanding the Evolutionary Trajectories of Intracellular Parasitism. Annu Rev Microbiol 2024; 78:39-59. [PMID: 38684082 DOI: 10.1146/annurev-micro-041222-025305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Ivan Fiala
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Julius Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| |
Collapse
|
9
|
Gross M, Rajter Ľ, Mahé F, Bass D, Berney C, Henry N, de Vargas C, Dunthorn M. O short-branch Microsporidia, where art thou? Identifying diversity hotspots for future sampling. Eur J Protistol 2024; 96:126119. [PMID: 39396432 DOI: 10.1016/j.ejop.2024.126119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Short-branch Microsporidia were previously shown to form a basal grade within the expanded Microsporidia clade and to branch near the classical, long-branch Microsporidia. Although they share simpler versions of some morphological characteristics, they do not show accelerated evolutionary rates, making them ideal candidates to study the evolutionary trajectories that have led to long-branch microsporidian unique characteristics. However, most sequences assigned to the short-branch Microsporidia are undescribed, novel environmental lineages for which the identification requires knowledge of where they can be found. To direct future isolation, we used the EukBank database of the global UniEuk initiative that contains the majority of the publicly available environmental V4 SSU rRNA gene sequences of protists. The curated OTU table and corresponding metadata were used to evaluate the occurrence of short-branch Microsporidia across freshwater, hypersaline, marine benthic, marine pelagic, and terrestrial environments. Presence-absence analyses infer that short-branch Microsporidia are most abundant in freshwater and terrestrial environments, and alpha- and beta-diversity measures indicate that focusing our sampling effort on these two environments would cover a large part of their overall diversity. These results can be used to coordinate future isolation and sampling campaigns to better understand the enigmatic evolution of microsporidians' unique characteristics.
Collapse
Affiliation(s)
- Megan Gross
- Natural History Museum, University of Oslo, 0562 Oslo, Norway; Department of Ecology, University of Kaiserslautern-Landau RPTU, 67663 Kaiserslautern, Germany.
| | - Ľubomír Rajter
- Institute for Zoology, University of Cologne, 50923 Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR PHIM, 34398 Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34398 Montpellier, France
| | - David Bass
- Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset DT4 8UB, United Kingdom; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Cédric Berney
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| |
Collapse
|
10
|
South LR, Hurdeal VG, Fast NM. Genomics and phylogenetic relationships of microsporidia and their relatives. J Eukaryot Microbiol 2024; 71:e13051. [PMID: 39079911 DOI: 10.1111/jeu.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 11/20/2024]
Abstract
Microsporidia are intracellular parasites that all possess a unique infection apparatus involving a polar tube. Upon contact with a host cell, this tube forms the conduit through which the parasite enters the host. Infecting mostly animals, microsporidian species can be transmitted vertically or horizontally, and exert various effects on their hosts: infections range from being relatively benign to lethal. Microsporidian genomes possess highly divergent sequences and are often substantially reduced in size. Their divergent sequences and unique morphology created early challenges to our understanding of their phylogenetic position within the tree of eukaryotes. Over the last couple of decades, advances in both sequencing technology and phylogenetic methodology supported a clear relationship between microsporidia and fungi. However, the specifics of this relationship were muddied by the lack of known microsporidian relatives. With increased taxon discovery and the morphological and molecular characterization of microsporidia-like taxa, rozellids and aphelids, a better resolved picture is emerging. Here we review the history of microsporidian taxonomy and current status of genomics of microsporidia and their nearest relatives, with an aim to understand their morphological and metabolic differences, along with their evolutionary relationships.
Collapse
Affiliation(s)
- Lilith R South
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vedprakash G Hurdeal
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Tang L, Sabi MM, Fu M, Guan J, Wang Y, Xia T, Zheng K, Qu H, Han B. Host cell manipulation by microsporidia secreted effectors: Insights into intracellular pathogenesis. J Eukaryot Microbiol 2024; 71:e13029. [PMID: 39030770 DOI: 10.1111/jeu.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 07/22/2024]
Abstract
Microsporidia are prolific producers of effector molecules, encompassing both proteins and nonproteinaceous effectors, such as toxins, small RNAs, and small peptides. These secreted effectors play a pivotal role in the pathogenicity of microsporidia, enabling them to subvert the host's innate immunity and co-opt metabolic pathways to fuel their own growth and proliferation. However, the genomes of microsporidia, despite falling within the size range of bacteria, exhibit significant reductions in both structural and physiological features, thereby affecting the repertoire of secretory effectors to varying extents. This review focuses on recent advances in understanding how microsporidia modulate host cells through the secretion of effectors, highlighting current challenges and proposed solutions in deciphering the complexities of microsporidial secretory effectors.
Collapse
Affiliation(s)
- Liyuan Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Musa Makongoro Sabi
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Ming Fu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Jingyu Guan
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Yongliang Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Tian Xia
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Kai Zheng
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
| | - Hongnan Qu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| | - Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, Shandong, China
- Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
13
|
Berg A, Berntsson RPA, Barandun J. Nematocida displodere mechanosensitive ion channel of small conductance 2 assembles into a unique 6-channel super-structure in vitro. PLoS One 2024; 19:e0301951. [PMID: 39038013 PMCID: PMC11262690 DOI: 10.1371/journal.pone.0301951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Mechanosensitive ion channels play an essential role in reacting to environmental signals and sustaining cell integrity by facilitating ion flux across membranes. For obligate intracellular pathogens like microsporidia, adapting to changes in the host environment is crucial for survival and propagation. Despite representing a eukaryote of extreme genome reduction, microsporidia have expanded the gene family of mechanosensitive ion channels of small conductance (mscS) through repeated gene duplication and horizontal gene transfer. All microsporidian genomes characterized to date contain mscS genes of both eukaryotic and bacterial origin. Here, we investigated the cryo-electron microscopy structure of the bacterially derived mechanosensitive ion channel of small conductance 2 (MscS2) from Nematocida displodere, an intracellular pathogen of Caenorhabditis elegans. MscS2 is the most compact MscS-like channel known and assembles into a unique superstructure in vitro with six heptameric MscS2 channels. Individual MscS2 channels are oriented in a heterogeneous manner to one another, resembling an asymmetric, flexible six-way cross joint. Finally, we show that microsporidian MscS2 still forms a heptameric membrane channel, however the extreme compaction suggests a potential new function of this MscS-like protein.
Collapse
Affiliation(s)
- Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Västerbotten, Sweden
- Department of Medical Biochemistry and Biophysics, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Västerbotten, Sweden
| | - Ronnie P.-A. Berntsson
- Department of Medical Biochemistry and Biophysics, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Västerbotten, Sweden
- Wallenberg Centre for Molecular Medicine & Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research, Science for Life Laboratory, Umeå University, Umeå, Västerbotten, Sweden
| |
Collapse
|
14
|
Rodenburg SYA, de Ridder D, Govers F, Seidl MF. Oomycete Metabolism Is Highly Dynamic and Reflects Lifestyle Adaptations. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:571-582. [PMID: 38648121 DOI: 10.1094/mpmi-12-23-0200-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The selective pressure of pathogen-host symbiosis drives adaptations. How these interactions shape the metabolism of pathogens is largely unknown. Here, we use comparative genomics to systematically analyze the metabolic networks of oomycetes, a diverse group of eukaryotes that includes saprotrophs as well as animal and plant pathogens, with the latter causing devastating diseases with significant economic and/or ecological impacts. In our analyses of 44 oomycete species, we uncover considerable variation in metabolism that can be linked to lifestyle differences. Comparisons of metabolic gene content reveal that plant pathogenic oomycetes have a bipartite metabolism consisting of a conserved core and an accessory set. The accessory set can be associated with the degradation of defense compounds produced by plants when challenged by pathogens. Obligate biotrophic oomycetes have smaller metabolic networks, and taxonomically distantly related biotrophic lineages display convergent evolution by repeated gene losses in both the conserved as well as the accessory set of metabolisms. When investigating to what extent the metabolic networks in obligate biotrophs differ from those in hemibiotrophic plant pathogens, we observe that the losses of metabolic enzymes in obligate biotrophs are not random and that gene losses predominantly influence the terminal branches of the metabolic networks. Our analyses represent the first metabolism-focused comparison of oomycetes at this scale and will contribute to a better understanding of the evolution of oomycete metabolism in relation to lifestyle adaptation. Numerous oomycete species are devastating plant pathogens that cause major damage in crops and natural ecosystems. Their interactions with hosts are shaped by strong selection, but how selection affects adaptation of the primary metabolism to a pathogenic lifestyle is not yet well established. By pan-genome and metabolic network analyses of distantly related oomycete pathogens and their nonpathogenic relatives, we reveal considerable lifestyle- and lineage-specific adaptations. This study contributes to a better understanding of metabolic adaptations in pathogenic oomycetes in relation to lifestyle, host, and environment, and the findings will help in pinpointing potential targets for disease control. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Sander Y A Rodenburg
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
15
|
Keeling PJ. Horizontal gene transfer in eukaryotes: aligning theory with data. Nat Rev Genet 2024; 25:416-430. [PMID: 38263430 DOI: 10.1038/s41576-023-00688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
17
|
Sharma H, Jespersen N, Ehrenbolger K, Carlson LA, Barandun J. Ultrastructural insights into the microsporidian infection apparatus reveal the kinetics and morphological transitions of polar tube and cargo during host cell invasion. PLoS Biol 2024; 22:e3002533. [PMID: 38422169 DOI: 10.1371/journal.pbio.3002533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
During host cell invasion, microsporidian spores translocate their entire cytoplasmic content through a thin, hollow superstructure known as the polar tube. To achieve this, the polar tube transitions from a compact spring-like state inside the environmental spore to a long needle-like tube capable of long-range sporoplasm delivery. The unique mechanical properties of the building blocks of the polar tube allow for an explosive transition from compact to extended state and support the rapid cargo translocation process. The molecular and structural factors enabling this ultrafast process and the structural changes during cargo delivery are unknown. Here, we employ light microscopy and in situ cryo-electron tomography to visualize multiple ultrastructural states of the Vairimorpha necatrix polar tube, allowing us to evaluate the kinetics of its germination and characterize the underlying morphological transitions. We describe a cargo-filled state with a unique ordered arrangement of microsporidian ribosomes, which cluster along the thin tube wall, and an empty post-translocation state with a reduced diameter but a thicker wall. Together with a proteomic analysis of endogenously affinity-purified polar tubes, our work provides comprehensive data on the infection apparatus of microsporidia and uncovers new aspects of ribosome regulation and transport.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Nathan Jespersen
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Kai Ehrenbolger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Wallenberg Centre for Molecular Medicine, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Senderskiy IV, Dolgikh VV, Ismatullaeva DA, Mirzakhodjaev BA, Nikitina AP, Pankratov DL. Treatment of Microsporidium Nosema bombycis Spores with the New Antiseptic M250 Helps to Avoid Bacterial and Fungal Contamination of Infected Cultures without Affecting Parasite Polar Tube Extrusion. Microorganisms 2024; 12:154. [PMID: 38257981 PMCID: PMC10819227 DOI: 10.3390/microorganisms12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Microsporidia are a group of widespread eukaryotic spore-forming intracellular parasites of great economic and scientific importance. Since microsporidia cannot be cultured outside of a host cell, the search for new antimicrosporidian drugs requires an effective antiseptic to sterilize microsporidian spores to infect cell lines. Here, we show that a new polyhexamethylene guanidine derivative M250, which is active against fungi and bacteria at a concentration of 0.5-1 mg/L, is more than 1000 times less effective against spores of the microsporidium Nosema bombycis, a highly virulent pathogen of the silkworm Bombyx mori (LC50 is 0.173%). Treatment of N. bombycis spores that were isolated non-sterilely from silkworm caterpillars with 0.1% M250 solution does not reduce the rate of spore polar tube extrusion. However, it completely prevents contamination of the Sf-900 III cell culture medium by microorganisms in the presence of antibiotics. The addition of untreated spores to the medium results in contamination, whether antibiotics are present or not. Since 0.1% M250 does not affect spore discharging, this compound may be promising for preventing bacterial and fungal contamination of microsporidia-infected cell cultures.
Collapse
Affiliation(s)
- Igor V. Senderskiy
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Viacheslav V. Dolgikh
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia;
| | - Diloram A. Ismatullaeva
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Bakhtiyar A. Mirzakhodjaev
- Scientific Research Institute of Sericulture, Ipakchi Str. 1, Tashkent 100069, Uzbekistan; (D.A.I.); (B.A.M.)
| | - Anastasiia P. Nikitina
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| | - Danil L. Pankratov
- Department of Microbiology and Virology, Pavlov First Saint-Petersburg State Medical University, L’vaTolstogo Str. 6-8, 197022 Saint-Petersburg, Russia; (A.P.N.); (D.L.P.)
| |
Collapse
|
19
|
Li F, Xi K, Li Y, Ming T, Huang Y, Zhang L. Genome-wide analysis of transmembrane 9 superfamily genes in wheat ( Triticum aestivum) and their expression in the roots under nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatment conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1324974. [PMID: 38259936 PMCID: PMC10800943 DOI: 10.3389/fpls.2023.1324974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
Introduction Transmembrane 9 superfamily (TM9SF) proteins play significant roles in plant physiology. However, these proteins are poorly characterized in wheat (Triticum aestivum). The present study aimed at the genome-wide analysis of putative wheat TM9SF (TraesTM9SF) proteins and their potential involvement in response to nitrogen limitation and Bacillus amyloliquefaciens PDR1 treatments. Methods TraesTM9SF genes were retrieved from the wheat genome, and their physiochemical properties, alignment, phylogenetic, motif structure, cis-regulatory element, synteny, protein-protein interaction (PPI), and transcription factor (TF) prediction analyses were performed. Transcriptome sequencing and quantitative real-time polymerase reaction (qRT-PCR) were performed to detect gene expression in roots under single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1. Results and discussion Forty-seven TraesTM9SF genes were identified in the wheat genome, highlighting the significance of these genes in wheat. TraesTM9SF genes were absent on some wheat chromosomes and were unevenly distributed on the other chromosomes, indicating that potential regulatory functions and evolutionary events may have shaped the TraesTM9SF gene family. Fifty-four cis-regulatory elements, including light-response, hormone response, biotic/abiotic stress, and development cis-regulatory elements, were present in the TraesTM9SF promoter regions. No duplication of TraesTM9SF genes in the wheat genome was recorded, and 177 TFs were predicted to target the 47 TraesTM9SF genes in a complex regulatory network. These findings offer valued data for predicting the putative functions of uncharacterized TM9SF genes. Moreover, transcriptome analysis and validation by qRT-PCR indicated that the TraesTM9SF genes are expressed in the root system of wheat and are potentially involved in the response of this plant to single or combined treatments with nitrogen limitation and B. amyloliquefaciens PDR1, suggesting their functional roles in plant growth, development, and stress responses. Conclusion These findings may be vital in further investigation of the function and biological applications of TM9SF genes in wheat.
Collapse
Affiliation(s)
- Fei Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kuanling Xi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuke Li
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tang Ming
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yufeng Huang
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lijun Zhang
- Science and Technology Division, Guizhou Normal University, Guiyang, China
| |
Collapse
|
20
|
Svedberg D, Winiger RR, Berg A, Sharma H, Tellgren-Roth C, Debrunner-Vossbrinck BA, Vossbrinck CR, Barandun J. Functional annotation of a divergent genome using sequence and structure-based similarity. BMC Genomics 2024; 25:6. [PMID: 38166563 PMCID: PMC10759460 DOI: 10.1186/s12864-023-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Microsporidia are a large taxon of intracellular pathogens characterized by extraordinarily streamlined genomes with unusually high sequence divergence and many species-specific adaptations. These unique factors pose challenges for traditional genome annotation methods based on sequence similarity. As a result, many of the microsporidian genomes sequenced to date contain numerous genes of unknown function. Recent innovations in rapid and accurate structure prediction and comparison, together with the growing amount of data in structural databases, provide new opportunities to assist in the functional annotation of newly sequenced genomes. RESULTS In this study, we established a workflow that combines sequence and structure-based functional gene annotation approaches employing a ChimeraX plugin named ANNOTEX (Annotation Extension for ChimeraX), allowing for visual inspection and manual curation. We employed this workflow on a high-quality telomere-to-telomere sequenced tetraploid genome of Vairimorpha necatrix. First, the 3080 predicted protein-coding DNA sequences, of which 89% were confirmed with RNA sequencing data, were used as input. Next, ColabFold was used to create protein structure predictions, followed by a Foldseek search for structural matching to the PDB and AlphaFold databases. The subsequent manual curation, using sequence and structure-based hits, increased the accuracy and quality of the functional genome annotation compared to results using only traditional annotation tools. Our workflow resulted in a comprehensive description of the V. necatrix genome, along with a structural summary of the most prevalent protein groups, such as the ricin B lectin family. In addition, and to test our tool, we identified the functions of several previously uncharacterized Encephalitozoon cuniculi genes. CONCLUSION We provide a new functional annotation tool for divergent organisms and employ it on a newly sequenced, high-quality microsporidian genome to shed light on this uncharacterized intracellular pathogen of Lepidoptera. The addition of a structure-based annotation approach can serve as a valuable template for studying other microsporidian or similarly divergent species.
Collapse
Affiliation(s)
- Dennis Svedberg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Rahel R Winiger
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
| | - Alexandra Berg
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Himanshu Sharma
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 90736, Sweden
| | - Christian Tellgren-Roth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Charles R Vossbrinck
- Department of Environmental Science, Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Jonas Barandun
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Science for Life Laboratory, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
21
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
22
|
Milner DS, Galindo LJ, Irwin NAT, Richards TA. Transporter Proteins as Ecological Assets and Features of Microbial Eukaryotic Pangenomes. Annu Rev Microbiol 2023; 77:45-66. [PMID: 36944262 DOI: 10.1146/annurev-micro-032421-115538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Here we review two connected themes in evolutionary microbiology: (a) the nature of gene repertoire variation within species groups (pangenomes) and (b) the concept of metabolite transporters as accessory proteins capable of providing niche-defining "bolt-on" phenotypes. We discuss the need for improved sampling and understanding of pangenome variation in eukaryotic microbes. We then review the factors that shape the repertoire of accessory genes within pangenomes. As part of this discussion, we outline how gene duplication is a key factor in both eukaryotic pangenome variation and transporter gene family evolution. We go on to outline how, through functional characterization of transporter-encoding genes, in combination with analyses of how transporter genes are gained and lost from accessory genomes, we can reveal much about the niche range, the ecology, and the evolution of virulence of microbes. We advocate for the coordinated systematic study of eukaryotic pangenomes through genome sequencing and the functional analysis of genes found within the accessory gene repertoire.
Collapse
Affiliation(s)
- David S Milner
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| | | | - Nicholas A T Irwin
- Department of Biology, University of Oxford, Oxford, United Kingdom;
- Merton College, University of Oxford, Oxford, United Kingdom
| | - Thomas A Richards
- Department of Biology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
23
|
Huang Q, Chen J, Lv Q, Long M, Pan G, Zhou Z. Germination of Microsporidian Spores: The Known and Unknown. J Fungi (Basel) 2023; 9:774. [PMID: 37504762 PMCID: PMC10381864 DOI: 10.3390/jof9070774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Microsporidia are a large group of mysterious obligate intracellular eukaryotic parasites. The microsporidian spore can survive in the absence of nutrients for years under harsh conditions and germinate within seconds under the stimulation of environmental changes like pH and ions. During germination, microsporidia experience an increase in intrasporal osmotic pressure, which leads to an influx of water into the spore, followed by swelling of the polaroplasts and posterior vacuole, which eventually fires the polar filament (PF). Infectious sporoplasm was transported through the extruded polar tube (PT) and delivered into the host cell. Despite much that has been learned about the germination of microsporidia, there are still several major questions that remain unanswered, including: (i) There is still a lack of knowledge about the signaling pathways involved in spore germination. (ii) The germination of spores is not well understood in terms of its specific energetics. (iii) Limited understanding of how spores germinate and how the nucleus and membranes are rearranged during germination. (iv) Only a few proteins in the invasion organelles have been identified; many more are likely undiscovered. This review summarizes the major resolved and unresolved issues concerning the process of microsporidian spore germination.
Collapse
Affiliation(s)
- Qingyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Key Laboratory of Conservation and Utilization of Pollinator Insect of the upper reaches of the Yangtze River (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 400047, China
| |
Collapse
|
24
|
Sendra KM, Barwinska-Sendra A, Mackenzie ES, Baslé A, Kehl-Fie TE, Waldron KJ. An ancient metalloenzyme evolves through metal preference modulation. Nat Ecol Evol 2023; 7:732-744. [PMID: 37037909 PMCID: PMC10172142 DOI: 10.1038/s41559-023-02012-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/15/2023] [Indexed: 04/12/2023]
Abstract
Evolution creates functional diversity of proteins, the essential building blocks of all biological systems. However, studies of natural proteins sampled across the tree of life and evaluated in a single experimental system are lacking. Almost half of enzymes require metals, and metalloproteins tend to optimally utilize the physicochemical properties of a specific metal co-factor. Life must adapt to changes in metal bioavailability, including those during the transition from anoxic to oxic Earth or pathogens' exposure to nutritional immunity. These changes can challenge the ability of metalloenzymes to maintain activity, presumptively driving their evolution. Here we studied metal-preference evolution within the natural diversity of the iron/manganese superoxide dismutase (SodFM) family of reactive oxygen species scavengers. We identified and experimentally verified residues with conserved roles in determining metal preference that, when combined with an understanding of the protein's evolutionary history, improved prediction of metal utilization across the five SodFM subfamilies defined herein. By combining phylogenetics, biochemistry and structural biology, we demonstrate that SodFM metal utilization can be evolutionarily fine tuned by sliding along a scale between perfect manganese and iron specificities. Over the history of life, SodFM metal preference has been modulated multiple independent times within different evolutionary and ecological contexts, and can be changed within short evolutionary timeframes.
Collapse
Affiliation(s)
- K M Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - A Barwinska-Sendra
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - E S Mackenzie
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - A Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - T E Kehl-Fie
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - K J Waldron
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
25
|
Dolgikh VV, Senderskiy IV, Timofeev SA, Zhuravlyov VS, Dolgikh AV, Seliverstova EV, Ismatullaeva DA, Mirzakhodjaev BA. Construction of scFv Antibodies against the Outer Loops of the Microsporidium Nosema bombycis ATP/ADP-Transporters and Selection of the Fragment Efficiently Inhibiting Parasite Growth. Int J Mol Sci 2022; 23:ijms232315307. [PMID: 36499634 PMCID: PMC9738396 DOI: 10.3390/ijms232315307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Traditional sanitation practices remain the main strategy for controlling Bombyx mori infections caused by microsporidia Nosema bombycis. This actualizes the development of new approaches to increase the silkworm resistance to this parasite. Here, we constructed a mouse scFv library against the outer loops of N. bombycis ATP/ADP carriers and selected nine scFv fragments to the transporter, highly expressed in the early stages of the parasite intracellular growth. Expression of selected scFv genes in Sf9 cells, their infection with different ratios of microsporidia spores per insect cell, qPCR analysis of N. bombycis PTP2 and Spodoptera frugiperda COXI transcripts in 100 infected cultures made it possible to select the scFv fragment most effectively inhibiting the parasite growth. Western blot analysis of 42 infected cultures with Abs against the parasite β-tubulin confirmed its inhibitory efficiency. Since the VL part of this scFv fragment was identified as a human IgG domain retained from the pSEX81 phagemid during library construction, its VH sequence should be a key antigen-recognizing determinant. Along with the further selection of new recombinant Abs, this suggests the searching for its natural mouse VL domain or "camelization" of the VH fragment by introducing cysteine and hydrophilic residues, as well as the randomization of its CDRs.
Collapse
Affiliation(s)
- Viacheslav V. Dolgikh
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
- Correspondence: ; Tel.: +7-921-351-6383
| | - Igor V. Senderskiy
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Sergej A. Timofeev
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Vladimir S. Zhuravlyov
- All-Russian Institute of Plant Protection, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Alexandra V. Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chausse 3, 196608 Saint-Petersburg, Russia
| | - Elena V. Seliverstova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Thorez 44, 194223 Saint-Petersburg, Russia
| | | | | |
Collapse
|
26
|
Sendra KM, Watson AK, Kozhevnikova E, Moore AL, Embley TM, Hirt RP. Inhibition of mitosomal alternative oxidase causes lifecycle arrest of early-stage Trachipleistophora hominis meronts during intracellular infection of mammalian cells. PLoS Pathog 2022; 18:e1011024. [PMID: 36538568 PMCID: PMC9767352 DOI: 10.1371/journal.ppat.1011024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX). This mitochondrial terminal respiratory oxidase is absent from the human host, and hence is a potential target for the development of new antimicrobial agents. Here we present experimental evidence for the mitosomal localization of AOX in the microsporidian Trachipleistophora hominis and demonstrate that it has an important role during the parasite's life cycle progression. Using a recently published methodology for synchronising T. hominis infection of mammalian cell lines, we demonstrated specific inhibition of T. hominis early meront growth and replication by an AOX inhibitor colletochlorin B. Treatment of T. hominis-infected host cells with the drug also inhibited re-infection by newly formed dispersive spores. Addition of the drug during the later stages of the parasite life cycle, when our methods suggest that AOX is not actively produced and T. hominis mitosomes are mainly active in Fe/S cluster biosynthesis, had no inhibitory effects on the parasites. Control experiments with the AOX-deficient microsporidian species Encephalitozoon cuniculi, further demonstrated the specificity of inhibition by the drug. Using the same methodology, we demonstrate effects of two clinically used anti-microsporidian drugs albendazole and fumagillin on the cell biology and life cycle progression of T. hominis infecting mammalian host cells. In summary, our results reveal that T. hominis mitosomes have an active role to play in the progression of the parasite life cycle as well as an important role in the biosynthesis of essential Fe/S clusters. Our work also demonstrates that T. hominis is a useful model for testing the efficacy of therapeutic agents and for studying the physiology and cell biology of microsporidian parasites growing inside infected mammalian cells.
Collapse
Affiliation(s)
- Kacper M. Sendra
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew K. Watson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - T. Martin Embley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
27
|
Embley TM. It Took Me a While to Figure out What Science I Really Wanted to Do. Genome Biol Evol 2022; 14:6799702. [PMID: 36332002 PMCID: PMC9635634 DOI: 10.1093/gbe/evac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- T Martin Embley
- Biosciences Institute, Newcastle University , England NE24HH , United Kingdom
| |
Collapse
|
28
|
Galindo LJ, Torruella G, López-García P, Ciobanu M, Gutiérrez-Preciado A, Karpov SA, Moreira D. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies. Syst Biol 2022:6651083. [PMID: 35900180 DOI: 10.1093/sysbio/syac054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The supergroup Holomycota, composed of Fungi and several related lineages of unicellular organisms (Nucleariida, Rozellida, Microsporidia, and Aphelida), represents one of the major branches in the phylogeny of eukaryotes. Nevertheless, except for the well-established position of Nucleariida as the first holomycotan branch to diverge, the relationships among the other lineages have so far remained unresolved largely owing to the lack of molecular data for some groups. This was notably the case aphelids, a poorly known group of endobiotic phagotrophic protists that feed on algae with cellulose walls. The first molecular phylogenies including aphelids supported their sister relationship with Rozellida and Microsporidia which, collectively, formed a new group called Opisthosporidia (the 'Opisthosporidia hypothesis'). However, recent phylogenomic analyses including massive sequence data from two aphelid genera, Paraphelidium and Amoeboaphelidium, suggested that the aphelids are sister to fungi (the 'Aphelida+Fungi hypothesis'). Should this position be confirmed, aphelids would be key to understanding the early evolution of Holomycota and the origin of Fungi. Here, we carry out phylogenomic analyses with an expanded taxonomic sampling for aphelids after sequencing the transcriptomes of two species of the genus Aphelidium (A. insulamus and A. tribonematis) in order to test these competing hypotheses. Our new phylogenomic analyses including species from the three known aphelid genera strongly rejected the Opisthosporidia hypothesis. Furthermore, comparative genomic analyses further supported the Aphelida+Fungi hypothesis via the identification of 19 orthologous genes exclusively shared by these two lineages. Seven of them originated from ancient horizontal gene transfer events predating the aphelid-fungal split and the remaining 12 likely evolved de novo, constituting additional molecular synapomorphies for this clade. Ancestral trait reconstruction based on our well-resolved phylogeny of Holomycota suggests that the progenitor of both fungi and rozellids, was aphelid-like, having an amoeboflagellate state and likely preying endobiotically on cellulose-containing, cell-walled organisms. Two lineages, which we propose to call Phytophagea and Opisthophagea, evolved from this ancestor. Phytophagea, grouping aphelids and classical fungi, mainly specialized in endobiotic predation of algal cells. Fungi emerged from this lineage after losing phagotrophy in favour of osmotrophy. Opisthophagea, grouping rozellids and Microsporidia, became parasites, mostly of chitin-containing hosts. This lineage entered a progressive reductive process that resulted in a unique lifestyle, especially in the highly derived Microsporidia.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maria Ciobanu
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ana Gutiérrez-Preciado
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Sergey A Karpov
- Zoological Institute RAS, Universitetskaya emb. 1, and St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg 199034, Russia
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
29
|
Chen Y, Wei E, Chen Y, He P, Wang R, Wang Q, Tang X, Zhang Y, Zhu F, Shen Z. Identification and subcellular localization analysis of membrane protein Ycf 1 in the microsporidian Nosema bombycis. PeerJ 2022; 10:e13530. [PMID: 35833014 PMCID: PMC9272817 DOI: 10.7717/peerj.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
Microsporidia are obligate intracellular parasites that can infect a wide range of vertebrates and invertebrates including humans and insects, such as silkworm and bees. The microsporidium Nosema bombycis can cause pebrine in Bombyx mori, which is the most destructive disease in the sericulture industry. Although membrane proteins are involved in a wide range of cellular functions and part of many important metabolic pathways, there are rare reports about the membrane proteins of microsporidia up to now. We screened a putative membrane protein Ycf 1 from the midgut transcriptome of the N. bombycis-infected silkworm. Gene cloning and bioinformatics analysis showed that the Ycf 1 gene contains a complete open reading frame (ORF) of 969 bp in length encoding a 322 amino acid polypeptide that has one signal peptide and one transmembrane domain. Indirect immunofluorescence results showed that Ycf 1 protein is distributed on the plasma membrane. Expression pattern analysis showed that the Ycf 1 gene expressed in all developmental stages of N. bombycis. Knockdown of the Ycf 1 gene by RNAi effectively inhibited the proliferation of N. bombycis. These results indicated that Ycf 1 is a membrane protein and plays an important role in the life cycle of N. bombycis.
Collapse
Affiliation(s)
- Yong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Erjun Wei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ying Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Ping He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Runpeng Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Xudong Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Yiling Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| | - Feng Zhu
- Zaozhuang University, Zaozhuang, Shangdong, China
| | - Zhongyuan Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Chinese Academy of Agricultural Sciences, Institute of Sericulture, Zhenjiang, China
| |
Collapse
|
30
|
Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends Parasitol 2022; 38:642-659. [PMID: 35667993 DOI: 10.1016/j.pt.2022.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Microsporidian diversity is vast. There is a renewed drive to understand how microsporidian pathological, genomic, and ecological traits relate to their phylogeny. We comprehensively sample and phylogenetically analyse 125 microsporidian genera for which sequence data are available. Comparing these results with existing phylogenomic analyses, we suggest an updated taxonomic framework to replace the inconsistent clade numbering system, using informal taxonomic names: Glugeida (previously clades 5/3), Nosematida (4a), Enterocytozoonida (4b), Amblyosporida (3/5), Neopereziida (1), and Ovavesiculida (2). Cellular, parasitological, and ecological traits for 281 well-defined species are compared with identify clade-specific patterns across long-branch Microsporidia. We suggest that future taxonomic circumscriptions of Microsporidia should involve additional markers (SSU/ITS/LSU), and that a comprehensive suite of phenotypic and ecological traits help to predict broad microsporidian functional and lineage diversity.
Collapse
|
31
|
Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 2022; 18:e1010239. [PMID: 35731825 PMCID: PMC9255765 DOI: 10.1371/journal.pgen.1010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
32
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
33
|
Williams BAP, Williams TA, Trew J. Comparative Genomics of Microsporidia. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:43-69. [PMID: 35543998 DOI: 10.1007/978-3-030-93306-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The microsporidia are a phylum of intracellular parasites that represent the eukaryotic cell in a state of extreme reduction, with genomes and metabolic capabilities embodying eukaryotic cells in arguably their most streamlined state. Over the past 20 years, microsporidian genomics has become a rapidly expanding field starting with sequencing of the genome of Encephalitozoon cuniculi, one of the first ever sequenced eukaryotes, to the current situation where we have access to the data from over 30 genomes across 20+ genera. Reaching back further in evolutionary history, to the point where microsporidia diverged from other eukaryotic lineages, we now also have genomic data for some of the closest known relatives of the microsporidia such as Rozella allomycis, Metchnikovella spp. and Amphiamblys sp. Data for these organisms allow us to better understand the genomic processes that shaped the emergence of the microsporidia as a group. These intensive genomic efforts have revealed some of the processes that have shaped microsporidian cells and genomes including patterns of genome expansions and contractions through gene gain and loss, whole genome duplication, differential patterns of invasion and purging of transposable elements. All these processes have been shown to occur across short and longer time scales to give rise to a phylum of parasites with dynamic genomes with a diversity of sizes and organisations.
Collapse
Affiliation(s)
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Jahcub Trew
- School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
34
|
Tatsaki E, Anagnostopoulou E, Zantza I, Lazou P, Mikros E, Frillingos S. Identification of New Specificity Determinants in Bacterial Purine Nucleobase Transporters based on an Ancestral Sequence Reconstruction Approach. J Mol Biol 2021; 433:167329. [PMID: 34710398 DOI: 10.1016/j.jmb.2021.167329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
The relation of sequence with specificity in membrane transporters is challenging to explore. Most relevant studies until now rely on comparisons of present-day homologs. In this work, we study a set of closely related transporters by employing an evolutionary, ancestral-reconstruction approach and reveal unexpected new specificity determinants. We analyze a monophyletic group represented by the xanthine-specific XanQ of Escherichia coli in the Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2 (NAT/NCS2) family. We reconstructed AncXanQ, the putative common ancestor of this clade, expressed it in E. coli K-12, and found that, in contrast to XanQ, it encodes a high-affinity permease for both xanthine and guanine, which also recognizes adenine, hypoxanthine, and a range of analogs. AncXanQ conserves all binding-site residues of XanQ and differs substantially in only five intramembrane residues outside the binding site. We subjected both homologs to rationally designed mutagenesis and present evidence that these five residues are linked with the specificity change. In particular, we reveal Ser377 of XanQ (Gly in AncXanQ) as a major determinant. Replacement of this Ser with Gly enlarges the specificity of XanQ towards an AncXanQ-phenotype. The ortholog from Neisseria meningitidis retaining Gly at this position is also a xanthine/guanine transporter with extended substrate profile like AncXanQ. Molecular Dynamics shows that the S377G replacement tilts transmembrane helix 12 resulting in rearrangement of Phe376 relative to Phe94 in the XanQ binding pocket. This effect may rationalize the enlarged specificity. On the other hand, the specificity effect of S377G can be masked by G27S or other mutations through epistatic interactions.
Collapse
Affiliation(s)
- Ekaterini Tatsaki
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Anagnostopoulou
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece. https://twitter.com/EleniAnagn
| | - Iliana Zantza
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Lazou
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Emmanuel Mikros
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece; Institute of Biosciences, University Research Center of Ioannina, Ioannina, Greece.
| |
Collapse
|
35
|
Cai L, Jain M, Sena-Vélez M, Jones KM, Fleites LA, Heck M, Gabriel DW. Tad pilus-mediated twitching motility is essential for DNA uptake and survival of Liberibacters. PLoS One 2021; 16:e0258583. [PMID: 34644346 PMCID: PMC8513845 DOI: 10.1371/journal.pone.0258583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Axenically cultured Liberibacter crescens (Lcr) is a closely related surrogate for uncultured plant pathogenic species of the genus Liberibacter, including ‘Candidatus L. asiaticus’ (CLas) and ‘Ca. L. solanacearum’ (CLso). All Liberibacters encode a completely conserved gene repertoire for both flagella and Tad (Tight Adherence) pili and all are missing genes critical for nucleotide biosynthesis. Both flagellar swimming and Tad pilus-mediated twitching motility in Lcr were demonstrated for the first time. A role for Tad pili in the uptake of extracellular dsDNA for food in Liberibacters was suspected because both twitching and DNA uptake are impossible without repetitive pilus extension and retraction, and no genes encoding other pilus assemblages or mechanisms for DNA uptake were predicted to be even partially present in any of the 35 fully sequenced Liberibacter genomes. Insertional mutations of the Lcr Tad pilus genes cpaA, cpaB, cpaE, cpaF and tadC all displayed such severely reduced growth and viability that none could be complemented. A mutation affecting cpaF (motor ATPase) was further characterized and the strain displayed concomitant loss of twitching, viability and reduced periplasmic uptake of extracellular dsDNA. Mutations of comEC, encoding the inner membrane competence channel, had no effect on either motility or growth but completely abolished natural transformation in Lcr. The comEC mutation was restored by complementation using comEC from Lcr but not from CLas strain psy62 or CLso strain RS100, indicating that unlike Lcr, these pathogens were not naturally competent for transformation. This report provides the first evidence that the Liberibacter Tad pili are dynamic and essential for both motility and DNA uptake, thus extending their role beyond surface adherence.
Collapse
Affiliation(s)
- Lulu Cai
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Mukesh Jain
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Marta Sena-Vélez
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Kathryn M. Jones
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Laura A. Fleites
- USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Michelle Heck
- USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Dean W. Gabriel
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
36
|
Luo J, He Q, Xu JZ, Xu C, Han YZ, Gao HL, Meng XZ, Pan GQ, Li T, Zhou ZY. Microsporidia infection upregulates host energy metabolism but maintains ATP homeostasis. J Invertebr Pathol 2021; 186:107596. [PMID: 33910037 DOI: 10.1016/j.jip.2021.107596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 12/23/2022]
Abstract
Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Qiang He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Jin-Zhi Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Chen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Yin-Ze Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Hai-Long Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Xian-Zhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Guo-Qing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China.
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China; College of Life Science, Chongqing Normal University, Chongqing 400047, China.
| |
Collapse
|
37
|
Vancaester E, Depuydt T, Osuna-Cruz CM, Vandepoele K. Comprehensive and Functional Analysis of Horizontal Gene Transfer Events in Diatoms. Mol Biol Evol 2021; 37:3243-3257. [PMID: 32918458 DOI: 10.1093/molbev/msaa182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are a diverse group of mainly photosynthetic algae, responsible for 20% of worldwide oxygen production, which can rapidly respond to favorable conditions and often outcompete other phytoplankton. We investigated the contribution of horizontal gene transfer (HGT) to its ecological success. A large-scale phylogeny-based prokaryotic HGT detection procedure across nine sequenced diatoms showed that 3-5% of their proteome has a horizontal origin and a large influx occurred at the ancestor of diatoms. More than 90% of HGT genes are expressed, and species-specific HGT genes in Phaeodactylum tricornutum undergo strong purifying selection. Genes derived from HGT are implicated in several processes including environmental sensing and expand the metabolic toolbox. Cobalamin (vitamin B12) is an essential cofactor for roughly half of the diatoms and is only produced by bacteria. Five consecutive genes involved in the final synthesis of the cobalamin biosynthetic pathway, which could function as scavenging and repair genes, were detected as HGT. The full suite of these genes was detected in the cold-adapted diatom Fragilariopsis cylindrus. This might give diatoms originating from the Southern Ocean, a region typically depleted in cobalamin, a competitive advantage. Overall, we show that HGT is a prevalent mechanism that is actively used in diatoms to expand its adaptive capabilities.
Collapse
Affiliation(s)
- Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Lateral Gene Transfer Mechanisms and Pan-genomes in Eukaryotes. Trends Parasitol 2020; 36:927-941. [DOI: 10.1016/j.pt.2020.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
39
|
Tamim El Jarkass H, Reinke AW. The ins and outs of host-microsporidia interactions during invasion, proliferation and exit. Cell Microbiol 2020; 22:e13247. [PMID: 32748538 DOI: 10.1111/cmi.13247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Microsporidia are a large group of fungal-related obligate intracellular parasites. They are responsible for infections in humans as well as in agriculturally and environmentally important animals. Although microsporidia are abundant in nature, many of the molecular mechanisms employed during infection have remained enigmatic. In this review, we highlight recent work showing how microsporidia invade, proliferate and exit from host cells. During invasion, microsporidia use spore wall and polar tube proteins to interact with host receptors and adhere to the host cell surface. In turn, the host has multiple defence mechanisms to prevent and eliminate these infections. Microsporidia encode numerous transporters and steal host nutrients to facilitate proliferation within host cells. They also encode many secreted proteins which may modulate host metabolism and inhibit host cell defence mechanisms. Spores exit the host in a non-lytic manner that is dependent on host actin and endocytic recycling proteins. Together, this work provides a fuller picture of the mechanisms that these fascinating organisms use to infect their hosts.
Collapse
Affiliation(s)
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Jaroenlak P, Cammer M, Davydov A, Sall J, Usmani M, Liang FX, Ekiert DC, Bhabha G. 3-Dimensional organization and dynamics of the microsporidian polar tube invasion machinery. PLoS Pathog 2020; 16:e1008738. [PMID: 32946515 PMCID: PMC7526891 DOI: 10.1371/journal.ppat.1008738] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023] Open
Abstract
Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 μm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Michael Cammer
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Alina Davydov
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Mahrukh Usmani
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University School of Medicine, New York, New York, United States of America
| | - Damian C. Ekiert
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Gira Bhabha
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, New York, United States of America
| |
Collapse
|
41
|
Timofeev S, Tokarev Y, Dolgikh V. Energy metabolism and its evolution in Microsporidia and allied taxa. Parasitol Res 2020; 119:1433-1441. [DOI: 10.1007/s00436-020-06657-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
|
42
|
Evolutionary Diversity in the Intracellular Microsporidian Parasite Nosema sp. Infecting Wild Silkworm Revealed by IGS Nucleotide Sequence Diversity. J Mol Evol 2020; 88:345-360. [PMID: 32166385 DOI: 10.1007/s00239-020-09936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Intracellular microsporidian Nosema mylitta infects Indian wild silkworm Antheraea mylitta causing pebrine disease. Genetic structure and phylogeny of N. mylitta are analysed using nucleotide variability in 5S ribosomal DNA and intergenic spacer (IGS) sequence from 20 isolates collected from Southern, Northern and Central regions of Jharkhand State. Nucleotide diversity (π) and genetic differentiation Gst were highest in the Central isolates whereas lowest in the North. Among the isolates, absence of nucleotides, transitions and transversions were observed. Haplotyping showed nucleotide variability at 83 positions in IGS and 13 positions in 5S rDNA. Haplotype-based genetic differentiation was 0.96 to 0.97 whereas nucleotide sequence-based genetic differentiation was higher (Ks = 22.29) between Southern and Central isolates. Bottleneck analysis showed negative value for Tajima's D and other summary statistics revealing induction of loss of rare alleles and population explosion. From IGS, 17 ancestral sequences were inferred by Network algorithm. Core of nine closely related nodes having ancient nucleotides and peripheral nodes with highly divergent nucleotides were derived. Most diverged peripheral haplotype was Bero (H11) from the Central region whereas Deoghar (H3) of the Northern region diverged early. Phylogeny of N. mylitta grouped Southern and Northern isolates together revealed weak phylogenetic signal for these locations. Phylogeny of N. mylitta with Nosema sp. infecting other lepidopterans clustered N. mylitta isolates with N. antheraea and N. philosamiae of China indicating genetic similarity whereas other species were dissimilar showing diversity irrespective of country of origin.
Collapse
|
43
|
Han B, Takvorian PM, Weiss LM. Invasion of Host Cells by Microsporidia. Front Microbiol 2020; 11:172. [PMID: 32132983 PMCID: PMC7040029 DOI: 10.3389/fmicb.2020.00172] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Microsporidia are found worldwide and both vertebrates and invertebrates can serve as hosts for these organisms. While microsporidiosis in humans can occur in both immune competent and immune compromised hosts, it has most often been seen in the immune suppressed population, e.g., patients with advanced HIV infection, patients who have had organ transplantation, those undergoing chemotherapy, or patients using other immune suppressive agents. Infection can be associated with either focal infection in a specific organ (e.g., keratoconjunctivitis, cerebritis, or hepatitis) or with disseminated disease. The most common presentation of microsporidiosis being gastrointestinal infection with chronic diarrhea and wasting syndrome. In the setting of advanced HIV infection or other cases of profound immune deficiency microsporidiosis can be extremely debilitating and carries a significant mortality risk. Microsporidia are transmitted as spores which invade host cells by a specialized invasion apparatus the polar tube (PT). This review summarizes recent studies that have provided information on the composition of the spore wall and PT, as well as insights into the mechanism of invasion and interaction of the PT and spore wall with host cells during infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Peter M. Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Biological Sciences, Rutgers University, Newark, NJ, United States
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
44
|
Wadi L, Reinke AW. Evolution of microsporidia: An extremely successful group of eukaryotic intracellular parasites. PLoS Pathog 2020; 16:e1008276. [PMID: 32053705 PMCID: PMC7017984 DOI: 10.1371/journal.ppat.1008276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
45
|
Morphology and Transcriptome Analysis of Nosema bombycis Sporoplasm and Insights into the Initial Infection of Microsporidia. mSphere 2020; 5:5/1/e00958-19. [PMID: 32051240 PMCID: PMC7021473 DOI: 10.1128/msphere.00958-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm. Microsporidia are obligate intracellular parasites that infect a wide variety of host organisms, including humans. The sporoplasm is the initial stage of microsporidian infection and proliferation, but its morphological and molecular characteristics are poorly understood. In this study, the sporoplasm of Nosema bombycis was successfully isolated and characterized after the induction of spore germination in vitro. The sporoplasm was spherical, 3.64 ± 0.41 μm in diameter, had the typical two nuclei, and was nonrefractive. Scanning and transmission electron microscopy analyses revealed that the sporoplasm was surrounded by a single membrane, and the cytoplasm was usually filled with relatively homogeneous granules, possibly ribosomes, and contained a vesicular structure comprising a concentric ring and coiled tubules. Propidium iodide staining revealed that the sporoplasm membrane showed stronger membrane permeability than did the cell plasma membrane. Transmission electron microscopy (TEM) revealed that the sporoplasm can gain entry to the host cell by phagocytosis. Transcriptome analysis of mature spores and sporoplasms showed that 541 significantly differentially expressed genes were screened (adjusted P value [Padj] < 0.05), of which 302 genes were upregulated and 239 genes were downregulated in the sporoplasm. The majority of the genes involved in trehalose synthesis metabolism, glycolysis, and the pentose phosphate pathway were downregulated, whereas 10 transporter genes were upregulated, suggesting that the sporoplasm may inhibit its own carbon metabolic activity and obtain the substances required for proliferation through transporter proteins. This study represents the first comprehensive and in-depth investigation of the sporoplasm at the morphological and molecular levels and provides novel insights into the biology of microsporidia and their infection mechanism. IMPORTANCE Once awoken from dormancy, the cellular matter of microsporidia is delivered directly into the host cell cytoplasm through the polar tube. This means that the microsporidia are difficult to study biologically in their active state without a contaminating signal from the host cell. Sporoplasm is a cell type of microsporidia in vitro, but relatively little attention has been paid to the sporoplasm in the past 150 years due to a lack of an effective separation method. Nosema bombycis, the first reported microsporidium, is a type of obligate intracellular parasite that infects silkworms and can be induced to germinate in alkaline solution in vitro. We successfully separated the N. bombycis sporoplasm in vitro, and the morphological and structural characteristics were investigated. These results provide important insight into the biology and pathogenesis of microsporidia and potentially provide a possible strategy for genetic manipulation of microsporidia targeting the sporoplasm.
Collapse
|
46
|
Corsaro D, Walochnik J, Venditti D, Hauröder B, Michel R. Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae. Parasitol Res 2020; 119:925-934. [PMID: 32048025 DOI: 10.1007/s00436-020-06623-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
The Rozellomycota form a lineage basal or sister to the Fungi, ancestor of Microsporidia. Their biodiversity is very rich but remains poorly characterized. The few known species are all parasites, whether of water molds and algae (Rozella), crustaceans (Mitosporidium), or as endonuclear parasites of amoebae (Nucleophaga, Paramicrosporidium). Since the nineteenth century, intracytoplasmic parasites of various protozoa have been described as species of the same genus Sphaerita. However, it was later thought possible to separate these parasites into at least two distinct groups, those forming flagellated zoospores, prevalent in Euglena and other flagellates, and those forming immobile spores, found mainly in free-living and endozoic amoebae. Herein, we report the recovery of a strain of the free-living amoeba species Saccamoeba lacustris, naturally infected by an intracytoplasmic parasite, which under light microscope has a morphology consistent with that of Sphaerita. Biomolecular analyses were thus performed. Our results show that the intracytoplasmic parasite of Saccamoeba belongs to the same subgroup of Mitosporidium and that it forms a new genus within Rozellomycota, Morellospora, that corresponds to the former spore-forming Sphaerita-like parasites of amoebae.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France.
| | - Julia Walochnik
- Molecular Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Kinderspitalgasse 15, 1095, Vienna, Austria
| | - Danielle Venditti
- CHLAREAS, 12 rue du Maconnais, F-54500, Vandoeuvre-lès-Nancy, France
| | - Bärbel Hauröder
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| | - Rolf Michel
- Department of Pathology, Electron Microscopy Facility, Bundeswehr Central Hospital Koblenz, Andernacher Strasse 100, 56070, Koblenz, Germany
| |
Collapse
|
47
|
Dolgikh VV, Timofeev SA, Zhuravlyov VS, Senderskiy IV. Construction and heterologous overexpression of two chimeric proteins carrying outer hydrophilic loops of Vairimorpha ceranae and Nosema bombycis ATP/ADP carriers. J Invertebr Pathol 2020; 171:107337. [PMID: 32035083 DOI: 10.1016/j.jip.2020.107337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Microsporidia Nosema bombycis and Vairimorpha ceranae cause destructive epizootics of honey bees and silkworms. Insufficient efficiency of the antibiotic fumagillin against V. ceranae, its toxicity and the absence of effective methods of N. bombycis treatment demand the discovery of novel strategies to suppress infections of domesticated insects. RNA interference is one such novel treatment strategy. Another one implies that the intracellular development of microsporidia may be suppressed by single-chain antibodies (scFv fragments) against functionally important parasite proteins. Important components of microsporidian metabolism are non-mitochondrial, plastidic-bacterial ATP/ADP carriers. These membrane transporters import host-derived ATP and provide the capacity to pathogens for energy parasitism. Here, we analyzed membrane topology of four V. ceranae and three N. bombycis ATP/ADP transporters to construct two fusion proteins carrying their outer hydrophilic loops contacting with infected host cell cytoplasm. Interestingly, full-size genes of N. bombycis transporters may be derived from the Asian swallowtail Papilio xuthus genome sequencing project. Synthesis of the artificial genes was followed by overexpression of recombinant proteins in E. coli as insoluble inclusion bodies. The gene fragments encoding the loops of individual transporters were also effectively expressed in bacteria. The chimeric antigens may be used to construct immune libraries or select microsporidia-suppressing scFv fragments from synthetic, semisynthetic, naïve and immune antibody libraries. A further expression of such antibodies in insect cells may increase their resistance to microsporidial infections.
Collapse
Affiliation(s)
- Viacheslav V Dolgikh
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia.
| | - Sergey A Timofeev
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Vladimir S Zhuravlyov
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| | - Igor V Senderskiy
- Laboratory of Molecular Plant Protection, All-Russian Institute of Plant Protection, St. Petersburg, Pushkin, Russia
| |
Collapse
|
48
|
Gruber A, Haferkamp I. Nucleotide Transport and Metabolism in Diatoms. Biomolecules 2019; 9:E761. [PMID: 31766535 PMCID: PMC6995639 DOI: 10.3390/biom9120761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Plastids, organelles that evolved from cyanobacteria via endosymbiosis in eukaryotes, provide carbohydrates for the formation of biomass and for mitochondrial energy production to the cell. They generate their own energy in the form of the nucleotide adenosine triphosphate (ATP). However, plastids of non-photosynthetic tissues, or during the dark, depend on external supply of ATP. A dedicated antiporter that exchanges ATP against adenosine diphosphate (ADP) plus inorganic phosphate (Pi) takes over this function in most photosynthetic eukaryotes. Additional forms of such nucleotide transporters (NTTs), with deviating activities, are found in intracellular bacteria, and, surprisingly, also in diatoms, a group of algae that acquired their plastids from other eukaryotes via one (or even several) additional endosymbioses compared to algae with primary plastids and higher plants. In this review, we summarize what is known about the nucleotide synthesis and transport pathways in diatom cells, and discuss the evolutionary implications of the presence of the additional NTTs in diatoms, as well as their applications in biotechnology.
Collapse
Affiliation(s)
- Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Ilka Haferkamp
- Pflanzenphysiologie, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany;
| |
Collapse
|
49
|
Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky MS, Garber AI, Bjorkman PJ, Orphan VJ, McCutcheon JP. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 2019; 179:703-712.e7. [PMID: 31587897 PMCID: PMC6838666 DOI: 10.1016/j.cell.2019.08.054] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes. Mealybugs have two bacterial endosymbionts; one symbiont lives inside the other The mealybug genome has acquired some bacterial peptidoglycan (PG)-related genes This insect-symbiont mosaic pathway produces a PG layer at the innermost symbiont Endosymbionts and organelles have evolved similar levels of biochemical integration
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsi M Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Diane M Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
50
|
Dunn CD, Paavilainen VO. Wherever I may roam: organellar protein targeting and evolvability. Curr Opin Genet Dev 2019; 58-59:9-16. [DOI: 10.1016/j.gde.2019.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/20/2019] [Indexed: 02/08/2023]
|