1
|
Ghifari AS, Ott M. A decisive technical leap forward for personalized medicine to treat mitochondrial diseases. EMBO Mol Med 2025:10.1038/s44321-025-00232-4. [PMID: 40204989 DOI: 10.1038/s44321-025-00232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Abi S Ghifari
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Martin Ott
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
2
|
Pankammoon P, Salinas MBS, Thitaram C, Sathanawongs A. The Complexities of Interspecies Somatic Cell Nuclear Transfer: From Biological and Molecular Insights to Future Perspectives. Int J Mol Sci 2025; 26:3310. [PMID: 40244161 PMCID: PMC11989385 DOI: 10.3390/ijms26073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
For nearly three decades, interspecies somatic cell nuclear transfer (iSCNT) has been explored as a potential tool for cloning, regenerative medicine, and wildlife conservation. However, developmental inefficiencies remain a major challenge, largely due to persistent barriers in nucleocytoplasmic transport, mitonuclear communication, and epigenome crosstalk. This review synthesized peer-reviewed English articles from PubMed, Web of Science, and Scopus, spanning nearly three decades, using relevant keywords to explore the molecular mechanisms underlying iSCNT inefficiencies and potential improvement strategies. We highlight recent findings deepening the understanding of interspecies barriers in iSCNT, emphasizing their interconnected complexities, including the following: (1) nucleocytoplasmic incompatibility may disrupt nuclear pore complex (NPC) assembly and maturation, impairing the nuclear transport of essential transcription factors (TFs), embryonic genome activation (EGA), and nuclear reprogramming; (2) mitonuclear incompatibility could lead to nuclear and mitochondrial DNA (nDNA-mtDNA) mismatches, affecting electron transport chain (ETC) assembly, oxidative phosphorylation, and energy metabolism; (3) these interrelated incompatibilities can further influence epigenetic regulation, potentially leading to incomplete epigenetic reprogramming in iSCNT embryos. Addressing these challenges requires a multifaceted, species-specific approach that balances multiple incompatibilities rather than isolating a single factor. Gaining insight into the molecular interactions between the donor nucleus and recipient cytoplast, coupled with optimizing strategies tailored to specific pairings, could significantly enhance iSCNT efficiency, ultimately transforming experimental breakthroughs into real-world applications in reproductive biotechnology, regenerative medicine, and species conservation.
Collapse
Affiliation(s)
- Peachanika Pankammoon
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
| | - Marvin Bryan Segundo Salinas
- Department of Basic Veterinary Sciences, College of Veterinary Science and Medicine, Central Luzon State University, Science City of Muñoz 3120, Nueva Ecija, Philippines;
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Sathanawongs
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (P.P.); (C.T.)
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
3
|
Fan Y, Xu W, Gao BQ, Qin H, Wu X, Wei J, Ni Q, Zhou L, Xiang J, Wu J, Yang B, Yang L, Chen J. Leveraging base excision repair for efficient adenine base editing of mitochondrial DNA. Nat Biotechnol 2025:10.1038/s41587-025-02608-w. [PMID: 40133517 DOI: 10.1038/s41587-025-02608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Transcription activator-like effector-linked deaminases (TALEDs) use their single-stranded DNA (ssDNA)-specific adenosine deaminase TadA8e to mediate A-to-G editing in mitochondrial DNA (mtDNA). The working mechanism of this process is unknown, hindering the development of more effective TALEDs. Here we reveal that TALED-mediated A-to-G editing relies on the formation of an ssDNA region through base excision repair (BER), which is triggered by double-stranded DNA-specific cytidine deaminase (DddA)-induced C-to-U deamination. We develop a series of enhanced TALEDs (eTALED6s) with increased editing efficiency by replacing DddA with the high-activity variant DddA6 and fusing human uracil DNA glycosylase to TadA8e. By further engineering TadA8e, the resulting eTALED6Rs induces efficient on-target editing with reduced bystander editing and off-target editing at the DNA and RNA levels. Lastly, we use eTALED6 and eTALED6R to install a pathogenic mutation in mtDNA. Revealing the mechanism of TALED-mediated A-to-G editing demonstrates that enhancing BER increases editing efficiency.
Collapse
Affiliation(s)
- Yuhang Fan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenchao Xu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huichao Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyi Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qingyang Ni
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lina Zhou
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangchao Xiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Fu Y, Land M, Kavlashvili T, Cui R, Kim M, DeBitetto E, Lieber T, Ryu KW, Choi E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Lareau CA, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA deletions by reconstituting end joining in human mitochondria. Cell 2025:S0092-8674(25)00194-1. [PMID: 40068680 DOI: 10.1016/j.cell.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/22/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled precise base substitutions and the efficient elimination of genomes carrying pathogenic mutations. However, reconstituting mtDNA deletions linked to mitochondrial myopathies remains challenging. Here, we engineered mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. Using mitochondrial EJ (mito-EJ) and mito-ScaI, we generated a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion across the full spectrum of heteroplasmy. Investigating these cells revealed a critical threshold of ∼75% deleted genomes, beyond which oxidative phosphorylation (OXPHOS) protein depletion, metabolic disruption, and impaired growth in galactose-containing media were observed. Single-cell multiomic profiling identified two distinct nuclear gene deregulation responses: one triggered at the deletion threshold and another progressively responding to heteroplasmy. Ultimately, we show that our method enables the modeling of disease-associated mtDNA deletions across cell types and could inform the development of targeted therapies.
Collapse
Affiliation(s)
- Yi Fu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Land
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamar Kavlashvili
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruobing Cui
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsoo Kim
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Toby Lieber
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elim Choi
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rahul Saha
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meril Takizawa
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daphne Baker
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caleb A Lareau
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
6
|
Seshadri A, Badrinarayanan A. Exonuclease action of replicative polymerase gamma drives damage-induced mitochondrial DNA clearance. EMBO Rep 2025; 26:1385-1405. [PMID: 39890960 PMCID: PMC11894172 DOI: 10.1038/s44319-025-00380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/03/2025] Open
Abstract
Mitochondrial DNA (mtDNA) replication is essential for mitochondrial function. This is carried out by a dedicated DNA polymerase gamma, with 5'-3' polymerase and 3'-5' proofreading/ exonuclease activity. Perturbations to either property can have pathological consequences. Predominant sources for replication stress are DNA lesions, such as those induced by oxidative damage. How mtDNA lesions affect the polymerase activity and mtDNA stability in vivo is not fully understood. To address this, we induce mtDNA-specific damage in S. cerevisiae. We observe that mtDNA damage results in significant mtDNA loss. This loss occurs independent of cell cycle progression or cell division, suggesting an active mechanism for damaged mtDNA clearance. We implicate the 3'-5' exonuclease activity of the mtDNA polymerase in this clearance, with rates of loss being affected by cellular dNTP levels. Overall, our findings reveal context-dependent, selective regulation of two critical but opposing functions of polymerase gamma to ensure mitochondrial genome integrity.
Collapse
Affiliation(s)
- Akshaya Seshadri
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India.
| |
Collapse
|
7
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
8
|
Dushenko MV, Abdullaev SA, Ignatov MA, Osipov AN. Comparative Study of Mitochondrial DNA Abnormalities in Mesenchymal Stem Cells after Exposure to X-Ray Radiation in Low and Medium Doses. Bull Exp Biol Med 2025; 178:541-546. [PMID: 40156742 DOI: 10.1007/s10517-025-06370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 04/01/2025]
Abstract
The effects of low- and medium-dose X-rays on mitochondrial function in mesenchymal stem (stromal) cells (MSCs) were compared. Irradiation at a dose of 80 mGy did not lead to mitochondrial disorders in MSCs by all analyzed parameters, while 24 h after irradiation at a dose of 2000 mGy, damage to mitochondrial and nuclear DNA was recorded, as well as the initiation of replicative synthesis of mitochondrial DNA involving damaged molecules, which led to an increase in the level of heteroplasmy. The increased level of mitochondrial DNA heteroplasmy after irradiation at a dose of 2000 mGy was accompanied by a decrease in the expression of genes involved in the process of oxidative phosphorylation and regulating mitochondrial dynamics.
Collapse
Affiliation(s)
- M V Dushenko
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - S A Abdullaev
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - M A Ignatov
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - A N Osipov
- N. N. Semenov Research Center of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center, Federal Medical-Biological Agency of Russia, Moscow, Russia
| |
Collapse
|
9
|
Aasumets K, Hangas A, Fragkoulis G, Bader CPJ, Erdinc D, Wanrooij S, Wanrooij PH, Goffart S, Pohjoismäki JL. MRE11-independent effects of Mirin on mitochondrial DNA integrity and cellular immune responses. Mol Biol Cell 2025; 36:ar11. [PMID: 39705374 PMCID: PMC11809308 DOI: 10.1091/mbc.e24-01-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024] Open
Abstract
Mirin, a chemical inhibitor of MRE11, has been recently reported to suppress immune response triggered by mitochondrial DNA (mtDNA) breakage and release during replication stalling. We show that while Mirin reduces mitochondrial replication fork breakage in mitochondrial 3´-exonuclease MGME1 deficient cells, this effect occurs independently of MRE11. We also discovered that Mirin directly inhibits cellular immune responses, as shown by its suppression of STAT1 phosphorylation in Poly (I:C)-treated cells. Furthermore, Mirin also altered mtDNA supercoiling and accumulation of hemicatenated replication termination intermediates-hallmarks of topoisomerase dysfunction-while mitigating topological changes induced by the overexpression of mitochondrial TOP3A, including TOP3A-dependent strand breakage at the noncoding region of mtDNA. Although Mirin does not seem to inhibit TOP3A activity in vitro, our findings demonstrate its MRE11-independent effects in cells and give insight into the mechanisms of the maintenance of mtDNA integrity.
Collapse
Affiliation(s)
- Koit Aasumets
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Georgios Fragkoulis
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Cyrielle P. J. Bader
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Direnis Erdinc
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| | - Jaakko L.O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu 80101, Finland
| |
Collapse
|
10
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
11
|
Tang J, Du K. Mitochondrial base editing: from principle, optimization to application. Cell Biosci 2025; 15:9. [PMID: 39856740 PMCID: PMC11762502 DOI: 10.1186/s13578-025-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA. In this review, we summarize the principles of mtDNA base-editing systems and elaborate on the evolution of different platforms of mtDNA base editors, including their deaminase replacement, engineering of DddAtox variants, structure optimization and editing outcomes. Finally, we highlight their applications in animal models and human embroys and discuss the future developmental direction and challenges of mtDNA base editors.
Collapse
Affiliation(s)
- Jinling Tang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
12
|
Bharadwaj A. A Review over Mitochondrial Diseases Due to mtDNA Mutations: Recent Advances and Remedial Aspects. Infect Disord Drug Targets 2025; 25:e18715265304029. [PMID: 39234902 DOI: 10.2174/0118715265304029240801092834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 09/06/2024]
Abstract
Mitochondria, also called 'powerhouse of the cell', is meant for energy generation in eukaryotic cells. This action is performed by mitochondria through the oxidative phosphorylation (OXPHOS) of the respiratory chain (RC). Based on the functioning of the cell, the number of mitochondria varies up to thousands in number. Mutations in the mitochondrial DNA (mtDNA) and/or nuclear DNA (nDNA) genes may lead to the generation of primary mitochondrial disease (PMD) that affects the structure and function of mitochondria. The diagnosis of such mitochondrial diseases occurs in early childhood and it can lead to serious, fetal and multi-organ diseases. Understanding epigenetic events and changes in the pathway can help improve the effectiveness of treatment. However, there are several reasons lack of the disease symptoms (age, sign, symptoms, morbidity and lethality), restricted availability of preclinical models along with extensive phenotypes that hamper the development of efficient drugs. Despite the introduction of new treatments and the encouraging results of treatments and therapies, there is no effective cure for PMD. This article contains information about the changes associated with cytopathic diseases that make possible the analysis of various diseases by genetic techniques. Increasing our understanding of how mitochondrial DNA mutations affect mitochondrial metabolism and subsequently result in neurodegenerative disease will prove vital to the development of targeted therapies and treatments.
Collapse
Affiliation(s)
- Alok Bharadwaj
- Department of Biotechnology, GLA University, Mathura (U.P.), India
| |
Collapse
|
13
|
Yu S, Lu X, Li C, Han Z, Li Y, Zhang X, Guo D. TFAM and Mitochondrial Protection in Diabetic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:4355-4365. [PMID: 39588133 PMCID: PMC11586499 DOI: 10.2147/dmso.s487815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic kidney disease (DKD) is a significant complication of diabetes and a major cause of end-stage renal disease. Affecting around 40% of diabetic patients, DKD poses substantial economic burdens due to its prevalence worldwide. The primary clinical features of DKD include the leakage of proteins into the urine, altered glomerular filtration, and an increased risk of cardiovascular diseases. Current treatments focus on managing hypertension and hyperglycemia to slow the progression of DKD. These include the use of SGLT2 inhibitors to control blood sugar and ACE inhibitors to reduce blood pressure. Despite these measures, current treatments do not cure DKD and fail to address its underlying causes. Emerging research highlights mitochondrial dysfunction as a pivotal factor in DKD progression. The kidneys' high energy requirements make them particularly susceptible to disturbances in mitochondrial function. In DKD, mitochondrial damage leads to reduced energy production and increased oxidative stress, exacerbating tissue damage. Mitochondrial DNA (mtDNA) damage is a key aspect of this dysfunction, with studies suggesting that changes in mtDNA copy number can serve as biomarkers for the progression of the disease. Efforts to target mitochondrial dysfunction are gaining traction as a potential therapeutic strategy. This includes promoting mitochondrial health through pharmacological and lifestyle interventions aimed at enhancing mitochondrial function and reducing oxidative stress. Such approaches could lead to more effective treatments that directly address the DKD.
Collapse
Affiliation(s)
- Siming Yu
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xinxin Lu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chunsheng Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zehui Han
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xianlong Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dandan Guo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
14
|
Chiu HP, Shen CH, Wu JK, Mao EC, Yen HY, Chang YP, Wu CC, Fan HF. Nuclease-induced stepwise photodropping (NISP) to precisely investigate single-stranded DNA degradation behaviors of exonucleases and endonucleases. Nucleic Acids Res 2024; 52:e97. [PMID: 39351870 PMCID: PMC11551736 DOI: 10.1093/nar/gkae822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
Here, we employed a fluorescence-based single molecule method called nuclease-induced stepwise photodropping (NISP) to measure in real time the DNA degradation mediated by mitochondrial genome maintenance exonuclease 1 (MGME1), a bidirectional single-stranded DNA (ssDNA)-specific exonuclease. The method detects a stepwise decrease in fluorescence signals from Cy3 fluorophores labeled on an immobilized DNA substrate. Using NISP, we successfully determined the DNA degradation rates of 6.3 ± 0.4 and 2.0 ± 0.1 nucleotides (nt) s-1 for MGME1 in the 5'-to-3' and 3'-to-5' directions, respectively. These results provide direct evidence of the stronger 5' directionality of MGME1, consistent with its established role in mitochondrial DNA maintenance. Importantly, when we employed NISP to investigate mung bean nuclease, an ss-specific endonuclease, we observed a markedly different NISP pattern, suggesting a distributive cleavage activity of the enzyme. Furthermore, we applied NISP to determine the ssDNA degradation behavior of the double-stranded-specific exonuclease, λ exonuclease. These findings underscore the capability of NISP to accurately and reliably measure the degradation of ssDNA by both exo- and endonucleases. Here, we demonstrate NISP as a powerful tool for investigating the ssDNA degradation behavior of nucleases at the single-molecule level.
Collapse
Affiliation(s)
- Hui-Pin Chiu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chung-Han Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Jan-Kai Wu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Eric Y C Mao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| |
Collapse
|
15
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Fu Y, Land M, Cui R, Kavlashvili T, Kim M, Lieber T, Ryu KW, DeBitetto E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA Deletions by Reconstituting End-Joining in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618543. [PMID: 39463974 PMCID: PMC11507875 DOI: 10.1101/2024.10.15.618543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of ∼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
Collapse
|
17
|
Mikhailov N, Hämäläinen RH. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Ann Biomed Eng 2024; 52:2627-2640. [PMID: 36001180 PMCID: PMC11329604 DOI: 10.1007/s10439-022-03051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Mitochondria, mainly known as energy factories of eukaryotic cells, also exert several additional signaling and metabolic functions and are today recognized as major cellular biosynthetic and signaling hubs. Mitochondria possess their own genome (mitochondrial DNA-mtDNA), that encodes proteins essential for oxidative phosphorylation, and mutations in it are an important contributor to human disease. The mtDNA mutations often exist in heteroplasmic conditions, with both healthy and mutant versions of the mtDNA residing in patients' cells and the level of mutant mtDNA may vary between different tissues and organs and affect the clinical outcome of the disease. Thus, shifting the ratio between healthy and mutant mtDNA in patients' cells provides an intriguing therapeutic option for mtDNA diseases. In this review we describe current strategies for modulating mitochondrial heteroplasmy levels with engineered endonucleases including mitochondrially targeted TALENs and Zinc finger nucleases (ZFNs) and discuss their therapeutic potential. These gene therapy tools could in the future provide therapeutic help both for patients with mitochondrial disease as well as in preventing the transfer of pathogenic mtDNA mutations from a mother to her offspring.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
18
|
Shi LD, West-Roberts J, Schoelmerich MC, Penev PI, Chen L, Amano Y, Lei S, Sachdeva R, Banfield JF. Methanotrophic Methanoperedens archaea host diverse and interacting extrachromosomal elements. Nat Microbiol 2024; 9:2422-2433. [PMID: 38918468 DOI: 10.1038/s41564-024-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
Methane emissions are mitigated by anaerobic methane-oxidizing archaea, including Methanoperedens. Some Methanoperedens host huge extrachromosomal genetic elements (ECEs) called Borgs that may modulate their activity, yet the broader diversity of Methanoperedens ECEs is understudied. Here we report small enigmatic linear ECEs, circular viruses and unclassified ECEs that are predicted to replicate within Methanoperedens. Linear ECEs have inverted terminal repeats, tandem repeats and coding patterns that are strongly reminiscent of Borgs, but they are only 52-145 kb in length. As they share proteins with Borgs and Methanoperedens, we refer to them as mini-Borgs. Mini-Borgs are genetically diverse and can be assigned to at least five family-level groups. We identify eight families of Methanoperedens viruses, some of which encode multi-haem cytochromes, and circular ECEs encoding transposon-associated TnpB genes with proximal population-heterogeneous CRISPR arrays. These ECEs exchange genetic information with each other and with Methanoperedens, probably impacting their archaeal host activity and evolution.
Collapse
Affiliation(s)
- Ling-Dong Shi
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Systems Sciences, ETH Zurich, Zurich, Switzerland
| | - Petar I Penev
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - LinXing Chen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Yuki Amano
- Sector of Decommissioning and Radioactive Wastes Management, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Shufei Lei
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
- Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Zhang X, Yi Z, Tang W, Wei W. Streamlined process for effective and strand-selective mitochondrial base editing using mitoBEs. BIOPHYSICS REPORTS 2024; 10:191-200. [PMID: 39281197 PMCID: PMC11399887 DOI: 10.52601/bpr.2024.240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 09/18/2024] Open
Abstract
Mitochondrial base editing tools hold great promise for the investigation and treatment of mitochondrial diseases. Mitochondrial DNA base editors (mitoBEs) integrate a programmable transcription-activator-like effector (TALE) protein with single-stranded DNA deaminase (TadA8e-V106W, APOBEC1, etc.) and nickase (MutH, Nt.BspD6I(C), etc.) to achieve heightened precision and efficiency in mitochondrial base editing. This innovative mitochondrial base editing tool exhibits a number of advantages, including strand-selectivity for editing, high efficiency, and the capacity to perform diverse types of base editing on the mitochondrial genome by employing various deaminases. In this context, we provide a detailed experimental protocol for mitoBEs to assist others in achieving proficient mitochondrial base editing.
Collapse
Affiliation(s)
| | - Zongyi Yi
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Tang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Wensheng Wei
- Changping Laboratory, Beijing 102206, China
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Waneka G, Stewart J, Anderson JR, Li W, Wilusz J, Argueso JL, Sloan DB. UV damage induces production of mitochondrial DNA fragments with specific length profiles. Genetics 2024; 227:iyae070. [PMID: 38722894 PMCID: PMC11228841 DOI: 10.1093/genetics/iyae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
UV light is a potent mutagen that induces bulky DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Photodamage and other bulky lesions occurring in nuclear genomes can be repaired through nucleotide excision repair (NER), where incisions on both sides of a damaged site precede the removal of a single-stranded oligonucleotide containing the damage. Mitochondrial genomes (mtDNAs) are also susceptible to damage from UV light, but current evidence suggests that the only way to eliminate bulky mtDNA damage is through mtDNA degradation. Damage-containing oligonucleotides excised during NER can be captured with antidamage antibodies and sequenced (XR-seq) to produce high-resolution maps of active repair locations following UV exposure. We analyzed previously published datasets from Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster to identify reads originating from the mtDNA (and plastid genome in A. thaliana). In A. thaliana and S. cerevisiae, the mtDNA-mapping reads have unique length distributions compared to the nuclear-mapping reads. The dominant fragment size was 26 nt in S. cerevisiae and 28 nt in A. thaliana with distinct secondary peaks occurring in regular intervals. These reads also show a nonrandom distribution of di-pyrimidines (the substrate for CPD formation) with TT enrichment at positions 7-8 of the reads. Therefore, UV damage to mtDNA appears to result in production of DNA fragments of characteristic lengths and positions relative to the damaged location. The mechanisms producing these fragments are unclear, but we hypothesize that they result from a previously uncharacterized DNA degradation pathway or repair mechanism in mitochondria.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins 80521, CO, USA
| | - Joseph Stewart
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins 80521, CO, USA
| | - Wentao Li
- Department of Environmental Health Science, University of Georgia, Athens 30602, GA, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins 80521, CO, USA
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins 80521, CO, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins 80521, CO, USA
| |
Collapse
|
21
|
Bernardino Gomes TM, Vincent AE, Menger KE, Stewart JB, Nicholls TJ. Mechanisms and pathologies of human mitochondrial DNA replication and deletion formation. Biochem J 2024; 481:683-715. [PMID: 38804971 PMCID: PMC11346376 DOI: 10.1042/bcj20230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Human mitochondria possess a multi-copy circular genome, mitochondrial DNA (mtDNA), that is essential for cellular energy metabolism. The number of copies of mtDNA per cell, and their integrity, are maintained by nuclear-encoded mtDNA replication and repair machineries. Aberrant mtDNA replication and mtDNA breakage are believed to cause deletions within mtDNA. The genomic location and breakpoint sequences of these deletions show similar patterns across various inherited and acquired diseases, and are also observed during normal ageing, suggesting a common mechanism of deletion formation. However, an ongoing debate over the mechanism by which mtDNA replicates has made it difficult to develop clear and testable models for how mtDNA rearrangements arise and propagate at a molecular and cellular level. These deletions may impair energy metabolism if present in a high proportion of the mtDNA copies within the cell, and can be seen in primary mitochondrial diseases, either in sporadic cases or caused by autosomal variants in nuclear-encoded mtDNA maintenance genes. These mitochondrial diseases have diverse genetic causes and multiple modes of inheritance, and show notoriously broad clinical heterogeneity with complex tissue specificities, which further makes establishing genotype-phenotype relationships challenging. In this review, we aim to cover our current understanding of how the human mitochondrial genome is replicated, the mechanisms by which mtDNA replication and repair can lead to mtDNA instability in the form of large-scale rearrangements, how rearranged mtDNAs subsequently accumulate within cells, and the pathological consequences when this occurs.
Collapse
Affiliation(s)
- Tiago M. Bernardino Gomes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- NHS England Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - James B. Stewart
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| |
Collapse
|
22
|
Liu H, Zhen C, Xie J, Luo Z, Zeng L, Zhao G, Lu S, Zhuang H, Fan H, Li X, Liu Z, Lin S, Jiang H, Chen Y, Cheng J, Cao Z, Dai K, Shi J, Wang Z, Hu Y, Meng T, Zhou C, Han Z, Huang H, Zhou Q, He P, Feng D. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat Cell Biol 2024; 26:878-891. [PMID: 38783142 DOI: 10.1038/s41556-024-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huaihe Hospital of Henan University, Kaifeng City, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Cien Zhen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Jianming Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhenhuan Luo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lin Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Xia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huilin Jiang
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqian Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiahao Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Keyu Dai
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaohua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tian Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuchu Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Han
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinghua Zhou
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, Heyuan, China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
23
|
Yu C, Asadian S, Tigano M. Molecular and cellular consequences of mitochondrial DNA double-stranded breaks. Hum Mol Genet 2024; 33:R12-R18. [PMID: 38779775 PMCID: PMC11112379 DOI: 10.1093/hmg/ddae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are subcellular organelles essential for life. Beyond their role in producing energy, mitochondria govern various physiological mechanisms, encompassing energy generation, metabolic processes, apoptotic events, and immune responses. Mitochondria also contain genetic material that is susceptible to various forms of damage. Mitochondrial double-stranded breaks (DSB) are toxic lesions that the nucleus repairs promptly. Nevertheless, the significance of DSB repair in mammalian mitochondria is controversial. This review presents an updated view of the available research on the consequences of mitochondrial DNA DSB from the molecular to the cellular level. We discuss the crucial function of mitochondrial DNA damage in regulating processes such as senescence, integrated stress response, and innate immunity. Lastly, we discuss the potential role of mitochondrial DNA DSB in mediating the cellular consequences of ionizing radiations, the standard of care in treating solid tumors.
Collapse
Affiliation(s)
- Chenxiao Yu
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107, United States
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, 199 Renai Road, Suzhou 215123, China
| | - Samieh Asadian
- Tehran University of Medical Sciences, Pour Sina St, Tehran 1416634793, Iran
| | - Marco Tigano
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia 19107, United States
| |
Collapse
|
24
|
Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31:209-223. [PMID: 38177342 DOI: 10.1038/s41434-023-00434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Department of Animal Science, Isfahan Branch, Islamic Azad University (IAU), Isfahan, Iran.
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| | - Clancy Lawler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Germany
- eGenesis, 2706 HWY E, 53572, Mount Horeb, WI, USA
| | - Raul A Hajiyev
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Department of Computer Science, Kent State University, Kent, OH, USA
| | - Steve R Bischoff
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Foundry for Genome Engineering & Reproductive Medicine (FGERM), Miami, FL, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
25
|
Mao EYC, Yen HY, Wu CC. Structural basis of how MGME1 processes DNA 5' ends to maintain mitochondrial genome integrity. Nucleic Acids Res 2024; 52:4067-4078. [PMID: 38471810 DOI: 10.1093/nar/gkae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial genome maintenance exonuclease 1 (MGME1) helps to ensure mitochondrial DNA (mtDNA) integrity by serving as an ancillary 5'-exonuclease for DNA polymerase γ. Curiously, MGME1 exhibits unique bidirectionality in vitro, being capable of degrading DNA from either the 5' or 3' end. The structural basis of this bidirectionally and, particularly, how it processes DNA from the 5' end to assist in mtDNA maintenance remain unclear. Here, we present a crystal structure of human MGME1 in complex with a 5'-overhang DNA, revealing that MGME1 functions as a rigid DNA clamp equipped with a single-strand (ss)-selective arch, allowing it to slide on single-stranded DNA in either the 5'-to-3' or 3'-to-5' direction. Using a nuclease activity assay, we have dissected the structural basis of MGME1-derived DNA cleavage patterns in which the arch serves as a ruler to determine the cleavage site. We also reveal that MGME1 displays partial DNA-unwinding ability that helps it to better resolve 5'-DNA flaps, providing insights into MGME1-mediated 5'-end processing of nascent mtDNA. Our study builds on previously solved MGME1-DNA complex structures, finally providing the comprehensive functional mechanism of this bidirectional, ss-specific exonuclease.
Collapse
Affiliation(s)
- Eric Y C Mao
- Department of Chemistry, College of Science, National Cheng Kung University, Tainan City 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
26
|
Fragkoulis G, Hangas A, Fekete Z, Michell C, Moraes C, Willcox S, Griffith JD, Goffart S, Pohjoismäki JO. Linear DNA-driven recombination in mammalian mitochondria. Nucleic Acids Res 2024; 52:3088-3105. [PMID: 38300793 PMCID: PMC11014290 DOI: 10.1093/nar/gkae040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.
Collapse
Affiliation(s)
- Georgios Fragkoulis
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Anu Hangas
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Zsófia Fekete
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Doctoral School of Animal Biotechnology and Animal Science, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Craig Michell
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami,FL, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
27
|
Qiu J, Wu H, Xie Q, Zhou Y, Gao Y, Liu J, Jiang X, Suo L, Kuang Y. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner. Front Bioeng Biotechnol 2024; 12:1372211. [PMID: 38655388 PMCID: PMC11035818 DOI: 10.3389/fbioe.2024.1372211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction: Mitochondrial diseases caused by mtDNA have no effective cures. Recently developed DddA-derived cytosine base editors (DdCBEs) have potential therapeutic implications in rescuing the mtDNA mutations. However, the performance of DdCBEs relies on designing different targets or improving combinations of split-DddA halves and orientations, lacking knowledge of predicting the results before its application. Methods: A series of DdCBE pairs for wide ranges of aC or tC targets was constructed, and transfected into Neuro-2a cells. The mutation rate of targets was compared to figure out the potential editing rules. Results: It is found that DdCBEs mediated mtDNA editing is predictable: 1) aC targets have a concentrated editing window for mtDNA editing in comparison with tC targets, which at 5'C8-11 (G1333) and 5'C10-13 (G1397) for aC target, while 5'C4-13 (G1333) and 5'C5-14 (G1397) for tC target with 16bp spacer. 2) G1333 mediated C>T conversion at aC targets in DddA-half-specific manner, while G1333 and G1397 mediated C>T conversion are DddA-half-prefer separately for tC and aC targets. 3) The nucleotide adjacent to the 3' end of aC motif affects mtDNA editing. Finally, by the guidance of these rules, a cell model harboring a pathogenic mtDNA mutation was constructed with high efficiency and no bystander effects. Discussion: In summary, this discovery helps us conceive the optimal strategy for accurate mtDNA editing, avoiding time- and effort-consuming optimized screening jobs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Gonzalez CD, Nissanka N, Van Booven D, Griswold AJ, Moraes CT. Absence of both MGME1 and POLG EXO abolishes mtDNA whereas absence of either creates unique mtDNA duplications. J Biol Chem 2024; 300:107128. [PMID: 38432635 PMCID: PMC11002302 DOI: 10.1016/j.jbc.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.
Collapse
Affiliation(s)
- Christian D Gonzalez
- MSTP and MCDB Programs, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
29
|
Worrapitirungsi W, Sathirapatya T, Sukawutthiya P, Vongpaisarnsin K, Varrathyarom P. Assessing the feasibility of free DNA for disaster victim identification and forensic applications. Sci Rep 2024; 14:5411. [PMID: 38443390 PMCID: PMC10914783 DOI: 10.1038/s41598-024-53040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
In tropical disaster victim identification (DVI) scenarios, challenging environmental conditions lead to accelerated DNA degradation in remains. To further enhance the utilization of leached DNA from tissue in the preservative solution (termed "free DNA") as an alternative source, we incorporated new results by assessing its integrity in postmortem and decomposing cadavers preserved in DNA/RNA Shield™ and modified TENT, with silica-based purification (QIAquick®) for faster processing. The psoas muscle tissues of one decomposed and ten cadavers were preserved in each solution at 25 °C and 35 °C for 3 months. Free DNA efficiency was compared with individual reference samples for reliable results in quantity, quality, and STR profiles. The findings revealed that DNA/RNA Shield™ effectively preserves free DNA integrity for extended storage, while modified TENT is more suitable for short-term storage due to higher degradation levels. Moreover, the use of free DNA samples with massive parallel sequencing displays potential for forensic DNA analysis. Successful amplification of the mtDNA control region enables variant calling and heteroplasmy analysis while also serving as quality control using ACTB and enabling differentiation within the 16S rRNA region for microbiome analysis. The simplicity of handling free DNA for PCR-based forensic analysis adds to its potential for various applications, including DVI and field-based analysis of biological evidence.
Collapse
Affiliation(s)
- Wikanda Worrapitirungsi
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| | - Pagparpat Varrathyarom
- Forensic Genetics Research Unit, Ratchadapiseksompotch Fund, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
30
|
Yi Z, Zhang X, Tang W, Yu Y, Wei X, Zhang X, Wei W. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat Biotechnol 2024; 42:498-509. [PMID: 37217751 PMCID: PMC10940147 DOI: 10.1038/s41587-023-01791-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
A number of mitochondrial diseases in humans are caused by point mutations that could be corrected by base editors, but delivery of CRISPR guide RNAs into the mitochondria is difficult. In this study, we present mitochondrial DNA base editors (mitoBEs), which combine a transcription activator-like effector (TALE)-fused nickase and a deaminase for precise base editing in mitochondrial DNA. Combining mitochondria-localized, programmable TALE binding proteins with the nickase MutH or Nt.BspD6I(C) and either the single-stranded DNA-specific adenine deaminase TadA8e or the cytosine deaminase ABOBEC1 and UGI, we achieve A-to-G or C-to-T base editing with up to 77% efficiency and high specificity. We find that mitoBEs are DNA strand-selective mitochondrial base editors, with editing results more likely to be retained on the nonnicked DNA strand. Furthermore, we correct pathogenic mitochondrial DNA mutations in patient-derived cells by delivering mitoBEs encoded in circular RNAs. mitoBEs offer a precise, efficient DNA editing tool with broad applicability for therapy in mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Zongyi Yi
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
- Changping Laboratory, Beijing, P.R. China
| | - Xiaoxue Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Wei Tang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
| | - Xiaoxu Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P.R. China
| | - Xue Zhang
- Changping Laboratory, Beijing, P.R. China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
- Changping Laboratory, Beijing, P.R. China.
| |
Collapse
|
31
|
Nikitchina N, Ulashchik E, Shmanai V, Heckel AM, Tarassov I, Mazunin I, Entelis N. Targeting of CRISPR-Cas12a crRNAs into human mitochondria. Biochimie 2024; 217:74-85. [PMID: 37690471 DOI: 10.1016/j.biochi.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Mitochondrial gene editing holds great promise as a therapeutic approach for mitochondrial diseases caused by mutations in the mitochondrial DNA (mtDNA). Current strategies focus on reducing mutant mtDNA heteroplasmy levels through targeted cleavage or base editing. However, the delivery of editing components into mitochondria remains a challenge. Here we investigate the import of CRISPR-Cas12a system guide RNAs (crRNAs) into human mitochondria and study the structural requirements for this process by northern blot analysis of RNA isolated from nucleases-treated mitoplasts. To investigate whether the fusion of crRNA with known RNA import determinants (MLS) improve its mitochondrial targeting, we added MLS hairpin structures at 3'-end of crRNA and demonstrated that this did not impact crRNA ability to program specific cleavage of DNA in lysate of human cells expressing AsCas12a nuclease. Surprisingly, mitochondrial localization of the fused crRNA molecules was not improved compared to non-modified version, indicating that structured scaffold domain of crRNA can probably function as MLS, assuring crRNA mitochondrial import. Then, we designed a series of crRNAs targeting different regions of mtDNA and demonstrated their ability to program specific cleavage of mtDNA fragments in cell lysate and their partial localization in mitochondrial matrix in human cells transfected with these RNA molecules. We hypothesize that mitochondrial import of crRNAs may depend on their secondary structure/sequence. We presume that imported crRNA allow reconstituting the active crRNA/Cas12a system in human mitochondria, which can contribute to the development of effective strategies for mitochondrial gene editing and potential future treatment of mitochondrial diseases.
Collapse
Affiliation(s)
- Natalia Nikitchina
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Egor Ulashchik
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - Anne-Marie Heckel
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ivan Tarassov
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nina Entelis
- UMR7156 - Molecular Genetics, Genomics, Microbiology, University of Strasbourg, Strasbourg, 67000, France.
| |
Collapse
|
32
|
Lim K. Mitochondrial genome editing: strategies, challenges, and applications. BMB Rep 2024; 57:19-29. [PMID: 38178652 PMCID: PMC10828433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA), a multicopy genome found in mitochondria, is crucial for oxidative phosphorylation. Mutations in mtDNA can lead to severe mitochondrial dysfunction in tissues and organs with high energy demand. MtDNA mutations are closely associated with mitochondrial and age-related disease. To better understand the functional role of mtDNA and work toward developing therapeutics, it is essential to advance technology that is capable of manipulating the mitochondrial genome. This review discusses ongoing efforts in mitochondrial genome editing with mtDNA nucleases and base editors, including the tools, delivery strategies, and applications. Future advances in mitochondrial genome editing to address challenges regarding their efficiency and specificity can achieve the promise of therapeutic genome editing. [BMB Reports 2024; 57(1): 19-29].
Collapse
Affiliation(s)
- Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
33
|
Gao Y, Guo L, Wang F, Wang Y, Li P, Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review. Cytotherapy 2024; 26:11-24. [PMID: 37930294 DOI: 10.1016/j.jcyt.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.
Collapse
Affiliation(s)
- Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linlin Guo
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
34
|
Keshavan N, Minczuk M, Viscomi C, Rahman S. Gene therapy for mitochondrial disorders. J Inherit Metab Dis 2024; 47:145-175. [PMID: 38171948 DOI: 10.1002/jimd.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.
Collapse
Affiliation(s)
- Nandaki Keshavan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Shamima Rahman
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
35
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
36
|
Shoop WK, Lape J, Trum M, Powell A, Sevigny E, Mischler A, Bacman SR, Fontanesi F, Smith J, Jantz D, Gorsuch CL, Moraes CT. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab 2023; 5:2169-2183. [PMID: 38036771 PMCID: PMC10730414 DOI: 10.1038/s42255-023-00932-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Nuclease-mediated editing of heteroplasmic mitochondrial DNA (mtDNA) seeks to preferentially cleave and eliminate mutant mtDNA, leaving wild-type genomes to repopulate the cell and shift mtDNA heteroplasmy. Various technologies are available, but many suffer from limitations based on size and/or specificity. The use of ARCUS nucleases, derived from naturally occurring I-CreI, avoids these pitfalls due to their small size, single-component protein structure and high specificity resulting from a robust protein-engineering process. Here we describe the development of a mitochondrial-targeted ARCUS (mitoARCUS) nuclease designed to target one of the most common pathogenic mtDNA mutations, m.3243A>G. mitoARCUS robustly eliminated mutant mtDNA without cutting wild-type mtDNA, allowing for shifts in heteroplasmy and concomitant improvements in mitochondrial protein steady-state levels and respiration. In vivo efficacy was demonstrated using a m.3243A>G xenograft mouse model with mitoARCUS delivered systemically by adeno-associated virus. Together, these data support the development of mitoARCUS as an in vivo gene-editing therapeutic for m.3243A>G-associated diseases.
Collapse
Affiliation(s)
- Wendy K Shoop
- Precision BioSciences, Durham, NC, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | - Sandra R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
37
|
Heo J, Park YJ, Kim Y, Lee HS, Kim J, Kwon SH, Kang MG, Rhee HW, Sun W, Lee JH, Cho H. Mitochondrial E3 ligase MARCH5 is a safeguard against DNA-PKcs-mediated immune signaling in mitochondria-damaged cells. Cell Death Dis 2023; 14:788. [PMID: 38040710 PMCID: PMC10692114 DOI: 10.1038/s41419-023-06315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is important in various chronic degenerative disorders, and aberrant immune responses elicited by cytoplasmic mitochondrial DNA (mtDNA) may be related. Here, we developed mtDNA-targeted MTERF1-FokI and TFAM-FokI endonuclease systems to induce mitochondrial DNA double-strand breaks (mtDSBs). In these cells, the mtDNA copy number was significantly reduced upon mtDSB induction. Interestingly, in cGAS knockout cells, synthesis of interferon β1 and interferon-stimulated gene was increased upon mtDSB induction. We found that mtDSBs activated DNA-PKcs and HSPA8 in a VDAC1-dependent manner. Importantly, the mitochondrial E3 ligase MARCH5 bound active DNA-PKcs in cells with mtDSBs and reduced the type І interferon response through the degradation of DNA-PKcs. Likewise, mitochondrial damage caused by LPS treatment in RAW264.7 macrophage cells increased phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA in a DNA-PKcs-dependent manner. Accordingly, in March5 knockout macrophages, phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA were prolonged after LPS stimulation. Together, cytoplasmic mtDNA elicits a cellular immune response through DNA-PKcs, and mitochondrial MARCH5 may be a safeguard to prevent persistent inflammatory reactions.
Collapse
Affiliation(s)
- June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Jeongah Kim
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Soon-Hwan Kwon
- Department of Infectious Diseases, Research Center of Infectious and Environmental Diseases, Armed Forces Medical Research Institute, Daejeon, South Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea.
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
38
|
Tang Y, Cui J, Wang X, Yang Q, Yue Y, Gao C, Wang Y, Wang W, Zhang S, Tian J, Xi G, An L. "Meiosis arrester" C-natriuretic peptide directly stimulates oocyte mtDNA accumulation and is implicated in aging-associated oocyte mtDNA loss. FASEB J 2023; 37:e23295. [PMID: 37984844 DOI: 10.1096/fj.202300886r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/30/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
C-natriuretic peptide (CNP) is the central regulator of oocyte meiosis progression, thus coordinating synchronization of oocyte nuclear-cytoplasmic maturation. However, whether CNP can independently regulate cytoplasmic maturation has been long overlooked. Mitochondrial DNA (mtDNA) accumulation is the hallmark event of cytoplasmic maturation, but the mechanism underlying oocyte mtDNA replication remains largely elusive. Herein, we report that CNP can directly stimulate oocyte mtDNA replication at GV stage, and deficiency of follicular CNP may contribute largely to lower mtDNA copy number in in vitro matured oocytes. The mechanistic study showed that cAMP-PKA-CREB1 signaling cascade underlies the regulatory role of CNP in stimulating mtDNA replication and upregulating related genes. Of interest, we also report that CNP-NPR2 signaling is inhibited in aging follicles, and this inhibition is implicated in lower mtDNA copy number in oocytes from aging females. Together, our study provides the first direct functional link between follicular CNP and oocyte mtDNA replication, and identifies its involvement in aging-associated mtDNA loss in oocytes. These findings, not only update the current knowledge of the functions of CNP in coordinating oocyte maturation but also present a promising strategy for improving in vitro fertilization outcomes of aging females.
Collapse
Affiliation(s)
- Yawen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianying Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuan Yue
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunxiao Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenjing Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianhui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guangyin Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Li Y, Wu Y, Xu R, Guo J, Quan F, Zhang Y, Huang D, Pei Y, Gao H, Liu W, Liu J, Zhang Z, Deng R, Shi J, Zhang K. In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor. Nat Commun 2023; 14:7722. [PMID: 38001092 PMCID: PMC10673915 DOI: 10.1038/s41467-023-43552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) play critical roles in many human diseases. In vivo visualization of cells bearing mtDNA mutations is important for resolving the complexity of these diseases, which remains challenging. Here we develop an integrated nano Cas12a sensor (InCasor) and show its utility for efficient imaging of mtDNA mutations in live cells and tumor-bearing mouse models. We co-deliver Cas12a/crRNA, fluorophore-quencher reporters and Mg2+ into mitochondria. This process enables the activation of Cas12a's trans-cleavage by targeting mtDNA, which efficiently cleave reporters to generate fluorescent signals for robustly sensing and reporting single-nucleotide variations (SNVs) in cells. Since engineered crRNA significantly increase Cas12a's sensitivity to mismatches in mtDNA, we can identify tumor tissue and metastases by visualizing cells with mutant mtDNAs in vivo using InCasor. This CRISPR imaging nanoprobe holds potential for applications in mtDNA mutation-related basic research, diagnostics and gene therapies.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongyuan Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ruijie Deng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Fu Y, Sacco O, DeBitetto E, Kanshin E, Ueberheide B, Sfeir A. Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol Cell 2023; 83:3740-3753.e9. [PMID: 37832546 PMCID: PMC11229056 DOI: 10.1016/j.molcel.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.
Collapse
Affiliation(s)
- Yi Fu
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU School of Medicine, New York, NY 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
41
|
Czarny P, Ziółkowska S, Kołodziej Ł, Watała C, Wigner-Jeziorska P, Bliźniewska-Kowalska K, Wachowska K, Gałecka M, Synowiec E, Gałecki P, Bijak M, Szemraj J, Śliwiński T. Single-Nucleotide Polymorphisms in Genes Maintaining the Stability of Mitochondrial DNA Affect the Occurrence, Onset, Severity and Treatment of Major Depressive Disorder. Int J Mol Sci 2023; 24:14752. [PMID: 37834200 PMCID: PMC10573273 DOI: 10.3390/ijms241914752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Łukasz Kołodziej
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | | | - Katarzyna Wachowska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| |
Collapse
|
42
|
Yang D, Mu Y, Wang J, Zou W, Zou H, Yang H, Zhang C, Fan Y, Zhang H, Zhang H, Chen B, Zhang Z. Melatonin enhances the developmental potential of immature oocytes from older reproductive-aged women by improving mitochondrial function. Heliyon 2023; 9:e19366. [PMID: 37681148 PMCID: PMC10480597 DOI: 10.1016/j.heliyon.2023.e19366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Aims To evaluate whether melatonin (MT) supplementation during in vitro maturation (IVM) of human oocytes can reverse the age-related decline in oocyte quality. Main methods We enrolled 172 patients aged ≥35 years (older reproductive-aged women) and 83 patients aged <35 years (young women) who underwent in vitro fertilization between 2019 and 2022. We conducted IVM with and without 10 μM MT in immature oocytes of different ages. Oocyte fertilization and embryo development were observed using a stereomicroscope. We assessed the immunofluorescence intensity of mitochondrial function, measured the copy number of mitochondrial DNA (mtDNA), and examined the spindle and chromosome composition in in vitro mature stage II (IVM-MII) oocytes using immunofluorescence and second-generation sequencing. Key findings MT supplementation significantly improved the redox level in the IVM medium and IVM-MII oocytes in older reproductive-aged women. It also significantly increased the proportion of circular mtDNA and the adenosine triphosphate content in IVM-MII oocytes. In addition, the IVM-MII oocytes obtained with MT supplementation showed a significant improvement in the normal composition of the spindle and chromosomes. Thus, the aged immature oocytes also showed significantly improved maturation and blastocyst formation rates owing to the role of MT. Significance Supplementation with 10 μM MT in the IVM medium reverses the age-related decline in oocyte quality. Our findings provide a viable solution for enhancing fertility in older reproductive-aged women.
Collapse
Affiliation(s)
- Dandan Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jing Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Huijuan Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Han Yang
- Obstetrics and Gynaecology Hospital of Fudan University, 413 Zhaozhou Road, Huangpu District, 200000, Shanghai, China
| | - Chao Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Yongqi Fan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Heng Zhang
- Hefei No 1 High School, 2356 Xizang Road, Hefei, 230032, Anhui, China
| | - Huan Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.81Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No.81Meishan Road, Hefei, 230032, Anhui, China
| |
Collapse
|
43
|
Liu M, Ji W, Zhao X, Liu X, Hu JF, Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim Biophys Acta Mol Basis Dis 2023:166804. [PMID: 37429560 DOI: 10.1016/j.bbadis.2023.166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Wei Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xin Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiaoliang Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
44
|
Chang Y, Liu B, Jiang Y, Cao D, Liu Y, Li Y. Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco. Funct Integr Genomics 2023; 23:205. [PMID: 37335501 DOI: 10.1007/s10142-023-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Genome editing has become more and more popular in animal and plant systems following the emergence of CRISPR/Cas9 technology. However, target sequence modification by CRISPR/Cas9 has not been reported in the plant mitochondrial genome, mtDNA. In plants, a type of male sterility known as cytoplasmic male sterility (CMS) has been associated with certain mitochondrial genes, but few genes have been confirmed by direct mitochondrial gene-targeted modifications. Here, the CMS-associated gene (mtatp9) in tobacco was cleaved using mitoCRISPR/Cas9 with a mitochondrial localization signal. The male-sterile mutant, with aborted stamens, exhibited only 70% of the mtDNA copy number of the wild type and exhibited an altered percentage of heteroplasmic mtatp9 alleles; otherwise, the seed setting rate of the mutant flowers was zero. Transcriptomic analyses showed that glycolysis, tricarboxylic acid cycle metabolism and the oxidative phosphorylation pathway, which are all related to aerobic respiration, were inhibited in stamens of the male-sterile gene-edited mutant. In addition, overexpression of the synonymous mutations dsmtatp9 could restore fertility to the male-sterile mutant. Our results strongly suggest that mutation of mtatp9 causes CMS and that mitoCRISPR/Cas9 can be used to modify the mitochondrial genome of plants.
Collapse
Affiliation(s)
- Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Jiang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Academy of Agriculture and Forestry Science, Qinghai University, Xining, 810008, Qinghai, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongju Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Zhao W, Xu W, Tang J, Kaushik S, Chang CEA, Zhao L. Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions. ACS Chem Biol 2023; 18:1168-1179. [PMID: 36930463 PMCID: PMC10198963 DOI: 10.1021/acschembio.3c00047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Human mitochondrial DNA (mtDNA) encodes 37 essential genes and plays a critical role in mitochondrial and cellular functions. mtDNA is susceptible to damage by endogenous and exogenous chemicals. Damaged mtDNA molecules are counteracted by the redundancy, repair, and degradation of mtDNA. In response to difficult-to-repair or excessive amounts of DNA lesions, mtDNA degradation is a crucial mitochondrial genome maintenance mechanism. Nevertheless, the molecular basis of mtDNA degradation remains incompletely understood. Recently, mitochondrial transcription factor A (TFAM) has emerged as a factor in degrading damaged mtDNA containing abasic (AP) sites. TFAM has AP-lyase activity, which cleaves DNA at AP sites. Human TFAM and its homologs contain a higher abundance of Glu than that of the proteome. To decipher the role of Glu in TFAM-catalyzed AP-DNA cleavage, we constructed TFAM variants and used biochemical assays, kinetic simulations, and molecular dynamics (MD) simulations to probe the functional importance of E187 near a key residue K186. Our previous studies showed that K186 is a primary residue to cleave AP-DNA via Schiff base chemistry. Here, we demonstrate that E187 facilitates β-elimination, key to AP-DNA strand scission. MD simulations showed that extrahelical confirmation of the AP lesion and the flexibility of E187 in TFAM-DNA complexes facilitate AP-lyase reactions. Together, highly abundant Lys and Glu residues in TFAM promote AP-DNA strand scission, supporting the role of TFAM in AP-DNA turnover and implying the breadth of this process across different species.
Collapse
Affiliation(s)
- Wenxin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Shivansh Kaushik
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
| | - Chia-En A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, 92521, United States
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, California, 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, 92521, United States
| |
Collapse
|
46
|
Trombly G, Said AM, Kudin AP, Peeva V, Altmüller J, Becker K, Köhrer K, Zsurka G, Kunz WS. The Fate of Oxidative Strand Breaks in Mitochondrial DNA. Antioxidants (Basel) 2023; 12:antiox12051087. [PMID: 37237953 DOI: 10.3390/antiox12051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is particularly vulnerable to somatic mutagenesis. Potential mechanisms include DNA polymerase γ (POLG) errors and the effects of mutagens, such as reactive oxygen species. Here, we studied the effects of transient hydrogen peroxide (H2O2 pulse) on mtDNA integrity in cultured HEK 293 cells, applying Southern blotting, ultra-deep short-read and long-read sequencing. In wild-type cells, 30 min after the H2O2 pulse, linear mtDNA fragments appear, representing double-strand breaks (DSB) with ends characterized by short GC stretches. Intact supercoiled mtDNA species reappear within 2-6 h after treatment and are almost completely recovered after 24 h. BrdU incorporation is lower in H2O2-treated cells compared to non-treated cells, suggesting that fast recovery is not associated with mtDNA replication, but is driven by rapid repair of single-strand breaks (SSBs) and degradation of DSB-generated linear fragments. Genetic inactivation of mtDNA degradation in exonuclease deficient POLG p.D274A mutant cells results in the persistence of linear mtDNA fragments with no impact on the repair of SSBs. In conclusion, our data highlight the interplay between the rapid processes of SSB repair and DSB degradation and the much slower mtDNA re-synthesis after oxidative damage, which has important implications for mtDNA quality control and the potential generation of somatic mtDNA deletions.
Collapse
Affiliation(s)
- Genevieve Trombly
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Afaf Milad Said
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Alexei P Kudin
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Viktoriya Peeva
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Janine Altmüller
- Cologne Center for Genomics and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, 50923 Köln, Germany
- Institute of Human Genetics, University of Cologne, 50923 Köln, Germany
| | - Kerstin Becker
- Cologne Center for Genomics and Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, 50923 Köln, Germany
- Biological and Medical Research Centre (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Centre (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich-Heine-University Duesseldorf, 40225 Düsseldorf, Germany
| | - Gábor Zsurka
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Wolfram S Kunz
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
47
|
Xiao F, Zeng J, Wang H, Zhu H, Guo Y, Zhang Z, Xiao Y, Hu G, Huang K, Yang Q, Guo H. MGME1 associates with poor prognosis and is vital for cell proliferation in lower-grade glioma. Aging (Albany NY) 2023; 15:3690-3714. [PMID: 37166417 PMCID: PMC10449294 DOI: 10.18632/aging.204705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE Mitochondrial genome maintenance exonuclease 1 (MGME1) is associated with DNA depletion, deletion, duplication, and rearrangement. However, the function of MGME1 in tumors, especially lower-grade gliomas (LGGs), has not been established. METHODS Pan-cancer analysis was used to define the expression patterns and prognostic value of MGME1 in various cancers. Subsequently, we systematically determined the associations between MGME1 expression and clinicopathological characteristics, prognosis, biological functions, immune characteristics, genomic mutations, and therapeutic responses of LGGs based on their expression patterns. The expression level and specific functions of MGME1 in LGGs was detected by conducting in vitro experiments. RESULTS Abnormally enhanced and high MGME1 expressions were associated with poor prognoses of various tumors, including LGG. Multivariate and univariate Cox regression analyses manifested that MGME1 expression was an independent prognostic biomarker for LGG. The immune-related signatures, infiltration of immune cells, immune checkpoint genes (ICPGs), copy number alteration (CNA), tumor mutation burden (TMB), and treatment responses of LGG patients were associated with the expression of MGME1. The in vitro experiments affirmed that MGME1 was elevated and tightly connected with the cell proliferation and cell cycle in LGG. CONCLUSIONS MGME1 is an independent prognostic biomarker and closely related to the cell proliferation in LGG.
Collapse
Affiliation(s)
- Feng Xiao
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jie Zeng
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haiyan Wang
- Department of Operation, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hong Zhu
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yun Guo
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhe Zhang
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yao Xiao
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Guowen Hu
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Kai Huang
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qing Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330030, Jiangxi, China
| | - Hua Guo
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
48
|
Herbert M, Choudhary M, Zander-Fox D. Assisted reproductive technologies at the nexus of fertility treatment and disease prevention. Science 2023; 380:164-167. [PMID: 37053308 DOI: 10.1126/science.adh0073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Assisted reproductive technology (ART) refers to processing gametes in vitro and usually involves in vitro fertilization. Originally developed for the treatment of infertility, culture of human embryos in vitro also provides an opportunity to screen embryos for inherited genetic disorders of the nuclear and mitochondrial genomes. Progress in identifying causative genetic variants has massively increased the scope of preimplantation genetic testing in preventing genetic disorders. However, because ART procedures are not without risk of adverse maternal and child outcomes, careful consideration of the balance of risks and benefits is warranted. Further research on early human development will help to minimize risks while maximizing the benefits of ART.
Collapse
Affiliation(s)
- Mary Herbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 4EP, UK
- Newcastle Fertility Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4EP, UK
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Meenakshi Choudhary
- Newcastle Fertility Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4EP, UK
| | - Deidre Zander-Fox
- Monash IVF, Melbourne, VIC 3800, Australia
- Department of Obstetrics and Gynaecology, School of Clinical Science, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
49
|
Tolle I, Tiranti V, Prigione A. Modeling mitochondrial DNA diseases: from base editing to pluripotent stem-cell-derived organoids. EMBO Rep 2023; 24:e55678. [PMID: 36876467 PMCID: PMC10074100 DOI: 10.15252/embr.202255678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) diseases are multi-systemic disorders caused by mutations affecting a fraction or the entirety of mtDNA copies. Currently, there are no approved therapies for the majority of mtDNA diseases. Challenges associated with engineering mtDNA have in fact hindered the study of mtDNA defects. Despite these difficulties, it has been possible to develop valuable cellular and animal models of mtDNA diseases. Here, we describe recent advances in base editing of mtDNA and the generation of three-dimensional organoids from patient-derived human-induced pluripotent stem cells (iPSCs). Together with already available modeling tools, the combination of these novel technologies could allow determining the impact of specific mtDNA mutations in distinct human cell types and might help uncover how mtDNA mutation load segregates during tissue organization. iPSC-derived organoids could also represent a platform for the identification of treatment strategies and for probing the in vitro effectiveness of mtDNA gene therapies. These studies have the potential to increase our mechanistic understanding of mtDNA diseases and may open the way to highly needed and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Isabella Tolle
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
50
|
Functional Assessment of Mitochondrial DNA Maintenance by Depletion and Repopulation Using 2',3'-Dideoxycytidine in Cultured Cells. Methods Mol Biol 2023; 2615:229-240. [PMID: 36807796 DOI: 10.1007/978-1-0716-2922-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The manipulation of mitochondrial DNA (mtDNA) copy number in cultured cells, using substances that interfere with DNA replication, is a useful tool to investigate various aspects of mtDNA maintenance. Here we describe the use of 2',3'-dideoxycytidine (ddC) to induce a reversible reduction of mtDNA copy number in human primary fibroblasts and human embryonic kidney (HEK293) cells. Once the application of ddC is stopped, cells depleted for mtDNA attempt to recover normal mtDNA copy numbers. The dynamics of repopulation of mtDNA provide a valuable measure for the enzymatic activity of the mtDNA replication machinery.
Collapse
|