1
|
Chen P, Liu D, Zhou YK, Jiang JH, Yang RL. Pyroptosis of periodontal ligament stem cells aggravates periodontitis via Piezo1 channel. iScience 2025; 28:112395. [DOI: 10.1016/j.isci.2025.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025] Open
|
2
|
Budde I, Schlichting A, Ing D, Schimmelpfennig S, Kuntze A, Fels B, Romac JMJ, Swain SM, Liddle RA, Stevens A, Schwab A, Pethő Z. Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels. J Cell Sci 2025; 138:jcs263846. [PMID: 40019468 DOI: 10.1242/jcs.263846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/23/2025] [Indexed: 03/01/2025] Open
Abstract
Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. However, the molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the contribution of the ion channels Piezo1, TRPC1 and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Our results demonstrate that optimal PSC durotaxis requires an intermediary level of ion channel activity, which we simulated via a numerically discretized mathematical model. These findings suggest that mechanosensitive Piezo1 channels detect the differential stiffness microenvironment. The resulting intracellular signals are amplified by TRPV4 and TRPC1 channels to guide efficient PSC durotaxis.
Collapse
Affiliation(s)
- Ilka Budde
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - André Schlichting
- Institute for Analysis and Numerics , University of Münster, Einsteinstr. 62, 48149 Münster, Germany
- Institute of Applied Analysis , University of Ulm, Helmholtzstraße 18, 89081 Ulm, Germany
| | - David Ing
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Sandra Schimmelpfennig
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Anna Kuntze
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
- Institute of Applied Analysis , University of Ulm, Helmholtzstraße 18, 89081 Ulm, Germany
| | - Benedikt Fels
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
- Gerhard-Domagk-Institute of Pathology , University of Münster, 48149 Münster, Germany
| | - Joelle M-J Romac
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Sandip M Swain
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Rodger A Liddle
- Institute of Physiology, University of Lübeck, 23562 Lübeck, Germany
| | - Angela Stevens
- Institute for Analysis and Numerics , University of Münster, Einsteinstr. 62, 48149 Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| | - Zoltán Pethő
- Institute of Physiology II , University of Münster, Robert-Koch Str. 27B, 48149 Münster, Germany
| |
Collapse
|
3
|
Zheng Z, Nie A, Wu X, Chen S, Zhang L, Yang D, Shi Y, Xiong X, Guo J. Electromechanical Regulation Underlying Protein Nanoparticle-Induced Osmotic Pressure in Neurotoxic Edema. Int J Nanomedicine 2025; 20:4145-4163. [PMID: 40207308 PMCID: PMC11980935 DOI: 10.2147/ijn.s503181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Osmotic imbalance is a critical driving force of cerebral edema. Protein nanoparticles (PNs) amplify intracellular osmotic effects by regulating membrane potential and homeostasis of water and multiple ions. This study has investigated how PNs control the neuronal swelling through electromechanical activity. Methods The fluorescence resonance energy transfer (FRET)-based Vimentin force probe was used to real-time monitor the osmotic tension in neurons. Patch clamp and the living cell 3D imaging system were applied to explore the relationship between cell electromechanical activity and cell volume in different cytotoxic cell models. Cytoplasmic PN amount measured by the NanoSight instrument, ion contents detected by the freezing point osmometer and ion imaging were performed to investigate the role of PNs in regulating cell swelling. Results We observed a close association between neuronal swelling and changes in osmotic tension and membrane potential. The tension effect of biological osmotic pressure (OP) relies on electromechanical cooperation induced by intracellular PN and Ca2+ levels. PNs increment results from cytoplasmic translocation of intracellular various proteins. Alterations in Ca2+ content are involved in the membrane potential transition between depolarization and hyperpolarization in a PN-dependent manner. Chemical signals-mediated sensitization of ion channels has an indispensable effect on PN-induced ion increments. Notably, aquaporin-mediated water influx recovers membrane potential and enhances osmotic tension controlling neuronal swelling. Conclusion Our findings indicate that PNs, Ca2+, and water are pivotal in electromechanical cooperation and provide insights into the biological OP mechanisms underlying neurotoxic edema.
Collapse
Affiliation(s)
- Zihui Zheng
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Aobo Nie
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiaojie Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Shi Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Dongqing Yang
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Yuqing Shi
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Xiyu Xiong
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
4
|
Zhou Y, Li M, Lin S, Zhu Z, Zhuang Z, Cui S, Chen L, Zhang R, Wang X, Shen B, Chen C, Yang R. Mechanical sensing protein PIEZO1 controls osteoarthritis via glycolysis mediated mesenchymal stem cells-Th17 cells crosstalk. Cell Death Dis 2025; 16:231. [PMID: 40169556 PMCID: PMC11961634 DOI: 10.1038/s41419-025-07577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/04/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025]
Abstract
Aberrant mechanical stimuli can cause tissue attrition and activate mechanosensitive intracellular signaling, impacting the progression of osteoarthritis (OA). However, the precise relationship between mechanical loading and bone metabolism remains unclear. Here, we present evidence that Piezo1 senses the mechanical stimuli to coordinate the crosstalk between mesenchymal stem cells (MSCs) and T helper 17 (Th17) cells, leading to the deterioration of bone and cartilage in osteoarthritis (OA). Mechanical loading impaired the property of MSCs by inhibiting their osteo-chondrogenic differentiation and promoting inflammatory signaling to enhance Th17 cells. Mechanistically, mechanical stimuli activated Piezo1, thereby facilitating Ca2+ influx which upregulated the activity of Hexokinase 2(HK2), the rate-limiting enzyme of glycolysis. The resultant increase in glycolytic activity enhanced communication between MSCs and T cells, thus promoting Th17 cell polarization in a macrophage migration inhibitory factor (MIF) dependent manner. Functionally, Wnt1cre; Piezo1fl/fl mice reduced bone and cartilage erosion in the temporomandibular joint condyle following mechanical loading compared to control groups. Additionally, we observed activated Piezo1 and HK2-mediated glycolysis in patients with temporomandibular joint OA, thereby confirming the clinical relevance of our findings. Overall, our results provide insights into how Piezo1 in MSCs coordinates with mechano-inflammatory signaling to regulate bone metabolism. The schema shows that mechanical sensing protein PIEZO1 in MSCs controls osteoarthritis via glycolysis mediated MSCs and Th17 cells crosstalk in a MIF dependent manner.
Collapse
Affiliation(s)
- Yikun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
- Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingzhao Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Shuai Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Zilu Zhu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Zimeng Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Liujing Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuedong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China
| | - Bo Shen
- National Institute of Biological Sciences, Beijing, China, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials Beijing, Beijing, China.
| |
Collapse
|
5
|
Fukuoka S, Adachi N, Ouchi E, Ikemoto H, Okumo T, Ishikawa F, Onda H, Sunagawa M. Mechanoreceptor Piezo1 channel-mediated interleukin expression in conjunctival epithelial cells: Linking mechanical stress to ocular inflammation. Ocul Surf 2025; 36:56-68. [PMID: 39778715 DOI: 10.1016/j.jtos.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Mechanical stress on the ocular surface, such as from eye-rubbing, has been reported to lead to inflammation and various ocular conditions. We hypothesized that the mechanosensitive Piezo1 channel in the conjunctival epithelium contributes to the inflammatory response at the ocular surface after receiving mechanical stimuli. METHODS Human conjunctival epithelial cells (HConjECs) were treated with Yoda1, a Piezo1-specific agonist, and various allergens to measure cytokine expression levels using qRT-PCR. Piezo1 activation-induced intracellular signaling pathways were also investigated by Western blot. Mechanical stretching experiments were conducted to simulate Piezo1 activation in HConjECs. Specificity of Piezo1 was confirmed by PIEZO1 knockdown and GsMTx4. In in vivo studies, using immunohistochemistry, rats were administered Yoda1 eye drops to examine the inflammatory response in the conjunctiva and Piezo1-induced signaling activation. RESULTS HConjECs expressed functional Piezo1 channel which was the dominant mechanoreceptor among putative channels and whose activation significantly increased IL-6 and IL-8 expression through the p38 MAPK-CREB pathway. Piezo1-induced [Ca2+]i elevation was crucial for the production of IL-6. The Yoda1-induced inflammatory responses were blocked by PIEZO1 knockdown. Mechanical stretching mimicked these effects, which were suppressed by GsMTx4. In vivo, Yoda1 administration led to increased phospho-p38 MAPK, phospho-CREB, and IL-6 in the rat conjunctival epithelium, with significant neutrophil infiltration. CONCLUSION Mechanical stress-induced Piezo1 channel activation in conjunctival epithelial cells can cause ocular inflammation by upregulating pro-inflammatory cytokines via the p38 MAPK-CREB pathway and promoting neutrophil infiltration. These findings suggest that mechanical stimuli on ocular surface tissues are significant risk factors for ocular inflammation.
Collapse
Affiliation(s)
- Seiya Fukuoka
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoki Adachi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Erika Ouchi
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hideshi Ikemoto
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takayuki Okumo
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Center for Biotechnology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Hidetoshi Onda
- Department of Ophthalmology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masataka Sunagawa
- Department of Physiology, Showa University Graduate School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
6
|
Jeon CY, Ye Y, Papachristou GI, Buxbaum JL, Pisegna JR, Cherpitel CJ, Adeniran EA, Apte M, Chang E, Dasyam AK, Jalluri GD, Lansky CA, Lugea A, Shah ZK, Waldron RT, Pandol SJ, Yadav D. Differential impact of recent heavy drinking on first and recurrent acute pancreatitis. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025. [PMID: 40108779 DOI: 10.1111/acer.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND While alcohol is known to sensitize the pancreas to acute injury, the role of short-term episodic drinking in regular drinkers is unknown. METHODS We conducted a case-crossover study to (1) determine the hazardous period of drinking prior to a first episode of acute pancreatitis (FAP) or recurrent acute pancreatitis (RAP) and (2) evaluate the dose-response association between short-term drinking and FAP/RAP. Patients hospitalized for FAP/RAP with an AUDIT-C score of ≥3 were enrolled. Recent and lifetime drinking history were collected through interviews. Drinking prior to the index pancreatitis attack was compared to that of an asymptomatic control period. Conditional logistic regression quantified the association of heavy drinking and FAP/RAP. RESULTS Of 141 patients who completed a short-term drinking questionnaire, 77 had RAP, and 64 experienced FAP. We found that both FAP and RAP patients drank at moderate-to-heavy levels regularly, with modest day-to-day variation (intraclass correlation of drinks/day 67%-82%). Alcohol consumption increased 2 days preceding the onset of the index pancreatitis attack as compared to the week prior. Stratifying by prior AP history, heavy drinking in the hazard period was associated with RAP (OR = 3.79, 95% confidence interval [CI] 1.57-9.12). Each drink was associated with 1.22-fold (95%CI 1.10-1.35) increased odds of RAP. Short-term heavy drinking was not associated with a FAP (OR = 1.06, 95%CI 0.43-2.57). CONCLUSION In summary, we found that patients with a prior history of AP face a higher risk of RAP due to excess drinking. Drinking intensity did not increase prior to a FAP, which may have been triggered by other cofactors warranting further examination.
Collapse
Affiliation(s)
- Christie Y Jeon
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Yu Ye
- Public Health Institute, Alcohol Research Group, Emeryville, California, USA
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James L Buxbaum
- Division of Gastroenterology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Cheryl J Cherpitel
- Public Health Institute, Alcohol Research Group, Emeryville, California, USA
| | - Esther A Adeniran
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- The Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
| | - Eleanor Chang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anil K Dasyam
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gayathri D Jalluri
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Charlotte A Lansky
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Aurelia Lugea
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zarine K Shah
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Richard T Waldron
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen J Pandol
- Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Li Z, Jiang Q, Wei J, Dang D, Meng Z, Wu H. Piezo1 promotes the progression of necrotizing enterocolitis by activating the Ca2(+)/CaMKII-dependent pathway. Commun Biol 2025; 8:417. [PMID: 40074811 PMCID: PMC11904196 DOI: 10.1038/s42003-025-07821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating inflammatory bowel necrosis of preterm infants with limited therapeutic approaches. Mounting evidence supports the role of Piezo1, namely, a widely distributed mechanosensor in intestinal epithelial cells (IECs), in intestinal inflammation but its underlying mechanism in the development of NEC remains unexplored. In this study, we demonstrated that Piezo1 expression was higher in preterm infants with lower gestational age. C57BL/6J mice wherein Piezo1 was deleted in IECs (villin-specific Piezo1 knockout mice; Piezo1flox/floxVillinCre+) and Piezo1flox/flox littermates were subjected to induce NEC, and Piezo1 knockout regulated the intestinal barrier function, restricted cytokines secretion, and diminished the inflammatory response in NEC mouse models. Piezo1 elevated cytosolic Ca2+ levels and activated Ca2+/calmodulin-dependent protein kinase II (CaMKII) to promote the CaMKII/NF-κB interaction and NF-κB activation in vitro. Finally, the effects of a CaMKII inhibitor, KN93, were evaluated both in vitro and in vivo in NEC models, and the functions of Piezo1 in IECs were suppressed partially by KN93. In this study, we characterise the undefined role of Piezo1 in the development of NEC, which may partially be attributed to the differential role of calcium under pathophysiological conditions.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Neonatology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, Jilin, China
| | - Qinlei Jiang
- Department of Neonatology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, Jilin, China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, Jilin, China
| | - Dan Dang
- Department of Neonatology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China
- The Child Health Clinical Research Center of Jilin Province, Changchun, Jilin, China
| | - Zhaoli Meng
- Laboratory of Tumor Immunology, The First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Neonatology, Children's Medical Center, The First Hospital of Jilin University, Changchun, Jilin, China.
- The Child Health Clinical Research Center of Jilin Province, Changchun, Jilin, China.
| |
Collapse
|
8
|
Wang Y, Chu T, Meng C, Bian Y, Li J. Piezo1-specific Deletion in Macrophage Protects the Progression of Chronic Inflammatory Bowel Disease in Mice. Cell Mol Gastroenterol Hepatol 2025; 19:101495. [PMID: 40081571 DOI: 10.1016/j.jcmgh.2025.101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Piezo1, a recently identified mechanically activated nonselective cation channel protein, demonstrates sensitivity to various mechanical stimuli, such as matrix stiffness and shear stress. Although accumulating evidence implicates Piezo1 channels in numerous physiologic and pathophysiologic processes, its involvement in dextran sulfate sodium (DSS)-induced acute and chronic inflammatory bowel disease (IBD) remains incompletely understood. This study aimed to investigate the effect of Piezo1 channels in macrophage polarization and its associated functions in IBD. METHODS DSS-induced inflammatory bowel disease model was established in Piezo1td/Tdt or Piezo1fl/fl and Piezo1△LysM male mice. Additionally, bone marrow-derived macrophages from Piezo1fl/fl and Piezo1△LysM male mice were isolated to elucidate the downstream targets of Piezo1 and the associated underlying molecular mechanisms. RESULTS Our findings revealed that Piezo1 deficiency in macrophages could protect mice from DSS-induced chronic IBD, as evidenced by improved colon length and the preservation of colon structure. The mitigation of inflammation during chronic IBD progression was observed with Piezo1 deficiency in macrophages, characterized by reduced macrophage accumulation, M1 macrophage polarization, T helper 1 infiltration, and decreased inflammatory cytokine secretion. Further investigations unveiled that Piezo1-deficient macrophages inhibit the expression and activity of Nod-like receptor protein 3 and nuclear factor kappa B in colon tissues and bone marrow-derived macrophages while regulating the nuclear translocation of p65. Conversely, macrophage Piezo1 activation enhanced inflammatory cytokine secretion by activating Nod-like receptor protein 3/nuclear factor kappa B pathways. CONCLUSIONS Myeloid Piezo1 mediates colonic immune response, and disrupting Piezo1 inhibits the progression of chronic IBD. This study provides hitherto undocumented evidence of the pivotal role of macrophage Piezo1 channels in regulating the progression of chronic IBD. Targeting macrophage Piezo1 may offer a promising therapeutic strategy against chronic IBD.
Collapse
Affiliation(s)
- Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China; College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Chengzhen Meng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, Shandong Province, China.
| |
Collapse
|
9
|
Li S, Jin T, Wang Y, Deng H, Hu R. Tensile stress induced osteogenesis of periodontal ligament cells via Piezo1 mediated TAZ-Cbfα1 signaling. Arch Oral Biol 2025; 171:106152. [PMID: 39662196 DOI: 10.1016/j.archoralbio.2024.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
OBJECTIVE Cyclic tensile stress (CTS) is known to induce osteogenesis of periodontal ligament cells (PDLCs), in which the molecular mechanism remains to be elucidated. This study aimed to investigate the role of the mechanosensitive calcium channel Piezo1 in the osteogenesis of PDLCs under tensile strain, as well as the signal regulation of the TAZ-Cbfα1 pathway in this process. DESIGN PDLCs were isolated from periodontal ligament tissues and subjected to CTS. Alizarin red staining (ARS) and alkaline phosphatase (ALP) assay were used to detect the osteogenesis of PDLCs. RT-qPCR and Western blot were used to detect the transcripts and protein expression levels of Piezo1, Transcriptional co-activator with PDZ binding motif (TAZ), and Core-binding factor α1 (Cbfα1) respectively. Immunofluorescence staining was used to detect the nuclear aggregation of TAZ. Small interfering RNA (siRNA) targeting Piezo1 (Piezo1-siRNA) was adopted to inhibit Piezo1 mRNA expression. RESULTS The results showed that the osteogenic differentiation capacity of PDLCs was significantly enhanced under CTS, along with elevated mRNA and protein expression levels of Piezo1, TAZ, and Cbfα1. Moreover, the ALP activity and the formation of calcium nodules by ARS staining were significantly increased. In addition, Piezo1 siRNA infection significantly inhibited the CTS-induced TAZ-Cbfα1 pathway and the osteogenesis of PDLCs, suggesting the regulatory role of Piezo1. CONCLUSIONS We provided evidence that the application of CTS encourages the osteogenic differentiation of PDLCs, which could be mediated by the Piezo1 targeted TAZ-Cbfα1 signaling.
Collapse
Affiliation(s)
- Sisi Li
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Stomatology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Jin
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Stomatology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Enze Hospital, Taizhou, Zhejiang, China
| | - Yi Wang
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Deng
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongdang Hu
- Department of Orthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
Han S, Zhang J, Durkalski-Mauldin V, Foster LD, Serrano J, Coté GA, Bang JY, Varadarajulu S, Singh VK, Khashab M, Kwon RS, Scheiman JM, Willingham FF, Keilin SA, Groce JR, Lee PJ, Krishna SG, Chak A, Slivka A, Mullady D, Kushnir V, Buxbaum J, Keswani R, Gardner TB, Wani S, Edmundowicz SA, Shah RJ, Forbes N, Rastogi A, Ross A, Law J, Yachimski P, Chen YI, Barkun A, Smith ZL, Petersen BT, Wang AY, Saltzman JR, Spitzer RL, Spino C, Elmunzer BJ, Papachristou GI. Impact of difficult biliary cannulation on post-ERCP pancreatitis: secondary analysis of the stent versus indomethacin trial dataset. Gastrointest Endosc 2025; 101:617-628. [PMID: 39389431 PMCID: PMC11875935 DOI: 10.1016/j.gie.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIMS Difficult biliary cannulation (DBC) is a known risk factor for developing post-ERCP pancreatitis (PEP). To better understand how DBC increases PEP risk, we examined the interplay between technical aspects of DBC and known PEP risk factors. METHODS This was a secondary analysis of a multicenter, randomized controlled trial comparing rectal indomethacin alone with the combination of rectal indomethacin and prophylactic pancreatic duct (PD) stent placement for PEP prophylaxis in high-risk patients. Participants were categorized into 3 groups: DBC with high preprocedure risk for PEP, DBC without high preprocedure risk for PEP, and non-DBC at high preprocedure risk for PEP. RESULTS In all, 1601 participants (84.1%) experienced DBC, which required a mean of 12 cannulation attempts (standard deviation, 10) and mean duration of 14.7 minutes (standard deviation, 14.9). PEP rate was highest (20.7%) in DBC with a high preprocedure risk, followed by non-DBC with a high preprocedure risk (13.5%), and then DBC without a high preprocedure risk (8.8%). Increasing number of PD wire passages (adjusted odds ratio [aOR], 1.97; 95% confidence interval [CI], 1.25-3.1) was associated with PEP in DBC, but PD injection, pancreatic sphincterotomy, and number of cannulation attempts were not associated with PEP. Combining indomethacin with PD stent placement lowered the risk of PEP (aOR, .61; 95% CI, .44-.84) in DBCs. This protective effect was evident in up to at least 4 PD wire passages. CONCLUSIONS DBC confers higher PEP risk in an additive fashion to preprocedural risk factors. PD wire passages appear to add the greatest PEP risk in DBCs, but combining indomethacin with PD stent placement reduces this risk, even with increasing PD wire passages.
Collapse
Affiliation(s)
- Samuel Han
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingwen Zhang
- Data Coordination Unit, Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Valerie Durkalski-Mauldin
- Data Coordination Unit, Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lydia D Foster
- Data Coordination Unit, Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jose Serrano
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory A Coté
- Division of Gastroenterology & Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Ji Young Bang
- Orlando Health Digestive Health Institute, Orlando Health, Orlando, Florida, USA
| | - Shyam Varadarajulu
- Orlando Health Digestive Health Institute, Orlando Health, Orlando, Florida, USA
| | - Vikesh K Singh
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mouen Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Richard S Kwon
- Division of Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - James M Scheiman
- Division of Gastroenterology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Field F Willingham
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven A Keilin
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - J Royce Groce
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Peter J Lee
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Amitabh Chak
- Division of Gastroenterology, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Adam Slivka
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Daniel Mullady
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Vladimir Kushnir
- Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri, USA
| | - James Buxbaum
- Division of Gastroenterology, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rajesh Keswani
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Timothy B Gardner
- Section of Gastroenterology and Hepatology, Department of Medicine, Dartmouth-Hitchcock Health, Lebanon, New Hampshire, USA
| | - Sachin Wani
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven A Edmundowicz
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Raj J Shah
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nauzer Forbes
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Amit Rastogi
- Division of Gastroenterology and Hepatology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andrew Ross
- Division of Gastroenterology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Joanna Law
- Division of Gastroenterology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Patrick Yachimski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yen-I Chen
- Division of Gastroenterology, McGill University, Montreal, Quebec, Canada
| | - Alan Barkun
- Division of Gastroenterology, McGill University, Montreal, Quebec, Canada
| | - Zachary L Smith
- Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Bret T Petersen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew Y Wang
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, USA
| | - John R Saltzman
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rebecca L Spitzer
- Data Coordination Unit, Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Cathie Spino
- Department of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - B Joseph Elmunzer
- Division of Gastroenterology & Hepatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Georgios I Papachristou
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Zhai J, Hao H, Xu Z, Tomoda A, Zhang X, Wang X, Liu Y, Cao X, Li D, Zhang Y, Yao X, Fan L, Wang J. The effect of modulation Piezo2 by IGF-1 on tactile hypersensitivity in BTBR model mice. Life Sci 2025; 364:123449. [PMID: 39920984 DOI: 10.1016/j.lfs.2025.123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
AIMS Autism spectrum disorder (ASD) is classified as a neurodevelopmental disorder. Individuals with ASD exhibit a higher incidence of tactile hypersensitivity. However, the underlying mechanisms remain unclear. The dorsal root ganglion (DRG) plays a crucial role in influencing tactile processing. This study aims to integrate RNA sequencing (RNA-seq) and molecular biology experiments to identify key molecules involved in tactile hypersensitivity in ASD, further investigate related mechanisms, and develop effective intervention strategy. MAIN METHODS Using BTBR as the ASD model mouse and wild-type C57BL/6J as the control mouse, the differences in tactile sensitivity between them was compared. DRG were collected for RNA-seq analysis. Immunofluorescence and Enzyme-linked immunosorbent assay (ELISA) techniques were employed to validate the identified key molecules. And combined western blot to investigate the associated regulatory pathways. KEY FINDINGS BTBR mice exhibit tactile hypersensitivity, which are associated with the upregulation of IGF-1 in the DRG. IGF-1 regulates the expression of Piezo2 ion channels. Inhibition of the IGF-1/Piezo2 pathway can significantly alleviate tactile hypersensitivity and social deficits in BTBR mice. Additionally, gentle touch intervention has been shown to reduce the overexpression of IGF-1/Piezo2 in the DRG, thereby ameliorating ASD symptoms. SIGNIFICANCE The upregulation of the IGF-1/Piezo2 pathway in DRG may serve as a potential mechanism for tactile hypersensitivity observed in BTBR mice. Restoring the normalization of the IGF-1/Piezo2 is crucial for alleviating tactile hypersensitivity and synergistically rescues social deficits. Gentle touch intervention has the potential to ameliorate these behaviors through regulating IGF-1/Piezo2, positioning it as a promising strategy for ASD.
Collapse
Affiliation(s)
- Jinhe Zhai
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Haiying Hao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Zihan Xu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Xinyi Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Xinxin Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Yutong Liu
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Xuan Cao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Dongxin Li
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Yuying Zhang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Xueke Yao
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China
| | - Lili Fan
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang 150081, China.
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College, Harbin Medical University, Harbin 150081, China; Heilongjiang Province Key Laboratory of Child Development and Genetic Research, Harbin Medical University, Harbin 150081, China; Heilongjiang Academy of Medical Sciences, Harbin 150081, China; Research Center for Child Mental Development, University of Fukui, Fukui, Japan; Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang 150081, China.
| |
Collapse
|
12
|
Luo M, Jin T, Fang Y, Chen F, Zhu L, Bai J, Ding J. Signaling Pathways Involved in Acute Pancreatitis. J Inflamm Res 2025; 18:2287-2303. [PMID: 40230438 PMCID: PMC11995411 DOI: 10.2147/jir.s485804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/25/2025] [Indexed: 04/16/2025] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency with high morbidity and mortality. Over the past decade, significant progress has been made in understanding the mechanisms of AP, including oxidative stress, disruptions in calcium homeostasis, endoplasmic reticulum stress, inflammatory responses, and various forms of cell death. This review provides an overview of the typical signaling pathways involved and proposes the latest clinical translation prospects. These strategies are important for the early management of AP, preventing multi-organ injury, and improving the overall prognosis of the disease.
Collapse
Affiliation(s)
- Mengchen Luo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Feng Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
13
|
Fish A, Forster J, Malik V, Kulkarni A. Shear-Stress Initiates Signal Two of NLRP3 Inflammasome Activation in LPS-Primed Macrophages through Piezo1. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7363-7376. [PMID: 39836089 DOI: 10.1021/acsami.4c18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation. We demonstrated that magnitudes of shear stress within 1.0 to 50 dyn/cm2 were able to induce ASC speck formation, while 50 dyn/cm2 was sufficient to induce significant calcium signaling, gasdermin-D cleavage, caspase-1 activity, and IL-1β secretion, all hallmarks of inflammasome activation. Utilizing NLRP3 and caspase-1 knockout iBMDMs, we demonstrated that the NLRP3 inflammasome was primarily activated as a result of shear stress exposure. Quantitative polymerase chain reaction (qPCR), ELISA, and a small molecule inhibitor study aided us in demonstrating that expression of Piezo1, NLRP3, gasdermin-D, IL-1β, and CCL2 secretion were all upregulated in iBMDMs treated with shear stress. This study provides a foundation for further understanding the interconnected pathogenesis of chronic inflammatory diseases and the ability of shear stress to play a role in their progression.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vaishali Malik
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Gu B, Yu W, Huang Z, Bai J, Liu S, Ren B, Wang P, Sun L, Wen J, Zheng Y, Tan P, Fu W. MRG15 promotes cell apoptosis through inhibition of mitophagy in hyperlipidemic acute pancreatitis. Apoptosis 2025; 30:149-166. [PMID: 39487311 DOI: 10.1007/s10495-024-02034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Hyperlipidemia is a common cause of acute pancreatitis (AP), often leading to more severe clinical symptoms. The mortality factor 4-like protein 1 (MORF4L1, also called MRG15) plays a crucial role in regulating lipid metabolism. Therefore, this study aimed to explore the mechanism of MRG15 in hyperlipidemic acute pancreatitis (HAP). Mendelian randomization, transcriptome analysis, and single-cell analysis were employed to explore the association between MRG15 and AP by utilizing publicly available databases. In vivo, hypertriglyceridemia mouse models were created by intraperitoneal injection of P407 or using APOE-deficient mice. Subsequently, the HAP model was induced by cerulean. In vitro, a cell model of HAP was established by initially exposing cells to palmitic acid to simulate a high-fat environment, followed by cerulein treatment. Subsequently, MRG15-related indicators were measured. Through Mendelian randomization, it was discovered that there is a positive correlation between genetic expression of MRG15 and the risk of AP. Transcriptome and single-cell analysis revealed that elevated MRG15 expression in AP contributes to lipid metabolism disorders and the activation of apoptosis pathways in pancreatic acinar cells. MRG15 is found to be significantly upregulated in cases of HAP. Knocking down MRG15 led to an increase in mitophagy and a decrease in apoptosis in pancreatic cells, and this effect was reversed when the mitochondrial Tu translation elongation factor (TUFM) was simultaneously knocked down. MRG15 inhibits mitophagy by degrading TUFM, ultimately promoting cell apoptosis and worsening the progression of HAP.
Collapse
Affiliation(s)
- Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Wenhao Yu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Junjie Bai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Bingyu Ren
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Pengru Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Lei Sun
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Wen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert), Workstation of Sichuan Province, Luzhou, China
| | - Yang Zheng
- Drug Clinical Trial Institution, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert), Workstation of Sichuan Province, Luzhou, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert), Workstation of Sichuan Province, Luzhou, China.
| |
Collapse
|
15
|
Chen F, Xu K, Han Y, Ding J, Ren J, Wang Y, Ma Z, Cao F. Mitochondrial dysfunction in pancreatic acinar cells: mechanisms and therapeutic strategies in acute pancreatitis. Front Immunol 2024; 15:1503087. [PMID: 39776917 PMCID: PMC11703726 DOI: 10.3389/fimmu.2024.1503087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations. Under stress conditions, mitochondrial dynamics and mitochondrial ROS production increase, leading to decreased mitochondrial membrane potential, imbalanced calcium homeostasis, and activation of the mitochondrial permeability transition pore. The release of mitochondrial DNA (mtDNA), recognized as damage-associated molecular patterns, can activate the cGAS-STING1 and NF-κB pathway and induce pro-inflammatory factor expression. Additionally, mtDNA can activate inflammasomes, leading to interleukin release and subsequent tissue damage and inflammation. This review summarizes the relationship between mitochondria and AP and explores mitochondrial protective strategies in the diagnosis and treatment of this disease. Future research on the treatment of acute pancreatitis can benefit from exploring promising avenues such as antioxidants, mitochondrial inhibitors, and new therapies that target mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kedong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Yimin Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiachun Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaqiang Ren
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhenhua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Pancreatic Disease Center of Xi’an Jiaotong University, Xi’an, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
16
|
Kinsella JA, Debant M, Parsonage G, Morley LC, Bajarwan M, Revill C, Foster R, Beech DJ. Pharmacology of PIEZO1 channels. Br J Pharmacol 2024; 181:4714-4732. [PMID: 39402010 DOI: 10.1111/bph.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-permeable, non-selective cation channels with exquisite capabilities for mechanical force sensing and transduction of force into effect in diverse cell types that include blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse systems that include bone, lymphatics and muscle. The channel has wide-ranging roles and is considered as a target for novel therapeutics in ailments spanning cancers and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal, nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The identification of PIEZO1 modulators is in its infancy but useful experimental tools emerged for activating, and to a lesser extent inhibiting, the channels. Elementary structure-activity relationships are known for the Yoda series of small molecule agonists, which show the potential for diverse physicochemical and pharmacological properties. Intriguing effects of Yoda1 include the stimulated removal of excess cerebrospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for selective positive or negative modulation without intolerable adverse effects. Here we provide a focused, non-systematic, narrative review of progress with this pharmacology and discuss potential future directions for research in the area.
Collapse
Affiliation(s)
- Jacob A Kinsella
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- School of Chemistry, University of Leeds, Leeds, UK
| | - Marjolaine Debant
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Gregory Parsonage
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Lara C Morley
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Muath Bajarwan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Huang Y, Mo H, Yang J, Gao L, Tao T, Shu Q, Guo W, Zhao Y, Lyu J, Wang Q, Guo J, Zhai H, Zhu L, Chen H, Xu G. Mechano-regulation of GLP-1 production by Piezo1 in intestinal L cells. eLife 2024; 13:RP97854. [PMID: 39509292 PMCID: PMC11542922 DOI: 10.7554/elife.97854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.
Collapse
Affiliation(s)
- Yanling Huang
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Haocong Mo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jie Yang
- Department of Pathology, School of Basic Medicine, Guangzhou Medical UniversityGuangdongChina
| | - Luyang Gao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Tian Tao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qing Shu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Wenying Guo
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Yawen Zhao
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Jingya Lyu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Qimeng Wang
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong KongShenzhenChina
| | - Hening Zhai
- Endoscopy Center, The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan UniversityGuangzhouChina
| | - Hui Chen
- Biotherapy Center, Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhouChina
| | - Geyang Xu
- Department of Physiology, School of Medicine, Jinan UniversityGuangzhouChina
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of EducationGuangzhouChina
| |
Collapse
|
18
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
19
|
Fan Q, Hadla M, Peterson Z, Nelson G, Ye H, Wang X, Mardirossian JM, Harris PC, Alper SL, Prakash YS, Beyder A, Torres VE, Chebib FT. Activation of PIEZO1 Attenuates Kidney Cystogenesis In Vitro and Ex Vivo. KIDNEY360 2024; 5:1601-1612. [PMID: 39356563 DOI: 10.34067/kid.0000000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Key Points
PIEZO1 activation reduces cystogenesis: Yoda1 activates PIEZO1, raising calcium and lowering cAMP, reducing cyst growth in autosomal dominant polycystic kidney disease models.Context-dependent role of PIEZO1: PIEZO1 knockout in mice with or without polycystic kidneys does not affect cyst formation, suggesting redundancy in mechanosensitive pathways.Therapeutic potential: Findings support PIEZO1 activation as a part of combination therapy to slow cyst growth in autosomal dominant polycystic kidney disease, needing more in vivo studies.
Background
The disruption of calcium signaling associated with polycystin deficiency is a key factor in abnormal epithelial growth in autosomal dominant polycystic kidney disease. Calcium homeostasis can be influenced by mechanotransduction. The mechanosensitive cation channel PIEZO1 has been implicated in sensing intrarenal pressure and regulating urinary osmoregulation, but its role in kidney cystogenesis is unclear.
Methods
We hypothesized that altered mechanotransduction contributes to cystogenesis in autosomal dominant polycystic kidney disease and that activation of mechanosensitive cation channels could be a therapeutic strategy.
Results
We demonstrate that Yoda1, a PIEZO1 activator, increases intracellular calcium and reduces forskolin-induced cAMP levels in mouse inner medullary collecting duct (mIMCD3) cells. Notably, knockout of polycystin-2 attenuated the efficacy of Yoda1 in reducing cAMP levels in mIMCD3 cells. Yoda1 also reduced forskolin-induced mIMCD3 cyst surface area in vitro and cystic index in mouse metanephros ex vivo in a dose-dependent manner. However, collecting duct–specific PIEZO1 knockout neither induced cystogenesis in wild-type mice nor altered cystogenesis in the Pkd1RC/RC mouse model.
Conclusions
These findings support the potential role of PIEZO1 agonists in mitigating cystogenesis by increasing intracellular calcium and reducing cAMP levels, but the unaltered in vivo cystic phenotype after PIEZO1 knockout in the collecting duct suggests possible redundancy in mechanotransductive pathways.
Collapse
Affiliation(s)
- Qingfeng Fan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Mohamad Hadla
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| | - Zack Peterson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Grace Nelson
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Hong Ye
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular biology, Mayo Clinic, Rochester, Minnesota
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
20
|
Jiang Q, Li Z, Dang D, Wei J, Wu H. Role of mechanosensitive channel Piezo1 protein in intestinal inflammation regulation: A potential target. FASEB J 2024; 38:e70122. [PMID: 39425504 PMCID: PMC11580726 DOI: 10.1096/fj.202401323r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The intestine is a hollow tract that primarily transports and digests food. It often encounters mechanical forces and exotic threats, resulting in increased intestinal inflammation attributed to the consistent threat of foreign pathogens. Piezo1, a mechanosensitive ion channel, is distributed broadly and abundantly in the intestinal tissue. It transduces mechanical signals into electrochemical signals and participates in many critical life activities, such as proliferation, differentiation, cell apoptosis, immune cell activation, and migration. Its effect on inflammation has been discussed in detail in systems, such as musculoskeletal (osteoarthritis) and cardiac (myocarditis), but the effects on intestinal inflammation remain unelucidated. Piezo1 regulates mucosal layer and epithelial barrier homeostasis during the complex intestinal handling of foreign antigens and tissue trauma. It initiates and spreads immune responses and causes distant effects of inflammation in the vascular and lymphatic systems, but reports of the effects of Piezo1 in intestinal inflammation are scarce. Therefore, this study aimed to discuss the role of Piezo1 in intestinal inflammation and explore novel therapeutic targets.
Collapse
Affiliation(s)
- Qinlei Jiang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Zhenyu Li
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Dan Dang
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Jiaqi Wei
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| | - Hui Wu
- Department of Neonatology, Children's Medical CenterThe First Hospital of Jilin UniversityChangchunJilinPeople's Republic of China
| |
Collapse
|
21
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Wang J, Li M, Wu W, Zhang H, Yang Y, Usman M, Aernouts B, Loor JJ, Xu C. Inflammatory Signaling via PEIZO1 Engages and Enhances the LPS-Mediated Apoptosis during Clinical Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20321-20330. [PMID: 39229907 DOI: 10.1021/acs.jafc.4c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Bovine clinical mastitis is characterized by inflammation and immune responses, with apoptosis of mammary epithelial cells as a cellular reaction to infection. PIEZO1, identified as a mechanotransduction effector channel in nonruminant animals and sensitive to both mechanical stimuli or inflammatory signals like lipopolysaccharide (LPS). However, its role in inflammatory processes in cattle has not been well-documented. The aim of this study was to elucidate the in situ expression of PIEZO1 in bovine mammary gland and its potential involvement in clinical mastitis. We observed widespread distribution and upregulation of PIEZO1 in mammary epithelial cells in clinical mastitis cows and LPS-induced mouse models, indicating a conserved role across species. In vitro studies using mammary epithelial cells (MAC-T) revealed that LPS upregulates PIEZO1. Notably, the effects of PIEZO1 artificial activator Yoda1 increased apoptosis and NLRP3 expression, effects mitigated by PIEZO1 silencing or NLRP3 inhibition. In conclusion, the activation of the PIEZO1-NLRP3 pathway induces abnormal apoptosis in mammary epithelial cells, potentially serving as a regulatory mechanism to combat inflammatory responses to abnormal stimuli.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Ming Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Wenda Wu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - HuiJing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Yue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| | - Muhammad Usman
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, Faculty of Engineering Technology, KU Leuven University, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
23
|
Hwang SM, Song JM, Choi JJ, Jung Y, Park CK, Kim YH. Functional Role of Piezo1 in the Human Eosinophil Cell Line AML14.3D10: Implications for the Immune and Sensory Nervous Systems. Biomolecules 2024; 14:1157. [PMID: 39334923 PMCID: PMC11429562 DOI: 10.3390/biom14091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Min Song
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Jung Ju Choi
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
24
|
Xue Z, Jiang Y, Meng B, Lu L, Hao M, Zhang Y, Shi S, Li Z, Mao X. Apoptotic vesicle-mediated senolytics requires mechanical loading. Theranostics 2024; 14:4730-4746. [PMID: 39239523 PMCID: PMC11373628 DOI: 10.7150/thno.98763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Rationale: Mechanical force plays crucial roles in extracellular vesicle biogenesis, release, composition and activity. However, it is unknown whether mechanical force regulates apoptotic vesicle (apoV) production. Methods: The effects of mechanical unloading on extracellular vesicles of bone marrow were evaluated through morphology, size distribution, yield, and protein mass spectrometry analysis using hindlimb unloading (HU) mouse model. Apoptosis resistance and aging related phenotype were assessed using HU mouse model in vivo and cell microgravity model in vitro. The therapeutic effects of apoVs on HU mouse model were assessed by using microcomputed tomography, histochemical and immunohistochemical, as well as histomorphometry analyses. SiRNA and chemicals were used for gain and loss-of-function assay. Results: In this study, we show that loss of mechanical force led to cellular apoptotic resistance and aging related phenotype, thus reducing the number of apoVs in the circulation due to down-regulated expression of Piezo1 and reduced calcium influx. And systemic infusion of apoVs was able to rescue Piezo1 expression and calcium influx, thereby, rescuing mechanical unloading-induced cellular apoptotic resistance, senescent cell accumulation. Conclusions: This study identified a previously unknown role of mechanical force in maintaining apoptotic homeostasis and eliminating senescent cells. Systemic infusion of mesenchymal stem cell-derived apoVs can effectively rescue apoptotic resistance and eliminate senescent cells in mechanical unloading mice.
Collapse
Affiliation(s)
- Zhulin Xue
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yexiang Jiang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bowen Meng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meng Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Zili Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
25
|
Pourteymour S, Fan J, Majhi RK, Guo S, Sun X, Huang Z, Liu Y, Winter H, Bäcklund A, Skenteris NT, Chernogubova E, Werngren O, Li Z, Skogsberg J, Li Y, Matic L, Hedin U, Maegdefessel L, Ehrenborg E, Tian Y, Jin H. PIEZO1 targeting in macrophages boosts phagocytic activity and foam cell apoptosis in atherosclerosis. Cell Mol Life Sci 2024; 81:331. [PMID: 39107572 PMCID: PMC11335255 DOI: 10.1007/s00018-024-05372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway.
| | - Jingxue Fan
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Rakesh Kumar Majhi
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, Shenzhen, People's Republic of China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Ying Liu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China
| | - Hanna Winter
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Alexandra Bäcklund
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nikolaos-Taxiarchis Skenteris
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Olivera Werngren
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Zhaolong Li
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yuhuang Li
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Department of Vascular and Endovascular Surgery, Technical University Munich, Munich, Germany
| | - Ewa Ehrenborg
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, People's Republic of China.
| | - Hong Jin
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Miyamoto S, Takayama Y, Kondo T, Maruyama K. Senso-immunology: the hidden relationship between sensory system and immune system. J Bone Miner Metab 2024; 42:413-420. [PMID: 39060499 DOI: 10.1007/s00774-024-01538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The primary sensory neurons involved in pain perception express various types of receptor-type ion channels at their nerve endings. These molecules are responsible for triggering neuronal excitation, translating environmental stimuli into pain signals. Recent studies have shown that acute nociception, induced by neuronal excitation, not only serves as a sensor for signaling life-threatening situations but also modulates our pathophysiological conditions. This modulation occurs through the release of neuropeptides by primary sensory neurons excited by nociceptive stimuli, which directly or indirectly affect peripheral systems, including immune function. Senso-immunology, an emerging research field, integrates interdisciplinary studies of pain and immunology and has garnered increasing attention in recent years. This review provides an overview of the systemic pathophysiological functions regulated by receptor-type ion channels, such as transient receptor potential (TRP) channels in primary sensory neurons, from the perspective of senso-immunology.
Collapse
Affiliation(s)
- Satoshi Miyamoto
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan
| | - Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, Tokyo, 142-8555, Japan.
| | - Takeshi Kondo
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan
| | - Kenta Maruyama
- Department of Pharmacology, Aichi Medical University School of Medicine, Aichi, 480-1195, Japan.
| |
Collapse
|
27
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
28
|
Talukdar R, Olesen SS, Unnisa M, Bedarkar A, Sarkar S, Tandan M, Jagtap N, Darisetty S, Kiran S, Koppoju V, Lakhtakia S, Ramchandani M, Kalapala R, Gupta R, Singh VK, Rao GV, Reddy DN, Drewes AM. Extracorporeal Shock-Wave Lithotripsy and Endoscopy for the Treatment of Pain in Chronic Pancreatitis : A Sham-Controlled, Randomized Trial. Ann Intern Med 2024; 177:749-758. [PMID: 38801774 DOI: 10.7326/m24-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND No randomized controlled trials have substantiated endoscopic decompression of the pancreatic duct in patients with painful chronic pancreatitis. OBJECTIVE To investigate the pain-relieving effect of pancreatic duct decompression in patients with chronic pancreatitis and intraductal stones. DESIGN 24-week, parallel-group, randomized controlled trial (ClinicalTrials.gov: NCT03966781). SETTING Asian Institute of Gastroenterology in India from February 2021 to July 2022. PARTICIPANTS 106 patients with chronic pancreatitis. INTERVENTION Combined extracorporeal shock-wave lithotripsy (ESWL) and endoscopic retrograde pancreatography (ERP) compared with sham procedures. MEASUREMENTS The primary end point was pain relief on a 0- to 10-point visual analog scale (VAS) at 12 weeks. Secondary outcomes were assessed after 12 and 24 weeks and included 30% pain relief, opioid use, pain-free days, questionaries, and complications to interventions. RESULTS 52 patients in the ESWL/ERP group and 54 in the sham group were included. At 12 weeks, the ESWL/ERP group showed better pain relief compared with the sham group (mean difference in change, -0.7 [95% CI, -1.3 to 0] on the VAS; P = 0.039). The difference between groups was not sustained at the 24-week follow-up, and no differences were seen for 30% pain relief at 12- or 24-week follow-up. The number of pain-free days was increased (median difference, 16.2 days [CI, 3.9 to 28.5 days]), and the number of days using opioids was reduced (median difference, -5.4 days [CI, -9.9 to -0.9 days]) in the ESWL/ERP group compared with the sham group at 12-week follow-up. Safety outcomes were similar between groups. LIMITATION Single-center study and limited duration of follow-up. CONCLUSION In patients with chronic pancreatitis and intraductal stones, ESWL with ERP provided modest short-term pain relief. PRIMARY FUNDING SOURCE Asian Institute of Gastroenterology and Aalborg University Hospital.
Collapse
Affiliation(s)
- Rupjyoti Talukdar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Søren S Olesen
- Centre for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark (S.S.O., A.M.D.)
| | - Misbah Unnisa
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Akshay Bedarkar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Subhaleena Sarkar
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Manu Tandan
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Nitin Jagtap
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Santosh Darisetty
- Department of Anesthesia, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (S.D.)
| | - Sekhramantri Kiran
- Lithotripsy Unit, Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (S.K., V.K.)
| | - Vinod Koppoju
- Lithotripsy Unit, Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (S.K., V.K.)
| | - Sundeep Lakhtakia
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Mohan Ramchandani
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Rakesh Kalapala
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Rajesh Gupta
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Vikesh K Singh
- Pancreatitis Center, Division of Gastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland (V.K.S.)
| | - Guduru Venkat Rao
- Department of Surgical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (G.V.R.)
| | - Duvvur Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India (R.T., M.U., A.B., S.S., M.T., N.J., S.L., M.R., R.K., R.G., D.N.R.)
| | - Asbjørn M Drewes
- Centre for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark (S.S.O., A.M.D.)
| |
Collapse
|
29
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Fabiano AR, Robbins SC, Knoblauch SV, Rowland SJ, Dombroski JA, King MR. Multiplex, high-throughput method to study cancer and immune cell mechanotransduction. Commun Biol 2024; 7:674. [PMID: 38824207 PMCID: PMC11144229 DOI: 10.1038/s42003-024-06327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Studying cellular mechanoresponses during cancer metastasis is limited by sample variation or complex protocols that current techniques require. Metastasis is governed by mechanotransduction, whereby cells translate external stimuli, such as circulatory fluid shear stress (FSS), into biochemical cues. We present high-throughput, semi-automated methods to expose cells to FSS using the VIAFLO96 multichannel pipetting device custom-fitted with 22 G needles, increasing the maximum FSS 94-fold from the unmodified tips. Specifically, we develop protocols to semi-automatically stain live samples and to fix, permeabilize, and intracellularly process cells for flow cytometry analysis. Our first model system confirmed that the pro-apoptotic effects of TRAIL therapeutics in prostate cancer cells can be enhanced via FSS-induced Piezo1 activation. Our second system implements this multiplex methodology to show that FSS exposure (290 dyn cm-2) increases activation of murine bone marrow-derived dendritic cells. These methodologies greatly improve the mechanobiology workflow, offering a high-throughput, multiplex approach.
Collapse
Affiliation(s)
- Abigail R Fabiano
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Spencer C Robbins
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Samantha V Knoblauch
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Schyler J Rowland
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN, 37212, USA.
| |
Collapse
|
31
|
Yuan X, Zhao X, Wang W, Li C. Mechanosensing by Piezo1 and its implications in the kidney. Acta Physiol (Oxf) 2024; 240:e14152. [PMID: 38682304 DOI: 10.1111/apha.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Kang H, Hu Q, Yang Y, Huang G, Li J, Zhao X, Zhu L, Su H, Tang W, Wan M. Urolithin A's Role in Alleviating Severe Acute Pancreatitis via Endoplasmic Reticulum-Mitochondrial Calcium Channel Modulation. ACS NANO 2024; 18:13885-13898. [PMID: 38757565 DOI: 10.1021/acsnano.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Severe acute pancreatitis (SAP), characterized by pancreatic acinar cell death, currently lacks effective targeted therapies. Ellagic acid (EA), rich in pomegranate, shows promising anti-inflammatory and antioxidant effects in SAP treatment. However, the roles of other forms of EA, such as plant extracellular vesicles (EVs) extracted from pomegranate, and Urolithin A (UA), converted from EA through gut microbiota metabolism in vivo, have not been definitively elucidated. Our research aimed to compare the effects of pomegranate-derived EVs (P-EVs) and UA in the treatment of SAP to screen an effective formulation and to explore its mechanisms in protecting acinar cells in SAP. By comparing the protective effects of P-EVs and UA on injured acinar cells, UA showed superior therapeutic effects than P-EVs. Subsequently, we further discussed the mechanism of UA in alleviating SAP inflammation. In vivo animal experiments found that UA could not only improve the inflammatory environment of pancreatic tissue and peripheral blood circulation in SAP mice but also revealed that the mechanism of UA in improving SAP might be related to mitochondria and endoplasmic reticulum (ER) through the results including pancreatic tissue transcriptomics and transmission electron microscopy. Further research found that UA could regulate ER-mitochondrial calcium channels and reduce pancreatic tissue necroptosis. In vitro experiments of mouse pancreatic organoids and acinar cells also confirmed that UA could improve pancreatic inflammation by regulating the ER-mitochondrial calcium channel and necroptosis pathway proteins. This study not only explored the therapeutic effect of plant EVs on SAP but also revealed that UA could alleviate SAP by regulating ER-mitochondrial calcium channel and reducing acinar cell necroptosis, providing insights into the pathogenesis and potential treatment of SAP.
Collapse
Affiliation(s)
- Hongxin Kang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Hu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Yang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaigai Huang
- Clinical Laboratory, First People's Hospital of Shuangliu District, Chengdu 610299, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianlin Zhao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Su
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meihua Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Clinical Laboratory, First People's Hospital of Shuangliu District, Chengdu 610299, China
| |
Collapse
|
33
|
Zhang T, Chen S, Li L, Jin Y, Liu S, Liu Z, Shi F, Xie L, Guo P, Cannon AC, Ergashev A, Yao H, Huang C, Zhang B, Wu L, Sun H, Chen S, Shan Y, Yu Z, Tolosa EJ, Liu J, Fernandez-Zapico ME, Ma F, Chen G. PFKFB3 controls acinar IP3R-mediated Ca2+ overload to regulate acute pancreatitis severity. JCI Insight 2024; 9:e169481. [PMID: 38781030 PMCID: PMC11383365 DOI: 10.1172/jci.insight.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.
Collapse
Affiliation(s)
- Tan Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuepeng Jin
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhu Liu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Shi
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifen Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Andrew C. Cannon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akmal Ergashev
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chaohao Huang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yunfeng Shan
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Feng Ma
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Gang Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
35
|
Zhang Y, Zou W, Dou W, Luo H, Ouyang X. Pleiotropic physiological functions of Piezo1 in human body and its effect on malignant behavior of tumors. Front Physiol 2024; 15:1377329. [PMID: 38690080 PMCID: PMC11058998 DOI: 10.3389/fphys.2024.1377329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanosensitive ion channel protein 1 (Piezo1) is a large homotrimeric membrane protein. Piezo1 has various effects and plays an important and irreplaceable role in the maintenance of human life activities and homeostasis of the internal environment. In addition, recent studies have shown that Piezo1 plays a vital role in tumorigenesis, progression, malignancy and clinical prognosis. Piezo1 is involved in regulating the malignant behaviors of a variety of tumors, including cellular metabolic reprogramming, unlimited proliferation, inhibition of apoptosis, maintenance of stemness, angiogenesis, invasion and metastasis. Moreover, Piezo1 regulates tumor progression by affecting the recruitment, activation, and differentiation of multiple immune cells. Therefore, Piezo1 has excellent potential as an anti-tumor target. The article reviews the diverse physiological functions of Piezo1 in the human body and its major cellular pathways during disease development, and describes in detail the specific mechanisms by which Piezo1 affects the malignant behavior of tumors and its recent progress as a new target for tumor therapy, providing new perspectives for exploring more potential effects on physiological functions and its application in tumor therapy.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wen Zou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenlei Dou
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Budde I, Schlichting A, Ing D, Schimmelpfennig S, Kuntze A, Fels B, Romac JMJ, Swain SM, Liddle RA, Stevens A, Schwab A, Pethő Z. Piezo1-induced durotaxis of pancreatic stellate cells depends on TRPC1 and TRPV4 channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572956. [PMID: 38187663 PMCID: PMC10769407 DOI: 10.1101/2023.12.22.572956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. The molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the role of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Hence, PSC durotaxis is optimal with an intermediary level of mechanosensitive channel activity, which we simulated using a numerically discretized mathematical model. Our findings suggest that mechanosensitive ion channels, particularly Piezo1, detect the mechanical microenvironment to guide PSC migration.
Collapse
Affiliation(s)
- Ilka Budde
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - André Schlichting
- Institute for Analysis and Numerics, University of Münster, Einsteinstr. 62, 48149, Germany
| | - David Ing
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | | | - Anna Kuntze
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
- Gerhard-Domagk-Institute of Pathology, University of Münster; Münster, Germany
| | - Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
- Institute of Physiology, University of Lübeck; Lübeck, Germany
| | - Joelle M-J Romac
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Sandip M Swain
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Rodger A Liddle
- Department of Medicine, Duke University, Durham, North Carolina, 27708, USA
| | - Angela Stevens
- Institute for Analysis and Numerics, University of Münster, Einsteinstr. 62, 48149, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| | - Zoltán Pethő
- Institute of Physiology II, University of Münster, Robert-Koch Str. 27B, 48149, Germany
| |
Collapse
|
37
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
38
|
Zaman S, Gorelick F. Acute pancreatitis: pathogenesis and emerging therapies. JOURNAL OF PANCREATOLOGY 2024; 7:10-20. [PMID: 38524855 PMCID: PMC10959536 DOI: 10.1097/jp9.0000000000000168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
Acute pancreatitis is a severe inflammatory disorder with limited treatment options. Improved understanding of disease mechanisms has led to new and potential therapies. Here we summarize what we view as some of the most promising new therapies for treating acute pancreatitis, emphasizing the rationale of specific treatments based on disease mechanisms. Targeted pharmacologic interventions are highlighted. We explore potential treatment benefits and risks concerning reducing acute injury, minimizing complications, and improving long-term outcomes. Mechanisms associated with acute pancreatitis initiation, perpetuation, and reconstitution are highlighted, along with potential therapeutic targets and how these relate to new treatments.
Collapse
Affiliation(s)
- Saif Zaman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
| | - Fred Gorelick
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511
- Veteran’s Administration Healthcare System, West Haven, CT 06516
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511
| |
Collapse
|
39
|
Walker J, Babyok OL, Saloman JL, Phillips AE. Recent advances in the understanding and management of chronic pancreatitis pain. JOURNAL OF PANCREATOLOGY 2024; 7:35-44. [PMID: 38524856 PMCID: PMC10959534 DOI: 10.1097/jp9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Abdominal pain is the most common symptom of chronic pancreatitis (CP) and is often debilitating for patients and very difficult to treat. To date, there exists no cure for the disease. Treatment strategies focus on symptom management and on mitigation of disease progression by reducing toxin exposure and avoiding recurrent inflammatory events. Traditional treatment protocols start with medical management followed by consideration of procedural or surgical intervention on selected patients with severe and persistent pain. The incorporation of adjuvant therapies to treat comorbidities including psychiatric disorders, exocrine pancreatic insufficiency, mineral bone disease, frailty, and malnutrition, are in its early stages. Recent clinical studies and animal models have been designed to improve investigation into the pathophysiology of CP pain, as well as to improve pain management. Despite the array of tools available, many therapeutic options for the management of CP pain provide incomplete relief. There still remains much to discover about the neural regulation of pancreas-related pain. In this review, we will discuss research from the last 5 years that has provided new insights into novel methods of pain phenotyping and the pathophysiology of CP pain. These discoveries have led to improvements in patient selection for optimization of outcomes for both medical and procedural management, and identification of potential future therapies.
Collapse
Affiliation(s)
- Jessica Walker
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Olivia L. Babyok
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
40
|
He H, Zhou J, Xu X, Zhou P, Zhong H, Liu M. Piezo channels in the intestinal tract. Front Physiol 2024; 15:1356317. [PMID: 38379701 PMCID: PMC10877011 DOI: 10.3389/fphys.2024.1356317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
The intestine is the largest mechanosensitive organ in the human body whose epithelial cells, smooth muscle cells, neurons and enteroendocrine cells must sense and respond to various mechanical stimuli such as motility, distension, stretch and shear to regulate physiological processes including digestion, absorption, secretion, motility and immunity. Piezo channels are a newly discovered class of mechanosensitive ion channels consisting of two subtypes, Piezo1 and Piezo2. Piezo channels are widely expressed in the intestine and are involved in physiological and pathological processes. The present review summarizes the current research progress on the expression, function and regulation of Piezo channels in the intestine, with the aim of providing a reference for the future development of therapeutic strategies targeting Piezo channels.
Collapse
Affiliation(s)
- Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuan Xu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Pinxi Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Huan Zhong
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Acupuncture and Moxibustion Bioinformatics, Education Department of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
41
|
Li J, Ye E, Huang J, Xu M, Zhang J, Zhang J, Cai H, Zhang J. Cysteine-modified PEGylated nanoparticles for targeted delivery of methylprednisolone to pancreatitis. Eur J Pharm Biopharm 2024; 195:114179. [PMID: 38199584 DOI: 10.1016/j.ejpb.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/24/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The timely suppression of inflammatory mediator production and mitigation of their effects on pancreatic acinar cells are crucial for the successful management of acute pancreatitis. To achieve effective treatment, we present a novel approach utilizing cysteine modified PEG nanoparticles for both precise accumulation at the site of pancreatitis and specific targeting of acinar cells. Methylprednisolone, a nonsteroidal anti-inflammatory drug, was tailored to enhance its circulation time in the bloodstream, preferentially accumulate in the pancreas and enhance cell uptake efficiency by acinar cells through specifically targeting L-Type amino acid transporter 1. The nanosystem significantly downregulated pro-inflammatory cytokines in plasma, resulting in the effective suppression of inflammation in acinar cells within an acute pancreatitis rat model. The utilization of the dual targeted therapy strategy holds considerable potential for the clinical management of pancreatitis.
Collapse
Affiliation(s)
- Jianbo Li
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ertai Ye
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingwen Huang
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Xu
- Henan Key Laboratory for Pharmacology of Liver Diseases, BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; School of Basic Medical Science, Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jieke Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junrong Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huijie Cai
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Zhang
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
42
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
43
|
Jiang W, Wijerathne TD, Zhang H, Lin YC, Jo S, Im W, Lacroix JJ, Luo YL. Structural and thermodynamic framework for PIEZO1 modulation by small molecules. Proc Natl Acad Sci U S A 2023; 120:e2310933120. [PMID: 38060566 PMCID: PMC10723123 DOI: 10.1073/pnas.2310933120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Tharaka D. Wijerathne
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Han Zhang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015
- Department of Chemistry, Lehigh University, Bethlehem, PA18015
- Department of Bioengineering, Lehigh University, Bethlehem, PA18015
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA18015
| | - Yi-Chun Lin
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Sunhwan Jo
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD21201
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA18015
- Department of Chemistry, Lehigh University, Bethlehem, PA18015
- Department of Bioengineering, Lehigh University, Bethlehem, PA18015
- Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA18015
| | - Jerome J. Lacroix
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA91766
| | - Yun L. Luo
- Department of Biotechnology and Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA91766
| |
Collapse
|
44
|
Liu X, Niu W, Zhao S, Zhang W, Zhao Y, Li J. Piezo1:the potential new therapeutic target for fibrotic diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:42-49. [PMID: 37722629 DOI: 10.1016/j.pbiomolbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Collapse
Affiliation(s)
- Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weipin Niu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuqing Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
45
|
Niu M, Zhang X, Wu Z, Li B, Bao J, Dai J, Yang Z, Zeng Y, Li L, Pandol S, Sutton R, Wen L. Neutrophil-specific ORAI1 Calcium Channel Inhibition Reduces Pancreatitis-associated Acute Lung Injury. FUNCTION 2023; 5:zqad061. [PMID: 38020066 PMCID: PMC10666672 DOI: 10.1093/function/zqad061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Acute pancreatitis is initiated within pancreatic exocrine cells and sustained by dysregulated systemic inflammatory responses mediated by neutrophils. Store-operated Ca2+ entry (SOCE) through ORAI1 channels in pancreatic acinar cells triggers acute pancreatitis, and ORAI1 inhibitors ameliorate experimental acute pancreatitis, but the role of ORAI1 in pancreatitis-associated acute lung injury has not been determined. Here, we showed mice with pancreas-specific deletion of Orai1 (Orai1ΔPdx1, ∼70% reduction in the expression of Orai1) are protected against pancreatic tissue damage and immune cell infiltration, but not pancreatitis-associated acute lung injury, suggesting the involvement of unknown cells that may cause such injury through SOCE via ORAI1. Genetic (Orai1ΔMRP8) or pharmacological inhibition of ORAI1 in murine and human neutrophils decreased Ca2+ influx and impaired chemotaxis, reactive oxygen species production, and neutrophil extracellular trap formation. Unlike pancreas-specific Orai1 deletion, mice with neutrophil-specific deletion of Orai1 (Orai1ΔMRP8) were protected against pancreatitis- and sepsis-associated lung cytokine release and injury, but not pancreatic injury in experimental acute pancreatitis. These results define critical differences between contributions from different cell types to either pancreatic or systemic organ injury in acute pancreatitis. Our findings suggest that any therapy for acute pancreatitis that targets multiple rather than single cell types is more likely to be effective.
Collapse
Affiliation(s)
- Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Xiuli Zhang
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Zengkai Wu
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Bin Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Jingpiao Bao
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Juanjuan Dai
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Zihan Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yue Zeng
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Liang Li
- Department of Gastroenterology and Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals NHS Foundation Trust and Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Li Wen
- Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
46
|
Ma J, Nguyen D, Madas J, Kwiat AM, Toledo Z, Bizanti A, Kogut N, Mistareehi A, Bendowski K, Zhang Y, Chen J, Li DP, Powley TL, Furness JB, Cheng Z. Spinal afferent innervation in flat-mounts of the rat stomach: anterograde tracing. Sci Rep 2023; 13:17675. [PMID: 37853008 PMCID: PMC10584867 DOI: 10.1038/s41598-023-43120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
The dorsal root ganglia (DRG) project spinal afferent axons to the stomach. However, the distribution and morphology of spinal afferent axons in the stomach have not been well characterized. In this study, we used a combination of state-of-the-art techniques, including anterograde tracer injection into the left DRG T7-T11, avidin-biotin and Cuprolinic Blue labeling, Zeiss M2 Imager, and Neurolucida to characterize spinal afferent axons in flat-mounts of the whole rat stomach muscular wall. We found that spinal afferent axons innervated all regions with a variety of distinct terminal structures innervating different gastric targets: (1) The ganglionic type: some axons formed varicose contacts with individual neurons within myenteric ganglia. (2) The muscle type: most axons ran in parallel with the longitudinal and circular muscles and expressed spherical varicosities. Complex terminal structures were observed within the circular muscle layer. (3) The ganglia-muscle mixed type: some individual varicose axons innervated both myenteric neurons and the circular muscle, exhibiting polymorphic terminal structures. (4) The vascular type: individual varicose axons ran along the blood vessels and occasionally traversed the vessel wall. This work provides a foundation for future topographical anatomical and functional mapping of spinal afferent axon innervation of the stomach under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Jichao Ma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Duyen Nguyen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jazune Madas
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Andrew M Kwiat
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Nicole Kogut
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - De-Pei Li
- Department of Medicine, Center for Precision Medicine, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 479062, USA
| | - John B Furness
- Department of Anatomy and Physiology, University of Melbourne, and Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Zixi Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
47
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Glaubitz J, Asgarbeik S, Lange R, Mazloum H, Elsheikh H, Weiss FU, Sendler M. Immune response mechanisms in acute and chronic pancreatitis: strategies for therapeutic intervention. Front Immunol 2023; 14:1279539. [PMID: 37881430 PMCID: PMC10595029 DOI: 10.3389/fimmu.2023.1279539] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Greifswald, Germany
| |
Collapse
|
49
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
50
|
Inamdar S, Cote GA, Yadav D. Endotherapy for Pancreas Divisum. Gastrointest Endosc Clin N Am 2023; 33:789-805. [PMID: 37709411 DOI: 10.1016/j.giec.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Pancreas divisum (PD) is a common anatomic variant of the pancreatic duct. Causal association between PD and pancreatitis has been debated for many years. Minor papilla sphincterotomy (miES) is offered in clinical practice to patients with idiopathic acute recurrent pancreatitis (iRAP) and PD. However, available data originate mainly from observational studies with many limitations. An ongoing international, multicenter, sham-controlled trial is evaluating the efficacy of miES in iRAP and PD. Endoscopic therapy for pain relief has limited to no benefit in patients with chronic abdominal pain or chronic pancreatitis who have PD and is not recommended.
Collapse
Affiliation(s)
- Sumant Inamdar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arkansas for Medical Sciences, Shorey Building, 8th Floor, 4301 West Markham Street, Little Rock, AR 72205, USA.
| | - Gregory A Cote
- Division of Gastroenterology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L461, Portland, OR, USA
| | - Dhiraj Yadav
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburg Medical Center, 200 Lothrop Street, M2, C-wing, Pittsburgh, PA 15213, USA
| |
Collapse
|