1
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501148. [PMID: 40298902 DOI: 10.1002/advs.202501148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Indexed: 04/30/2025]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multi-regional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced four-dimensional (4D)- materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lauren G Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alex J Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Asha R Viswanathan
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jamison M Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
| | - Serena H Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Thomas P Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ella E Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruby M Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Natalie A Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Jodie C Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ross C Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Cole A DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Tracy E Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Free-standing tissue structures tethered between pillars are powerful mechanobiology tools for studying cell contraction. To model interfaces ubiquitous in natural tissues and upgrade existing single-region suspended constructs, we developed Suspended Tissue Open Microfluidic Patterning (STOMP), a method to create multiregional suspended tissues. STOMP uses open microfluidics and capillary pinning to pattern subregions within free-standing tissues, facilitating the study of complex tissue interfaces, such as diseased-healthy boundaries (e.g., fibrotic-healthy) and tissue-type interfaces (e.g., bone-ligament). We observed altered contractile dynamics in fibrotic-healthy engineered heart tissues compared to single-region tissues and differing contractility in bone-ligament enthesis constructs compared to single-tissue periodontal ligament models. STOMP is a versatile platform - surface tension-driven patterning removes material requirements common with other patterning methods (e.g., shear-thinning, photopolymerizable) allowing tissue generation in multiple geometries with native extracellular matrices and advanced 4D materials. STOMP combines the contractile functionality of suspended tissues with precise patterning, enabling dynamic and spatially controlled studies.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
3
|
Kim B, Kim JY, Kim HW, Cho IY, Bong KW. Fibrosis Drug Efficacy Assessment Based on Microfluidic Mechanical Property Evaluation of Spheroid Models. Adv Healthc Mater 2025:e2403842. [PMID: 40091267 DOI: 10.1002/adhm.202403842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Fibrotic diseases, such as pulmonary fibrosis, pose significant challenges in both research and treatment. To address the limitations of existing systems, a novel collision-based spheroid mechanical property assessment system is developed. The system utilizes inertial fluid dynamics to induce controlled collisions through uniformly sized spheroids, allowing strain to be measured via high-speed cameras. In this study, the system is first validated using HEK293T spheroids to optimize flow velocity, followed by an analysis of deformability differences between two cell types related to pulmonary fibrosis (Calu-1 and MRC-5). A co-culture spheroid model comprising two types of lung cells, endothelial and fibroblast cells, in different rations is further developed, and significant differences in deformability depending on the cell composition is observed. Finally, spheroids are treated with TGF-β1(Transforming Growth Factor-β1), a factor known to activate fibroblast cells and induce excessive extra cellular matrix (ECM) accumulation, and Nintedanib, an anti-fibrotic drug, to assess changes in mechanical properties. These results effectively reflect the mechanical properties driven by cell-cell and cell-ECM interactions and highlight the correlation between spheroid mechanics and the progression of fibrotic disease. This system not only contributes to a deeper understanding of fibrosis progression but also serves as a powerful platform for accelerating the development of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Bolam Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong Yeon Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hye Won Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - In Yeong Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Zhou Z, Li T, Cai W, Zhu X, Zhang Z, Huang G. Microstring-engineered tension tissues: a novel platform for replicating tissue mechanics and advancing mechanobiology. LAB ON A CHIP 2025; 25:1452-1461. [PMID: 39530446 DOI: 10.1039/d4lc00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Replicating the mechanical tension of natural tissues is essential for maintaining organ function and stability, posing a central challenge in tissue engineering and regenerative medicine. Existing methods for constructing tension tissues often encounter limitations in flexibility, scalability, or cost-effectiveness. This study introduces a novel approach to fabricating soft microstring chips using a sacrificial template method, which is easy to operate, offers controlled preparation, and is cost-effective. Through experimental testing and finite element simulations, we validated and characterized the relationship between microstring deformation, tissue width, and the reaction force exerted by the microstrings, enabling precise measurement of tissue contraction force. We successfully constructed microstring-engineered tension tissues (METTs) and demonstrated that they exhibit a significant mechanical response to profibrotic factors. Additionally, we conceptually demonstrated the application of microstring chips in constructing METTs with asymmetric, biomimetic constraints. The results indicate effective construction and regulation of METTs, providing a robust platform for mechanobiology and biomedical research.
Collapse
Affiliation(s)
- Zixing Zhou
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Tingting Li
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Wei Cai
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan 430072, P.R. China
| | - Zuoqi Zhang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, P.R. China.
| |
Collapse
|
5
|
Qiu Y, Hu G. Lung-on-a-chip: From design principles to disease applications. BIOMICROFLUIDICS 2025; 19:021501. [PMID: 40161998 PMCID: PMC11954643 DOI: 10.1063/5.0257908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
To address the growing need for accurate lung models, particularly in light of respiratory diseases, lung cancer, and the COVID-19 pandemic, lung-on-a-chip technology is emerging as a powerful alternative. Lung-on-a-chip devices utilize microfluidics to create three-dimensional models that closely mimic key physiological features of the human lung, such as the air-liquid interface, mechanical forces associated with respiration, and fluid dynamics. This review provides a comprehensive overview of the fundamental components of lung-on-a-chip systems, the diverse fabrication methods used to construct these complex models, and a summary of their wide range of applications in disease modeling and aerosol deposition studies. Despite existing challenges, lung-on-a-chip models hold immense potential for advancing personalized medicine, drug development, and disease prevention, offering a transformative approach to respiratory health research.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Sone N, Gotoh S. Micro-physiological system of human lung: The current status and application to drug discovery. Drug Metab Pharmacokinet 2025; 60:101050. [PMID: 39847976 DOI: 10.1016/j.dmpk.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025]
Abstract
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans. In addition, it is not possible to accurately reproduce the internal environment of the human lung structure using conventional two-dimensional (2D) or three-dimensional (3D) cell culture methods. As a result, the micro-physiological system (MPS) technology, such as "lung-on-a-chip" that can culture human cells in a state close to human body environment have been developed, and its applications to disease models, toxicological studies, and drug discovery are accelerated worldwide. Here, we focus on the mimetics of the lung, including "lung-on-a-chip" technology, and review their recent progress, achievements and challenges. Finally, we discuss the role of these chips in drug discovery for refractory lung diseases.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
7
|
Xiao H, Sylla K, Gong X, Wilkowski B, Rossello-Martinez A, Jordan SN, Mintah EY, Zheng A, Sun H, Herzog EL, Mak M. Proteolysis and Contractility Regulate Tissue Opening and Wound Healing by Lung Fibroblasts in 3D Microenvironments. Adv Healthc Mater 2024; 13:e2400941. [PMID: 38967294 PMCID: PMC11617280 DOI: 10.1002/adhm.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Damage and repair are recurring processes in tissues, with fibroblasts playing key roles by remodeling extracellular matrices (ECM) through protein synthesis, proteolysis, and cell contractility. Dysregulation of fibroblasts can lead to fibrosis and tissue damage, as seen in idiopathic pulmonary fibrosis (IPF). In advanced IPF, tissue damage manifests as honeycombing, or voids in the lungs. This study explores how transforming growth factor-beta (TGF-β), a crucial factor in IPF, induces lung fibroblast spheroids to create voids in reconstituted collagen through proteolysis and cell contractility, a process we termed as hole formation. These voids reduce when proteases are blocked. Spheroids mimic fibroblast foci observed in IPF. Results indicate that cell contractility mediates tissue opening by stretching fractures in the collagen meshwork. Matrix metalloproteinases (MMPs), including MMP1 and MT1-MMP, are essential for hole formation, with invadopodia playing a significant role. Blocking MMPs reduces hole size and promotes wound healing. This study shows how TGF-β induces excessive tissue destruction and how blocking proteolysis can reverse damage, offering insights into IPF pathology and potential therapeutic interventions.
Collapse
Affiliation(s)
- Hugh Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Kadidia Sylla
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Brendan Wilkowski
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | | | - Seyma Nayir Jordan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Emmanuel Y Mintah
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Allen Zheng
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Huanxing Sun
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale School of Medicine, New Haven, CT, 06510, USA
| | - Erica L Herzog
- Department of Medicine (Pulmonary, Critical Care and Sleep), Yale School of Medicine, New Haven, CT, 06510, USA
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
8
|
Corona C, Man K, Newton CA, Nguyen KT, Yang Y. In Vitro Modeling of Idiopathic Pulmonary Fibrosis: Lung-on-a-Chip Systems and Other 3D Cultures. Int J Mol Sci 2024; 25:11751. [PMID: 39519302 PMCID: PMC11546860 DOI: 10.3390/ijms252111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disorder characterized by relentless progression of lung fibrosis that causes respiratory failure and early death. Currently, no curative treatments are available, and existing therapies include a limited selection of antifibrotic agents that only slow disease progression. The development of novel therapeutics has been hindered by a limited understanding of the disease's etiology and pathogenesis. A significant challenge in developing new treatments and understanding IPF is the lack of in vitro models that accurately replicate crucial microenvironments. In response, three-dimensional (3D) in vitro models have emerged as powerful tools for replicating organ-level microenvironments seen in vivo. This review summarizes the state of the art in advanced 3D lung models that mimic many physiological and pathological processes observed in IPF. We begin with a brief overview of conventional models, such as 2D cell cultures and animal models, and then explore more advanced 3D models, focusing on lung-on-a-chip systems. We discuss the current challenges and future research opportunities in this field, aiming to advance the understanding of the disease and the development of novel devices to assess the effectiveness of new IPF treatments.
Collapse
Affiliation(s)
- Christopher Corona
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA;
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| | - Chad A. Newton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA;
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA;
| |
Collapse
|
9
|
Liu Y, Xu D, Xing X, Shen A, Jin X, Li S, Liu Z, Wang L, Huang Y. Lung-Targeting Perylenediimide Nanocomposites for Efficient Therapy of Idiopathic Pulmonary Fibrosis. NANO LETTERS 2024; 24:12701-12708. [PMID: 39331492 DOI: 10.1021/acs.nanolett.4c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Idiopathic pulmonary fibrosis, an idiopathic interstitial lung disease with high mortality, remains challenging to treat due to the lack of clinically approved lung-targeting drugs. Herein, we present PDIC-DPC, a perylenediimide derivative that exhibits superior lung-selective enrichment. PDIC-DPC forms nanocomposites with plasma proteins, including fibrinogen beta chain and vitronectin, which bind to pulmonary endothelial receptors for lung-specific accumulation. Moreover, PDIC-DPC significantly suppresses transforming growth factor beta1 and activates adenosine monophosphate-activated protein kinase. As a result, compared to existing therapeutic drugs, PDIC-DPC achieves superior therapeutic outcomes, evidenced by the lowest Ashcroft score, significantly improved pulmonary function, and an extended survival rate in a bleomycin-induced pulmonary fibrosis model. This study elucidates the lung-selective enrichment of assembled prodrug from biological perspectives and affords a platform enabling therapeutic efficiency on idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuting Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Damin Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyi Xing
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Anqi Shen
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Xinpeng Jin
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Shijiao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghua Liu
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwei Huang
- Laboratory for NanoMedical Photonics, School of Basic Medical Science, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Ji G, Zhang Z, Wang X, Guo Q, Zhang E, Li C. Comprehensive evaluation of the mechanism of human adipose mesenchymal stem cells ameliorating liver fibrosis by transcriptomics and metabolomics analysis. Sci Rep 2024; 14:20035. [PMID: 39198546 PMCID: PMC11358327 DOI: 10.1038/s41598-024-70281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Liver fibrosis is a chronic liver disease with progressive wound healing reaction caused by liver injury. Currently, there is no FDA approved drugs for liver fibrosis. Human adipose mesenchymal stem cells (hADSCs) have shown remarkable therapeutic effects in liver diseases. However, few studies have evaluated the therapeutic role of hADSCs in liver fibrosis, and the detailed mechanism of action is unknown. Here, we investigated the in vitro and in vivo anti-fibrosis efficacy of hADSCs and identified important metabolic changes and detailed mechanisms through transcriptomic and metabolomic analyses. We found that hADSCs could inhibit the proliferation of activated hepatic stellate cells (HSCs), promote their apoptosis, and effectively inhibit the expression of pro-fibrotic protein. It can significantly reduce collagen deposition and liver injury, improve liver function and alleviate liver inflammation in cirrhotic mouse models. In addition, transcriptome analysis revealed that the key mechanism of hADSCs against liver fibrosis is the regulation of AGE-RAGE signaling pathway. Metabolic analysis showed that hADSCs influenced changes of metabolites in lipid metabolism. Therefore, our study shows that hADSCs could reduce the activation of hepatic stellate cells and inhibit the progression of liver fibrosis, which has important potential in the treatment of liver fibrosis as well as other refractory chronic liver diseases.
Collapse
Affiliation(s)
- Guibao Ji
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Zilong Zhang
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Xinze Wang
- Department of Trauma and Orthopedics, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Qiuxia Guo
- Department of Gastroenterology Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, People's Republic of China
| | - Erlei Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Chuanjiang Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Ponmozhi J, Dhinakaran S, Kocsis D, Iván K, Erdő F. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barriers 2024; 12:2221632. [PMID: 37294075 PMCID: PMC11042069 DOI: 10.1080/21688370.2023.2221632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The maintenance of body homeostasis relies heavily on physiological barriers. Dysfunction of these barriers can lead to various pathological processes, including increased exposure to toxic materials and microorganisms. Various methods exist to investigate barrier function in vivo and in vitro. To investigate barrier function in a highly reproducible manner, ethically, and high throughput, researchers have turned to non-animal techniques and micro-scale technologies. In this comprehensive review, the authors summarize the current applications of organ-on-a-chip microfluidic devices in the study of physiological barriers. The review covers the blood-brain barrier, ocular barriers, dermal barrier, respiratory barriers, intestinal, hepatobiliary, and renal/bladder barriers under both healthy and pathological conditions. The article then briefly presents placental/vaginal, and tumour/multi-organ barriers in organ-on-a-chip devices. Finally, the review discusses Computational Fluid Dynamics in microfluidic systems that integrate biological barriers. This article provides a concise yet informative overview of the current state-of-the-art in barrier studies using microfluidic devices.
Collapse
Affiliation(s)
- J. Ponmozhi
- Microfluidics Laboratory, Department of Mechanical Engineering, IPS Academy-Institute of Engineering Science, Indore, India
| | - S. Dhinakaran
- The Centre for Fluid Dynamics, Department of Mechanical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kristóf Iván
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
12
|
Vo Q, Benam KH. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip. Eur J Pharm Sci 2024; 195:106709. [PMID: 38246431 PMCID: PMC10939731 DOI: 10.1016/j.ejps.2024.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Lung vasculature is particularly important due to its involvement in genesis and progression of rare, debilitating disorders as well as common chronic pathologies. Here, we provide an overview of the latest advances in the development of pulmonary vascular (PV) models using emerging microfluidic tissue engineering technology Organs-on-Chips (so-called PV-Chips). We first review the currently reported PV-Chip systems and their key features, and then critically discuss their major limitations in reproducing in vivo-seen and disease-relevant cellularity, localization, and microstructure. We conclude by presenting latest efforts to overcome such technical and biological limitations and future directions.
Collapse
Affiliation(s)
- Quoc Vo
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kambez H Benam
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Xu Y, Ying L, Lang JK, Hinz B, Zhao R. Modeling mechanical activation of macrophages during pulmonary fibrogenesis for targeted anti-fibrosis therapy. SCIENCE ADVANCES 2024; 10:eadj9559. [PMID: 38552026 PMCID: PMC10980276 DOI: 10.1126/sciadv.adj9559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Pulmonary fibrosis is an often fatal lung disease. Immune cells such as macrophages were shown to accumulate in the fibrotic lung, but their contribution to the fibrosis development is unclear. To recapitulate the involvement of macrophages in the development of pulmonary fibrosis, we developed a fibrotic microtissue model with cocultured human macrophages and fibroblasts. We show that profibrotic macrophages seeded on topographically controlled stromal tissues became mechanically activated. The resulting co-alignment of macrophages, collagen fibers, and fibroblasts promoted widespread fibrogenesis in micro-engineered lung tissues. Anti-fibrosis treatment using pirfenidone disrupts the polarization and mechanical activation of profibrotic macrophages, leading to fibrosis inhibition. Pirfenidone inhibits the mechanical activation of macrophages by suppressing integrin αMβ2 and Rho-associated kinase 2. These results demonstrate a potential pulmonary fibrogenesis mechanism at the tissue level contributed by macrophages. The cocultured microtissue model is a powerful tool to study the immune-stromal cell interactions and the anti-fibrosis drug mechanism.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Linxuan Ying
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jennifer K. Lang
- Division of Cardiovascular Medicine and the Clinical and Translational Research Center, University at Buffalo, State University of New York; Veterans Affairs Western New York Health Care System, University at Buffalo, State University of New York; Department of Biomedical Engineering, University at Buffalo, State University of New York; Department of Medicine, University at Buffalo, State University of New York; Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Ruogang Zhao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
14
|
Jain N, Shashi Bhushan BL, Natarajan M, Mehta R, Saini DK, Chatterjee K. Advanced 3D In Vitro Lung Fibrosis Models: Contemporary Status, Clinical Uptake, and Prospective Outlooks. ACS Biomater Sci Eng 2024; 10:1235-1261. [PMID: 38335198 DOI: 10.1021/acsbiomaterials.3c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Fibrosis has been characterized as a global health problem and ranks as one of the primary causes of organ dysfunction. Currently, there is no cure for pulmonary fibrosis, and limited therapeutic options are available due to an inadequate understanding of the disease pathogenesis. The absence of advanced in vitro models replicating dynamic temporal changes observed in the tissue with the progression of the disease is a significant impediment in the development of novel antifibrotic treatments, which has motivated research on tissue-mimetic three-dimensional (3D) models. In this review, we summarize emerging trends in preparing advanced lung models to recapitulate biochemical and biomechanical processes associated with lung fibrogenesis. We begin by describing the importance of in vivo studies and highlighting the often poor correlation between preclinical research and clinical outcomes and the limitations of conventional cell culture in accurately simulating the 3D tissue microenvironment. Rapid advancement in biomaterials, biofabrication, biomicrofluidics, and related bioengineering techniques are enabling the preparation of in vitro models to reproduce the epithelium structure and operate as reliable drug screening strategies for precise prediction. Improving and understanding these model systems is necessary to find the cross-talks between growing cells and the stage at which myofibroblasts differentiate. These advanced models allow us to utilize the knowledge and identify, characterize, and hand pick medicines beneficial to the human community. The challenges of the current approaches, along with the opportunities for further research with potential for translation in this field, are presented toward developing novel treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - B L Shashi Bhushan
- Department of Pulmonary Medicine, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - M Natarajan
- Department of Pathology, Victoria Hospital, Bangalore Medical College and Research Institute, Bangalore 560002 India
| | - Ravi Mehta
- Department of Pulmonology and Critical Care, Apollo Hospitals, Jayanagar, Bangalore 560011 India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012 India
| |
Collapse
|
15
|
Kolanko E, Cargnoni A, Papait A, Silini AR, Czekaj P, Parolini O. The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. Eur Respir Rev 2024; 33:230127. [PMID: 38232990 DOI: 10.1183/16000617.0127-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Lung fibrosis is a complex process, with unknown underlying mechanisms, involving various triggers, diseases and stimuli. Different cell types (epithelial cells, endothelial cells, fibroblasts and macrophages) interact dynamically through multiple signalling pathways, including biochemical/molecular and mechanical signals, such as stiffness, affecting cell function and differentiation. Idiopathic pulmonary fibrosis (IPF) is the most common fibrosing interstitial lung disease (fILD), characterised by a notably high mortality. Unfortunately, effective treatments for advanced fILD, and especially IPF and non-IPF progressive fibrosing phenotype ILD, are still lacking. The development of pharmacological therapies faces challenges due to limited knowledge of fibrosis pathogenesis and the absence of pre-clinical models accurately representing the complex features of the disease. To address these challenges, new model systems have been developed to enhance the translatability of preclinical drug testing and bridge the gap to human clinical trials. The use of two- and three-dimensional in vitro cultures derived from healthy or diseased individuals allows for a better understanding of the underlying mechanisms responsible for lung fibrosis. Additionally, microfluidics systems, which replicate the respiratory system's physiology ex vivo, offer promising opportunities for the development of effective therapies, especially for IPF.
Collapse
Affiliation(s)
- Emanuel Kolanko
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
- These authors contributed equally
| | - Anna Cargnoni
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
- These authors contributed equally
| | - Andrea Papait
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonietta Rosa Silini
- Fondazione Poliambulanza Istituto Ospedaliero, Centro di Ricerca E. Menni, Brescia, Italy
| | - Piotr Czekaj
- Department of Cytophysiology, Katowice Medical University of Silesia in Katowice, Katowice, Poland
| | - Ornella Parolini
- Università Cattolica del Sacro Cuore, Department Life Sciences and Public Health, Roma, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
16
|
Selvarajah B, Platé M, Chambers RC. Pulmonary fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 94:101227. [PMID: 38000335 DOI: 10.1016/j.mam.2023.101227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Fibrosis is the concluding pathological outcome and major cause of morbidity and mortality in a number of common chronic inflammatory, immune-mediated and metabolic diseases. The progressive deposition of a collagen-rich extracellular matrix (ECM) represents the cornerstone of the fibrotic response and culminates in organ failure and premature death. Idiopathic pulmonary fibrosis (IPF) represents the most rapidly progressive and lethal of all fibrotic diseases with a dismal median survival of 3.5 years from diagnosis. Although the approval of the antifibrotic agents, pirfenidone and nintedanib, for the treatment of IPF signalled a watershed moment for the development of anti-fibrotic therapeutics, these agents slow but do not halt disease progression or improve quality of life. There therefore remains a pressing need for the development of effective therapeutic strategies. In this article, we review emerging therapeutic strategies for IPF as well as the pre-clinical and translational approaches that will underpin a greater understanding of the key pathomechanisms involved in order to transform the way we diagnose and treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Brintha Selvarajah
- Oncogenes and Tumour Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Manuela Platé
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK
| | - Rachel C Chambers
- Department of Respiratory Medicine (UCL Respiratory), Division of Medicine, University College London, UK.
| |
Collapse
|
17
|
Moon HR, Surianarayanan N, Singh T, Han B. Microphysiological systems as reliable drug discovery and evaluation tools: Evolution from innovation to maturity. BIOMICROFLUIDICS 2023; 17:061504. [PMID: 38162229 PMCID: PMC10756708 DOI: 10.1063/5.0179444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Microphysiological systems (MPSs), also known as organ-on-chip or disease-on-chip, have recently emerged to reconstitute the in vivo cellular microenvironment of various organs and diseases on in vitro platforms. These microfluidics-based platforms are developed to provide reliable drug discovery and regulatory evaluation testbeds. Despite recent emergences and advances of various MPS platforms, their adoption of drug discovery and evaluation processes still lags. This delay is mainly due to a lack of rigorous standards with reproducibility and reliability, and practical difficulties to be adopted in pharmaceutical research and industry settings. This review discusses the current and potential use of MPS platforms in drug discovery processes while considering the context of several key steps during drug discovery processes, including target identification and validation, preclinical evaluation, and clinical trials. Opportunities and challenges are also discussed for the broader dissemination and adoption of MPSs in various drug discovery and regulatory evaluation steps. Addressing these challenges will transform long and expensive drug discovery and evaluation processes into more efficient discovery, screening, and approval of innovative drugs.
Collapse
Affiliation(s)
- Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Tarun Singh
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bumsoo Han
- Author to whom correspondence should be addressed:. Tel: +1-765-494-5626
| |
Collapse
|
18
|
Barreiro Carpio M, Gonzalez Martinez E, Dabaghi M, Ungureanu J, Arizpe Tafoya AV, Gonzalez Martinez DA, Hirota JA, Moran-Mirabal JM. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54234-54248. [PMID: 37964517 PMCID: PMC10695173 DOI: 10.1021/acsami.3c10092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Extrusion three-dimensional (3D) bioprinting is a promising technology with many applications in the biomedical and tissue engineering fields. One of the key limitations for the widespread use of this technology is the narrow window of printability that results from the need to have bioinks with rheological properties that allow the extrusion of continuous filaments while maintaining high cell viability within the materials during and after printing. In this work, we use Carbopol (CBP) as rheology modifier for extrusion printing of biomaterials that are typically nonextrudable or present low printability. We show that low concentrations of CBP can introduce the desired rheological properties for a wide range of formulations, allowing the use of polymers with different cross-linking mechanisms and the introduction of additives and cells. To explore the opportunities and limitations of CBP as a rheology modifier, we used ink formulations based on poly(ethylene glycol)diacrylate with extrusion 3D printing to produce soft, yet stable, hydrogels with tunable mechanical properties. Cell-laden constructs made with such inks presented high viability for cells seeded on top of cross-linked materials and cells incorporated within the bioink during printing, showing that the materials are noncytotoxic and the printed structures do not degrade for up to 14 days. To our knowledge, this is the first report of the use of CBP-containing bioinks to 3D-print complex cell-laden structures that are stable for days and present high cell viability. The use of CBP to obtain highly printable inks can accelerate the evolution of extrusion 3D bioprinting by guaranteeing the required rheological properties and expanding the number of materials that can be successfully printed. This will allow researchers to develop and optimize new bioinks focusing on the biochemical, cellular, and mechanical requirements of the targeted applications rather than the rheology needed to achieve good printability.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Eduardo Gonzalez Martinez
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Mohammadhossein Dabaghi
- Firestone
Institute for Respiratory Health, Division of Respirology, Department
of Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Julia Ungureanu
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | | | | | - Jeremy Alexander Hirota
- Firestone
Institute for Respiratory Health, Division of Respirology, Department
of Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- McMaster
Immunology Research Centre, Department of Pathology and Molecular
Medicine, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Division
of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
- Department
of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jose Manuel Moran-Mirabal
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
- Centre
for Advanced Light Microscopy, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
- Brockhouse
Institute for Materials Research, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
19
|
Li Q, Chen Z, Zhang Y, Ding S, Ding H, Wang L, Xie Z, Fu Y, Wei M, Liu S, Chen J, Wang X, Gu Z. Imaging cellular forces with photonic crystals. Nat Commun 2023; 14:7369. [PMID: 37963911 PMCID: PMC10646022 DOI: 10.1038/s41467-023-43090-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Current techniques for visualizing and quantifying cellular forces have limitations in live cell imaging, throughput, and multi-scale analysis, which impede progress in cell force research and its practical applications. We developed a photonic crystal cellular force microscopy (PCCFM) to image vertical cell forces over a wide field of view (1.3 mm ⨯ 1.0 mm, a 10 ⨯ objective image) at high speed (about 20 frames per second) without references. The photonic crystal hydrogel substrate (PCS) converts micro-nano deformations into perceivable color changes, enabling in situ visualization and quantification of tiny vertical cell forces with high throughput. It enabled long-term, cross-scale monitoring from subcellular focal adhesions to tissue-level cell sheets and aggregates.
Collapse
Affiliation(s)
- Qiwei Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Zaozao Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
- Institute of Biomaterials and Medical Devices, Southeast University, 215163, Suzhou, Jiangsu, China
| | - Ying Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Shuang Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Haibo Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Luping Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
- Faculty of Sports Science, Ningbo University, 315211, Ningbo, China
| | - Zhuoying Xie
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Yifu Fu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Mengxiao Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Shengnan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Jialun Chen
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Xuan Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, Jiangsu, China.
- Institute of Biomaterials and Medical Devices, Southeast University, 215163, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Delivery of anti-microRNA-21 by lung-targeted liposomes for pulmonary fibrosis treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:36-47. [PMID: 36919116 PMCID: PMC9972768 DOI: 10.1016/j.omtn.2023.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disorder with a low survival rate. Pulmonary fibrosis is one of the complications of COVID-19 and has a high prevalence in COVID-19 patients. Currently, no effective therapies other than lung transplantation are available to cure IPF and post-COVID-19 pulmonary fibrosis. MicroRNAs are small non-coding RNAs that mediate the development and progression of pulmonary fibrosis, thus making them potent drug candidates for this serious disease. MicroRNA-21 (miR-21) promotes not only the differentiation of fibroblasts to myofibroblasts but also epithelial-mesenchymal transition, both of which have been proposed as fundamental processes in pulmonary fibrosis development. Delivery of anti-miR-21 to block the miR-21-associated fibrogenic pathways represents a promising therapy for pulmonary fibrosis. However, microRNA treatment is challenged by quick degradation of RNA in blood, poor cellular uptake, and off-target effects. To overcome these challenges, we developed a lung-targeted, cationic liposome formulation to encapsulate anti-miR-21, enhance its delivery efficiency, and improve the therapeutic efficacy. We optimized the liposome formulation and demonstrated the anti-fibrotic effects using both in vitro and in vivo lung fibrosis models. Our results showed that anti-miR-21 delivered by cationic liposomes suppressed myofibroblast differentiation, reduced the synthesis of extracellular matrix, and inhibited fibrosis progression.
Collapse
|
21
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
22
|
Beri P, Plunkett C, Barbara J, Shih CC, Barnes SW, Ross O, Choconta P, Trinh T, Gomez D, Litvin B, Walker J, Qiu M, Hammack S, Toyama EQ. A high-throughput 3D cantilever array to model airway smooth muscle hypercontractility in asthma. APL Bioeng 2023; 7:026104. [PMID: 37206658 PMCID: PMC10191677 DOI: 10.1063/5.0132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Asthma is often characterized by tissue-level mechanical phenotypes that include remodeling of the airway and an increase in airway tightening, driven by the underlying smooth muscle. Existing therapies only provide symptom relief and do not improve the baseline narrowing of the airway or halt progression of the disease. To investigate such targeted therapeutics, there is a need for models that can recapitulate the 3D environment present in this tissue, provide phenotypic readouts of contractility, and be easily integrated into existing assay plate designs and laboratory automation used in drug discovery campaigns. To address this, we have developed DEFLCT, a high-throughput plate insert that can be paired with standard labware to easily generate high quantities of microscale tissues in vitro for screening applications. Using this platform, we exposed primary human airway smooth muscle cell-derived microtissues to a panel of six inflammatory cytokines present in the asthmatic niche, identifying TGF-β1 and IL-13 as inducers of a hypercontractile phenotype. RNAseq analysis further demonstrated enrichment of contractile and remodeling-relevant pathways in TGF-β1 and IL-13 treated tissues as well as pathways generally associated with asthma. Screening of 78 kinase inhibitors on TGF-β1 treated tissues suggests that inhibition of protein kinase C and mTOR/Akt signaling can prevent this hypercontractile phenotype from emerging, while direct inhibition of myosin light chain kinase does not. Taken together, these data establish a disease-relevant 3D tissue model for the asthmatic airway, which combines niche specific inflammatory cues and complex mechanical readouts that can be utilized in drug discovery efforts.
Collapse
Affiliation(s)
- Pranjali Beri
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | | | - Joshua Barbara
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Chien-Cheng Shih
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - S. Whitney Barnes
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Olivia Ross
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Paula Choconta
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Ton Trinh
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Datzael Gomez
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Bella Litvin
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - John Walker
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Minhua Qiu
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Scott Hammack
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| | - Erin Quan Toyama
- Novartis Institutes for Biomedical Research, San Diego, California 92121, USA
| |
Collapse
|
23
|
Hsia I, Asmani M, Zhao R. Predicting the preclinical efficacy of anti-fibrosis agents using a force-sensing fibrosis on chip system. Biosens Bioelectron 2023; 228:115194. [PMID: 36933322 DOI: 10.1016/j.bios.2023.115194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/11/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The high attrition rate of drug candidates contributes to the long duration and high cost in modern drug development. A major barrier in drug development is the poor predicting power of the preclinical models. In the current study, a human pulmonary fibrosis on chip system was developed for the preclinical evaluation of anti-fibrosis drugs. Pulmonary fibrosis is a severe disease characterized by progressive tissue stiffening that leads to respiration failure. To recapitulate the unique biomechanical feature of the fibrotic tissues, we developed flexible micropillars that can serve as in-situ force sensors to detect the changes in the mechanical properties of engineered lung microtissues. Using this system, we modeled the fibrogenesis of the alveolar tissues including the tissue stiffening and the expression of α-smooth muscle actin (α-SMA) and pro-collagen. Two anti-fibrosis drug candidates that are currently under clinical trials (KD025 and BMS-986020) were tested for their potential anti-fibrosis efficacy and the results were compared to those of FDA-approved anti-fibrosis drugs pirfenidone and nintedanib. Both pre-approval drugs were effective in inhibiting transforming growth factor beta 1 (TGF-β1) induced increases in tissue contractile force, stiffness and expressions of fibrotic biomarkers, which are similar to the effects of FDA-approved anti-fibrosis drugs. These results demonstrated the potential utility of the force-sensing fibrosis on chip system in the pre-clinical development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Isaac Hsia
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Mohammadnabi Asmani
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, N.Y, 14260, USA.
| |
Collapse
|
24
|
Zhao Y, Wang EY, Lai FBL, Cheung K, Radisic M. Organs-on-a-chip: a union of tissue engineering and microfabrication. Trends Biotechnol 2023; 41:410-424. [PMID: 36725464 PMCID: PMC9985977 DOI: 10.1016/j.tibtech.2022.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023]
Abstract
We review the emergence of the new field of organ-on-a-chip (OOAC) engineering, from the parent fields of tissue engineering and microfluidics. We place into perspective the tools and capabilities brought into the OOAC field by early tissue engineers and microfluidics experts. Liver-on-a-chip and heart-on-a-chip are used as two case studies of systems that heavily relied on tissue engineering techniques and that were amongst the first OOAC models to be implemented, motivated by the need to better assess toxicity to human tissues in preclinical drug development. We review current challenges in OOAC that often stem from the same challenges in the parent fields, such as stable vascularization and drug absorption.
Collapse
Affiliation(s)
- Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fook B L Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Krisco Cheung
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
25
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
26
|
Light-driven biological actuators to probe the rheology of 3D microtissues. Nat Commun 2023; 14:717. [PMID: 36759504 PMCID: PMC9911700 DOI: 10.1038/s41467-023-36371-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The mechanical properties of biological tissues are key to their physical integrity and function. Although external loading or biochemical treatments allow the estimation of these properties globally, it remains difficult to assess how such external stimuli compare with cell-generated contractions. Here we engineer microtissues composed of optogenetically-modified fibroblasts encapsulated within collagen. Using light to control the activity of RhoA, a major regulator of cellular contractility, we induce local contractions within microtissues, while monitoring microtissue stress and strain. We investigate the regulation of these local contractions and their spatio-temporal distribution. We demonstrate the potential of our technique for quantifying tissue elasticity and strain propagation, before examining the possibility of using light to create and map local anisotropies in mechanically heterogeneous microtissues. Altogether, our results open an avenue to guide the formation of tissues while non-destructively charting their rheology in real time, using their own constituting cells as internal actuators.
Collapse
|
27
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
28
|
Zhang Z, Shang J, Yang Q, Dai Z, Liang Y, Lai C, Feng T, Zhong D, Zou H, Sun L, Su Y, Yan S, Chen J, Yao Y, Shi Y, Huang X. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J Nanobiotechnology 2023; 21:29. [PMID: 36698192 PMCID: PMC9878808 DOI: 10.1186/s12951-023-01788-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Liver fibrosis is a chronic liver disease with the presence of progressive wound healing response caused by liver injury. Currently, there are no approved therapies for liver fibrosis. Exosomes derived from human adipose mesenchymal stem cells (hADMSCs-Exo) have displayed a prominent therapeutic effect on liver diseases. However, few studies have evaluated therapeutic effect of hADMSCs-Exo in liver fibrosis and cirrhosis, and its precise mechanisms of action remain unclear. Herein, we investigated anti-fibrotic efficacy of hADMSCs-Exo in vitro and in vivo, and identified important metabolic changes and the detailed mechanism through transcriptomic and metabolomic profiling. We found hADMSCs-Exo could inhibit the proliferation of activated hepatic stellate cells through aggravating apoptosis and arresting G1 phase, effectively inhibiting the expression of profibrogenic proteins and epithelial-to-mesenchymal transition (EMT) in vitro. Moreover, it could significantly block collagen deposition and EMT process, improve liver function and reduce liver inflammation in liver cirrhosis mice model. The omics analysis revealed that the key mechanism of hADMSCs-Exo anti-hepatic fibrosis was the inhibition of PI3K/AKT/mTOR signaling pathway and affecting the changes of metabolites in lipid metabolism, and mainly regulating choline metabolism. CHPT1 activated by hADMSCs-Exo facilitated formation and maintenance of vesicular membranes. Thus, our study indicates that hADMSCs-Exo can attenuate hepatic stellate cell activation and suppress the progression of liver fibrosis, which holds the significant potential of hADMSCs-Exo for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.
Collapse
Affiliation(s)
- Zilong Zhang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jin Shang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Qinyan Yang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Zonglin Dai
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Yuxin Liang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Chunyou Lai
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Tianhang Feng
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Deyuan Zhong
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Haibo Zou
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Lelin Sun
- grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Yuhao Su
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Su Yan
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jie Chen
- Department of Core laboratory, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Yutong Yao
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Ying Shi
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Xiaolun Huang
- grid.54549.390000 0004 0369 4060Liver Transplantation Center and HBP Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital Affiliate to University of Electronic Science and Technology of China, Chengdu, 610042 Sichuan China ,grid.54549.390000 0004 0369 4060School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| |
Collapse
|
29
|
An optical pH-sensor integrated microfluidic platform multilayered with bacterial cellulose and gelatin methacrylate to mimic drug-induced lung injury. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
30
|
Zamprogno P, Schulte J, Ferrari D, Rechberger K, Sengupta A, van Os L, Weber T, Zeinali S, Geiser T, Guenat OT. Lung-on-a-Chip Models of the Lung Parenchyma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:191-211. [PMID: 37195532 DOI: 10.1007/978-3-031-26625-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.
Collapse
Affiliation(s)
- Pauline Zamprogno
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Jan Schulte
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Karin Rechberger
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Lisette van Os
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Tobias Weber
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland.
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland.
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Lebel M, Cliche DO, Charbonneau M, Adam D, Brochiero E, Dubois CM, Cantin AM. Invadosome Formation by Lung Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 24:ijms24010499. [PMID: 36613948 PMCID: PMC9820272 DOI: 10.3390/ijms24010499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.
Collapse
Affiliation(s)
- Mégane Lebel
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Dominic O. Cliche
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - André M. Cantin
- Respiratory Division, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
- Correspondence: ; Tel.: +819-346-1110 (ext. 14881)
| |
Collapse
|
32
|
Morales IA, Boghdady CM, Campbell BE, Moraes C. Integrating mechanical sensor readouts into organ-on-a-chip platforms. Front Bioeng Biotechnol 2022; 10:1060895. [PMID: 36588933 PMCID: PMC9800895 DOI: 10.3389/fbioe.2022.1060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Organs-on-a-chip have emerged as next-generation tissue engineered models to accurately capture realistic human tissue behaviour, thereby addressing many of the challenges associated with using animal models in research. Mechanical features of the culture environment have emerged as being critically important in designing organs-on-a-chip, as they play important roles in both stimulating realistic tissue formation and function, as well as capturing integrative elements of homeostasis, tissue function, and tissue degeneration in response to external insult and injury. Despite the demonstrated impact of incorporating mechanical cues in these models, strategies to measure these mechanical tissue features in microfluidically-compatible formats directly on-chip are relatively limited. In this review, we first describe general microfluidically-compatible Organs-on-a-chip sensing strategies, and categorize these advances based on the specific advantages of incorporating them on-chip. We then consider foundational and recent advances in mechanical analysis techniques spanning cellular to tissue length scales; and discuss their integration into Organs-on-a-chips for more effective drug screening, disease modeling, and characterization of biological dynamics.
Collapse
Affiliation(s)
| | | | | | - Christopher Moraes
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada,Department of Chemical Engineering, McGill University, Montreal, QC, Canada,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada,*Correspondence: Christopher Moraes,
| |
Collapse
|
33
|
Wang EY, Zhao Y, Okhovatian S, Smith JB, Radisic M. Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis. Front Bioeng Biotechnol 2022; 10:1005051. [PMID: 36338120 PMCID: PMC9630603 DOI: 10.3389/fbioe.2022.1005051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 08/31/2023] Open
Abstract
Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.
Collapse
Affiliation(s)
- Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jacob B. Smith
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Wang Y, Singer R, Liu X, Inman SJ, Cao Q, Zhou Q, Noble A, Li L, Arizpe Tafoya AV, Babi M, Ask K, Kolb MR, Ramsay S, Geng F, Zhang B, Shargall Y, Moran-Mirabal JM, Dabaghi M, Hirota JA. The CaT stretcher: An open-source system for delivering uniaxial strain to cells and tissues (CaT). Front Bioeng Biotechnol 2022; 10:959335. [PMID: 36329705 PMCID: PMC9622803 DOI: 10.3389/fbioe.2022.959335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/29/2022] [Indexed: 01/23/2025] Open
Abstract
Integration of mechanical cues in conventional 2D or 3D cell culture platforms is an important consideration for in vivo and ex vivo models of lung health and disease. Available commercial and published custom-made devices are frequently limited in breadth of applications, scalability, and customization. Herein we present a technical report on an open-source, cell and tissue (CaT) stretcher, with modularity for different in vitro and ex vivo systems, that includes the following features: 1) Programmability for modeling different breathing patterns, 2) scalability to support low to high-throughput experimentation, and 3) modularity for submerged cell culture, organ-on-chips, hydrogels, and live tissues. The strategy for connecting the experimental cell or tissue samples to the stretching device were designed to ensure that traditional biomedical outcome measurements including, but not limited to microscopy, soluble mediator measurement, and gene and protein expression remained possible. Lastly, to increase the uptake of the device within the community, the system was built with economically feasible and available components. To accommodate diverse in vitro and ex vivo model systems we developed a variety of chips made of compliant polydimethylsiloxane (PDMS) and optimized coating strategies to increase cell adherence and viability during stretch. The CaT stretcher was validated for studying mechanotransduction pathways in lung cells and tissues, with an increase in alpha smooth muscle actin protein following stretch for 24 h observed in independent submerged monolayer, 3D hydrogel, and live lung tissue experiments. We anticipate that the open-source CaT stretcher design will increase accessibility to studies of the dynamic lung microenvironment through direct implementation by other research groups or custom iterations on our designs.
Collapse
Affiliation(s)
- Yushi Wang
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Ryan Singer
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Xinyue Liu
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Seth J. Inman
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quynh Cao
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Quan Zhou
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Alex Noble
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Laura Li
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Aidee Verónica Arizpe Tafoya
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mouhanad Babi
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
| | - Martin R. Kolb
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
| | - Scott Ramsay
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Fei Geng
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, ON, Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Yaron Shargall
- Division of Thoracic Surgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jose Manuel Moran-Mirabal
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Department of Medicine, Firestone Institute for Respiratory Health—Division of Respirology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Michael G. DeGroote Centre for Learning and Discovery, Hamilton, ON, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
35
|
Zhang H, Ren L, Shivnaraine RV. Targeting GPCRs to treat cardiac fibrosis. Front Cardiovasc Med 2022; 9:1011176. [PMID: 36277752 PMCID: PMC9582444 DOI: 10.3389/fcvm.2022.1011176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis occurs ubiquitously in ischemic heart failure, genetic cardiomyopathies, diabetes mellitus, and aging. It triggers myocardial stiffness, which impairs cardiac function, ultimately progressing to end-stage heart failure and increased mortality. Although several targets for anti-fibrotic therapies have been identified, including TGF-β and receptor tyrosine kinase, there is currently no FDA-approved drug specifically targeting cardiac fibrosis. G protein-coupled receptors (GPCRs) are integral, multipass membrane-bound receptors that exhibit diverse and cell-specific expression, offering novel and unrealized therapeutic targets for cardiac fibrosis. This review highlights the emerging roles of several GPCRs and briefly explores their downstream pathways that are crucial in cardiac fibrosis. We will not only provide an overview of the GPCRs expressed on cardiac fibroblasts that are directly involved in myofibroblast activation but also describe those GPCRs which contribute to cardiac fibrosis via indirect crosstalk mechanisms. We also discuss the challenges of identifying novel effective therapies for cardiac fibrosis and offer strategies to circumvent these challenges.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Hao Zhang
| | - Lu Ren
- Department of Medicine, Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
36
|
Doryab A, Taskin MB, Stahlhut P, Groll J, Schmid O. Real-Time Measurement of Cell Mechanics as a Clinically Relevant Readout of an In Vitro Lung Fibrosis Model Established on a Bioinspired Basement Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205083. [PMID: 36030365 DOI: 10.1002/adma.202205083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lung fibrosis, one of the major post-COVID complications, is a progressive and ultimately fatal disease without a cure. Here, an organ- and disease-specific in vitro mini-lung fibrosis model equipped with noninvasive real-time monitoring of cell mechanics is introduced as a functional readout. To establish an intricate multiculture model under physiologic conditions, a biomimetic ultrathin basement (biphasic elastic thin for air-liquid culture conditions, BETA) membrane (<1 µm) is developed with unique properties, including biocompatibility, permeability, and high elasticity (<10 kPa) for cell culturing under air-liquid interface and cyclic mechanical stretch conditions. The human-based triple coculture fibrosis model, which includes epithelial and endothelial cell lines combined with primary fibroblasts from idiopathic pulmonary fibrosis patients established on the BETA membrane, is integrated into a millifluidic bioreactor system (cyclic in vitro cell-stretch, CIVIC) with dose-controlled aerosolized drug delivery, mimicking inhalation therapy. The real-time measurement of cell/tissue stiffness (and compliance) is shown as a clinical biomarker of the progression/attenuation of fibrosis upon drug treatment, which is confirmed for inhaled Nintedanib-an antifibrosis drug. The mini-lung fibrosis model allows the combined longitudinal testing of pharmacodynamics and pharmacokinetics of drugs, which is expected to enhance the predictive capacity of preclinical models and hence facilitate the development of approved therapies for lung fibrosis.
Collapse
Affiliation(s)
- Ali Doryab
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| |
Collapse
|
37
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
38
|
Santos GL, DeGrave AN, Rehman A, Al Disi S, Xhaxho K, Schröder H, Bao G, Meyer T, Tiburcy M, Dworatzek E, Zimmermann WH, Lutz S. Using different geometries to modulate the cardiac fibroblast phenotype and the biomechanical properties of engineered connective tissues. BIOMATERIALS ADVANCES 2022; 139:213041. [PMID: 35909053 DOI: 10.1016/j.bioadv.2022.213041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.
Collapse
Affiliation(s)
- Gabriela L Santos
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Alisa N DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Sara Al Disi
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Kristin Xhaxho
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Helen Schröder
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Elke Dworatzek
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Germany; DZHK (German Center for Cardiovascular Research) partner site, Berlin, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany; Center for Neurodegenerative Diseases (DZNE), Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany.
| |
Collapse
|
39
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
40
|
Zhang Q, Wang P, Fang X, Lin F, Fang J, Xiong C. Collagen gel contraction assays: From modelling wound healing to quantifying cellular interactions with three-dimensional extracellular matrices. Eur J Cell Biol 2022; 101:151253. [PMID: 35785635 DOI: 10.1016/j.ejcb.2022.151253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cells respond to and actively remodel the extracellular matrix (ECM). The dynamic and bidirectional interaction between cells and ECM, especially their mechanical interactions, has been found to play an essential role in triggering a series of complex biochemical and biomechanical signal pathways and in regulating cellular functions and behaviours. The collagen gel contraction assay (CGCA) is a widely used method to investigate cell-ECM interactions in 3D environments and provides a mechanically associated readout reflecting 3D cellular contractility. In this review, we summarize various versions of CGCA, with an emphasis on recent high-throughput and low-consumption CGCA techniques. More importantly, we focus on the technique of force monitoring during the contraction of collagen gel, which provides a quantitative characterization of the overall forces generated by all the resident cells in the collagen hydrogel. Accordingly, we present recent biological applications of the CGCA, which have expanded from the initial wound healing model to other studies concerning cell-ECM interactions, including fibrosis, cancer, tissue repair and the preparation of biomimetic microtissues.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xu Fang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Feng Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jing Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
41
|
Recent advances in lung-on-a-chip models. Drug Discov Today 2022; 27:2593-2602. [PMID: 35724916 DOI: 10.1016/j.drudis.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
With the global burden of respiratory diseases, rapid identification of the best therapeutic measures to combat these diseases is essential. Animal models and 2D cell culture models do not replicate the findings observed in vivo. To gain deeper insight into lung pathology and physiology, 3D and advanced lung-on-a-chip models have been developed recently. Lung-on-a-chip models more accurately simulate the lung's microenvironment and functions in vivo, resulting in more-accurate assessments of drug safety and effectiveness. This review discusses the transition from 2D to 3D models and the recent advances in lung-on-a-chip platforms, their implementation and the numerous challenges faced. Finally, a general overview of this platform and its potential applications in respiratory disease research and drug discovery is highlighted.
Collapse
|
42
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
43
|
Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2031-2049. [PMID: 35366152 DOI: 10.1007/s11427-021-2054-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Cell phenotype heterogeneity within tumor tissue, especially which due to the emergence of epithelial-mesenchymal transition (EMT) in cancer cells, is associated with cancer invasion and metastasis. However, our understanding of the cellular mechanism(s) underlying the cooperation between EMT cell and epithelial cancer cell migration remains incomplete. Herein, heterotypic tumor spheroids containing both epithelial and EMT cancer cells were generated in vitro. We observed that EMT cells dominated the peripheral region of the self-organized heterotypic tumor spheroid. Furthermore, our results demonstrated that EMT cells could serve as leader cells to improve the collective migration efficiency of epithelial cancer cells and promote dispersion and invasion of the tumor spheroids, which was regulated by the force transition between EMT cells and epithelial cancer cells. Mechanistically, our data further suggest that force transmission is mediated by heterophilic N-cadherin/E-cadherin adhesion complexes between EMT and epithelial cancer cells. Impairment of N-cadherin/E-cadherin adhesion complex formation abrogated the ability of EMT cells to guide epithelial cancer cell migration and blocked the dispersion of tumor spheroids. Together, our data provide new insight into the mechanical interaction between epithelial and EMT cancer cells through heterophilic cadherin adhesion, which enables cooperative tumor cell migration, highlighting the role of EMT cells in tumor invasion.
Collapse
|
44
|
Wang EY, Smith J, Radisic M. Design and Fabrication of Biological Wires for Cardiac Fibrosis Disease Modeling. Methods Mol Biol 2022; 2485:175-190. [PMID: 35618906 DOI: 10.1007/978-1-0716-2261-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extensive progress has been made in developing engineered models for elucidating human cardiac disease. Cardiac fibrosis is often associated with all forms of cardiac disease and has a direct deleterious effect on cardiac function. As currently there is no effective therapeutic strategy specifically designed to target fibrosis, in vitro diagnostic platforms for drug testing have generated significant interest. In this context, we have developed an innovative approach to generate human cardiac fibrotic tissues on Biowire II platform and established a compound screening system. The disease model is constructed to recapitulate contractile, biomechanical, and electrophysiological complexities of fibrotic myocardium. Additionally, an integrated model with fibrotic and healthy cardiac tissues coupled together can be created to mimic focal fibrosis. The methods for constructing the Biowire fibrotic model will be described here.
Collapse
Affiliation(s)
- Erika Yan Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jacob Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
45
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
46
|
Cummins KA, Bitterman PB, Tschumperlin DJ, Wood DK. A scalable 3D tissue culture pipeline to enable functional therapeutic screening for pulmonary fibrosis. APL Bioeng 2021; 5:046102. [PMID: 34805716 PMCID: PMC8598262 DOI: 10.1063/5.0054967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.
Collapse
Affiliation(s)
- Katherine A. Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
47
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
48
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
49
|
Walker M, Godin M, Pelling AE. Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF-β1 activation. Integr Biol (Camb) 2021; 12:199-210. [PMID: 32877929 DOI: 10.1093/intbio/zyaa015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Developing methods to study tissue mechanics and myofibroblast activation may lead to new targets for therapeutic treatments that are urgently needed for fibrotic disease. Microtissue arrays are a promising approach to conduct relatively high-throughput research into fibrosis as they recapitulate key biomechanical aspects of the disease through a relevant 3D extracellular environment. In early work, our group developed a device called the MVAS-force to stretch microtissues while enabling simultaneous assessment of their dynamic mechanical behavior. Here, we investigated TGF-β1-induced fibroblast to myofibroblast differentiation in microtissue cultures using our MVAS-force device through assessing α-SMA expression, contractility and stiffness. In doing so, we linked cell-level phenotypic changes to functional changes that characterize the clinical manifestation of fibrotic disease. As expected, TGF-β1 treatment promoted a myofibroblastic phenotype and microtissues became stiffer and possessed increased contractility. These changes were partially reversible upon TGF-β1 withdrawal under a static condition, while, in contrast, long-term cyclic stretching maintained myofibroblast activation. This pro-fibrotic effect of mechanical stretching was absent when TGF-β1 receptors were inhibited. Furthermore, stretching promoted myofibroblast differentiation when microtissues were given latent TGF-β1. Altogether, these results suggest that external mechanical stretch may activate latent TGF-β1 and, accordingly, might be a powerful stimulus for continued myofibroblast activation to progress fibrosis. Further exploration of this pathway with our approach may yield new insights into myofibroblast activation and more effective therapeutic treatments for fibrosis.
Collapse
Affiliation(s)
- Matthew Walker
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada
| | - Michel Godin
- Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Department of Mechanical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada.,Ottawa-Carleton Institute for Biomedical Engineering, Colonel By Hall, 161 Louis Pasteur, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Andrew E Pelling
- Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,Department of Physics, 150 Louis Pasteur pvt., STEM Complex, University of Ottawa, Ottawa, ON K1N 6N5, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, K1N5N5, Canada.,SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
50
|
Chen Z, Anandakrishnan N, Xu Y, Zhao R. Compressive Buckling Fabrication of 3D Cell-Laden Microstructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101027. [PMID: 34263550 PMCID: PMC8425919 DOI: 10.1002/advs.202101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Tissue architecture is a prerequisite for its biological functions. Recapitulating the three-dimensional (3D) tissue structure represents one of the biggest challenges in tissue engineering. Two-dimensional (2D) tissue fabrication methods are currently in the main stage for tissue engineering and disease modeling. However, due to their planar nature, the created models only represent very limited out-of-plane tissue structure. Here compressive buckling principle is harnessed to create 3D biomimetic cell-laden microstructures from microfabricated planar patterns. This method allows out-of-plane delivery of cells and extracellular matrix patterns with high spatial precision. As a proof of principle, a variety of polymeric 3D miniature structures including a box, an octopus, a pyramid, and continuous waves are fabricated. A mineralized bone tissue model with spatially distributed cell-laden lacunae structures is fabricated to demonstrate the fabrication power of the method. It is expected that this novel approach will help to significantly expand the utility of the established 2D fabrication techniques for 3D tissue fabrication. Given the widespread of 2D fabrication methods in biomedical research and the high demand for biomimetic 3D structures, this method is expected to bridge the gap between 2D and 3D tissue fabrication and open up new possibilities in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Nanditha Anandakrishnan
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ying Xu
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| |
Collapse
|