1
|
Lin T, Liu L, Zeng L, Zhao C, Xiao S, Ma H, Li J, Mao F, Qin Y, Zhang Y, Zhang Y, Xiang Z, Yu Z. ChNLRC4, a cytoplasmic pattern recognition receptor, activates the pyroptosis signaling pathway in Mollusca. Int J Biol Macromol 2025; 296:139632. [PMID: 39793815 DOI: 10.1016/j.ijbiomac.2025.139632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
NLR inflammasomes recognize pathogen-associated molecular patterns (PAMPs), triggering Caspase-1 activation and leading to gasdermin D (GSDMD)-mediated pyroptosis, a crucial immune response in mammals. The functional GSDME-mediated pyroptosis has been reported in invertebrates, yet the existence of an NLR-Caspase-GSDME axis mediating pyroptosis signaling cascades remains unclear. In this study, we reported an NLRC4 homolog named ChNLRC4, a pattern recognition receptor from the oyster Crassostrea hongkongensis that is able to bind to LPS and Lys-type PGN through its LRR domain. ChNLRC4 interacted with ChCaspase-1 through CARD-CARD domain homotypic interactions and enhanced ChCaspase-1 activity. Additionally, overexpression of ChNLRC4 promoted ChCaspase-1-mediated cleavage of ChGSDME, leading to pyroptosis in HEK293T cells. Furthermore, knockdown of chnlrc4 resulted in a significant reduction in the death rate of hemocytes, immune infiltration of hemocytes, cilium shedding, and bacterial clearance. Collectively, this study provides insight into the role of NLR within the pyroptosis signaling pathway in oysters.
Collapse
Affiliation(s)
- Tianxiang Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Zeng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congxin Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ma
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Mao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Qin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuehuan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiming Xiang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ziniu Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Xu W, Wang Y, Cui S, Zheng Q, Lin Y, Cui Q, Xie Y, Zeng Y, Zhang C, Li Y, Jin X, Qin M, Sun H, Hao H, Cao L. Methylcobalamin protects against liver failure via engaging gasdermin E. Nat Commun 2025; 16:1233. [PMID: 39890804 PMCID: PMC11785938 DOI: 10.1038/s41467-024-54826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/21/2024] [Indexed: 02/03/2025] Open
Abstract
Gasdermin E (GSDME) is a pyroptotic cell death effector and a promising target for pyroptotic tissue injury. Here we perform high-throughput screening and demonstrate that methylcobalamin (MeCbl), an endogenous coenzyme form of vitamin B12, is a specific GSDME inhibitor and highly effective against cholestatic liver failure. MeCbl specifically blocks GSDME cleavage by directly binding with GSDME. In cholestasis-, cisplatin- or concanavalin A (Con A)-induced male mouse models, MeCbl significantly suppresses liver transaminase activities and inflammation, alleviates hepatocyte death, and reduces mortality of mice by blocking GSDME cleavage. The conserved Cys180 residue in GSDME is essential for caspase-3/GzmB recognition. MeCbl in base-off conformation coordinates to Cys180 to prevent caspase-3/GzmB-GSDME interactions and thereby GSDME-mediated pyroptosis. In summary, our study discovers MeCbl as a specific GSDME inhibitor that is promisingly to be developed as an effective drug against cholestatic liver failure, and other GSDME triggered sterile inflammation and/or organ failure.
Collapse
Affiliation(s)
- Wanfeng Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, P. R. China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shuang Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qiuling Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yanghao Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Qingqing Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuxin Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yuming Zeng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Chuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yujie Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Xin Jin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Minna Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Huiyong Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|
3
|
Billman ZP, Hancks DC, Miao EA. Unanticipated Loss of Inflammasomes in Birds. Genome Biol Evol 2024; 16:evae138. [PMID: 38965649 PMCID: PMC11258412 DOI: 10.1093/gbe/evae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
Inflammasomes are multiprotein complexes that form in response to ligands originating from pathogens as well as alterations of normal cell physiology caused by infection or tissue damage. These structures engage a robust inflammatory immune response that eradicates environmental microbes before they cause disease, and slow the growth of bona fide pathogens. Despite their undeniable utility in immunity, inflammasomes are radically reduced in birds. Perhaps most surprising is that, within all birds, NLRP3 is retained, while its signaling adapter ASC is lost, suggesting that NLRP3 signals via a novel unknown adapter. Crocodilian reptiles and turtles, which share a more recent common ancestor with birds, retain many of the lost inflammasome components, indicating that the deletion of inflammasomes occurred after birds diverged from crocodiles. Some bird lineages have even more extensive inflammasome loss, with songbirds continuing to pare down their inflammasomes until only NLRP3 and CARD8 remain. Remarkably, songbirds have lost caspase-1 but retain the downstream targets of caspase-1: IL-1β, IL-18, and the YVAD-linker encoding gasdermin A. This suggests that inflammasomes can signal through alternative proteases to activate cytokine maturation and pyroptosis in songbirds. These observations may reveal new contexts of activation that may be relevant to mammalian inflammasomes and may suggest new avenues of research to uncover the enigmatic nature of the poorly understood NLRP3 inflammasome.
Collapse
Affiliation(s)
- Zachary P Billman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9093, USA
| | - Edward A Miao
- Department of Integrative Immunobiology, Duke University, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Wang Z, Liu Y, Hu J, You X, Yang J, Zhang Y, Liu Q, Yang D. Tissue-resident trained immunity in hepatocytes protects against septic liver injury in zebrafish. Cell Rep 2024; 43:114324. [PMID: 38850536 DOI: 10.1016/j.celrep.2024.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Trained immunity is classically characterized by long-term functional reprogramming of innate immune cells to combat infectious diseases. Infection-induced organ injury is a common clinical severity phenotype of sepsis. However, whether the induction of trained immunity plays a role in protecting septic organ injury remains largely unknown. Here, through establishing an in vivo β-glucan training and lipopolysaccharide (LPS) challenge model in zebrafish larvae, we observe that induction of trained immunity could inhibit pyroptosis of hepatocytes to alleviate septic liver injury, with an elevated trimethyl-histone H3 lysine 4 (H3K4me3) modification that targets mitophagy-related genes. Moreover, we identify a C-type lectin domain receptor in zebrafish, named DrDectin-1, which is revealed as the orchestrator in gating H3K4me3 rewiring-mediated mitophagy activation and alleviating pyroptosis-engaged septic liver injury in vivo. Taken together, our results uncover tissue-resident trained immunity in maintaining liver homeostasis at the whole-animal level and offer an in vivo model to efficiently integrate trained immunity for immunotherapies.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanyuan Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Hu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Xinwei You
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| |
Collapse
|
5
|
Li S, Lu X, Lin X, Zhang Y, Liu Q, Chen S. Cleavage of gasdermin by apoptotic caspases triggers pyroptosis restricting bacterial colonization in Hydra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105139. [PMID: 38325499 DOI: 10.1016/j.dci.2024.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin (GSDM) proteins, as the direct executors of pyroptosis, are structurally and functionally conserved among vertebrates and play crucial roles in host defense against infection, inflammation, and cancer. However, the origin of functional GSDMs remains elusive in the animal kingdom. Here, we found that functional GSDME homologs first appeared in the cnidarian. Moreover, these animal GSDME homologs share evolutionarily conserved apoptotic caspase cleavage sites. Thus, we verified the functional conservation of apoptotic caspase-GSDME cascade in Hydra, a representative species of cnidarian. Unlike vertebrate GSDME homologs, HyGSDME could be cleaved by four Hydra caspase homologs with caspase-3 activity at two sites. Furthermore, in vivo activation of Hydra caspases resulted in HyGSDME cleavage to induce pyroptosis, exacerbating injury and restricting bacterial burden, which protects Hydra from pathogen invasion. In conclusion, these results suggest that GSDME-dependent pyroptosis may be an ancient and conserved host defense mechanism, which may contribute to better understanding on the origin and evolution of GSDMs.
Collapse
Affiliation(s)
- Shuxin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoyang Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiuqing Lin
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Eckhart L, Fischer H. Caspase-5: Structure, Pro-Inflammatory Activity and Evolution. Biomolecules 2024; 14:520. [PMID: 38785927 PMCID: PMC11117641 DOI: 10.3390/biom14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Caspase-5 is a protease that induces inflammation in response to lipopolysaccharide (LPS), a component of the cell envelope of Gram-negative bacteria. The expression level of the CASP5 gene is very low in the basal state, but strongly increases in the presence of LPS. Intracellular LPS binds to the caspase activation and recruitment domain (CARD) of caspase-5, leading to the formation of a non-canonical inflammasome. Subsequently, the catalytic domain of caspase-5 cleaves gasdermin D and thereby facilitates the formation of cell membrane pores through which pro-inflammatory cytokines of the interleukin-1 family are released. Caspase-4 is also able to form a non-canonical inflammasome upon binding to LPS, but its expression is less dependent on LPS than the expression of caspase-5. Caspase-4 and caspase-5 have evolved via the duplication of a single ancestral gene in a subclade of primates, including humans. Notably, the main biomedical model species, the mouse, has only one ortholog, namely caspase-11. Here, we review the structural features and the mechanisms of regulation that are important for the pro-inflammatory roles of caspase-5. We summarize the interspecies differences and the evolution of pro-inflammatory caspases in mammals and discuss the potential roles of caspase-5 in the defense against Gram-negative bacteria and in sepsis.
Collapse
Affiliation(s)
- Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Heinz Fischer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
7
|
Ma J, Ma Y, Yi J, Lei P, Fang Y, Wang L, Liu F, Luo L, Zhang K, Jin L, Yang Q, Sun D, Zhang C, Wu D. Rapid altitude displacement induce zebrafish appearing acute high altitude illness symptoms. Heliyon 2024; 10:e28429. [PMID: 38590888 PMCID: PMC10999933 DOI: 10.1016/j.heliyon.2024.e28429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Rapid ascent to high-altitude areas above 2500 m often leads to acute high altitude illness (AHAI), posing significant health risks. Current models for AHAI research are limited in their ability to accurately simulate the high-altitude environment for drug screening. Addressing this gap, a novel static self-assembled water vacuum transparent chamber was developed to induce AHAI in zebrafish. This study identified 6000 m for 2 h as the optimal condition for AHAI induction in zebrafish. Under these conditions, notable behavioral changes including slow movement, abnormal exploration behavior and static behavior in the Novel tank test. Furthermore, this model demonstrated changes in oxidative stress-related markers included increased levels of malondialdehyde, decreased levels of glutathione, decreased activities of superoxide dismutase and catalase, and increased levels of inflammatory markers IL-6, IL-1β and TNF-α, and inflammatory cell infiltration and mild edema in the gill tissue, mirroring the clinical pathophysiology observed in AHAI patients. This innovative zebrafish model not only offers a more accurate representation of the high-altitude environment but also provides a high-throughput platform for AHAI drug discovery and pathogenesis research.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Li Luo
- Affiliated Dongguang Hospital, Southern Medical University, Dongguang, 523059, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325000, China
| | - Chi Zhang
- Department of Clinical Translational Research, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Dejun Wu
- Emergency Department, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
8
|
Zhang Z, Zhang HL, Yang DH, Hao Q, Yang HW, Meng DL, Meindert de Vos W, Guan LL, Liu SB, Teame T, Gao CC, Ran C, Yang YL, Yao YY, Ding QW, Zhou ZG. Lactobacillus rhamnosus GG triggers intestinal epithelium injury in zebrafish revealing host dependent beneficial effects. IMETA 2024; 3:e181. [PMID: 38882496 PMCID: PMC11170971 DOI: 10.1002/imt2.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
Lactobacillus rhamnosus GG (LGG), the well-characterized human-derived probiotic strain, possesses excellent properties in the maintenance of intestinal homeostasis, immunoregulation and defense against gastrointestinal pathogens in mammals. Here, we demonstrate that the SpaC pilin of LGG causes intestinal epithelium injury by inducing cell pyroptosis and gut microbial dysbiosis in zebrafish. Dietary SpaC activates Caspase-3-GSDMEa pathways in the intestinal epithelium, promotes intestinal pyroptosis and increases lipopolysaccharide (LPS)-producing gut microbes in zebrafish. The increased LPS subsequently activates Gaspy2-GSDMEb pyroptosis pathway. Further analysis reveals the Caspase-3-GSDMEa pyroptosis is initiated by the species-specific recognition of SpaC by TLR4ba, which accounts for the species-specificity of the SpaC-inducing intestinal pyroptosis in zebrafish. The observed pyroptosis-driven gut injury and microbial dysbiosis by LGG in zebrafish suggest that host-specific beneficial/harmful mechanisms are critical safety issues when applying probiotics derived from other host species and need more attention.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Hong-Ling Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Da-Hai Yang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Hong-Wei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - De-Long Meng
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Willem Meindert de Vos
- Laboratory of Microbiology Wageningen University and Research Wageningen Netherlands
- Human Microbiome Research Program, Faculty of Medicine University of Helsinki Helsinki Finland
| | - Le-Luo Guan
- Faculty of Land and Food Systems The University of British Columbia Vancouver Canada
| | - Shu-Bin Liu
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
- Tigray Agricultural Research Institute Mekelle Ethiopia
| | - Chen-Chen Gao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Qian-Wen Ding
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
9
|
Ou JY, Liu SH, Tang DK, Shi LZ, Yan LJ, Huang JY, Zou LF, Quan JY, You YT, Chen YY, Yu LZ, Lu ZB. Protective Effect of Silibinin on Lipopolysaccharide-Induced Endotoxemia by Inhibiting Caspase-11-Dependent Cell Pyroptosis. Chin J Integr Med 2024:10.1007/s11655-024-3656-1. [PMID: 38532152 DOI: 10.1007/s11655-024-3656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
OBJECTIVE To explore the protective effect and the underlying mechanism of silibinin (SIB), one of the active compounds from Silybum marianum (L.) Gaertn in endotoxemia. METHODS Mouse peritoneal macrophage were isolated via intraperitoneally injection of BALB/c mice with thioglycolate medium. Cell viability was assessed using the cell counting kit-8, while cytotoxicity was determined through lactate dehydrogenase cytotoxicity assay. The protein expressions of interleukin (IL)-1 α, IL-1 β, and IL-18 were determined by enzyme-linked immunosorbent assay. Intracellular lipopolysaccharide (LPS) levels were measured by employing both the limulus amoebocyte lysate assay and flow cytometry. Additionally, proximity ligation assay was employed for the LPS and caspase-11 interaction. Mice were divided into 4 groups: the control, LPS, high-dose-SIB (100 mg/kg), and low-dose-SIB (100 mg/kg) groups (n=8). Zebrafish were divided into 4 groups: the control, LPS, high-dose-SIB (200 εmol/L), and low-dose-SIB (100 εmol/L) groups (n=30 for survival experiment and n=10 for gene expression analysis). The expression of caspase-11, gasdermin D (GSDMD), and N-GSDMD was determined by Western blot and the expressions of caspy2, gsdmeb, and IL-1 β were detected using quantitative real-time PCR. Histopathological observation was performed through hematoxylineosin staining, and protein levels in bronchoalveolar lavage fluid were quantified using the bicinchoninicacid protein assay. RESULTS SIB noticeably decreased caspase-11 and GSDMD-mediated pyroptosis and suppressed the secretion of IL-1 α, IL-1 β, and IL-18 induced by LPS (P<0.05). Moreover, SIB inhibited the translocation of LPS into the cytoplasm and the binding of caspase-11 and intracellular LPS (P<0.05). SIB also attenuated the expression of caspase-11 and N-terminal fragments of GSDMD, inhibited the relative cytokines, prolonged the survival time, and up-regulated the survival rate in the endotoxemia models (P<0.05). CONCLUSIONS SIB can inhibit pyroptosis in the LPS-mediated endotoxemia model, at least in part, by inhibiting the caspase-11-mediated cleavage of GSDMD. Additionally, SIB inhibits the interaction of LPS and caspase-11 and inhibits the LPS-mediated up-regulation of caspase-11 expression, which relieves caspase-11-dependent cell pyroptosis and consequently attenuates LPS-mediated lethality.
Collapse
Affiliation(s)
- Jin-Ying Ou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Shan-Hong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Dong-Kai Tang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Ling-Zhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Li-Jun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Jing-Yan Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Jing-Yu Quan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Yan-Ting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Yao Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Li X, Mai K, Ai Q. Palmitic acid activates NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production in large yellow croaker (Larimichthys crocea). Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159428. [PMID: 38029958 DOI: 10.1016/j.bbalip.2023.159428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Studies on marine fish showed that vegetable oils substituted for excessive fish oil increased interleukin-1β (IL-1β) production. However, whether the nucleotide-binding oligomerization domain, leucine-rich repeat-containing family, pyrin domain-containing-3 (NLRP3) inflammasome has a substantial role in fatty acid-induced IL-1β production in fish remains unclear. The associated specific mechanism is also unknown. In this study, nlrp3, caspase-1 and apoptosis-associated speck-like protein containing a CARD (asc) were successfully cloned, and NLRP3 inflammasome consisted of NLRP3, caspase-1 and ASC in large yellow croaker. Primary hepatocytes of fish incubated with palmitic acid (PA) exhibited the highest expression of pro-inflammatory genes (il-1β and tnfα) and NLRP3 inflammasome related genes (nlrp3, caspase-1 and asc), caspase-1 activity and IL-1β production among different treatments. Furthermore, PA-induced NLRP3 inflammasome activation was confirmed to require two signals: the first signal was that PA promoted the NF-κB (P65) protein into the nucleus, and NF-κB increased NLRP3 promoter activity and nlrp3 transcription. The second signal was that PA inhibited AMPK phosphorylation and decreased mitophagy by inhibiting the expression of PINK and parkin proteins, thereby damaging the mitochondria that could not be effectively cleared. Mitochondrial damage generated excessive amounts of reactive oxygen species, which activated the NLRP3 inflammasome and then induced caspase-1 activity and IL-1β production. Therefore, excessive dietary PA activated NLRP3 inflammasome through NF-κB and AMPK-mitophagy-ROS pathways to induce IL-1β production, thereby leading to inflammation in fish.
Collapse
Affiliation(s)
- Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, and The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong, 266003, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
11
|
Zhao Y, Liang Y, Chen Q, Shan S, Yang G, Li H. The function of NLRP3 in anti-infection immunity and inflammasome assembly of common carp (Cyprinus carpio L.). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109367. [PMID: 38211703 DOI: 10.1016/j.fsi.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
NLRP3 inflammasome can be activated by a variety of stimuli and plays an important role in protecting host from pathogen invasion and maintaining homeostasis. However, the activation mechanism of NLRP3 inflammasome in fish is still unclear. In the present study, the NLRP3 gene (CcNLRP3) was identified from common carp, which was 3069 bp in length and encoded a protein with five domains. Sequence analysis showed that NLRP3 was evolutionarily conserved, and CcNLRP3 was closely related to that in grass carp and zebrafish. Real-time PCR showed that CcNLRP3 was widely expressed in various immune-related tissues of healthy common carp, and significantly increased after stimulation with E. tarda, A. hydrophila and Cyprinus spring viremia virus (SVCV), suggesting that CcNLRP3 might be involved in the immune defense of common carp. The results of co-IP, spot formation, oligomerization and fluorescence localization showed that CcNLRP3 could interact with CcASC and assemble into inflammasome. The cytotoxicity assays showed that CcNLRP3 inflammasome was involved in the pyroptosis induced by CcGSDME. At the same time, CcNLRP3 could directly interact with CcCaspase-A/B and result in increased Caspase-B enzyme activity and LDH release, indicating that CcNLRP3 could also form inflammasome through ASC-independent pathway. Taken together, the results provide targets and theoretical basis for the prevention and control of infectious diseases in aquaculture.
Collapse
Affiliation(s)
- Yue Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yaxin Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
12
|
Fujii K, Yamakawa K, Takeda Y, Okuda N, Takasu A, Ono F. Understanding the pathophysiology of acute critical illness: translational lessons from zebrafish models. Intensive Care Med Exp 2024; 12:8. [PMID: 38291192 PMCID: PMC10828313 DOI: 10.1186/s40635-024-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
The models used to investigate the pathophysiological mechanisms of acute critical illness are not limited to mammalian species. The zebrafish (Danio rerio) is a popular model organism for studying diseases due to its transparency and rapid development. The genes and signaling pathways involved in acute critical illness appear highly conserved among zebrafish and humans. Forward genetics such as random mutagenesis by a chemical mutagen or reverse genetics methods represented by CRISPR/Cas9 allowed researchers to reveal multiple novel aspects of pathological processes in areas including infection, immunity, and regeneration. As a model of sepsis, transgenic zebrafish allowed the visualization of lipopolysaccharide (LPS)-induced vascular leakage in vivo and the demonstration of changes in the expression of cellular junction proteins. Other transgenic zebrafish visualizing the extravascular migration of neutrophils and macrophages have demonstrated a decrease in neutrophil numbers and an increased expression of an inflammatory gene, which replicates a phenomenon observed in humans in clinically encountered sepsis. The regenerative potential and the visibility of zebrafish organs also enabled clarification of important mechanisms in wound healing, angiogenesis, and neurogenesis. After spinal cord injury (SCI), a marker gene expressed in glial bridging was discovered. Furthermore, localized epithelial-to-mesenchymal transition (EMT) and molecular mechanisms leading to spinal cord repair were revealed. These translational studies using zebrafish show the potential of the model system for the treatment of acute critical illnesses such as sepsis, organ failure, and trauma.
Collapse
Affiliation(s)
- Kensuke Fujii
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yuriko Takeda
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Natsuko Okuda
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Akira Takasu
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
13
|
Jiao C, Zhang H, Li H, Fu X, Lin Y, Cao C, Liu S, Liu Y, Li P. Caspase-3/GSDME mediated pyroptosis: A potential pathway for sepsis. Int Immunopharmacol 2023; 124:111022. [PMID: 37837715 DOI: 10.1016/j.intimp.2023.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The inflammatory response is one of the host's mechanisms to combat pathogens. Normal and controlled inflammation can accelerate the clearance of pathogens. However, in sepsis, the host often exhibits an excessive inflammatory response to infection, leading to tissue and organ damage. Therefore, studying the mechanisms underlying the occurrence and development of sepsis is of significant importance. Pyroptosis is a form of programmed cell death (PCD) executed by the gasdermins (GSDMs) family, and its pro-inflammatory characteristics are considered a crucial component of the sepsis mechanism. Previous research on pyroptosis in sepsis has mainly focused on the caspase-1/4/5/11-GSDMD pathway, which has made significant progress. However, there is a lack of research on the roles of other GSDMs family members in sepsis. New research has revealed that the caspase-3/GSDME pathway can also mediate pyroptosis, playing important roles in cancer, other inflammatory diseases, and even some sepsis-related conditions. This discovery suggests the potential value of investigating caspase-3/GSDME in sepsis research. This review provides an overview of the role of the GSDMs family in infectious diseases, summarizes current research on the caspase-1/4/5/11-GSDMD pathway, describes the role of caspase-3 in sepsis, and discusses the research findings related to pyroptosis mediated by the caspase-3/GSDME pathway in cancer, inflammatory diseases, and sepsis-related conditions. The aim of this article is to propose the concept of caspase-3/GSDME as a potential target in sepsis research. Considering the role of this pathway in other diseases, including inflammatory conditions, and given the unique nature of sepsis as an inflammatory disease, the article suggests that this pathway may also play a role in sepsis. This hypothesis provides new insights and options for future sepsis research, although direct experiments are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Chaoze Jiao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Haidan Zhang
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Hongyao Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Xu Fu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yujie Lin
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Chenglong Cao
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Shixian Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Yijing Liu
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China
| | - Peiwu Li
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
14
|
Zhang B, Zhao M, Ji X, Xia Q, Jiang L, Zhao L. Acrylamide induces neurotoxicity in zebrafish (Danio rerio) via NLRP3-mediated pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165208. [PMID: 37392875 DOI: 10.1016/j.scitotenv.2023.165208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Acrylamide (ACR) is widely used in water treatment, cosmetics, dyes, paper manufacturing, and other industries. Evidence suggests that ACR exposure causes selective neurotoxicity in humans. The primary symptoms include extremity numbness, skeletal muscle weakness, and ataxia, skeletal muscle weakness. An experimental zebrafish (Danio rerio) embryo model was used in this study to assess the impact of ACR toxicity on the development of the zebrafish nervous system. The results showed that neurodevelopmental disorders, inflammatory reactions, and oxidative stress were common in zebrafish exposed to ACR. Furthermore, ACR exposure induces pyroptotic phenotypical nerve cells, pyroptosis-related protein activation, and inflammasome NLR family pyrin domain-containing 3 (NLRP3) expression. Caspy and Caspy2 expression was knocked down via CRISPR/Cas9 to further investigate the pyroptotic mechanism, showing that these two targets alleviated the inflammatory reaction and neurodevelopmental disorder caused by ACR. Moreover, the Caspy-mediated classic pathway may be vital for the pyroptosis caused by ACR. In conclusion, this study is the first to show that ACR can activate NLRP3 inflammation to cause neurotoxicity in zebrafish via the Caspy pathways, which differs from the traditional exogenous infection model.
Collapse
Affiliation(s)
- Boya Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Mengyao Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Quanming Xia
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China; Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| |
Collapse
|
15
|
Zhang X, Shi J, Yuan P, Li T, Cao Z, Zou W. Differential developmental and proinflammatory responses of zebrafish embryo to repetitive exposure of biodigested polyamide and polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132472. [PMID: 37683353 DOI: 10.1016/j.jhazmat.2023.132472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) have attracted global concern and are at the forefront of current research on environmental pollution, whereas, little is known about the degradation of ingested MPs in the gastrointestinal environment and repetitive exposure-associated risk of egested MPs to organisms. The present study revealed that polyamide (PA) and polystyrene (PS) MPs exhibited remarkably differential biodegradations in the gastric and intestinal fluids of a model fish (Siniperca chuatsi). Significant disintegration of the skeleton structure, size reduction (from 27.62 to 9.17 µm), benzene ring scission, and subsequent biogenic corona coating and surface oxidation occurred during in vitro digestion, thus increasing the hydrophilicity and agglomeration of PS. Conversely, PA MPs exhibited high resistance to enzymolysis with slight surface erosions and protein adsorption. Relative to the pristine form, the bioaccumulation of digested PS elevated and the musculoskeletal deformity and mortality of juvenile zebrafish were obviously enhanced, but these changes were unobservable for PA. Lipopolysaccharide-triggered inflammation and apoptosis via Toll-like receptor signaling pathways and reduction of extracellular matrix secretions driven by oxidative stress contributed to the aggravated inhibitory effects of digested PS on larval development. These findings emphasize the necessity of concerning the biota digestion in MP risk assessments in natural waters.
Collapse
Affiliation(s)
- Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Jing Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Peng Yuan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Tengfei Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
16
|
Wang MX, Shandilya UK, Wu X, Huyben D, Karrow NA. Assessing Larval Zebrafish Survival and Gene Expression Following Sodium Butyrate Exposure and Subsequent Lethal Bacterial Lipopolysaccharide (LPS) Endotoxin Challenge. Toxins (Basel) 2023; 15:588. [PMID: 37888619 PMCID: PMC10610854 DOI: 10.3390/toxins15100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
As aquaculture production continues to grow, producers are looking for more sustainable methods to promote growth and increase fish health and survival. Butyrate is a short-chain fatty acid (SCFA) with considerable benefits to gut health, and in recent years, butyrate has been commonly used as an alternative to antimicrobials in livestock production. In this study, we aimed to assess the protective effects of sodium butyrate (NaB) on larval zebrafish subjected to a lethal Pseudomonas aeruginosa lipopolysaccharide (LPS) endotoxin challenge and to elucidate potential protective mechanisms of action. Larval zebrafish were pre-treated with 0, 3000, or 6000 μM NaB for 24 h at 72 h post-fertilization (hpf), then immune challenged for 24 h with 60 μg/mL of LPS at 96 hpf. Our results demonstrate that larval zebrafish pre-treated with 6000 μM of NaB prior to lethal LPS challenge experienced significantly increased survival by 40%, and this same level of NaB significantly down-regulated the expression of pro-inflammatory Tumor Necrosis Factor α (TNF-alpha). Findings from this study are consistent with the beneficial effects of NaB on other vertebrate species and support the potential use of NaB in aquaculture.
Collapse
Affiliation(s)
- Mary X Wang
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Umesh K Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Xiang Wu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
17
|
Chen S, Li S, Chen H, Gong Y, Yang D, Zhang Y, Liu Q. Caspase-mediated LPS sensing and pyroptosis signaling in Hydra. SCIENCE ADVANCES 2023; 9:eadh4054. [PMID: 37478191 PMCID: PMC10361584 DOI: 10.1126/sciadv.adh4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
Inflammatory caspases sensing lipopolysaccharide (LPS) to drive gasdermin (GSDM)-mediated pyroptosis is an important immune response mechanism for anti-infection defense in mammals. In this work, we resolved an LPS-induced and GSDM-gated pyroptosis signaling cascade in Cnidarians. Initially, we identified a functional GSDM protein, HyGSDME, in Hydra, executing cytosolic LPS-induced pyroptosis in a caspase-dependent manner. Further, we identified a proinflammatory caspase, HyCaspA, capable of sensing cytosolic LPS by an uncharacterized N-terminal domain relying on its unique hydrophobic property, thereby triggering its oligomerization and self-activation. Subsequently, the LPS-activated HyCaspA cleaved an apoptotic caspase, HyCARD2, to trigger HyGSDME-gated pyroptosis. Last, HyGSDME exhibited an enriched distribution on the ectodermal layer of Hydra polyps, exerting a canonical immune defense function against surface-invading bacteria. Collectively, our work resolved an ancient pyroptosis signaling cascade in Hydra, suggesting that inflammatory caspases sensing cytosolic LPS to initiate GSDM-gated pyroptosis are a conserved immune defense mechanism from Cnidarians to mammals.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Shuxin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Gong
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
18
|
Wang H, Liu R, Zhao Y, Liu Y, Tian M, Shan S, Yang G, Li H. The functions of two GSDMEs in pyroptosis of common carp (Cyprinus carpio L.) in canonical and non-canonical inflammasome pathways. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108838. [PMID: 37209755 DOI: 10.1016/j.fsi.2023.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Gasdermin family proteins are important effector proteins mediating pyroptosis and play an important role in innate immune response. GSDME can be cleaved by inflammatory Caspases at specific sites, releasing an active form of N-terminal fragment that binds to the plasma membrane to form pores and release cellular contents. Here, two GSDME genes, CcGSDME-like (CcGSDME-L) and CcGSDMEa, were cloned from common carp. The sequence similarity of the two genes were very high and more similar to DrGSDMEa of zebrafish in evolution. The expression levels of CcGSDME-L and CcGSDMEa can respond to the stimulation of Edwardsiella tarda. The results of cytotoxicity assay showed that CcGSDMEs were cleaved by the activation of canonical CcNLRP1 inflammasome, leading to obvious pyroptosis characteristics and increased cytotoxicity. In EPC cells, three CcCaspases responded to intracellular LPS stimulation and induced significantly cytotoxicity. In order to clarify the molecular mechanism of CcGSDME-induced pyroptosis, the N-terminal of CcGSDME-L (CcGSDME-L-NT) was expressed in 293T cells, which showed strong cytotoxicity and obvious pyroptosis characteristics. Fluorescence localization assay showed that the CcGSDME-L-NT was expressed on cell membrane, and CcGSDMEa-NT was located on the cell membrane or some organelle membranes. These findings can enrich the knowledge of CcNLRP1 inflammasome and GSDMEs mediated pyroptosis in common carp, and provide basic data for the prevention and treatment of fish infectious diseases.
Collapse
Affiliation(s)
- Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yue Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yu Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Min Tian
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
19
|
Wang X, Wei X, Lu Y, Wang Q, Fu R, Wang Y, Wang Q, Wang X, Chen S, Xu A, Yuan S. Characterization of GSDME in amphioxus provides insights into the functional evolution of GSDM-mediated pyroptosis. PLoS Biol 2023; 21:e3002062. [PMID: 37134086 PMCID: PMC10155998 DOI: 10.1371/journal.pbio.3002062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/06/2023] [Indexed: 05/04/2023] Open
Abstract
Members of the gasdermin (GSDM) family are pore-forming effectors that cause membrane permeabilization and pyroptosis, a lytic proinflammatory type of cell death. To reveal the functional evolution of GSDM-mediated pyroptosis at the transition from invertebrates to vertebrates, we conducted functional characterization of amphioxus GSDME (BbGSDME) and found that it can be cleaved by distinct caspase homologs, yielding the N253 and N304 termini with distinct functions. The N253 fragment binds to cell membrane, triggers pyroptosis, and inhibits bacterial growth, while the N304 performs negative regulation of N253-mediated cell death. Moreover, BbGSDME is associated with bacteria-induced tissue necrosis and transcriptionally regulated by BbIRF1/8 in amphioxus. Interestingly, several amino acids that are evolutionarily conserved were found to be important for the function of both BbGSDME and HsGSDME, shedding new lights on the functional regulation of GSDM-mediated inflammation.
Collapse
Affiliation(s)
- Xinli Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Xuxia Wei
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| | - Yan Lu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qinghuan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rong Fu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qin Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiangyan Wang
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
| |
Collapse
|
20
|
Martínez-López A, Tyrkalska SD, Alcaraz-Pérez F, Cabas I, Candel S, Martínez Morcillo FJ, Sepulcre MP, García-Moreno D, Cayuela ML, Mulero V. Evolution of LPS recognition and signaling: The bony fish perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104710. [PMID: 37080369 DOI: 10.1016/j.dci.2023.104710] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Fish are the most diverse and successful group of vertebrate animals, with about 30,000 species. The study of fish immunity is of great importance for understanding the evolution of vertebrate immunity, as they are the first animals to show both innate and adaptive immune responses. Although fish immunity is similar to that of mammals, there are obvious differences, such as their dependence of ambient temperature, their poor antibody response, and lack of antibody switching and lymph nodes. In addition, several important differences have also been found between the innate immune responses of fish and mammals. Among these, we will discuss in this review the high resistance of fish to the toxic effects of lipopolysaccharide (LPS) which can be explained by the absence of a Toll-like receptor 4 (Tlr4) ortholog in most fish species or by the inability of the Tlr4/Md2 (Myeloid differentiation 2) complex to recognize LPS, together with the presence of a negative regulator of the LPS signaling complex formed by the TLR-like molecule Rp105 (Radioprotective 105) and Md1. Taken together, these data support the idea that, although TLR4 and RP105 arose from a common ancestor to fish and tetrapods, the TLR4/MD2 receptor complex for LPS recognition arose after their divergence about 450 million years ago.
Collapse
Affiliation(s)
- Alicia Martínez-López
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Alcaraz-Pérez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Isabel Cabas
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisco J Martínez Morcillo
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María P Sepulcre
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Diana García-Moreno
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, 30120, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Sellaththurai S, Jung S, Kim MJ, Nadarajapillai K, Ganeshalingam S, Jeong JB, Lee J. CRISPR/Cas9-Induced Knockout of Sting Increases Susceptibility of Zebrafish to Bacterial Infection. Biomolecules 2023; 13:biom13020324. [PMID: 36830693 PMCID: PMC9953276 DOI: 10.3390/biom13020324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Stimulator of interferon genes (STING) is an adapter protein that is activated when cyclic dinucleotides (CDNs) are present. CDNs originate from the cytosolic DNA of both pathogens and hosts. STING activation promotes efficient immune responses against viral infections; however, its impact in bacterial infections is unclear. In this study, we investigated the role of Sting in bacterial infections by successfully creating a sting-deficient (sting(-/-) with a 4-bp deletion) knockout zebrafish model using CRISPR/Cas9. The transcriptional modulation of genes downstream of cGAS (cyclic GMP-AMP synthase)-Sting pathway-related genes was analyzed in seven-day-old wild-type (WT) and sting(-/-) embryos, as well as in four-day-old LPS-stimulated embryos. The expression of downstream genes was higher in sting(-/-) than in healthy WT fish. The late response was observed in sting(-/-) larvae following LPS treatment, demonstrating the importance of Sting-induced immunity during bacterial infection by activating the cGAS-STING pathway. Furthermore, adult sting(-/-) fish had a high mortality rate and significantly downregulated cGAS-STING pathway-related genes during Edwardsiella piscicida (E. piscicida) infection. In addition, we assessed NF-κB pathway genes following E. piscicida infection. Our results show fluctuating patterns of interleukin-6 (il6) and tumor necrosis factor-α (tnfα) expression, which is likely due to the influence of other NF-κB pathway-related immune genes. In summary, this study demonstrates the important role of Sting against bacterial infection.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | | | | | - Joon Bum Jeong
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
- Correspondence: (J.B.J.); (J.L.)
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
- Fish Vaccine Research Center & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (J.B.J.); (J.L.)
| |
Collapse
|
22
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
23
|
Chang MX. Emerging mechanisms and functions of inflammasome complexes in teleost fish. Front Immunol 2023; 14:1065181. [PMID: 36875130 PMCID: PMC9978379 DOI: 10.3389/fimmu.2023.1065181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Inflammasomes are multiprotein complexes, which are assembled in response to a diverse range of exogenous pathogens and endogenous danger signals, leading to produce pro-inflammatory cytokines and induce pyroptotic cell death. Inflammasome components have been identified in teleost fish. Previous reviews have highlighted the conservation of inflammasome components in evolution, inflammasome function in zebrafish infectious and non-infectious models, and the mechanism that induce pyroptosis in fish. The activation of inflammasome involves the canonical and noncanonical pathways, which can play critical roles in the control of various inflammatory and metabolic diseases. The canonical inflammasomes activate caspase-1, and their signaling is initiated by cytosolic pattern recognition receptors. However the noncanonical inflammasomes activate inflammatory caspase upon sensing of cytosolic lipopolysaccharide from Gram-negative bacteria. In this review, we summarize the mechanisms of activation of canonical and noncanonical inflammasomes in teleost fish, with a particular focus on inflammasome complexes in response to bacterial infection. Furthermore, the functions of inflammasome-associated effectors, specific regulatory mechanisms of teleost inflammasomes and functional roles of inflammasomes in innate immune responses are also reviewed. The knowledge of inflammasome activation and pathogen clearance in teleost fish will shed new light on new molecular targets for treatment of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of InSciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Li H, Wang H, Zhang J, Liu R, Zhao H, Shan S, Yang G. Identification of three inflammatory Caspases in common carp (Cyprinus carpio L.) and its role in immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:590-601. [PMID: 36283597 DOI: 10.1016/j.fsi.2022.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Inflammatory Caspases are key effectors of the inflammasomes and play an important role in innate immune response. However, there are few studies on the homologs of inflammatory Caspases in bony fish. In the present study, three inflammatory Caspase genes were cloned from common carp and named CcCaspase-A1, CcCaspase-A2 and CcCaspase-B. Nucleotide sequences alignment revealed that the three Caspases were very similar in structure, which contained a PYD domain in the N-terminal, and a CASc domain in the C-terminal. In the phylogenetic tree, CcCaspase-A1 and CcCaspase-A2 were close to the Caspase-A of grass carp, and CcCaspase-B was close to the DrCaspase-B of zebrafish. In healthy common carp, the expression levels of CcCaspase-A1 and CcCaspase-A2 were the highest in the gills, and CcCaspase-B was the highest in the spleen. After immune stimulation with Edwardsiella tarda or Aeromonas hydrophila, the expression levels of all CcCaspases increased significantly. The fluorescence localization assays showed that all these CcCaspases were expressed in the cytoplasm, and were involved in the assembly of CcNLRP1 inflammasome. These results suggest that the inflammatory CcCaspases play a key role in immune response of common carp against bacterial infection, which may enrich the knowledge of inflammasome in fish, and provide basic data for the prevention and treatment of fish infectious diseases.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Jiahui Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
25
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
26
|
Teng M, Zhao X, Wang C, Wang C, White JC, Zhao W, Zhou L, Duan M, Wu F. Polystyrene Nanoplastics Toxicity to Zebrafish: Dysregulation of the Brain-Intestine-Microbiota Axis. ACS NANO 2022; 16:8190-8204. [PMID: 35507640 DOI: 10.1021/acsnano.2c01872] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In animal species, the brain-gut axis is a complex bidirectional network between the gastrointestinal (GI) tract and the central nervous system (CNS) consisting of numerous microbial, immune, neuronal, and hormonal pathways that profoundly impact organism development and health. Although nanoplastics (NPs) have been shown to cause intestinal and neural toxicity in fish, the role of the neurotransmitter and intestinal microbiota interactions in the underlying mechanism of toxicity, particularly at environmentally relevant contaminant concentrations, remains unknown. Here, the effect of 44 nm polystyrene nanoplastics (PS-NPs) on the brain-intestine-microbe axis and embryo-larval development in zebrafish (Danio rerio) was investigated. Exposure to 1, 10, and 100 μg/L PS-NPs for 30 days inhibited growth and adversely affected inflammatory responses and intestinal permeability. Targeted metabolomics analysis revealed an alteration of 42 metabolites involved in neurotransmission. The content of 3,4-dihydroxyphenylacetic acid (DOPAC; dopamine metabolite formed by monoamine oxidase activity) was significantly decreased in a dose-dependent manner after PS-NP exposure. Changes in the 14 metabolites correlated with changes to 3 microbial groups, including Proteobacteria, Firmicutes, and Bacteroidetes, as compared to the control group. A significant relationship between Firmicutes and homovanillic acid (0.466, Pearson correlation coefficient) was evident. Eight altered metabolites (l-glutamine (Gln), 5-hydroxyindoleacetic acid (5-HIAA), serotonin, 5-hydroxytryptophan (5-HTP), l-cysteine (Cys), l-glutamic acid (Glu), norepinephrine (NE), and l-tryptophan (l-Trp)) had a negative relationship with Proteobacteria although histamine (His) and acetylcholine chloride (ACh chloride) levels were positively correlated with Proteobacteria. An Associated Network analysis showed that Firmicutes and Bacteroidetes were highly correlated (0.969). Furthermore, PS-NPs accumulated in the gastrointestinal tract of offspring and impaired development of F1 (2 h post-fertilization) embryos, including reduced spontaneous movements, hatching rate, and length. This demonstration of transgenerational deficits is of particular concern. These findings suggest that PS-NPs cause intestinal inflammation, growth inhibition, and restricted development of zebrafish, which are strongly linked to the disrupted regulation within the brain-intestine-microbiota axis. Our study provides insights into how xenobiotics can disrupt the regulation of brain-intestine-microbiota and suggests that these end points should be taken into account when assessing environmental health risks of PS-NPs to aquatic organisms.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
27
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
28
|
Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics 2021; 74:129-147. [PMID: 34850255 DOI: 10.1007/s00251-021-01235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
B30.2 domains, also known as PRY/SPRY, are key components of specific subsets of two large families of proteins involved in innate immunity: the tripartite motif proteins (TRIMs) and the Nod-like receptors (NLRs). TRIM proteins are important, often inducible factors of antiviral innate immunity, targeting multiple steps of viral cycles through a variety of mechanisms. NLRs prime and regulate systemic innate defenses, especially against bacteria, and control inflammation. Large TRIM and NLR subsets characterized by the presence of a B30.2 domain have been reported from a few fish species including zebrafish and seem to be strongly prone to gene duplication/expansion. Here, we performed a large-scale survey of these receptors across about 150 fish genomes, focusing on ray-finned fishes. We assessed the number and genomic distribution of domains and domain combinations associated with TRIMs, NLRs, and other genes containing B30.2 domains and looked for gene expansion patterns across fish groups. We then used a model to test the impact of taxonomy, genome size, and environmental variables on the copy numbers of these genes. Our findings reveal novel domain structures, clade-specific gains and losses. They also assist with the timing of the gene expansions, reveal patterns associated with the MHC, and lay the groundwork for further studies delving deeper into the forces that drive the copy number variation of immune genes on a species level.
Collapse
|
29
|
Chen H, Wu X, Gu Z, Chen S, Zhou X, Zhang Y, Liu Q, Wang Z, Yang D. Zebrafish gasdermin E cleavage-engaged pyroptosis by inflammatory and apoptotic caspases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104203. [PMID: 34252476 DOI: 10.1016/j.dci.2021.104203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
As the executor of pyroptosis known to date, gasdermins (GSDMs), consists of GSDMA, GSDMB, GSDMC, GSDMD, GSDME and pejvakin, might play critical roles in anti-bacterial infection as well as inflammatory diseases. However, zebrafish only harbors a pair of Gsdme (Gsdmea/b), and their activation mechanisms remain largely unknown. Herein, we investigate the activation mechanism of Gsdmea/b cleaved by inflammatory and apoptotic caspases in zebrafish,and found that Gsdmea/b are equally cleaved by Caspase 19b, a sister of Caspy2, but not Caspy. Moreover, the zebrafish apoptotic effector caspases, including Caspase 3a/b and Caspase 7, also can cleave Gsdmea/b at the same sites as inflammatory caspases recognized. Importantly, our results reveal that Caspase 8a/b can cleave Gsdmeb, but only Caspase 8a can cleave Gsdmea. Taken together, these findings suggest that zebrafish Gsdmea/b can concurrently function as GSDMD and GSDME in mammals, which will contribute to better understanding the mechanism of pyroptosis activation in teleost, as well as provide a clue for drug screening model against inflammatory diseases.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaomin Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
30
|
Zebrafish larvae as experimental model to expedite the search for new biomarkers and treatments for neonatal sepsis. J Clin Transl Sci 2021; 5:e140. [PMID: 34422320 PMCID: PMC8358844 DOI: 10.1017/cts.2021.803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal sepsis is a major cause of death and disability in newborns. Commonly used biomarkers for diagnosis and evaluation of treatment response lack sufficient sensitivity or specificity. Additionally, new targets to treat the dysregulated immune response are needed, as are methods to effectively screen drugs for these targets. Available research methods have hitherto not yielded the breakthroughs required to significantly improve disease outcomes, we therefore describe the potential of zebrafish (Danio rerio) larvae as preclinical model for neonatal sepsis. In biomedical research, zebrafish larvae combine the complexity of a whole organism with the convenience and high-throughput potential of in vitro methods. This paper illustrates that zebrafish exhibit an immune system that is remarkably similar to humans, both in terms of types of immune cells and signaling pathways. Moreover, the developmental state of the larval immune system is highly similar to human neonates. We provide examples of zebrafish larvae being used to study infections with pathogens commonly causing neonatal sepsis and discuss known limitations. We believe this species could expedite research into immune regulation during neonatal sepsis and may hold keys for the discovery of new biomarkers and novel treatment targets as well as for screening of targeted drug therapies.
Collapse
|
31
|
Chen S, Jin P, Chen H, Wu D, Li S, Zhang Y, Liu Q, Yang D. Dual function of a turbot inflammatory caspase in mediating both canonical and non-canonical inflammasome activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104078. [PMID: 33794278 DOI: 10.1016/j.dci.2021.104078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Host protective inflammatory caspase activity must be tightly regulated to prevent pathogens infection, however, the inflammatory caspase-engaged inflammasome activation in teleost fish remains largely unknown. In this study, we reveal a bifurcated evolutionary role of the inflammatory caspase in mediating both non-canonical and canonical inflammasome pathways in teleost fish. Through characterization of a unique inflammatory SmCaspase from the teleost Scophthalmus maximus (turbot), we found it can directly recognize cytosolic lipopolysaccharide (LPS) via its N-terminal CARD domain, resulting in caspase-5-like proteolytic enzyme activity-mediated pyroptosis in Turbot Muscle Fibroblasts. Interestingly, we also found that this inflammatory caspase can be recruited to SmNLRP3-SmASC to form the NLRP3 inflammasome complex, engaging the SmIL-1β release in Head Kidney-derived Macrophages. Consequently, the SmCaspase activation can recognize and cleave the SmGSDMEb to release its N-terminal domain, mediating both pyroptosis and bactericidal activities. Furthermore, the SmCaspase-SmGSDMEb axis-gated pyroptosis governs the bacterial clearance and epithelial desquamation in fish gill filaments in vivo. To our knowledge, this study is the first to identify an inflammatory caspase acting as a central coordinator in NLRP3 inflammasome, as well as a cytosolic LPS receptor; thus uncovering a previously unrecognized function of inflammatory caspase in turbot innate immunity.
Collapse
Affiliation(s)
- Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Di Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuxin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
32
|
Great balls of fire: activation and signalling of inflammatory caspases. Biochem Soc Trans 2021; 49:1311-1324. [PMID: 34060593 PMCID: PMC8286819 DOI: 10.1042/bst20200986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Innate immune responses are tightly regulated by various pathways to control infections and maintain homeostasis. One of these pathways, the inflammasome pathway, activates a family of cysteine proteases called inflammatory caspases. They orchestrate an immune response by cleaving specific cellular substrates. Canonical inflammasomes activate caspase-1, whereas non-canonical inflammasomes activate caspase-4 and -5 in humans and caspase-11 in mice. Caspases are highly specific enzymes that select their substrates through diverse mechanisms. During inflammation, caspase activity is responsible for the secretion of inflammatory cytokines and the execution of a form of lytic and inflammatory cell death called pyroptosis. This review aims to bring together our current knowledge of the biochemical processes behind inflammatory caspase activation, substrate specificity, and substrate signalling.
Collapse
|
33
|
Liu Z, Niu C, Li J. Pyroptosis is involved in ovulation of zebrafish. Cell Discov 2021; 7:40. [PMID: 34075020 PMCID: PMC8169692 DOI: 10.1038/s41421-021-00263-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/28/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Zhiquan Liu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Caiyan Niu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
34
|
Morimoto N, Kono T, Sakai M, Hikima JI. Inflammasomes in Teleosts: Structures and Mechanisms That Induce Pyroptosis during Bacterial Infection. Int J Mol Sci 2021; 22:4389. [PMID: 33922312 PMCID: PMC8122782 DOI: 10.3390/ijms22094389] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Pattern recognition receptors (PRRs) play a crucial role in inducing inflammatory responses; they recognize pathogen-associated molecular patterns, damage-associated molecular patterns, and environmental factors. Nucleotide-binding oligomerization domain-leucine-rich repeat-containing receptors (NLRs) are part of the PRR family; they form a large multiple-protein complex called the inflammasome in the cytosol. In mammals, the inflammasome consists of an NLR, used as a sensor molecule, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) as an adaptor protein, and pro-caspase1 (Casp1). Inflammasome activation induces Casp1 activation, promoting the maturation of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of inflammatory cell death called pyroptosis via gasdermin D cleavage in mammals. Inflammasome activation and pyroptosis in mammals play important roles in protecting the host from pathogen infection. Recently, numerous inflammasome-related genes in teleosts have been identified, and their conservation and/or differentiation between their expression in mammals and teleosts have also been elucidated. In this review, we summarize the current knowledge of the molecular structure and machinery of the inflammasomes and the ASC-spec to induce pyroptosis; moreover, we explore the protective role of the inflammasome against pathogenic infection in teleosts.
Collapse
Affiliation(s)
- Natsuki Morimoto
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan;
| | - Tomoya Kono
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Masahiro Sakai
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| | - Jun-ichi Hikima
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (T.K.); (M.S.)
| |
Collapse
|
35
|
Chen W, Zhao J, Mu D, Wang Z, Liu Q, Zhang Y, Yang D. Pyroptosis Mediates Neutrophil Extracellular Trap Formation during Bacterial Infection in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2021; 206:1913-1922. [PMID: 33712519 DOI: 10.4049/jimmunol.2001335] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
The formation of neutrophil extracellular trap (NET) is a critical host defense when neutrophils migrate to infection sites. Pyroptosis is a newly identified programmed cell death, which is tightly regulated by inflammasome activation. However, the mechanism of pyroptotic signaling participating in NET production remains to be elucidated. In this study, the zebrafish larvae otic vesicle microinjection model was used to infect larvae with hemolysin-overexpressing Edwardsiella piscicida (EthA+), and a rapid migration of neutrophils to infection sites was observed. Intriguingly, EthA+ infection effectively induced significant neutrophil membrane rupture in vivo, which was dependent on caspase-B (caspy2) and gasdermin Eb (GSDMEb) but not caspase-A or gasdermin Ea. Specifically, the EthA+ E. piscicida infection induced pyroptosis along with NETosis in vitro, and depletion of either caspy2 or GSDMEb impaired NET formation in vivo. Consequently, inhibition of the caspy2-GSDMEb axis-gated NETosis impaired bacterial clearance in vivo. Altogether, these data provide evidence that teleost fish innate immune cells, including neutrophils, express features of pyroptosis that are critical for NETosis in teleost innate immunity.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingjing Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; and
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
36
|
Huang S, Mo C, Zeng T, Lai Y, Zhou C, Xie S, Chen L, Wang Y, Chen Y, Huang S, Gao L, Lv Z. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging (Albany NY) 2021; 13:6592-6605. [PMID: 33707345 PMCID: PMC7993700 DOI: 10.18632/aging.202409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022]
Abstract
Acute hepatic damage is a severe condition characterized by inflammation and oxidative stress, which is a serious threat to people's life and health. But there are few effective treatments for acute liver injury. Therefore, safe and effective therapeutic approaches for preventing acute liver damage are urgently needed. Lupeol is a natural compound, which has significant antioxidant and anti-inflammatory properties in liver disease. However, the protective mechanism of lupeol against acute liver injury remains unclear. Here, zebrafish and mutant mice were utilized to investigate the protective effects of lupeol against lipopolysaccharide (LPS)/ D-galactosamine(D-GalN) -induced liver injury and the underlying mechanisms. We found that pretreatment with lupeol attenuated the LPS/D-GalN-induced liver injury by decreasing the infiltration of inflammatory cells and reducing pro-inflammatory cytokines. We also demonstrated that lupeol could protect injured liver from oxidative stress by downregulating the expression of TGFβ1 and upregulating Nrf2. Notably, our experimental results provided the support that lupeol effectively protected against LPS/D-GalN-induced acute liver injury via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via downregulating TGFβ1.
Collapse
Affiliation(s)
- Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chan Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuqi Lai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shunwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Limei Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
37
|
Zhang P, Lu B, Zhu R, Yang D, Liu W, Wang Q, Ji N, Chen Q, Ding Y, Liang X, Wang Q. Hyperglycemia accelerates inflammaging in the gingival epithelium through inflammasomes activation. J Periodontal Res 2021; 56:667-678. [PMID: 33650689 DOI: 10.1111/jre.12863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetes accelerates inflammaging in various tissue with an increase in senescent cell burden and senescence-associated secretory phenotype (SASP) secretion, which is a significant cause of tissue dysfunction and contributes to the diabetic complications. Recently, inflammasomes are thought to contribute to inflammaging. Here, utilizing diabetic models in vivo and in vitro, we investigated the potential association between hyperglycemia-induced inflammaging and gingival tissue dysfunction and the mechanism underlying inflammasome-associated inflammaging. MATERIALS AND METHODS Gingival epithelium and serum were collected from control and diabetic patients and mice. The expression of p16, p21, and inflammasomes in the gingival epithelium, SASP factors in serum, and the molecular factors associated with gingival epithelial barrier function were assessed. Human oral keratinocyte (HOK) was stimulated with normal and high glucose, and pre-treated with Z-YVAD-FMK (Caspase-1 inhibitor) prior to evaluating cellular senescence, SASP secretion, and inflammasome activation. RESULTS In vivo, hyperglycemia significantly elevated the local burden of senescent cells in the gingival epithelium and SASP factors in the serum and simultaneously reduced the expression levels of Claudin-1, E-cadherin, and Connexin 43 in the gingival epithelium. Interestingly, the inflammasomes were activated in the gingival epithelium. In vitro, high glucose-induced the inflammaging in HOK, and blocking inflammasome activation through inhibiting Caspase-1 and glucose-induced inflammaging. CONCLUSIONS Hyperglycemia accelerated inflammaging in the gingival epithelium through inflammasomes activation, which is potentially affiliated with a decline in the gingival epithelial barrier function in diabetes. Inflammasomes-related inflammaging may be the crucial mechanism underlying diabetic periodontitis and represents significant opportunities for advancing prevention and treatment options.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Loes AN, Hinman MN, Farnsworth DR, Miller AC, Guillemin K, Harms MJ. Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:1046-1057. [PMID: 33472906 PMCID: PMC7889624 DOI: 10.4049/jimmunol.1901288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2020] [Indexed: 12/16/2022]
Abstract
The zebrafish (Danio rerio) is a powerful model organism for studies of the innate immune system. One apparent difference between human and zebrafish innate immunity is the cellular machinery for LPS sensing. In amniotes, the protein complex formed by TLR4 and myeloid differentiation factor 2 (Tlr4/Md-2) recognizes the bacterial molecule LPS and triggers an inflammatory response. It is believed that zebrafish have neither Md-2 nor Tlr4; Md-2 has not been identified outside of amniotes, whereas the zebrafish tlr4 genes appear to be paralogs, not orthologs, of amniote TLR4s We revisited these conclusions. We identified a zebrafish gene encoding Md-2, ly96 Using single-cell RNA sequencing, we found that ly96 is transcribed in cells that also transcribe genes diagnostic for innate immune cells, including the zebrafish tlr4-like genes. In larval zebrafish, ly96 is expressed in a small number of macrophage-like cells. In a functional assay, zebrafish Md-2 and Tlr4ba form a complex that activates NF-κB signaling in response to LPS. In larval zebrafish ly96 loss-of-function mutations perturbed LPS-induced cytokine production but gave little protection against LPS toxicity. Finally, by analyzing the genomic context of tlr4 genes in 11 jawed vertebrates, we found that tlr4 arose prior to the divergence of teleosts and tetrapods. Thus, an LPS-sensitive Tlr4/Md-2 complex is likely an ancestral feature shared by mammals and zebrafish, rather than a de novo invention on the tetrapod lineage. We hypothesize that zebrafish retain an ancestral, low-sensitivity Tlr4/Md-2 complex that confers LPS responsiveness to a specific subset of innate immune cells.
Collapse
Affiliation(s)
- Andrea N Loes
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| | - Melissa N Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
| | - Dylan R Farnsworth
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Adam C Miller
- Department of Biology, University of Oregon, Eugene, OR 97403
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403; and
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
- Department of Biology, University of Oregon, Eugene, OR 97403
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403;
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403
| |
Collapse
|
39
|
Tyrkalska SD, Candel S, Mulero V. The neutrophil inflammasome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103874. [PMID: 32987011 DOI: 10.1016/j.dci.2020.103874] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Since inflammasomes were discovered in the early 21st century, knowledge about their biology has multiplied exponentially. These cytosolic multiprotein complexes alert the immune system about the presence of infection or tissue damage, and regulate the subsequent inflammatory responses. As inflammasome dysregulation is increasingly associated with numerous autoinflammatory disorders, there is an urgent need for further research into the inflammasome's involvement in the pathogenesis of such diseases in order to identify novel therapeutic targets and treatments. The zebrafish has become a widely used animal model to study human diseases in recent years, and has already provided relevant findings in the field of inflammasome biology including the identification of new components and pathways. We provide a detailed analysis of current knowledge on neutrophil inflammasome biology and compare its features with those of the better known macrophage inflammasome, focusing on its contribution to innate immunity and its relevance for human health. Importantly, a large body of evidence points to a link between neutrophil inflammasome dysfunction and many neutrophil-mediated human diseases, but the real contribution of the neutrophil inflammasome to the pathogenesis of these disorders is largely unknown. Although neutrophils have remained in the shadow of macrophages and monocytes in the field of inflammasome research since the discovery of these multiprotein platforms, recent studies strongly suggest that the importance of the neutrophil inflammasome has been underestimated.
Collapse
Affiliation(s)
- Sylwia D Tyrkalska
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sergio Candel
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
40
|
Liu Y, Xu X, Wang X, Zhu T, Li J, Pang Y, Li Q. Analysis of the lamprey genotype provides insights into caspase evolution and functional divergence. Mol Immunol 2021; 132:8-20. [PMID: 33524772 DOI: 10.1016/j.molimm.2021.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022]
Abstract
The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaoluan Xu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xiaotong Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Ting Zhu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jun Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
41
|
Downs KP, Nguyen H, Dorfleutner A, Stehlik C. An overview of the non-canonical inflammasome. Mol Aspects Med 2020; 76:100924. [PMID: 33187725 PMCID: PMC7808250 DOI: 10.1016/j.mam.2020.100924] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022]
Abstract
Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent processing and release of pro-inflammatory mediators. While caspase-1 is activated within the canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 are activated within the non-canonical inflammasome upon sensing of cytosolic lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the release of danger signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D (GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine release. Since the presence of the non-canonical inflammasome activator LPS leads to endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, mechanisms regulating its activity and its contribution to health and disease.
Collapse
Affiliation(s)
- Kevin P Downs
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Huyen Nguyen
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA.
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA, 90048, USA; Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA, 90048, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA, 90048, USA.
| |
Collapse
|
42
|
Wang Z, Gu Z, Hou Q, Chen W, Mu D, Zhang Y, Liu Q, Liu Z, Yang D. Zebrafish GSDMEb Cleavage-Gated Pyroptosis Drives Septic Acute Kidney Injury In Vivo. THE JOURNAL OF IMMUNOLOGY 2020; 204:1929-1942. [PMID: 32111733 DOI: 10.4049/jimmunol.1901456] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway-induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide-staining method and reveal that the caspy2-GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
Collapse
Affiliation(s)
- Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaoyan Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di Mu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; .,Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; and
| |
Collapse
|
43
|
Li JY, Wang YY, Shao T, Fan DD, Lin AF, Xiang LX, Shao JZ. The zebrafish NLRP3 inflammasome has functional roles in ASC-dependent interleukin-1β maturation and gasdermin E–mediated pyroptosis. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49920-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Li JY, Wang YY, Shao T, Fan DD, Lin AF, Xiang LX, Shao JZ. The zebrafish NLRP3 inflammasome has functional roles in ASC-dependent interleukin-1β maturation and gasdermin E-mediated pyroptosis. J Biol Chem 2019; 295:1120-1141. [PMID: 31852739 DOI: 10.1074/jbc.ra119.011751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is one of the best-characterized inflammasomes in humans and other mammals. However, knowledge about the NLRP3 inflammasome in nonmammalian species remains limited. Here, we report the molecular and functional identification of an NLRP3 homolog (DrNLRP3) in a zebrafish (Danio rerio) model. We found that DrNLRP3's overall structural architecture was shared with mammalian NLRP3s. It initiates a classical inflammasome assembly for zebrafish inflammatory caspase (DrCaspase-A/-B) activation and interleukin 1β (DrIL-1β) maturation in an apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent manner, in which DrNLRP3 organizes DrASC into a filament that recruits DrCaspase-A/-B by homotypic pyrin domain (PYD)-PYD interactions. DrCaspase-A/-B activation in the DrNLRP3 inflammasome occurred in two steps, with DrCaspase-A being activated first and DrCaspase-B second. DrNLRP3 also directly activated full-length DrCaspase-B and elicited cell pyroptosis in a gasdermin E (GSDME)-dependent but ASC-independent manner. These two events were tightly coordinated by DrNLRP3 to ensure efficient IL-1β secretion for the initiation of host innate immunity. By knocking down DrNLRP3 in zebrafish embryos and generating a DrASC-knockout (DrASC-/-) fish clone, we characterized the function of the DrNLRP3 inflammasome in anti-bacterial immunity in vivo The results of our study disclosed the origin of the NLRP3 inflammasome in teleost fish, providing a cross-species understanding of the evolutionary history of inflammasomes. Our findings also indicate that the NLRP3 inflammasome may coordinate inflammatory cytokine processing and secretion through a GSDME-mediated pyroptotic pathway, uncovering a previously unrecognized regulatory function of NLRP3 in both inflammation and cell pyroptosis.
Collapse
Affiliation(s)
- Jiang-Yuan Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yue-Yi Wang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou 310058, People's Republic of China .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
45
|
Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol 2019; 20:143-157. [PMID: 31690840 DOI: 10.1038/s41577-019-0228-2] [Citation(s) in RCA: 1023] [Impact Index Per Article: 170.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. Gasdermins contain a cytotoxic N-terminal domain and a C-terminal repressor domain connected by a flexible linker. Proteolytic cleavage between these two domains releases the intramolecular inhibition on the cytotoxic domain, allowing it to insert into cell membranes and form large oligomeric pores, which disrupts ion homeostasis and induces cell death. Gasdermin-induced pyroptosis plays a prominent role in many hereditary diseases and (auto)inflammatory disorders as well as in cancer. In this Review, we discuss recent developments in gasdermin research with a focus on mechanisms that control gasdermin activation, pore formation and functional consequences of gasdermin-induced membrane permeabilization.
Collapse
Affiliation(s)
- Petr Broz
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University Clinical Hospital 'Virgen de la Arrixaca', Murcia, Spain.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China.
| |
Collapse
|
46
|
The Case for Modeling Human Infection in Zebrafish. Trends Microbiol 2019; 28:10-18. [PMID: 31604611 DOI: 10.1016/j.tim.2019.08.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022]
Abstract
Zebrafish (Danio rerio) larvae are widely recognized for studying host-pathogen interactions in vivo because of their optical transparency, genetic manipulability, and translational potential. The development of the zebrafish immune system is well understood, thereby use of larvae enables investigation solely in the context of innate immunity. As a result, infection of zebrafish with natural fish pathogens including Mycobacterium marinum has significantly advanced our understanding of bacterial pathogenesis and vertebrate host defense. However, new work using a variety of human pathogens (bacterial, viral, and fungal) has illuminated the versatility of the zebrafish infection model, revealing unexpected and important concepts underlying infectious disease. We propose that this knowledge can inform studies in higher animal models and help to develop treatments to combat human infection.
Collapse
|
47
|
Zebrafish in Inflammasome Research. Cells 2019; 8:cells8080901. [PMID: 31443239 PMCID: PMC6721725 DOI: 10.3390/cells8080901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that regulate inflammatory responses to danger stimuli and infection, and their dysregulation is associated with an increasing number of autoinflammatory diseases. In recent years, zebrafish models of human pathologies to study inflammasome function in vivo have started to emerge. Here, we discuss inflammasome research in zebrafish in light of current knowledge about mammalian inflammasomes. We summarize the evolutionary conservation of inflammasome components between zebrafish and mammals, highlighting the similarities and possible divergence in functions of these components. We present new insights into the evolution of the caspase-1 family in the teleost lineage, and how its evolutionary origin may help contextualize its functions. We also review existing infectious and non-infectious models in zebrafish in which inflammasomes have been directly implicated. Finally, we discuss the advantages of zebrafish larvae for intravital imaging of inflammasome activation and summarize available tools that will help to advance inflammasome research.
Collapse
|
48
|
García-Moreno D, Tyrkalska SD, Valera-Pérez A, Gómez-Abenza E, Pérez-Oliva AB, Mulero V. The zebrafish: A research model to understand the evolution of vertebrate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 90:215-222. [PMID: 31039438 DOI: 10.1016/j.fsi.2019.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana Valera-Pérez
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Elena Gómez-Abenza
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
49
|
Wen Y, Chen S, Jiang Z, Wang Z, Tan J, Hu T, Wang Q, Zhou X, Zhang Y, Liu Q, Yang D. Dysregulated haemolysin promotes bacterial outer membrane vesicles-induced pyroptotic-like cell death in zebrafish. Cell Microbiol 2019; 21:e13010. [DOI: 10.1111/cmi.13010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/29/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ying Wen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhiwei Jiang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jinchao Tan
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Tianjian Hu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Laboratory for Marine Biology and Biotechnology; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Shanghai Collaborative Innovation Center for Biomanufacturing; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
- Shanghai Engineering Research Center of Marine Cultured Animal Vaccines; Shanghai China
| |
Collapse
|