1
|
Alves E Silva TL, Joseph RE, Vega-Rodriguez J. Beyond the bite: how mosquito salivary proteins modulate midgut biology and malaria parasite transmission. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101363. [PMID: 40081801 PMCID: PMC12066222 DOI: 10.1016/j.cois.2025.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mosquito blood feeding is complicated by the host's hemostatic and immune responses, which remain active after ingestion, affecting blood ingestion and digestion and threatening the midgut epithelium integrity. At the bite site, mosquitoes bypass the host's hemostatic and immune defenses by injecting saliva containing bioactive molecules, such as anticoagulants and immunomodulators, which facilitate efficient blood extraction. Ingested saliva can also modulate similar responses in the blood bolus. Here, we examine current evidence on how mosquito saliva proteins modulate blood responses in the midgut and enhance Plasmodium transmission. Saliva proteins are potential transmission-blocking targets for new intervention strategies to combat mosquito-borne diseases.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Renuka Elizabeth Joseph
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
2
|
Kearney EA, Heng-Chin AS, O'Flaherty K, Fowkes FJI. Human antibodies against Anopheles salivary proteins: emerging biomarkers of mosquito and malaria exposure. Trends Parasitol 2025; 41:361-373. [PMID: 40246632 DOI: 10.1016/j.pt.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025]
Abstract
Antibodies developed against Anopheles mosquito salivary proteins injected during biting may serve as proxy biomarkers of Anopheles biting exposure. Anti-salivary biomarkers are being increasingly investigated, with ~60 studies published to date, mostly identifying positive associations with Anopheles human biting rates (HBRs). However, several literature gaps must be addressed to inform the application of anti-salivary biomarkers for serosurveillance of vector exposure and malaria transmission and in vector-control trials. We highlight the need for more studies that collect HBRs and antibody data contemporaneously, investigate novel antigens for non-African Anopheles species, and characterize antibody kinetics to understand how biomarkers can track changes in exposure over time. Together, these directions may improve upon insensitive manual mosquito catch techniques and strengthen malaria surveillance programs.
Collapse
Affiliation(s)
- Ellen A Kearney
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia
| | - Ashleigh S Heng-Chin
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Katherine O'Flaherty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia
| | - Freya J I Fowkes
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; The McFarlane Burnet Institute of Medical Research and Public Health, Melbourne, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
3
|
Bento I, Parrington BA, Pascual R, Goldberg AS, Wang E, Liu H, Borrmann H, Zelle M, Coburn N, Takahashi JS, Elias JE, Mota MM, Rijo-Ferreira F. Parasite and vector circadian clocks mediate efficient malaria transmission. Nat Microbiol 2025; 10:882-896. [PMID: 40164831 PMCID: PMC11964930 DOI: 10.1038/s41564-025-01949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2025] [Indexed: 04/02/2025]
Abstract
Malaria transmission begins when Anopheles mosquitos deposit saliva and Plasmodium parasites during a bloodmeal. As Anopheles mosquitos are nocturnal, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating parasite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian expression. Furthermore, measuring haemoglobin levels, we demonstrate that mosquitos prefer to feed and ingest more blood at nighttime. Notably, we show a substantial subset of the salivary-gland-resident parasite transcriptome cycling throughout the day, indicating that this stage is not transcriptionally quiescent. Among the sporozoite genes undergoing rhythmic expression are those involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Our findings suggest a circadian tripartite relationship between the vector, parasite and mammalian host that together modulates malaria transmission.
Collapse
Affiliation(s)
- Inês Bento
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Brianna A Parrington
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Rushlenne Pascual
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Alexander S Goldberg
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Eileen Wang
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
| | - Hani Liu
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Helene Borrmann
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Mira Zelle
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Nicholas Coburn
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center Dallas, Dallas, TX, USA
| | - Joshua E Elias
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA
| | - Maria M Mota
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Rijo-Ferreira
- Berkeley Public Health, Molecular and Cell Biology Department, University of California Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Dong Y, Kang S, Sandiford SL, Pike A, Simões ML, Ubalee R, Kobylinski K, Dimopoulos G. Targeting the mosquito prefoldin-chaperonin complex blocks Plasmodium transmission. Nat Microbiol 2025; 10:841-854. [PMID: 40050397 DOI: 10.1038/s41564-025-01947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025]
Abstract
The Plasmodium infection cycle in mosquitoes relies on numerous host factors in the vector midgut, which can be targeted with therapeutics. The mosquito prefoldin complex is needed to fold proteins and macromolecular complexes properly. Here we show that the conserved Anopheles mosquito prefoldin (PFDN)-chaperonin system is a potent transmission-blocking target for multiple Plasmodium species. Silencing any prefoldin subunit or its CCT/TRiC partner via RNA interference reduces Plasmodium falciparum oocyst loads in the mosquito midgut, as does co-feeding mosquitoes with PFDN6-specific antibody and gametocytes. Inhibition of the PFDN-CCT/TRiC chaperonin complex results in the loss of epithelial and extracellular matrix integrity, which triggers microorganism-mediated anti-Plasmodium immune priming and compromises the parasite's laminin-based immune evasion. Mouse malaria transmission-blocking vaccine and antibody co-feeding assays support its potential as a multispecies transmission-blocking target for P. falciparum and Plasmodium vivax. Further study is needed to determine the potential of this system as a transmission-blocking vaccine target.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kevin Kobylinski
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Lapidus S, Goheen MM, Sy M, Deme AB, Ndiaye IM, Diedhiou Y, Mbaye AM, Hagadorn KA, Sene SD, Pouye MN, Thiam LG, Ba A, Guerra N, Mbengue A, Raduwan H, Gagnon J, Vigan-Womas I, Parikh S, Ko AI, Ndiaye D, Fikrig E, Chuang YM, Bei AK. Two Mosquito Salivary Antigens Demonstrate Promise as Biomarkers of Recent Exposure to Plasmodium falciparum-Infected Mosquito Bites. J Infect Dis 2025; 231:e570-e581. [PMID: 39475423 PMCID: PMC11911913 DOI: 10.1093/infdis/jiae525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins like SG6 have been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate 4 mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with Plasmodium falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. METHODS We tested population-level human immune responses in longitudinal and cross-sectional plasma from individuals with known P falciparum infection from low- and moderate-transmission areas in Senegal using a multiplexed magnetic bead-based assay. RESULTS AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate-endemicity area, and to AgTRIO in both low- and moderate-endemicity areas, were significantly higher than nonendemic controls. No antibody responses significantly differed between low- and moderate-transmission areas, or between equivalent groups during and outside the malaria transmission seasons. AgSAP and AgTRIO reactivity peaked 2-4 weeks after clinical P falciparum infection and declined 3 months after infection. CONCLUSIONS Reactivity to AgSAP and AgTRIO reflects exposure to infectious mosquitoes or recent bites rather than general mosquito exposure, highlighting their promise for incorporation into multiplexed assays for serosurveillance of population-level changes in P falciparum-infected mosquito exposure.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Morgan M Goheen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Kelly A Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Seynabou Diouf Sene
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Mariama Nicole Pouye
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Laty Gaye Thiam
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Aboubacar Ba
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
| | - Alassane Mbengue
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jacqueline Gagnon
- L2 Diagnostics, LLC, Department of Research and Development, New Haven, Connecticut
| | - Inés Vigan-Womas
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, Dakar, Senegal
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital
- G4—Malaria Experimental Genetic Approaches and Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Senegal
| |
Collapse
|
6
|
Alves e Silva TL, Kanatani S, Barletta Ferreira AB, Schwartz C, Talyuli OA, Olivas J, Nagata BM, Pala ZR, Pascini T, Alves DA, Zhao M, Suzuki M, Dorner LP, Frischknecht F, Coppens I, Barillas-Mury C, Ribeiro JM, Sinnis P, Vega-Rodriguez J. High-Resolution Proteomics Unveils Salivary Gland Disruption and Saliva-Hemolymph Protein Exchange in Plasmodium-Infected Mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640873. [PMID: 40060675 PMCID: PMC11888397 DOI: 10.1101/2025.02.28.640873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands (SGs) before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Collapse
Affiliation(s)
- Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Sachi Kanatani
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ana Beatriz Barletta Ferreira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Cindi Schwartz
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Octavio A.C. Talyuli
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Bianca M. Nagata
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Present address: Sanaria Inc., 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ming Zhao
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Lilian P. Dorner
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
- German Center for Infection Research, partner site Heidelberg
| | - Isabelle Coppens
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jose M.C. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
7
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
8
|
Dolan B, Correa Gaviria T, Dong Y, Cresswell P, Dimopoulos G, Chuang YM, Fikrig E. mosGILT antibodies interfere with Plasmodium sporogony in Anopheles gambiae. Nat Commun 2025; 16:592. [PMID: 39799117 PMCID: PMC11724845 DOI: 10.1038/s41467-025-55902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT. Using membrane-feeding and murine infection models, we demonstrate that antibodies against mosGILT reduce the number of P. falciparum and P. berghei oocysts in the midgut and the infection prevalence of both species in the mosquito. mosGILT antibodies act in the mosquito midgut, specifically impacting the Plasmodium oocyst stage. Targeting mosGILT can therefore interfere with the Plasmodium life cycle in the mosquito and potentially serve as a transmission-blocking vaccine.
Collapse
Affiliation(s)
- Brady Dolan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Tomás Correa Gaviria
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
9
|
Guo J, He X, Tao J, Sun H, Yang J. Unraveling the Molecular Mechanisms of Mosquito Salivary Proteins: New Frontiers in Disease Transmission and Control. Biomolecules 2025; 15:82. [PMID: 39858476 PMCID: PMC11764250 DOI: 10.3390/biom15010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Mosquito-borne diseases are a group of illnesses caused by pathogens transmitted by mosquitoes, and they are globally prevalent, particularly in tropical and subtropical regions. Pathogen transmission occurs during mosquito blood feeding, a process in which mosquito saliva plays a crucial role. Mosquito saliva contains a variety of biologically active proteins that facilitate blood feeding by preventing blood clotting, promoting vasodilation, and modulating the host's immune and inflammatory responses. These effects create an environment conducive to pathogen invasion and dissemination. Specific mosquito salivary proteins (MSPs) can promote pathogen transmission through mechanisms that either regulate hosts' anti-infective immune responses or directly enhance pathogens' activity. Strategies targeting these MSPs have emerged as an innovative and promising approach for the control of mosquito-borne diseases. Meanwhile, the diversity of these proteins and their complex interactions with the host immune system necessitate further research to develop safer and more effective interventions. This review examines the functional diversity of MSPs and their roles in disease transmission, discusses the advantages and challenges of strategies targeting these proteins, and explores potential future directions for research in this area.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Jianli Tao
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (J.G.); (X.H.); (H.S.)
| |
Collapse
|
10
|
Pala ZR, Alves E Silva TL, Minai M, Crews B, Patino-Martinez E, Carmona-Rivera C, Valenzuela Leon PC, Martin-Martin I, Flores-Garcia Y, Cachau RE, Muslinkina L, Gittis AG, Srivastava N, Garboczi DN, Alves DA, Kaplan MJ, Fischer E, Calvo E, Vega-Rodriguez J. Mosquito salivary apyrase regulates blood meal hemostasis and facilitates malaria parasite transmission. Nat Commun 2024; 15:8194. [PMID: 39294191 PMCID: PMC11410810 DOI: 10.1038/s41467-024-52502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
The evolution of hematophagy involves a series of adaptations that allow blood-feeding insects to access and consume blood efficiently while managing and circumventing the host's hemostatic and immune responses. Mosquito, and other insects, utilize salivary proteins to regulate these responses at the bite site during and after blood feeding. We investigated the function of Anopheles gambiae salivary apyrase (AgApyrase) in regulating hemostasis in the mosquito blood meal and in Plasmodium transmission. Our results demonstrate that salivary apyrase, a known inhibitor of platelet aggregation, interacts with and activates tissue plasminogen activator, facilitating the conversion of plasminogen to plasmin, a human protease that degrades fibrin and facilitates Plasmodium transmission. We show that mosquitoes ingest a substantial amount of apyrase during blood feeding, which reduces coagulation in the blood meal by enhancing fibrin degradation and inhibiting platelet aggregation. AgApyrase significantly enhanced Plasmodium infection in the mosquito midgut, whereas AgApyrase immunization inhibited Plasmodium mosquito infection and sporozoite transmission. This study highlights a pivotal role for mosquito salivary apyrase for regulation of hemostasis in the mosquito blood meal and for Plasmodium transmission to mosquitoes and to the mammalian host, underscoring the potential for strategies to prevent malaria transmission.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Benjamin Crews
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Eduardo Patino-Martinez
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Paola Carolina Valenzuela Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Raul E Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liya Muslinkina
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Apostolos G Gittis
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Naman Srivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - David N Garboczi
- Structural Biology Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derron A Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elizabeth Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
11
|
Nakamura T, Izumida M, Hans MB, Suzuki S, Takahashi K, Hayashi H, Ariyoshi K, Kubo Y. Post-Transcriptional Induction of the Antiviral Host Factor GILT/IFI30 by Interferon Gamma. Int J Mol Sci 2024; 25:9663. [PMID: 39273610 PMCID: PMC11395427 DOI: 10.3390/ijms25179663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) plays pivotal roles in both adaptive and innate immunities. GILT exhibits constitutive expression within antigen-presenting cells, whereas in other cell types, its expression is induced by interferon gamma (IFN-γ). Gaining insights into the precise molecular mechanism governing the induction of GILT protein by IFN-γ is of paramount importance for adaptive and innate immunities. In this study, we found that the 5' segment of GILT mRNA inhibited GILT protein expression regardless of the presence of IFN-γ. Conversely, the 3' segment of GILT mRNA suppressed GILT protein expression in the absence of IFN-γ, but it loses this inhibitory effect in its presence. Although the mTOR inhibitor rapamycin suppressed the induction of GILT protein expression by IFN-γ, the expression from luciferase sequence containing the 3' segment of GILT mRNA was resistant to rapamycin in the presence of IFN-γ, but not in its absence. Collectively, this study elucidates the mechanism behind GILT induction by IFN-γ: in the absence of IFN-γ, GILT mRNA is constitutively transcribed, but the translation process is hindered by both the 5' and 3' segments. Upon exposure to IFN-γ, a translation inhibitor bound to the 3' segment is liberated, and a translation activator interacts with the 3' segment to trigger the initiation of GILT translation.
Collapse
Affiliation(s)
- Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shuichi Suzuki
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
- San Lazaro Hospital-Nagasaki University Collaborative Research Office, Manila 1003, Philippines
| | - Kensuke Takahashi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Koya Ariyoshi
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
12
|
Chuang YM, Dong Y, Stone H, Abouneameh S, Tang XD, Raduwan H, Dimopoulos G, Fikrig E. Anopheles gambiae lacking AgTRIO probe inefficiently on a mammalian host. Cell Rep 2024; 43:114600. [PMID: 39126653 PMCID: PMC11407849 DOI: 10.1016/j.celrep.2024.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Malaria is initiated as Plasmodium sporozoites are injected into the dermis when an infected mosquito probes on a vertebrate host for a blood meal. Factors in the mosquito saliva, such as AgTRIO, can alter the ability of Anopheles gambiae to transmit Plasmodium. We therefore used CRISPR-Cas9-mediated genome editing to generate AgTRIO knockout (KO) A. gambiae and examined the ability of these mosquitoes to probe on a vertebrate host. AgTRIO KO mosquitoes showed a diminished host probing capacity and required repetitive probing to locate a blood resource to complete a blood meal. This increased probing resulted in enhanced Plasmodium transmission to the vertebrate host. Our data demonstrate the importance of the A. gambiae saliva protein AgTRIO in probing and its influence on the ability of mosquitoes to transmit malaria.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xu-Dong Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
13
|
Guizzo MG, Frantová H, Lu S, Kozelková T, Číhalová K, Dyčka F, Hrbatová A, Tonk-Rügen M, Perner J, Ribeiro JM, Fogaça AC, Zurek L, Kopáček P. The immune factors involved in the rapid clearance of bacteria from the midgut of the tick Ixodes ricinus. Front Cell Infect Microbiol 2024; 14:1450353. [PMID: 39193502 PMCID: PMC11347951 DOI: 10.3389/fcimb.2024.1450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Ticks are obligate hematophagous arthropods that transmit a wide range of pathogens to humans as well as wild and domestic animals. They also harbor a non-pathogenic microbiota, although our previous study has shown that the diverse bacterial microbiome in the midgut of Ixodes ricinus is quantitatively poor and lacks a core. In artificial infections by capillary feeding of ticks with two model bacteria (Gram-positive Micrococcus luteus and Gram-negative Pantoea sp.), rapid clearance of these microbes from the midgut was observed, indicating the presence of active immune mechanisms in this organ. In the current study, RNA-seq analysis was performed on the midgut of I. ricinus females inoculated with either M. luteus or Pantoea sp. or with sterile water as a control. While no immune-related transcripts were upregulated by microbial inoculation compared to that of the sterile control, capillary feeding itself triggered dramatic transcriptional changes in the tick midgut. Manual curation of the transcriptome from the midgut of unfed I. ricinus females, complemented by the proteomic analysis, revealed the presence of several constitutively expressed putative antimicrobial peptides (AMPs) that are independent of microbial stimulation and are referred to here as 'guard' AMPs. These included two types of midgut-specific defensins, two different domesticated amidase effector 2 (Dae2), microplusin/ricinusin-related molecules, two lysozymes, and two gamma interferon-inducible lysosomal thiol reductases (GILTs). The in vitro antimicrobial activity assays of two synthetic mature defensins, defensin 1 and defensin 8, confirmed their specificity against Gram-positive bacteria showing exceptional potency to inhibit the growth of M. luteus at nanomolar concentrations. The antimicrobial activity of midgut defensins is likely part of a multicomponent system responsible for the rapid clearance of bacteria in the tick midgut. Further studies are needed to evaluate the role of other identified 'guard' AMPs in controlling microorganisms entering the tick midgut.
Collapse
Affiliation(s)
- Melina Garcia Guizzo
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Helena Frantová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Tereza Kozelková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Kristýna Číhalová
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Alena Hrbatová
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czechia
| | - Miray Tonk-Rügen
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Giessen, Germany
| | - Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - José M. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, United States
| | - Andrea C. Fogaça
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ludek Zurek
- Department of Microbiology, Nutrition and Dietetics/CINeZ, Czech University of Life Sciences, Prague, Czechia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
14
|
Dias BKM, Mohanty A, Garcia CRS. Melatonin as a Circadian Marker for Plasmodium Rhythms. Int J Mol Sci 2024; 25:7815. [PMID: 39063057 PMCID: PMC11277106 DOI: 10.3390/ijms25147815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite's asexual cycle. Studies indicate a species-specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Célia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (B.K.M.D.); (A.M.)
| |
Collapse
|
15
|
Bento I, Parrington B, Pascual R, Goldberg AS, Wang E, Liu H, Zelle M, Takahashi JS, Elias JE, Mota MM, Rijo-Ferreira F. Circadian rhythms mediate malaria transmission potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594221. [PMID: 38798622 PMCID: PMC11118478 DOI: 10.1101/2024.05.14.594221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Malaria transmission begins when infected female Anopheles mosquitos deposit Plasmodium parasites into the mammalian host's skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As Anopheles mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian rhythmic expression. Furthermore, we demonstrate that mosquitoes prefer to feed during nighttime, with the amount of blood ingested varying cyclically throughout the day. Notably, we show a substantial subset of the sporozoite transcriptome cycling throughout the day. These include genes involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Thus, although sporozoites are typically considered quiescent, our results demonstrate their transcriptional activity, revealing robust daily rhythms of gene expression. Our findings suggest a circadian evolutionary relationship between the vector, parasite and mammalian host that together modulate malaria transmission.
Collapse
|
16
|
Lapidus S, Goheen MM, Sy M, Deme AB, Ndiaye IM, Diedhiou Y, Mbaye AM, Hagadorn KA, Sene SD, Pouye MN, Thiam LG, Ba A, Guerra N, Mbengue A, Raduwan H, Vigan-Womas I, Parikh S, Ko AI, Ndiaye D, Fikrig E, Chuang YM, Bei AK. Two mosquito salivary antigens demonstrate promise as biomarkers of recent exposure to P. falciparum infected mosquito bites. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.20.24305430. [PMID: 38712295 PMCID: PMC11071555 DOI: 10.1101/2024.04.20.24305430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Measuring malaria transmission intensity using the traditional entomological inoculation rate is difficult. Antibody responses to mosquito salivary proteins such as SG6 have previously been used as biomarkers of exposure to Anopheles mosquito bites. Here, we investigate four mosquito salivary proteins as potential biomarkers of human exposure to mosquitoes infected with P. falciparum: mosGILT, SAMSP1, AgSAP, and AgTRIO. Methods We tested population-level human immune responses in longitudinal and cross-sectional plasma samples from individuals with known P. falciparum infection from low and moderate transmission areas in Senegal using a multiplexed magnetic bead-based assay. Results AgSAP and AgTRIO were the best indicators of recent exposure to infected mosquitoes. Antibody responses to AgSAP, in a moderate endemic area, and to AgTRIO in both low and moderate endemic areas, were significantly higher than responses in a healthy non-endemic control cohort (p-values = 0.0245, 0.0064, and <0.0001 respectively). No antibody responses significantly differed between the low and moderate transmission area, or between equivalent groups during and outside the malaria transmission seasons. For AgSAP and AgTRIO, reactivity peaked 2-4 weeks after clinical P. falciparum infection and declined 3 months after infection. Discussion Reactivity to both AgSAP and AgTRIO peaked after infection and did not differ seasonally nor between areas of low and moderate transmission, suggesting reactivity is likely reflective of exposure to infectious mosquitos or recent biting rather than general mosquito exposure. Kinetics suggest reactivity is relatively short-lived. AgSAP and AgTRIO are promising candidates to incorporate into multiplexed assays for serosurveillance of population-level changes in P. falciparum-infected mosquito exposure.
Collapse
Affiliation(s)
- Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Morgan M Goheen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Younous Diedhiou
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Amadou Moctar Mbaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Kelly A Hagadorn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Seynabou Diouf Sene
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mariama Nicole Pouye
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Noemi Guerra
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Hamidah Raduwan
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Inés Vigan-Womas
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- International Research and Training Center for Applied Genomics and Health Surveillance (CIGASS) at UCAD, Dakar, Senegal
| | - Erol Fikrig
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Yu-Min Chuang
- Division of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Laboratory of Parasitology and Mycology, Cheikh Anta Diop University, Aristide le Dantec Hospital, Dakar, Senegal
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
17
|
van Schuijlenburg R, Azargoshasb S, de Korne CM, Sijtsma JC, Bezemer S, van der Ham AJ, Baalbergen E, Geurten F, de Bes-Roeleveld LM, Chevalley-Maurel SC, van Oosterom MN, van Leeuwen FWB, Franke-Fayard B, Roestenberg M. Ageing of Plasmodium falciparum malaria sporozoites alters their motility, infectivity and reduces immune activation in vitro. Malar J 2024; 23:111. [PMID: 38641838 PMCID: PMC11027264 DOI: 10.1186/s12936-024-04946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Sporozoites (SPZ), the infective form of Plasmodium falciparum malaria, can be inoculated into the human host skin by Anopheline mosquitoes. These SPZ migrate at approximately 1 µm/s to find a blood vessel and travel to the liver where they infect hepatocytes and multiply. In the skin they are still low in number (50-100 SPZ) and vulnerable to immune attack by antibodies and skin macrophages. This is why whole SPZ and SPZ proteins are used as the basis for most malaria vaccines currently deployed and undergoing late clinical testing. Mosquitoes typically inoculate SPZ into a human host between 14 and 25 days after their previous infective blood meal. However, it is unknown whether residing time within the mosquito affects SPZ condition, infectivity or immunogenicity. This study aimed to unravel how the age of P. falciparum SPZ in salivary glands (14, 17, or 20 days post blood meal) affects their infectivity and the ensuing immune responses. METHODS SPZ numbers, viability by live/dead staining, motility using dedicated sporozoite motility orienting and organizing tool software (SMOOT), and infectivity of HC-04.j7 liver cells at 14, 17 and 20 days after mosquito feeding have been investigated. In vitro co-culture assays with SPZ stimulated monocyte-derived macrophages (MoMɸ) and CD8+ T-cells, analysed by flow cytometry, were used to investigate immune responses. RESULTS SPZ age did not result in different SPZ numbers or viability. However, a markedly different motility pattern, whereby motility decreased from 89% at day 14 to 80% at day 17 and 71% at day 20 was observed (p ≤ 0.0001). Similarly, infectivity of day 20 SPZ dropped to ~ 50% compared with day 14 SPZ (p = 0.004). MoMɸ were better able to take up day 14 SPZ than day 20 SPZ (from 7.6% to 4.1%, p = 0.03) and displayed an increased expression of pro-inflammatory CD80, IL-6 (p = 0.005), regulatory markers PDL1 (p = 0.02), IL-10 (p = 0.009) and cytokines upon phagocytosis of younger SPZ. Interestingly, co-culture of these cells with CD8+ T-cells revealed a decreased expression of activation marker CD137 and cytokine IFNγ compared to their day 20 counterparts. These findings suggest that older (day 17-20) P. falciparum SPZ are less infectious and have decreased immune regulatory potential. CONCLUSION Overall, this data is a first step in enhancing the understanding of how mosquito residing time affects P. falciparum SPZ and could impact the understanding of the P. falciparum infectious reservoir and the potency of whole SPZ vaccines.
Collapse
Affiliation(s)
- Roos van Schuijlenburg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Samaneh Azargoshasb
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Clarize M de Korne
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Sascha Bezemer
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Alwin J van der Ham
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Els Baalbergen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Geurten
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Severine C Chevalley-Maurel
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Blandine Franke-Fayard
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
18
|
Chuang YM, Stone H, Abouneameh S, Tang X, Fikrig E. Signaling between mammalian adiponectin and a mosquito adiponectin receptor reduces Plasmodium transmission. mBio 2024; 15:e0225723. [PMID: 38078744 PMCID: PMC10790699 DOI: 10.1128/mbio.02257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE When a female mosquito takes a blood meal from a mammalian host, components of the blood meal can affect mosquito fitness and indirectly influence pathogen infectivity. We identified a pathway involving an Anopheles gambiae adiponectin receptor, which, triggered by adiponectin from an incoming blood meal, decreases Plasmodium infection in the mosquito. Activation of this pathway negatively regulates lipophorin expression, an important lipid transporter that both enhances egg development and Plasmodium infection. This is an unrecognized cross-phyla interaction between a mosquito and its vertebrate host. These processes are critical to understanding the complex life cycle of mosquitoes and Plasmodium following a blood meal and may be applicable to other hematophagous arthropods and vector-borne infectious agents.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
20
|
Martin-Martin I, Kojin BB, Aryan A, Williams AE, Molina-Cruz A, Valenzuela-Leon PC, Shrivastava G, Botello K, Minai M, Adelman ZN, Calvo E. Aedes aegypti D7 long salivary proteins modulate blood feeding and parasite infection. mBio 2023; 14:e0228923. [PMID: 37909749 PMCID: PMC10746281 DOI: 10.1128/mbio.02289-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.
Collapse
Affiliation(s)
- Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Azadeh Aryan
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Karina Botello
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
21
|
Oke CE, Reece SE, Schneider P. Testing a non-destructive assay to track Plasmodium sporozoites in mosquitoes over time. Parasit Vectors 2023; 16:401. [PMID: 37925480 PMCID: PMC10625196 DOI: 10.1186/s13071-023-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. METHODS We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. RESULTS The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. CONCLUSIONS We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schneider
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. Anopheles gambiae mosGILT regulates innate immune genes and zpg expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551536. [PMID: 37577703 PMCID: PMC10418185 DOI: 10.1101/2023.08.01.551536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
|
23
|
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, Turco A, D’Alò F, Peirce MJ, Favia G, Spaccapelo R. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol 2023; 14:1157613. [PMID: 37533823 PMCID: PMC10392944 DOI: 10.3389/fmicb.2023.1157613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Gloria Iacomelli
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Giulia Monacchia
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Antonella Turco
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Francesco D’Alò
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Matthew J. Peirce
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), Trieste, Italy
| |
Collapse
|
24
|
Chuang YM, Alameh MG, Abouneameh S, Raduwan H, Ledizet M, Weissman D, Fikrig E. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria. NPJ Vaccines 2023; 8:88. [PMID: 37286568 PMCID: PMC10244833 DOI: 10.1038/s41541-023-00679-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. To prevent malaria, vaccination is the most effective strategy and there is an urgent need for new strategies to enhance current pathogen-based vaccines. Active or passive immunization against a mosquito saliva protein, AgTRIO, contributes to protection against Plasmodium infection of mice. In this study, we generated an AgTRIO mRNA-lipid nanoparticle (LNP) and assessed its potential usefulness as a vaccine against malaria. Immunization of mice with an AgTRIO mRNA-LNP generated a robust humoral response, including AgTRIO IgG2a isotype antibodies that have been associated with protection. AgTRIO mRNA-LNP immunized mice exposed to Plasmodium berghei-infected mosquitoes had markedly reduced initial Plasmodium hepatic infection levels and increased survival compared to control mice. In addition, as the humoral response to AgTRIO waned over 6 months, additional mosquito bites boosted the AgTRIO IgG titers, including IgG1 and IgG2a isotypes, which offers a unique advantage compared to pathogen-based vaccines. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Mohamad-Gabriel Alameh
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | - Drew Weissman
- Institute for RNA Innovation and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Pala ZR, Alves e Silva TL, Minai M, Crews B, Patino-Martinez E, Carmona-Rivera C, Valenzuela-Leon PC, Martin-Martin I, Flores-Garcia Y, Cachau RE, Srivastava N, Moore IN, Alves DA, Kaplan MJ, Fischer E, Calvo E, Vega-Rodriguez J. Anopheles salivary apyrase regulates blood meal hemostasis and drives malaria parasite transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541827. [PMID: 37292610 PMCID: PMC10245845 DOI: 10.1101/2023.05.22.541827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mosquito salivary proteins play a crucial role in regulating hemostatic responses at the bite site during blood feeding. In this study, we investigate the function of Anopheles gambiae salivary apyrase (AgApyrase) in Plasmodium transmission. Our results demonstrate that salivary apyrase interacts with and activates tissue plasminogen activator, facilitating the conversion of plasminogen to plasmin, a human protein previously shown to be required for Plasmodium transmission. Microscopy imaging shows that mosquitoes ingest a substantial amount of apyrase during blood feeding which reduces coagulation in the blood meal by enhancing fibrin degradation and inhibiting platelet aggregation. Supplementation of Plasmodium infected blood with apyrase significantly enhanced Plasmodium infection in the mosquito midgut. In contrast, AgApyrase immunization inhibited Plasmodium mosquito infection and sporozoite transmission. This study highlights a pivotal role for mosquito salivary apyrase for regulation of hemostasis in the mosquito blood meal and for Plasmodium transmission to mosquitoes and to the mammal host, underscoring the potential for new strategies to prevent malaria transmission.
Collapse
Affiliation(s)
- Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Benjamin Crews
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Eduardo Patino-Martinez
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paola Carolina Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Current address: Laboratory of Medical Entomology, National Center for Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Yevel Flores-Garcia
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Raul E. Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naman Srivastava
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Derron A. Alves
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Fischer
- Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
26
|
Arora G, Chuang YM, Sinnis P, Dimopoulos G, Fikrig E. Malaria: influence of Anopheles mosquito saliva on Plasmodium infection. Trends Immunol 2023; 44:256-265. [PMID: 36964020 PMCID: PMC10074230 DOI: 10.1016/j.it.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/26/2023]
Abstract
Malaria is caused by Plasmodium protozoa that are transmitted by anopheline mosquitoes. Plasmodium sporozoites are released with saliva when an infected female mosquito takes a blood meal on a vertebrate host. Sporozoites deposited into the skin must enter a blood vessel to start their journey towards the liver. After migration out of the mosquito, sporozoites are associated with, or in proximity to, many components of vector saliva in the skin. Recent work has elucidated how Anopheles saliva, and components of saliva, can influence host-pathogen interactions during the early stage of Plasmodium infection in the skin. Here, we discuss how components of Anopheles saliva can modulate local host responses and affect Plasmodium infectivity. We hypothesize that therapeutic strategies targeting mosquito salivary proteins can play a role in controlling malaria and other vector-borne diseases.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Arnoldi I, Mancini G, Fumagalli M, Gastaldi D, D'Andrea L, Bandi C, Di Venere M, Iadarola P, Forneris F, Gabrieli P. A salivary factor binds a cuticular protein and modulates biting by inducing morphological changes in the mosquito labrum. Curr Biol 2022; 32:3493-3504.e11. [PMID: 35835123 DOI: 10.1016/j.cub.2022.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
The mosquito proboscis is an efficient microelectromechanical system, which allows the insect to feed on vertebrate blood quickly and painlessly. Its efficiency is further enhanced by the insect saliva, although through unclear mechanisms. Here, we describe the initial trigger of an unprecedented feedback signaling pathway in Aedes mosquitoes affecting feeding behavior. We identified LIPS proteins in the saliva of Aedes mosquitoes that promote feeding in the vertebrate skin. LIPS show a new all-helical protein fold constituted by two domains. The N-terminal domain interacts with a cuticular protein (Cp19) located at the tip of the mosquito labrum. Upon interaction, the morphology of the labral cuticle changes, and this modification is most likely sensed by proprioceptive neurons. Our study identifies an additional role of mosquito saliva and underlines that the external cuticle is a possible site of key molecular interactions affecting the insect biology and its vector competence.
Collapse
Affiliation(s)
- Irene Arnoldi
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Giulia Mancini
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Dario Gastaldi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Luca D'Andrea
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Claudio Bandi
- Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy
| | - Monica Di Venere
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Paolo Iadarola
- Biochemistry Unit, Department Biology and Biotechnology, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
| | - Paolo Gabrieli
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; Entopar lab, Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy; Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, Milan, Italy.
| |
Collapse
|
29
|
Fiorillo C, Yen PS, Colantoni A, Mariconti M, Azevedo N, Lombardo F, Failloux AB, Arcà B. MicroRNAs and other small RNAs in Aedes aegypti saliva and salivary glands following chikungunya virus infection. Sci Rep 2022; 12:9536. [PMID: 35681077 PMCID: PMC9184468 DOI: 10.1038/s41598-022-13780-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.
Collapse
Affiliation(s)
- Carmine Fiorillo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Pei-Shi Yen
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marina Mariconti
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna-Bella Failloux
- Arboviruses and Insect Vectors Unit, Institute Pasteur, 25 rue Dr. Roux, 75724, Paris Cedex 15, France
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases - Division of Parasitology, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
30
|
Aleshnick M, Florez-Cuadros M, Martinson T, Wilder BK. Monoclonal antibodies for malaria prevention. Mol Ther 2022; 30:1810-1821. [PMID: 35395399 PMCID: PMC8979832 DOI: 10.1016/j.ymthe.2022.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Monoclonal antibodies are highly specific proteins that are cloned from a single B cell and bind to a single epitope on a pathogen. These laboratory-made molecules can serve as prophylactics or therapeutics for infectious diseases and have an impressive capacity to modulate the progression of disease, as demonstrated for the first time on a large scale during the COVID-19 pandemic. The high specificity and natural starting point of monoclonal antibodies afford an encouraging safety profile, yet the high cost of production remains a major limitation to their widespread use. While a monoclonal antibody approach to abrogating malaria infection is not yet available, the unique life cycle of the malaria parasite affords many opportunities for such proteins to act, and preliminary research into the efficacy of monoclonal antibodies in preventing malaria infection, disease, and transmission is encouraging. This review examines the current status and future outlook for monoclonal antibodies against malaria in the context of the complex life cycle and varied antigenic targets expressed in the human and mosquito hosts, and provides insight into the strengths and limitations of this approach to curtailing one of humanity’s oldest and deadliest diseases.
Collapse
Affiliation(s)
- Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | - Thomas Martinson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA; Department of Parasitology, U.S. Naval Medical Research 6 (NAMRU-6), Lima, Peru
| |
Collapse
|
31
|
Arora G, Sajid A, Chuang YM, Dong Y, Gupta A, Gambardella K, DePonte K, Almeras L, Dimopolous G, Fikrig E. Immunomodulation by Mosquito Salivary Protein AgSAP Contributes to Early Host Infection by Plasmodium. mBio 2021; 12:e0309121. [PMID: 34903042 PMCID: PMC8669493 DOI: 10.1128/mbio.03091-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria is caused when Plasmodium sporozoites are injected along with saliva by an anopheline mosquito into the dermis of a vertebrate host. Arthropod saliva has pleiotropic effects that can influence local host responses, pathogen transmission, and exacerbation of the disease. A mass spectrometry screen identified mosquito salivary proteins that are associated with Plasmodium sporozoites during saliva secretions. In this study, we demonstrate that one of these salivary antigens, Anopheles gambiae sporozoite-associated protein (AgSAP), interacts directly with Plasmodium falciparum and Plasmodium berghei sporozoites. AgSAP binds to heparan sulfate and inhibits local inflammatory responses in the skin. The silencing of AgSAP in mosquitoes reduces their ability to effectively transmit sporozoites to mice. Moreover, immunization with AgSAP decreases the Plasmodium burden in mice that are bitten by Plasmodium-infected mosquitoes. These data suggest that AgSAP facilitates early Plasmodium infection in the vertebrate host and serves as a target for the prevention of malaria. IMPORTANCE Malaria is a vector-borne disease caused by Plasmodium sporozoites. When an anopheline mosquito bites its host, it releases Plasmodium sporozoites as well as saliva components. Mosquito proteins have the potential to serve as antigens to prevent or influence malaria without directly targeting the pathogen. This may help set a new paradigm for vaccine development. In this study, we have elucidated the role of a novel salivary antigen, named Anopheles gambiae sporozoite-associated protein (AgSAP). The results presented here show that AgSAP interacts with Plasmodium falciparum and Plasmodium berghei sporozoites and modulates local inflammatory responses in the skin. Furthermore, our results show that AgSAP is a novel mosquito salivary antigen that influences the early stages of Plasmodium infection in the vertebrate host. Individuals living in countries where malaria is endemic generate antibodies against AgSAP, which indicates that AgSAP can serve as a biomarker for disease prevalence and epidemiological analysis.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Akash Gupta
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristen Gambardella
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kathleen DePonte
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, France
| | - George Dimopolous
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Chowdhury A, Modahl CM, Missé D, Kini RM, Pompon J. High resolution proteomics of Aedes aegypti salivary glands infected with either dengue, Zika or chikungunya viruses identify new virus specific and broad antiviral factors. Sci Rep 2021; 11:23696. [PMID: 34880409 PMCID: PMC8654903 DOI: 10.1038/s41598-021-03211-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Arboviruses such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses infect close to half a billion people per year, and are primarily transmitted through Aedes aegypti bites. Infection-induced changes in mosquito salivary glands (SG) influence transmission by inducing antiviral immunity, which restricts virus replication in the vector, and by altering saliva composition, which influences skin infection. Here, we profiled SG proteome responses to DENV serotype 2 (DENV2), ZIKV and CHIKV infections by using high-resolution isobaric-tagged quantitative proteomics. We identified 218 proteins with putative functions in immunity, blood-feeding or related to the cellular machinery. We observed that 58, 27 and 29 proteins were regulated by DENV2, ZIKV and CHIKV infections, respectively. While the regulation patterns were mostly virus-specific, we separately depleted four uncharacterized proteins that were upregulated by all three viral infections to determine their effects on these viral infections. Our study suggests that gamma-interferon responsive lysosomal thiol-like (GILT-like) has an anti-ZIKV effect, adenosine deaminase (ADA) has an anti-CHIKV effect, salivary gland surface protein 1 (SGS1) has a pro-ZIKV effect and salivary gland broad-spectrum antiviral protein (SGBAP) has an antiviral effect against all three viruses. The comprehensive description of SG responses to three global pathogenic viruses and the identification of new restriction factors improves our understanding of the molecular mechanisms influencing transmission.
Collapse
Affiliation(s)
- Avisha Chowdhury
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Present Address: Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cassandra M. Modahl
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.48004.380000 0004 1936 9764Present Address: Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Dorothée Missé
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France. .,Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore. .,MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
33
|
Izumida M, Hayashi H, Smith C, Ishibashi F, Suga K, Kubo Y. Antivirus activity, but not thiolreductase activity, is conserved in interferon-gamma-inducible GILT protein in arthropod. Mol Immunol 2021; 140:240-249. [PMID: 34773863 DOI: 10.1016/j.molimm.2021.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
We have previously reported that gamma-interferon inducible lysosomal thiolreductase (GILT) functions as a host defense factor against retroviruses by digesting disulfide bonds on viral envelope proteins. GILT is widely conserved even in plants and fungi as well as animals. The thiolreductase active site of mammalian GILT is composed of a CXXC amino acid motif, whereas the C-terminal cysteine residue is changed to serine in arthropods including shrimps, crabs, and flies. GILT from Penaeus monodon (PmGILT) also has the CXXS motif instead of the CXXC active site. We demonstrate here that a human GILT mutant (GILT C75S) with the CXXS motif and PmGILT significantly inhibit amphotropic murine leukemia virus vector infection in human cells without alterning its expression level and lysosomal localization, showing that the C-terminal cysteine residue of the active site is not required for the antiviral activity. We have reported that human GILT suppresses HIV-1 particle production by digestion of disulfide bonds on CD63. However, GILT C75S mutant and PmGILT did not digest CD63 disulfide bonds, and had no effect on HIV-1 virion production, suggesting that they do not have thiolreductase activity. Taken together, this study found that antiviral activity, but not thiolreductase activity, is conserved in arthropod GILT proteins. This finding provides a new insight that the common function of GILT is antiviral activity in many animals.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Chris Smith
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Japan; Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan; Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
34
|
A mosquito AgTRIO monoclonal antibody reduces early Plasmodium infection of mice. Infect Immun 2021; 90:e0035921. [PMID: 34724388 DOI: 10.1128/iai.00359-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria begins when an infected mosquito injects saliva containing Plasmodium sporozoites into the skin of a vertebrate host. Passive immunization of mice with mosquito AgTRIO antisera offers significant protection against Plasmodium infection of mice. Furthermore, passive transfer of both AgTRIO antisera and an anti-circumsporozoite protein monoclonal antibody provides synergistic protection. In this study, we generated monoclonal antibodies against AgTRIO to delineate the regions of AgTRIO associated with protective immunity. Monoclonal antibody 13F-1 markedly reduced Plasmodium infection in mice and recognized a region, VDDLMAKFN, in the carboxyl terminus of AgTRIO. 13F-1 is an IgG2a isotype monoclonal antibody and the Fc region is required for protection. These data will aid in the generation of future malaria vaccines that may include both pathogen and vector antigens.
Collapse
|
35
|
Blight J, Sala KA, Atcheson E, Kramer H, El-Turabi A, Real E, Dahalan FA, Bettencourt P, Dickinson-Craig E, Alves E, Salman AM, Janse CJ, Ashcroft FM, Hill AV, Reyes-Sandoval A, Blagborough AM, Baum J. Dissection-independent production of Plasmodium sporozoites from whole mosquitoes. Life Sci Alliance 2021; 4:e202101094. [PMID: 34135099 PMCID: PMC8321652 DOI: 10.26508/lsa.202101094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Erwan Atcheson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Holger Kramer
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Aadil El-Turabi
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eliana Real
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Farah A Dahalan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Paulo Bettencourt
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Emma Dickinson-Craig
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eduardo Alves
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Leiden, The Netherlands
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
- Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| |
Collapse
|
36
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
37
|
Clustering and Erratic Movement Patterns of Syringe-Injected versus Mosquito-Inoculated Malaria Sporozoites Underlie Decreased Infectivity. mSphere 2021; 6:6/2/e00218-21. [PMID: 33827910 PMCID: PMC8546700 DOI: 10.1128/msphere.00218-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria vaccine candidates based on live, attenuated sporozoites have led to high levels of protection. However, their efficacy critically depends on the sporozoites' ability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity but highly impractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were 3-fold less efficient in migrating to and infecting mouse liver than mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold-decreased median distance between syrSPZ and msqSPZ) and, more importantly, a 1.4-fold (significantly)-slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (>15-μm intercellular gaps) due to injection of fluid and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.IMPORTANCE Malaria still causes a major burden on global health and the economy. The efficacy of live, attenuated malaria sporozoites as vaccine candidates critically depends on their ability to migrate to and infect the host liver. This work sheds light on the effect of different administration routes on sporozoite migration. We show that the delivery of sporozoites via mosquito inoculation is more efficient than syringe injection; however, this route of administration is highly impractical for vaccine purposes. Using confocal microscopy and automated imaging software, we demonstrate that syringe-injected sporozoites do cluster, move more slowly, and display more erratic movement due to alterations in tissue morphology. These findings indicate that microneedle-based engineering solutions hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.
Collapse
|
38
|
Kozak RP, Mondragon-Shem K, Williams C, Rose C, Perally S, Caljon G, Van Den Abbeele J, Wongtrakul-Kish K, Gardner RA, Spencer D, Lehane MJ, Acosta-Serrano Á. Tsetse salivary glycoproteins are modified with paucimannosidic N-glycans, are recognised by C-type lectins and bind to trypanosomes. PLoS Negl Trop Dis 2021; 15:e0009071. [PMID: 33529215 PMCID: PMC7880456 DOI: 10.1371/journal.pntd.0009071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/12/2021] [Accepted: 12/14/2020] [Indexed: 12/01/2022] Open
Abstract
African sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins. Tsetse salivary N-glycans were enzymatically released, tagged with either 2-aminobenzamide (2-AB) or procainamide, and analyzed by HILIC-UHPLC-FLR coupled online with positive-ion ESI-LC-MS/MS. We found that the N-glycan profiles of T. brucei-infected and naïve tsetse salivary glycoproteins are almost identical, consisting mainly (>50%) of highly processed Man3GlcNAc2 in addition to several other paucimannose, high mannose, and few hybrid-type N-glycans. In overlay assays, these sugars were differentially recognized by the mannose receptor and DC-SIGN C-type lectins. We also show that salivary glycoproteins bind strongly to the surface of transmissible metacyclic trypanosomes. We suggest that although the repertoire of tsetse salivary N-glycans does not change during a trypanosome infection, the interactions with mannosylated glycoproteins may influence parasite transmission into the vertebrate host. In addition to helping the ingestion of a bloodmeal, the saliva of vector insects can modulate vertebrate immune responses. However, most research has focused on the salivary proteins, while the sugars (glycans) that modify them remain unexplored. Here we studied N-glycosylation, a common post-translational modification where sugar structures are attached to specific sites of a protein. Insect salivary N-glycans may affect how the saliva is recognized by the host, possibly playing a role during pathogen transmission. In this manuscript, we present the first detailed structural characterization of the salivary N-glycans in the tsetse fly Glossina morsitans, vector of African trypanosomiasis. We found that tsetse fly glycoproteins are mainly modified by simple N-glycans with short mannose modifications, which are recognised by mammalian C-type lectins (mannose receptor and DC-SIGN). Furthermore, we show that salivary glycoproteins bind to the surface of the trypanosomes that are transmitted to the vertebrate host; this opens up interesting questions as to the role of these glycoproteins in the successful establishment of infection by this parasite. Overall, our work represents a novel contribution towards the salivary N-glycome of an important insect vector, and towards the understanding of vector saliva and its complex effects in the vertebrate host.
Collapse
Affiliation(s)
| | - Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Christopher Williams
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samirah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | | | - Daniel Spencer
- Ludger Ltd., Culham Science Centre, Oxford, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Chuang YM, Agunbiade TA, Tang XD, Freudzon M, Almeras L, Fikrig E. The Effects of A Mosquito Salivary Protein on Sporozoite Traversal of Host Cells. J Infect Dis 2020; 224:544-553. [PMID: 33306099 DOI: 10.1093/infdis/jiaa759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/09/2020] [Indexed: 01/03/2023] Open
Abstract
Malaria begins when Plasmodium-infected Anopheles mosquitoes take a blood meal on a vertebrate. During the initial probing process, mosquitoes inject saliva and sporozoites into the host skin. Components of mosquito saliva have the potential to influence sporozoite functionality. Sporozoite-associated mosquito saliva protein 1 (SAMSP1; AGAP013726) was among several proteins identified when sporozoites were isolated from saliva, suggesting it may have an effect on Plasmodium. Recombinant SAMSP1 enhanced sporozoite gliding and cell traversal activity in vitro. Moreover, SAMSP1 decreased neutrophil chemotaxis in vivo and in vitro, thereby also exerting an influence on the host environment in which the sporozoites reside. Active or passive immunization of mice with SAMSP1 or SAMSP1 antiserum diminished the initial Plasmodium burden after infection. Passive immunization of mice with SAMSP1 antiserum also added to the protective effect of a circumsporozoite protein monoclonal antibody. SAMSP1 is, therefore, a mosquito saliva protein that can influence sporozoite infectivity in the vertebrate host.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tolulope A Agunbiade
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Xu-Dong Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Marianna Freudzon
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs-Infections Tropicales et Méditerranéennes, IHU-Méditerranée Infection, Marseille, France
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Tirloni L, Braz G, Nunes RD, Gandara ACP, Vieira LR, Assumpcao TC, Sabadin GA, da Silva RM, Guizzo MG, Machado JA, Costa EP, Santos D, Gomes HF, Moraes J, dos Santos Mota MB, Mesquita RD, de Souza Leite M, Alvarenga PH, Lara FA, Seixas A, da Fonseca RN, Fogaça AC, Logullo C, Tanaka AS, Daffre S, Oliveira PL, da Silva Vaz I, Ribeiro JMC. A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020. [DOI: 10.1246/nikkashi.1979.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractTo further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
41
|
A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Sci Rep 2020; 10:18296. [PMID: 33106528 PMCID: PMC7588415 DOI: 10.1038/s41598-020-75341-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.
Collapse
|
42
|
Roesel CL, Rosengaus RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol 2020; 10:11251-11261. [PMID: 33144962 PMCID: PMC7593158 DOI: 10.1002/ece3.6764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
The traditional view of innate immunity in insects is that every exposure to a pathogen triggers an identical and appropriate immune response and that prior exposures to pathogens do not confer any protective (i.e., adaptive) effect against subsequent exposure to the same pathogen. This view has been challenged by experiments demonstrating that encounters with sublethal doses of a pathogen can prime the insect's immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.
Collapse
Affiliation(s)
| | | | - Wendy Smith
- Marine Science CenterNortheastern UniversityNahantMAUSA
| | | |
Collapse
|
43
|
Manning JE, Oliveira F, Coutinho-Abreu IV, Herbert S, Meneses C, Kamhawi S, Baus HA, Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Athota R, Reed S, Mateja A, Hunsberger S, James E, Pleguezuelos O, Stoloff G, Valenzuela JG, Memoli MJ. Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial. Lancet 2020; 395:1998-2007. [PMID: 32534628 PMCID: PMC9151349 DOI: 10.1016/s0140-6736(20)31048-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In animal models, immunity to mosquito salivary proteins protects animals against mosquito-borne disease. These findings provide a rationale to vaccinate against mosquito saliva instead of the pathogen itself. To our knowledge, no vector salivary protein-based vaccine has been tested for safety and immunogenicity in humans. We aimed to assess the safety and immunogenicity of Anopheles gambiae saliva vaccine (AGS-v), a peptide-based vaccine derived from four A gambiae salivary proteins, in humans. METHODS In this randomised, placebo-controlled, double-blind, phase 1 trial, participants were enrolled at the National Institutes of Health Clinical Center in Bethesda, MD, USA. Participants were eligible if they were healthy adults, aged 18-50 years with no history of severe allergic reactions to mosquito bites. Participants were randomly assigned (1:1:1), using block randomisation and a computer-generated randomisation sequence, to treatment with either 200 nmol of AGS-v vaccine alone, 200 nmol of AGS-v with adjuvant (Montanide ISA 51), or sterile water as placebo. Participants and clinicians were masked to treatment assignment. Participants were given a subcutaneous injection of their allocated treatment at day 0 and day 21, followed by exposure to feeding by an uninfected Aedes aegypti mosquito at day 42 to assess subsequent risk to mosquito bites in a controlled setting. The primary endpoints were safety and immunogenicity at day 42 after the first immunisation. Participants who were given at least one dose of assigned treatment were assessed for the primary endpoints and analysis was by intention to treat. The trial was registered with ClinicalTrials.gov, NCT03055000, and is closed for accrual. FINDINGS Between Feb 15 and Sept 10, 2017, we enrolled and randomly assigned 49 healthy adult participants to the adjuvanted vaccine (n=17), vaccine alone (n=16), or placebo group (n=16). Five participants did not complete the two-injection regimen with mosquito feeding at day 42, but were included in the safety analyses. No systemic safety concerns were identified; however, one participant in the adjuvanted vaccine group developed a grade 3 erythematous rash at the injection site. Pain, swelling, erythema, and itching were the most commonly reported local symptoms and were significantly increased in the adjuvanted vaccine group compared with both other treatment groups (nine [53%] of 17 participants in the adjuvanted vaccine group, two [13%] of 16 in the vaccine only group, and one [6%] of 16 in the placebo group; p=0·004). By day 42, participants who were given the adjuvanted vaccine had a significant increase in vaccine-specific total IgG antibodies compared with at baseline than did participants who were give vaccine only (absolute difference of log10-fold change of 0·64 [95% CI 0·39 to 0·89]; p=0·0002) and who were given placebo (0·62 [0·34 to 0·91]; p=0·0001). We saw a significant increase in IFN-γ production by peripheral blood mononuclear cells at day 42 in the adjuvanted vaccine group compared with in the placebo group (absolute difference of log10 ratio of vaccine peptide-stimulated vs negative control 0·17 [95% CI 0·061 to 0·27]; p=0·009) but we saw no difference between the IFN-γ production in the vaccine only group compared with the placebo group (0·022 [-0·072 to 0·116]; p=0·63). INTERPRETATION AGS-v was well tolerated, and, when adjuvanted, immunogenic. These findings suggest that vector-targeted vaccine administration in humans is safe and could be a viable option for the increasing burden of vector-borne disease. FUNDING Office of the Director and the Division of Intramural Research at the National Institute of Allergy and Infectious Diseases, and National Institutes of Health.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA.
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Samantha Herbert
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA
| | - Claudio Meneses
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA
| | - Shaden Kamhawi
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA
| | - Holly Ann Baus
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luz Angela Rosas
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rani Athota
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Susan Reed
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Allyson Mateja
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, sponsored by the National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sally Hunsberger
- Biostatistics Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Bettencourt P. Current Challenges in the Identification of Pre-Erythrocytic Malaria Vaccine Candidate Antigens. Front Immunol 2020; 11:190. [PMID: 32153565 PMCID: PMC7046804 DOI: 10.3389/fimmu.2020.00190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/24/2020] [Indexed: 12/27/2022] Open
Abstract
Plasmodium spp.-infected mosquitos inject sporozoites into the skin of a mammalian host during a blood meal. These enter the host's circulatory system and establish an infection in the liver. After a silent metamorphosis, merozoites invade the blood leading to the symptomatic and transmissible stages of malaria. The silent pre-erythrocytic malaria stage represents a bottleneck in the disease which is ideal to block progression to clinical malaria, through chemotherapeutic and immunoprophylactic interventions. RTS,S/AS01, the only malaria vaccine close to licensure, although with poor efficacy, blocks the sporozoite invasion mainly through the action of antibodies against the CSP protein, a major component of the pellicle of the sporozoite. Strikingly, sterile protection against malaria can be obtained through immunization with radiation-attenuated sporozoites, genetically attenuated sporozoites or through chemoprophylaxis with infectious sporozoites in animals and humans, but the deployability of sporozoite-based live vaccines pose tremendous challenges. The protection induced by sporozoites occurs in the pre-erythrocytic stages and is mediated mainly by antibodies against the sporozoite and CD8+ T cells against peptides presented by MHC class I molecules in infected hepatocytes. Thus, the identification of malaria antigens expressed in the sporozoite and liver-stage may provide new vaccine candidates to be included, alone or in combination, as recombinant protein-based, virus-like particles or sub-unit virally-vectored vaccines. Here I review the efforts being made to identify Plasmodium falciparum antigens expressed during liver-stage with focus on the development of parasite, hepatocyte, mouse models, and resulting rate of infection in order to identify new vaccine candidates and to improve the efficacy of the current vaccines. Finally, I propose new approaches for the identification of liver-stage antigens based on immunopeptidomics.
Collapse
|
45
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
46
|
Anopheles gambiae Lacking AgTRIO Inefficiently Transmits Plasmodium berghei to Mice. Infect Immun 2019; 87:IAI.00326-19. [PMID: 31285253 DOI: 10.1128/iai.00326-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 01/21/2023] Open
Abstract
Antibodies to AgTRIO, a mosquito salivary protein, partially reduce the initial Plasmodium burden in mice. We therefore silenced AgTRIO in mosquitoes and determined the relative contribution of AgTRIO to the ability of Anopheles gambiae to transmit Plasmodium berghei to mice. RNA interference-mediated silencing of AgTRIO in A. gambiae resulted in a 60% reduction in AgTRIO expression. The decrease in AgTRIO expression did not alter the burden of Plasmodium sporozoites in mosquito salivary glands. When experimentally injected into mice, sporozoites from AgTRIO-silenced mosquitoes colonized the liver less effectively than sporozoites from control mosquitoes. Silencing of AgTRIO did not decrease the infectivity of sporozoites in vitro or influence the expression of genes associated with Plasmodium cell adhesion or traversal activity. AgTRIO decreased the expression of proinflammation cytokines by splenocytes in vitro Moreover, in vivo, AgTRIO decreased the expression of TNF-α when coinjected with sporozoites into the skin and there was more TNF-α expression at the bite site of AgTRIO knockdown mosquitoes than at the bite site of control mosquitoes. AgTRIO therefore influences the local environment in the vertebrate host, which facilitates Plasmodium sporozoite infection in mice.
Collapse
|
47
|
Nouzova M, Clifton ME, Noriega FG. Mosquito adaptations to hematophagia impact pathogen transmission. CURRENT OPINION IN INSECT SCIENCE 2019; 34:21-26. [PMID: 31247413 DOI: 10.1016/j.cois.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Mosquito-borne diseases such as Dengue fever, Chikungunya, and Malaria are critical threats to public health in many parts of the world. Female mosquitoes have evolved multiple adaptive mechanisms to hematophagy, including the ability to efficiently draw and digest blood, as well as the ability to eliminate excess fluids and toxic by-products of blood digestion. Pathogenic agents enter the mosquito digestive tract with the blood meal and need to travel through the midgut and into the hemocele in order to reach the salivary glands and infect a new host. Pathogens need to adjust to these hostile gut, hemocele, and salivary gland environments, and when possible influence the physiology and behavior of their hosts to enhance transmission.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Mark E Clifton
- North Shore Mosquito Abatement District, Northfield, IL, USA
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
48
|
Thipwong J, Saelim H, Panrat T, Phongdara A. Penaeus monodon GILT enzyme restricts WSSV infectivity by reducing disulfide bonds in WSSV proteins. DISEASES OF AQUATIC ORGANISMS 2019; 135:59-70. [PMID: 31244485 DOI: 10.3354/dao03377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gamma-interferon-inducible lysosomal thiol reductase (GILT) is involved in the adaptive immune response via its effects on major histocompatibility complex (MHC)-restricted antigen presentation. In addition to antigen presentation, GILT exerts its antiviral activity by reducing disulfide bonds in proteins involved in viral infection and assembly, thereby inhibiting viral envelope-mediated infection and viral progeny production. In black tiger shrimp, Penaeus monodon GILT (PmGILT) was cloned and characterized, and found to be involved in the shrimp innate immune response and to exert neutralizing activity against white spot syndrome virus (WSSV) infection. However, the anti-WSSV mechanism of PmGILT in the shrimp innate immune response has not been defined. To explore the anti-WSSV activity of PmGILT, a yeast 2-hybrid (Y2H) assay was performed to identify WSSV proteins targeted by PmGILT. The assay revealed 4 potential PmGILT-interacting WSSV proteins: WSSV002, WSSV164, WSSV189, and WSSV471. Three of these 4 WSSV proteins (WSSV002, WSSV164 and WSSV189) were successfully produced and confirmed to interact with PmGILT in in vitro pull-down assays. WSSV189 and WSSV471 were previously identified as structural proteins, whereas WSSV164 is an immediate-early protein which has anti-melanization activity, and WSSV002 is an unknown. Because of the thiol reductase activity of PmGILT, WSSV164 and WSSV189, both of which are cysteine-containing WSSV proteins, were chosen for disulfide bond reduction assays. PmGILT reduced intrachain disulfide bonds in both WSSV proteins, suggesting that PmGILT exerts its anti-WSSV activity via its thiol reductase activity to disrupt the WSSV protein complex and restore the melanization activity of PmproPO1 and PmproPO2.
Collapse
Affiliation(s)
- Jaturon Thipwong
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | | | | | | |
Collapse
|
49
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
50
|
Manning JE, Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines (Basel) 2019; 7:E10. [PMID: 30669682 PMCID: PMC6466432 DOI: 10.3390/vaccines7010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The current increase in vector-borne disease worldwide necessitates novel approaches to vaccine development targeted to pathogens delivered by blood-feeding arthropod vectors into the host skin. A concept that is gaining traction in recent years is the contribution of the vector or vector-derived components, like salivary proteins, to host-pathogen interactions. Indeed, the triad of vector-host-pathogen interactions in the skin microenvironment can influence host innate and adaptive responses alike, providing an advantage to the pathogen to establish infection. A better understanding of this "bite site" microenvironment, along with how host and vector local microbiomes immunomodulate responses to pathogens, is required for future vaccines for vector-borne diseases. Microneedle administration of such vaccines may more closely mimic vector deposition of pathogen and saliva into the skin with the added benefit of near painless vaccine delivery. Focusing on the 'micro'⁻from microenvironments to microbiomes to microneedles⁻may yield an improved generation of vector-borne disease vaccines in today's increasingly complex world.
Collapse
Affiliation(s)
- Jessica E Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh 12201, Cambodia.
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 12201, Cambodia.
| |
Collapse
|