1
|
Rodrigues CS, Gaifem J, Pereira MS, Alves MF, Silva M, Padrão N, Cavadas B, Moreira-Barbosa C, Alves I, Marcos-Pinto R, Torres J, Lavelle A, Colombel JF, Sokol H, Pinho SS. Alterations in mucosa branched N-glycans lead to dysbiosis and downregulation of ILC3: a key driver of intestinal inflammation. Gut Microbes 2025; 17:2461210. [PMID: 39918275 PMCID: PMC11810091 DOI: 10.1080/19490976.2025.2461210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 02/12/2025] Open
Abstract
The perturbation of the symbiotic relationship between microbes and intestinal immune system contributes to gut inflammation and Inflammatory Bowel Disease (IBD) development. The host mucosa glycans (glycocalyx) creates a major biological interface between gut microorganisms and host immunity that remains ill-defined. Glycans are essential players in IBD immunopathogenesis, even years before disease onset. However, how changes in mucosa glycosylation shape microbiome and how this impact gut immune response and inflammation remains to be clarified. Here, we revealed that alterations in the expression of complex branched N-glycans at gut mucosa surface, modeled in glycoengineered mice, resulted in dysbiosis, with a deficiency in Firmicutes bacteria. Concomitantly, this mucosa N-glycan switch was associated with a downregulation of type 3 innate lymphoid cells (ILC3)-mediated immune response, leading to the transition of ILC3 toward an ILC1 proinflammatory phenotype and increased TNFα production. In addition, we demonstrated that the mucosa glycosylation remodeling through prophylactic supplementation with glycans at steady state was able to restore microbial-derived short-chain fatty acids and microbial sensing (by NOD2 expression) alongside the rescue of the expression of ILC3 module, suppressing intestinal inflammation and controlling disease onset. In a complementary approach, we further showed that IBD patients, often displaying dysbiosis, exhibited a tendency of decreased MGAT5 expression at epithelial cells that was accompanied by reduced ILC3 expression in gut mucosa. Altogether, these results unlock the effects of alterations in mucosa glycome composition in the regulation of the bidirectional crosstalk between microbiota and gut immune response, revealing host branched N-glycans/microbiota/ILC3 axis as an essential pathway in gut homeostasis and in preventing health to intestinal inflammation transition.
Collapse
Affiliation(s)
- Cláudia S. Rodrigues
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Joana Gaifem
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Márcia S. Pereira
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Maria Francisca Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Mariana Silva
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Nuno Padrão
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Bruno Cavadas
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | | | - Inês Alves
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar do Porto, Porto, Portugal
- Centro de Investigação em Tecnologias e Serviços de Saúde, University of Porto, Porto, Portugal
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Division of Gastroenterology, Hospital da Luz, Lisbon, Portugal
| | - Aonghus Lavelle
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry Sokol
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Gastroenterology Department, Sorbonne Université, INSERM, Paris, France
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Salomé S. Pinho
- Institute for Research and Innovation in Health (i3S), Immunology, Cancer & Glycomedicine Group, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Gal-Mandelbaum N, Carasso S, Kedem A, Ziv T, Keshet-David R, Abboud R, Zaatry R, Gefen T, Geva-Zatorsky N. Dietary carbohydrates alter immune-modulatory functionalities and DNA inversions in Bacteroides thetaiotaomicron. Nat Commun 2025; 16:4938. [PMID: 40436824 PMCID: PMC12120099 DOI: 10.1038/s41467-025-60202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 05/15/2025] [Indexed: 06/01/2025] Open
Abstract
The gut bacteria environment is highly dynamic. Environmental conditions were shown to affect microbial composition. Yet, their influences on bacterial functionality (e.g., immune-modulation activity) are mostly overlooked. Distinct strains of the same species, and even the same bacterial strain, may have different effects on the immune system depending on their growth environment. Therefore, studying the functionality of strains under different conditions is crucial. We analyzed functional alterations in the gut symbiont Bacteroides thetaiotaomicron (B. theta) under different dietary components consumption in humans, upon white sugar consumption in mice, and in response to 190 different carbon sources in vitro. Dietary alterations affected the orientation of phase variable regions in B. theta in humans, in vivo, and in vitro, and altered B. theta's proteome and immune-modulatory functionality. Studying the effects of dietary components on the immune-modulatory functionalities of key members of the gut microbiota will allow for personalized dietary recommendations.
Collapse
Grants
- The Technion Institute of Technology, “Keren haNasi,” Cathedra, the Rappaport Technion Integrated Cancer Center, the Alon Fellowship for Outstanding Young Researchers, the Israeli Science Foundation (3165/20), the D. Dan and Betty Kahn Foundation’s gift to the University of Michigan, the Weizmann Institute, the Technion–Israel Institute of Technology Collaboration for Research, the Seerave Foundation, CIFAR (grant FL-000969/FL-001245/FL-001381), and the European Union (ERC, ExtractABact, 101078712).
Collapse
Affiliation(s)
- Noa Gal-Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Alon Kedem
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Roni Keshet-David
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Roberto Abboud
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel.
- CIFAR Humans & the Microbiome program, CIFAR, Toronto, Canada.
| |
Collapse
|
4
|
Liu J, Ling X, Chen Z, Yang H, Guo S, Zhou B, Zhu P, Yang Z, Wang Y. UDP-glycosyltransferases alleviate the toxic effects of deoxynivalenol on the growth performance and gut damage of Kunming mice. Sci Rep 2025; 15:17989. [PMID: 40410213 PMCID: PMC12102272 DOI: 10.1038/s41598-025-02712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
The purpose of this study was to assess the effects of UDP-glycosyltransferases (UGTs) on alleviating the toxic effects of deoxynivalenol (DON) on Kunming mouse growth performance and gut damage. In this study, a total of 60 3-week-old male Kunming mice were randomly divided into 4 groups and fed the following dietary and drug treatments for 7 weeks: CON, basal diet; CTX, basal diet with i.p. injection of cyclophosphamide (CTX); CTX + DON, basal diet with 12 mg/kg DON and i.p. injection of cyclophosphamide; and CTX + DON + UGTs, basal diet with 12 mg/kg DON and UGTs 1 mg/kg and i.p. injection of cyclophosphamide. Compared with those in the CON group, the growth performance, serum immunoglobulin contents (IgG), antioxidant defense enzyme activities(SOD), intestinal barrier integrity and permeability (the ratio of villi length to crypt depth), tight junction proteins (occludin and claudin 5) expression, intestinal cell apoptosis (Bcl-2), and histopathological lesions in the guts of the DON- and CTX-treated mice were significantly lower (p < 0.05). These negative effects on DON-exposed mice were significantly mitigated when the mice received a UGT-supplemented diet (1 mg/kg) (p < 0.05). We concluded that UGTs could serve as dietary supplements to treat intestinal disorders associated with DON-induced growth-retardation in animals.
Collapse
Affiliation(s)
- Jiaxu Liu
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Xue Ling
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Zhaoquan Chen
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Huajie Yang
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Sitao Guo
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Bingyang Zhou
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Pengwei Zhu
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Zheng Yang
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China
| | - Yongqiang Wang
- Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangdong HAID Group Co., Ltd, Guangzhou, China.
| |
Collapse
|
5
|
Han J, Meng X, Kong H, Li X, Chen P, Zhang XA. Links between short-chain fatty acids and osteoarthritis from pathology to clinic via gut-joint axis. Stem Cell Res Ther 2025; 16:251. [PMID: 40390010 PMCID: PMC12090658 DOI: 10.1186/s13287-025-04386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
Short-chain fatty acids (SCFAs), the primary metabolites produced by the microbial fermentation of dietary fibers in the gut, have a key role in protecting gut health. Increasing evidence indicates SCFAs can exert effects on distant tissues and organs beyond the gut via blood circulation. Osteoarthritis (OA) is a chronic inflammatory joint disease that severely diminishes the physical function and quality of life. However, effective clinical treatments for OA remain elusive. Recent studies have shown that SCFAs can exert beneficial effects on damaged joints in OA. SCFAs can mitigate OA progression by preserving intestinal barrier function and maintaining the integrity of cartilage and subchondral bone, suggesting that they have substantial potential to be the adjunctive treatment strategy for OA. This review described the SCFAs in the human body and their cellular signaling mechanism, and summarized the multiple effects of SCFAs (especially butyrate, propionate, and acetate) on the prevention and treatment of OA by regulating the gut-joint axis, providing novel insights into their promising clinical applications.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xin Meng
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xinran Li
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Peijie Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
6
|
Fang X, Liu H, Liu J, Du Y, Chi Z, Bian Y, Zhao X, Teng T, Shi B. Isobutyrate Confers Resistance to Inflammatory Bowel Disease through Host-Microbiota Interactions in Pigs. RESEARCH (WASHINGTON, D.C.) 2025; 8:0673. [PMID: 40342298 PMCID: PMC12059313 DOI: 10.34133/research.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 05/11/2025]
Abstract
Supplementation with short-chain fatty acids (SCFAs) is a potential therapeutic approach for inflammatory bowel disease (IBD). However, the therapeutic effects and mechanisms of action of isobutyrate in IBD remain unclear. Clinical data indicate that the fecal levels of isobutyrate are markedly lower in patients with Crohn's disease than in healthy controls. Compared with healthy mice and healthy pigs, mice and pigs with colitis presented significantly lower isobutyrate levels. Furthermore, the level of isobutyrate in pigs was significantly negatively correlated with the disease activity index. We speculate that isobutyrate may play a crucial role in regulating host gut homeostasis. We established a model of dextran sulfate sodium-induced colitis in pigs, which have gastrointestinal structure and function similar to those of humans; we performed multiomic analysis to investigate the therapeutic effects and potential mechanisms of isobutyrate on IBD at both the animal and cellular levels and validated the results. Phenotypically, isobutyrate can significantly alleviate diarrhea, bloody stools, weight loss, and colon shortening caused by colitis in pigs. Mechanistically, isobutyrate can increase the relative abundance of Lactobacillus reuteri, thereby increasing the production of indole-3-lactic acid, regulating aryl hydrocarbon receptor expression and downstream signaling pathways, and regulating Foxp3+ CD4+ T cell recruitment to alleviate colitis. Isobutyrate can directly activate G protein-coupled receptor 109A, promote the expression of Claudin-1, and improve intestinal barrier function. In addition, isobutyrate can increase the production of intestinal SCFAs and 3-hydroxybutyric acid and inhibit the TLR4/MyD88/NF-κB signaling pathway to suppress intestinal inflammation. In conclusion, our findings demonstrate that isobutyrate confers resistance to IBD through host-microbiota interactions, providing a theoretical basis for the use of isobutyrate in alleviating colitis.
Collapse
Affiliation(s)
| | | | - Junling Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yiqi Bian
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Teng Teng
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| |
Collapse
|
7
|
Mendes E, Umana ERP, Di Pace Soares Penna D, de Oliveira FA, Lemos LN, Ribeiro WR, Casaro MB, Lazarini M, Oliveira VM, Ferreira CM. Probiotic Administration Contributes to the Improvement in Intestinal Dysregulation Induced by Allergic Contact Dermatitis. Microorganisms 2025; 13:1082. [PMID: 40431255 PMCID: PMC12114202 DOI: 10.3390/microorganisms13051082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Recent studies have emphasized the impact of gut microbiota on skin health, but the reverse, how skin diseases affect gut homeostasis, has received less attention. Allergic contact dermatitis (ACD), a common skin disorder affecting one in four people worldwide, can be accompanied by intestinal disturbances. To explore this, we used an experimental model of ACD to investigate the intestinal changes induced by the disease. Parameters assessed included intestinal microbiota, short-chain fatty acids (SCFAs), gene expression related to intestinal permeability, inflammatory cytokines, and mucus production. To evaluate potential therapeutic interventions, the probiotic Bifidobacterium longum strain BB536 was administered via gavage, starting 10 days before dermatitis induction and continuing until the last day of disease induction. ACD caused alterations in the composition of intestinal microbiota compared to naïve mice but did not affect SCFA production. The probiotic altered microbiota composition and increased acetate production in dermatitis-induced mice. ACD decreased the gene expression of TjP1, ATHO1, and MUC2, while probiotic treatment restored TjP1 and ATHO1 to normal levels. The cytokine IL-6 increased in the ACD group compared to naïve mice, whereas IL-10 decreased; probiotic treatment also restored these levels. Intestinal mucus production, affected by ACD, was partially restored by probiotic treatment. The findings suggest that probiotics could be a therapeutic strategy to prevent intestinal issues caused by skin diseases.
Collapse
Affiliation(s)
- Eduardo Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Evelyn Roxana Perez Umana
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Daniel Di Pace Soares Penna
- Division of Microbial Resources, Multidisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas (UNICAMP), Paulínia 13148-218, Brazil; (D.D.P.S.P.); (V.M.O.)
| | - Fernando Augusto de Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC), Center of Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo 09280-560, Brazil;
| | - Leandro Nascimento Lemos
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil;
| | - Willian Rodrigues Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Mateus Barbosa Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Mariana Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| | - Valéria Maia Oliveira
- Division of Microbial Resources, Multidisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), State University of Campinas (UNICAMP), Paulínia 13148-218, Brazil; (D.D.P.S.P.); (V.M.O.)
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema 04021-001, Brazil; (E.M.); (E.R.P.U.); (W.R.R.); (M.B.C.); (M.L.)
| |
Collapse
|
8
|
Xu W, Liu A, Gong Z, Xiao W. L-theanine prevents ulcerative colitis by regulating the CD4+ T cell immune response through the gut microbiota and its metabolites. J Nutr Biochem 2025; 139:109845. [PMID: 39922394 DOI: 10.1016/j.jnutbio.2025.109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/29/2024] [Accepted: 01/20/2025] [Indexed: 02/10/2025]
Abstract
The disturbance of gut microbiota and its metabolites are considered to be the causes of ulcerative colitis (UC), which leads to immune abnormalities. Diet is the most important regulator of gut microbiota; therefore, it has a beneficial impact on UC. A novel food ingredient, l-theanine, alters the gut microbiota, thereby regulating gut immunity. However, whether l-theanine prevents UC by altering the gut microbiota, as well as the underlying mechanisms, remains unknown. Here, l-theanine was used to optimize the gut microbiota and its metabolites. Furthermore, to explore the mechanism by which l-theanine prevents UC, an l-theanine fecal microbiota solution was used to prevent dextran sulfate sodium-induced UC via fecal microbiota transplantation. Improvements in the colonic structure, colon histology scores, immune factors (IL-10), and inflammatory factors (IL-1β) demonstrated the preventive effect of l-theanine on UC. The 16S rDNA and metabolomic results showed that tryptophan-, short chain fatty acid-, and bile acid-related microbiota, such as Muribaculaceae, Lachnospiraceae, Alloprevotella, and Prevotellaceae were the dominant. Flow cytometry results showed that l-theanine decreased helper T (Th)1 and Th17 immune responses, and increased Th2 and T-regulatory immune responses via regulation of antigen-presenting cell responses, such as dendritic cells and macrophages. Therefore, l-theanine regulated the immune response of colon CD4 + T cells to dendritic cell and macrophage antigen presentation via tryptophan-, short chain fatty acid-, and bile acid-related microbiota, thereby preventing dextran sulfate sodium-induced UC.
Collapse
Affiliation(s)
- Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Aoxiang Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhihua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Liu X, Luo Y, Chen X, Wu M, Xu X, Tian J, Gao Y, Zhu J, Wang Z, Zhou Y, Zhang Y, Wang X, Li W, Lu Q, Yao X. Fecal microbiota transplantation against moderate-to-severe atopic dermatitis: A randomized, double-blind controlled explorer trial. Allergy 2025; 80:1377-1388. [PMID: 39470619 DOI: 10.1111/all.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a novel treatment for inflammatory diseases. Herein, we assess its safety, efficacy, and immunological impact in patients with moderate-to-severe atopic dermatitis (AD). METHODS In this randomized, double-blind, placebo-controlled clinical trial, we performed the efficacy and safety assessment of FMT for moderate-to-severe adult patients with AD. All patients received FMT or placebo once a week for 3 weeks, in addition to their standard background treatments. Patients underwent disease severity assessments at weeks 0, 1, 2, 4, 8, 12, and 16, and blood and fecal samples were collected for immunologic analysis and metagenomic shotgun sequencing, respectively. Safety was monitored throughout the trial. RESULTS Improvements in eczema area and severity index (EASI) scores and percentage of patients achieving EASI 50 (50% reduction in EASI score) were greater in patients treated with FMT than in placebo-treated patients. No serious adverse reactions occurred during the trial. FMT treatment decreased the Th2 and Th17 cell proportions among the peripheral blood mononuclear cells, and the levels of TNF-α, and total IgE in serum. By contrast, the expression levels of IL-12p70 and perforin on NK cells were increased. Moreover, FMT altered the abundance of species and functional pathways of the gut microbiota in the patients, especially the abundance of Megamonas funiformis and the pathway for 1,4-dihydroxy-6-naphthoate biosynthesis II. CONCLUSION FMT was a safe and effective therapy in moderate-to-severe adult patients with AD; the treatment changed the gut microbiota compositions and functions.
Collapse
Affiliation(s)
- Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yang Luo
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaoqiang Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jingru Tian
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yingxia Gao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jun Zhu
- 01life Institute, Shenzhen, China
| | | | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiaokai Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Qianjin Lu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
10
|
Bui TNY, Paul A, Guleria S, O'Sullivan JM, Toldi G. Short-chain fatty acids-a key link between the gut microbiome and T-lymphocytes in neonates? Pediatr Res 2025:10.1038/s41390-025-04075-0. [PMID: 40307498 DOI: 10.1038/s41390-025-04075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025]
Abstract
Infancy is a vulnerable and critical phase in the acquisition of the gut microbiome and the establishment of immune function. Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are compounds mostly produced by the microbiome through various metabolic pathways and play an indispensable role in connecting the microbiome and the adaptive immune system. This review aims to summarise recent findings regarding the intricate relationship between SCFAs, the gut microbiome, and T lymphocytes with a focus on early life interactions. The paper discusses factors affecting the establishment of the neonatal microbiome, especially human milk versus formula milk, and how these influence SCFA concentrations in feces, which in turn directly impact T cell development and function. Despite recent advances in understanding the role of gut microbiome derived SCFAs in adults, a significant knowledge gap remains in translating these findings to neonates and exploring the utility of SCFAs as a potential therapeutic intervention in inflammatory complications of preterm and term neonates. IMPACT: This review highlights potential therapeutic applications of short-chain fatty acids (SCFAs) in neonatal care, particularly in preventing and treating inflammatory conditions. This could lead to new treatment strategies for conditions like NEC and other immune-mediated disorders in neonates. By identifying significant knowledge gaps in neonatal SCFA research, this review helps future investigations toward understanding SCFA mechanisms specifically in neonates, potentially leading to age-appropriate therapeutic interventions. Understanding the relationship between early-life factors (such as feeding methods and microbiome development) and immune system development through SCFAs could inform public health policies and recommendations for infant nutrition and care practices.
Collapse
Affiliation(s)
- Tram N Y Bui
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Ayamita Paul
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Shalini Guleria
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | | | - Gergely Toldi
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Liu A, Wang B, Wang M, Tang R, Xu W, Xiao W. l-theanine alleviates ulcerative colitis by repairing the intestinal barrier through regulating the gut microbiota and associated short-chain fatty acids. Food Chem Toxicol 2025; 202:115497. [PMID: 40311999 DOI: 10.1016/j.fct.2025.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ulcerative colitis (UC) is closely related to impaired intestinal barrier function and imbalanced gut microbial communities. l-theanine shows great potential in maintaining intestinal integrity and regulating the gut microbiota and associated short-chain fatty acids (SCFAs). However, whether l-theanine can alleviate UC by repairing the intestinal barrier through these regulatory processes remains unclear. In this study, l-theanine was used to optimize the gut microbiota, and the restorative effect and mechanism of l-theanine in UC by repairing the gut barrier through the gut microbiota and SCFAs were investigated via fecal microbiota transplantation. The findings revealed that l-theanine regulated the gut microbiota structure, increased SCFA contents, and promoted gut barrier repair in UC mice. Moreover, l-theanine upregulated the protein and mRNA expression of G-protein-coupled receptor 43 (GPR43), AKT, and phosphatidylinositide 3-kinase (PI3K). These results indicated that l-theanine alleviates UC by repairing the gut barrier via regulating the gut microbiota and SCFAs through the GPR43/PI3K/AKT signaling pathway activation. This study provides a method of preventing and treating UC via l-theanine as a safe food dietary supplement.
Collapse
Affiliation(s)
- Aoxiang Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Bin Wang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minming Wang
- Yuanling County Agricultural and Rural Bureau, Huaihua, Hunan, 419600, China
| | - Rui Tang
- Yuanling County Agricultural and Rural Bureau, Huaihua, Hunan, 419600, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Wenjun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
12
|
Du Y, Li S, Chen G, Mao Y, Zhu S, Zhang W, Kang M, Sui Y, Wang D. Sesquiterpene Lactone Lactucopicrin Boosts Apoptotic Cell Clearance by Colonic Epithelial Cells and Alleviates Colitis in Mice. Mol Nutr Food Res 2025:e70062. [PMID: 40249148 DOI: 10.1002/mnfr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Boosting apoptotic cell clearance by phagocytes including colonic epithelial cells (CECs), a process named efferocytosis, inhibits colitis development. Lactucopicrin (LCP), one common bitter sesquiterpene lactone affluent in leafy vegetables possesses a significant antiinflammatory property. However, it remains unknown whether LCP could regulate CECs efferocytosis and colitis development in vivo. Methods and Results: LCP (0.25-1 µmol/L) does not appreciably change the efferocytic capacity of murine primary CECs to clear apoptotic CECs. Instead, LCP dose-dependently increases the efferocytic capacity of CECs treated with butyrate (But). This effect is reliant on efferocytic receptor brain-specific angiogenesis 1 (BAI1). Although LCP does not significantly affect BAI1 expression, it alters BAI1 distribution with an increase in lipid raft microdomains in plasma membrane, an effect responsible for the LCP effect on efferocytic capacity. Moreover, dietary supplementation with 0.012% wt/wt of LCP attenuates dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice, along with an increase in efferocytic capacity of CECs and fecal But content, a reduction in apoptotic cell accumulation and inflammation burden in colonic tissues. Conclusion: Dietary LCP could inhibit DSS-induced colitis in mice, likely through enhancing BAI1-mediated efferocytosis of CECs, thus providing a new candidate for the treatment of colitis.
Collapse
Affiliation(s)
- Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Shasha Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Wenyu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Mengxi Kang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Yi Sui
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
13
|
Xing J, Niu T, Yu T, Zou B, Shi C, Wang Y, Fan S, Li M, Bao M, Sun Y, Gao K, Qiu J, Zhang D, Wang N, Jiang Y, Huang H, Cao X, Zeng Y, Wang J, Zhang S, Hu J, Zhang D, Sun W, Yang G, Yang W, Wang C. Faecalibacterium prausnitzii-derived outer membrane vesicles reprogram gut microbiota metabolism to alleviate Porcine Epidemic Diarrhea Virus infection. MICROBIOME 2025; 13:90. [PMID: 40176190 PMCID: PMC11963522 DOI: 10.1186/s40168-025-02078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/04/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND The Porcine Epidemic Diarrhea Virus (PEDV) is one of the major challenges facing the global pig farming industry, and vaccines and treatments have proven difficult in controlling its spread. Faecalibacterium prausnitzii (F.prausnitzii), a key commensal bacterium in the gut, has been recognized as a promising candidate for next-generation probiotics due to its potential wide-ranging health benefits. A decrease in F.prausnitzii abundance has been associated with certain viral infections, suggesting its potential application in preventing intestinal viral infections. In this study, we utilized a piglet model to examine the potential role of F.prausnitzii in PEDV infections. RESULTS A piglet model of PEDV infection was established and supplemented with F.prausnitzii, revealing that F.prausnitzii mitigated PEDV infection. Further studies found that outer membrane vesicles (OMVs) are the main functional components of F.prausnitzii, and proteomics, untargeted metabolomics, and small RNA-seq were used to analyze the composition of OMVs. Exhaustion of the gut microbiota demonstrated that the function of Fp. OMVs relies on the presence of the gut microbiota. Additionally, metagenomic analysis indicated that Fp. OMVs altered the gut microbiota composition, enhancing the abundance of Faecalibacterium prausnitzii, Prevotellamassilia timonensis, and Limosilactobacillus reuteri. Untargeted metabolomics analysis showed that Fp. OMVs increased phosphatidylcholine (PC) levels, with PC identified as a key metabolite in alleviating PEDV infection. Single-cell sequencing revealed that PC altered the relative abundance of intestinal cells, increased the number of intestinal epithelial cells, and reduced necroptosis in target cells. PC treatment in infected IPEC-J2 and Vero cells alleviated necroptosis and reduced the activation of the RIPK1-RIPK3-MLKL signaling axis, thereby improving PEDV infection. CONCLUSION F.prausnitzii and its OMVs play a critical role in mitigating PEDV infections. These findings provide a promising strategy to ameliorate PEDV infection in piglets. Video Abstract.
Collapse
Affiliation(s)
- JunHong Xing
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - TianMing Niu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Tong Yu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - BoShi Zou
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ChunWei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - YingJie Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ShuHui Fan
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - MingHan Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - MeiYing Bao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - KuiPeng Gao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JingJing Qiu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - DongXing Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - YanLong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - HaiBin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JianZhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - ShuMin Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - JingTao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - WuSheng Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China
| | - GuiLian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - WenTao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| | - ChunFeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, China.
| |
Collapse
|
14
|
Mohammed MA, Hay NHA, Mohammed MT, Mahmoud HS, Ahmed MY, Abdelmenem A, Abdelrahim DS. The effect of adipose-derived mesenchymal stem cells against high fructose diet induced liver dysfunction and dysbiosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4525-4537. [PMID: 39500806 PMCID: PMC11978704 DOI: 10.1007/s00210-024-03518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/05/2024] [Indexed: 04/10/2025]
Abstract
High fructose diet (HFrD) has been approved to be involved in the pathogenesis of insulin resistance. Mesenchymal stem cells have a vital role in the treatment of various diseases including metabolic disturbances. We investigated the effect of Adipose-derived mesenchymal stem cells (ADMSCs) against HFrD-induced metabolic disorders and the molecular mechanisms for this effect. Rats were divided into 3 groups; control, HFrD, and combined HFrD with ADMSCs. We assessed liver functions, gut microbiota activity, oxidative stress, adiponectin, and IL10 levels. Also, we measured SREBP-1, IRS-1 expression using Western blot, and Malat1 expression using rt-PCR. ADMSCs antagonized metabolic abnormalities induced by HFrD in the form of improvement of liver functions and alleviation of oxidative stress. In addition, ADMSCs ameliorated gut microbiota activity besides the elevation of adiponectin and IL10 levels. ADMSCs attenuated insulin resistance through upregulation of IRS1 and downregulation of SREBP-1 and Malat1. ADMSCs can protect against HFrD-induced metabolic hazards.
Collapse
Affiliation(s)
| | - Nesma Hussein Abel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha Tarek Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hoda Sayed Mahmoud
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Manar Yehia Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Abdelmenem
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
15
|
Saadh MJ, Ahmed HH, Kareem RA, Sanghvi G, Ganesan S, Agarwal M, Kaur P, Taher WM, Alwan M, Jawad MJ, Hamad AK. Short-chain fatty acids in Huntington's disease: Mechanisms of action and their therapeutic implications. Pharmacol Biochem Behav 2025; 249:173972. [PMID: 39983928 DOI: 10.1016/j.pbb.2025.173972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by motor dysfunction, cognitive decline, and emotional instability, primarily resulting from the abnormal accumulation of mutant huntingtin protein. Growing research highlights the role of intestinal microbiota and their metabolites, particularly short-chain fatty acids (SCFAs), in modulating HD progression. SCFAs, including acetate, propionate, and butyrate, are produced by gut bacteria through dietary fiber fermentation and are recognized for their neuroprotective properties. Evidence suggests that SCFAs regulate neuroinflammation, neuronal communication, and metabolic functions within the central nervous system (CNS). In HD, these compounds may support neuronal health, reduce oxidative stress, and enhance blood-brain barrier (BBB) integrity. Their mechanisms of action involve binding to G-protein-coupled receptors (GPCRs) and modulating gene expression through epigenetic pathways, underscoring their therapeutic potential. This analysis examines the significance of SCFAs in HD, emphasizing the gut-brain axis and the benefits of dietary interventions aimed at modifying gut microbiota composition and promoting SCFA production. Further research into these pathways may pave the way for novel HD management strategies and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mohit Agarwal
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University, Rajasthan, Jaipur,302131, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | |
Collapse
|
16
|
Kim S, Ndwandwe C, Devotta H, Kareem L, Yao L, O'Mahony L. Role of the microbiome in regulation of the immune system. Allergol Int 2025; 74:187-196. [PMID: 39955207 DOI: 10.1016/j.alit.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/17/2025] Open
Abstract
Immune health and metabolic functions are intimately connected via diet and the microbiota. Immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important mucosal and systemic ramifications. Microbial fermentation of dietary components in vivo generates thousands of molecules, some of which are integral components of the molecular circuitry that regulates immune and metabolic functions. These in turn protect against aberrant inflammatory or hyper-reactive processes and promote effector immune responses that quickly eliminate pathogens, such as SARS-CoV-2. Potent tolerance mechanisms should ensure that these immune cells do not over-react to non-pathogenic factors (e.g. food proteins), while maintaining the ability to respond to infectious challenges in a robust, effective and well controlled manner. In this review we examine the factors and mechanisms that shape microbiota composition and interactions with the host immune system, their associations with immune mediated disorders and strategies for intervention.
Collapse
Affiliation(s)
- Songhui Kim
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Cebile Ndwandwe
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah Devotta
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lamiah Kareem
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lu Yao
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Liam O'Mahony
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
17
|
Golomb SM, Guldner IH, Aleksandrovic E, Fross SR, Liu X, Diao L, Liang K, Wu J, Wang Q, Lopez JA, Zhang S. Temporal dynamics of immune cell transcriptomics in brain metastasis progression influenced by gut microbiome dysbiosis. Cell Rep 2025; 44:115356. [PMID: 40023843 PMCID: PMC12028778 DOI: 10.1016/j.celrep.2025.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/06/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
Interactions between metastatic cancer cells and the brain microenvironment regulate brain metastasis (BrMet) progression. Central nervous system (CNS)-native and peripheral immune cells influence the BrMet immune landscape, but the dynamics and factors modulating this microenvironment remain unclear. As the gut microbiome impacts CNS and peripheral immune activity, we investigated its role in regulating immune response dynamics throughout BrMet stages. Antibiotic-induced (ABX) gut dysbiosis significantly increased BrMet burden versus controls but was equalized with fecal matter transplantation, highlighting microbiome diversity as a regulator of BrMet. Single-cell sequencing revealed a highly dynamic immune landscape during BrMet progression in both conditions. However, the timing of the monocyte inflammatory response was altered. Microglia displayed an elevated activation signature in late-stage metastasis in ABX-treated mice. T cell and microglia perturbation revealed involvement of these cell types in modulating BrMet under gut dysbiosis. These data indicate profound effects on immune response dynamics imposed by gut dysbiosis across BrMet progression.
Collapse
Affiliation(s)
- Samantha M Golomb
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Emilija Aleksandrovic
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Shaneann R Fross
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Xiyu Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Lu Diao
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA
| | - Karena Liang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinxuan Wu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA
| | - Jacqueline A Lopez
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, Dallas, TX 75390, USA; Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234 N. Notre Dame Avenue, South Bend, IN 46617, USA.
| |
Collapse
|
18
|
Abranches FF, Genova JL, Hu P, Santana JP, Rocha GC. Effects of monoglyceride blend on performance and intestinal health status of piglets fed diets without growth promoters. Sci Rep 2025; 15:10285. [PMID: 40133511 PMCID: PMC11937294 DOI: 10.1038/s41598-025-88587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/29/2025] [Indexed: 03/27/2025] Open
Abstract
The study aimed to evaluate the effects of supplementing monoglyceride blend in diets without growth promoters on performance, diarrhea occurrence, blood profile, intestinal morphology and pH, mRNA expression of nutrient transporters, inflammatory markers, antioxidant enzymes, and junction proteins in weaned piglets. Forty piglets were randomly allocated to five groups fed the following diets: control (C), or supplemented with 0.75 g/kg of a blend of fatty acids in powder form (PA), or with 3.00 g/kg of a blend of fatty acids in powder form (HPA), or with 0.50 g/kg of a blend of fatty acids in liquid form (LA), or with 2.00 g/kg of a blend of fatty acids in liquid form (HLA). The LA and PA diets reduced (P < 0.05) the occurrence of diarrhea. The pH of intestinal contents was reduced (P < 0.05) in piglets fed monoglycerides blend. Fecal E. coli count tended (0.05 ≤ P < 0.1) to be reduced in piglets receiving all supplemented diets. LA diet increased (P < 0.05) villus height in the duodenum, while others tended to increase it (0.05 ≤ P < 0.1). In the jejunum, all supplemented diets increased (P < 0.05) the goblet cell proportion. In the ileum, PA diet reduced (P < 0.05) crypt depth and increased (P < 0.05) villus: crypt ratio, and PA, HPA, and HLA diets increased (P < 0.05) goblet cell proportion. In the ileum, HPA and LA diets tended to reduce (0.05 ≤ P < 0.1) crypt depth and Peyer's patch. In the jejunum, LA and HLA diets increased (P < 0.05) the expression of Occludin and HPA increased the expression of Interleukin-10. In conclusion, the supplementation with a monoglyceride blend improves intestinal health and morphology, and local immune response in piglets fed diets without growth promoters.
Collapse
Affiliation(s)
- F F Abranches
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - J L Genova
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - P Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - J P Santana
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil
| | - G C Rocha
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
- Muscle Biology and Nutrigenomics Laboratory, Universidade Federal de Viçosa, Viçosa, 36570-900, MG, Brazil.
| |
Collapse
|
19
|
Liu S, Zeng X, Li J, Li W, Gu Y, Li B, Wang J. Goat milk oligosaccharides: regulating infant immunity by intervention in the gut microbiota. Food Funct 2025; 16:2213-2229. [PMID: 40035489 DOI: 10.1039/d5fo00162e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The health status of the growing infant is closely related to the development of the gut microbiota during infancy, which is also a major stimulator of the immune system. Goat milk oligosaccharides (gMOs) are a class of bioactive compounds in goat milk, which have attracted extensive research interest in recent years. Recent studies have highlighted that gMOs as prebiotics can regulate the gut microbiota, exhibit multiple health effects, and act as immunomodulators. This article outlines the structure, classification, and functions of gMOs. In addition, we also deeply explored the mechanism of gMO interaction with infant gut microbiota and regulation of infant immunity. Finally, the possibility of gMOs as an effective substitute for natural prebiotics in breast milk is revisited. We concluded that gMOs improve infant immune function by regulating intestinal beneficial bacteria (Bifidobacteria, Lactobacilli, etc.) and their metabolism. Therefore, gMOs are significant to infant immune health and are expected to become a substitute for human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoling Zeng
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Jing Li
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Wei Li
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| | - Yue Gu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co., Ltd, Changsha 410000, China.
| |
Collapse
|
20
|
Liang Y, Han Y, Xiao L, Su Y, Bao T, Ji X, Jia L, Zhang J. Coenzyme Q10 modulates the immunity by enhancing mononuclear macrophage, NK cell activity, and regulating gut microbiota. Front Nutr 2025; 12:1504831. [PMID: 40165818 PMCID: PMC11955478 DOI: 10.3389/fnut.2025.1504831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Coenzyme Q10 (CoQ10), an important fat-soluble, bioactive molecule that predominantly found in the inner mitochondrial membrane, is widely used in functional food and health food raw materials, which has garnered considerable attention due to its potential role in immunoregulation. However, the intrinsic mechanism of CoQ10 on immunity, and the relationship to the gut microbiota have not been elucidated. Methods Here, we conducted a series of in vivo experiments with the aim of comprehensively exploring the effect of CoQ10 on both cellular and humoral immune functions, and on gut microbiota communities in mice. Results CoQ10 showed negligible impact on both mouse body weight fluctuations and tissue indices, but enhanced the mouse body immunity by elevating the carbon clearance ability and natural killer (NK) cellular viability. 16S rRNA gene sequencing revealed that administration of CoQ10 modulated the structure and composition of the gut microbiota in mice, notably by enhancing the abundance of Lactobacillus, Limosilactobacillus, and decreasing the abundance of Paramuribaculum species. Discussion This work makes a contribution to the application of CoQ10 as an immunomodulator in the biological, pharmaceutical and health care product industries.
Collapse
Affiliation(s)
- Yajun Liang
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Yang Han
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Ling Xiao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yupeng Su
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Tongen Bao
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Xia Ji
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo, China
| |
Collapse
|
21
|
Kou F, Li XY, Feng Z, Hua J, Wu X, Gao H, Lin J, Kang D, Li A, Li J, Ding Y, Ban T, Zhang Q, Liu Z. GPR171 restrains intestinal inflammation by suppressing FABP5-mediated Th17 cell differentiation and lipid metabolism. Gut 2025:gutjnl-2024-334010. [PMID: 40074327 DOI: 10.1136/gutjnl-2024-334010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/02/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND GPR171 suppresses T cell immune responses involved in antitumour immunity, while its role in inflammatory bowel disease (IBD) pathogenesis remains unclear. OBJECTIVE We aimed to investigate the role of GPR171 in modulating CD4+ T cell effector functions in IBD and evaluate its therapeutic potential. DESIGN We analysed GPR171 expression in colon biopsies and peripheral blood samples from patients with IBD and assessed the impact of GPR171 on CD4+ T cell differentiation through administration of its endogenous ligand (BigLEN). We further determined the role of GPR171 in dextran sulfate sodium (DSS)-induced colitis and CD45RBhighCD4+ T-cell transfer colitis model and deciphered the underlying mechanisms using RNA sequencing (RNA-seq) and lipidomics. We developed a novel BigLEN-based Fc fusion protein (BigLEN-Fc) and evaluated its potential in preventing and treating colitis. RESULTS GPR171 was markedly increased in inflamed mucosa and CD4+ T cells of patients with IBD compared with controls. BigLEN-triggered GPR171 activation inhibited Th17 cell differentiation in vitro. GPR171 deficiency exacerbated DSS- and CD45RBhighCD4+ T cell-induced colitis in mice, characterised by increased Th17 cell responses in intestinal mucosa. Mechanistically, GPR171 deficiency promoted Th17 cell differentiation and altered lipidome profile in Th17 cells via the cAMP-pCREB-FABP5 axis. Blockage of FABP5 reduced Th17 cell differentiation in vitro and ameliorated DSS-induced colitis in Gpr171 -/- mice. Furthermore, BigLEN-mutFc administration potently mitigated colitis in mice. CONCLUSIONS GPR171 deficiency promotes Th17 cell differentiation and causes lipid metabolism perturbation, contributing to intestinal inflammation in a FABP5-dependent manner. Target therapy (eg, BigLEN-Fc) represents a novel therapeutic approach for IBD treatment.
Collapse
Affiliation(s)
- Fushun Kou
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiao-Yu Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jinghan Hua
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Han Gao
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Dengfeng Kang
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Ai Li
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai, China
| | - Junxiang Li
- Department of Gastroenterology, Beijing University of Chinese Medicine, Dongfang Hospital, Beijing, China
| | - Yao Ding
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Ting Ban
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Qing Zhang
- Ailomics Therapeutics Co Ltd, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Shi Z, Li M, Zhang C, Li H, Zhang Y, Zhang L, Li X, Li L, Wang X, Fu X, Sun Z, Zhang X, Tian L, Zhang M, Chen WH, Li Z. Butyrate-producing Faecalibacterium prausnitzii suppresses natural killer/T-cell lymphoma by dampening the JAK-STAT pathway. Gut 2025; 74:557-570. [PMID: 39653411 PMCID: PMC12013593 DOI: 10.1136/gutjnl-2024-333530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Natural killer/T-cell lymphoma (NKTCL) is a highly aggressive malignancy with a dismal prognosis, and gaps remain in understanding the determinants influencing disease outcomes. OBJECTIVE To characterise the gut microbiota feature and identify potential probiotics that could ameliorate the development of NKTCL. DESIGN This cross-sectional study employed shotgun metagenomic sequencing to profile the gut microbiota in two Chinese NKTCL cohorts, with validation conducted in an independent Korean cohort. Univariable and multivariable Cox proportional hazards analyses were applied to assess associations between identified marker species and patient outcomes. Tumour-suppressing effects were investigated using comprehensive in vivo and in vitro models. In addition, metabolomics, RNA sequencing, chromatin immunoprecipitation sequencing, Western blot analysis, immunohistochemistry and lentiviral-mediated gene knockdown system were used to elucidate the underlying mechanisms. RESULTS We first unveiled significant gut microbiota dysbiosis in NKTCL patients, prominently marked by a notable reduction in Faecalibacterium prausnitzii which correlated strongly with shorter survival among patients. Subsequently, we substantiated the antitumour properties of F. prausnitzii in NKTCL mouse models. Furthermore, F. prausnitzii culture supernatant demonstrated significant efficacy in inhibiting NKTCL cell growth. Metabolomics analysis revealed butyrate as a critical metabolite underlying these tumour-suppressing effects, validated in three human NKTCL cell lines and multiple tumour-bearing mouse models. Mechanistically, butyrate suppressed the activation of Janus kinase-signal transducer and activator of transcription pathway through enhancing histone acetylation, promoting the expression of suppressor of cytokine signalling 1. CONCLUSION These findings uncover a distinctive gut microbiota profile in NKTCL and provide a novel perspective on leveraging the therapeutic potential of F. prausnitzii to ameliorate this malignancy.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Chinese PLA General Hospital and Medical School, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongwen Li
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Li Tian
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan, China
- School of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
23
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Ho Plagaro A, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Microbial-Derived Antioxidants in Intestinal Inflammation: A Systematic Review of Their Therapeutic Potential. Antioxidants (Basel) 2025; 14:321. [PMID: 40227262 PMCID: PMC11939483 DOI: 10.3390/antiox14030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
The potential of microbial-derived antioxidants to modulate intestinal inflammation is increasingly recognized, which is especially important in inflammatory bowel diseases (IBD). Oxidative stress, a major contributor to chronic intestinal inflammation, is the result of an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. This systematic review explores the role of microbial-derived antioxidants in alleviating IBD. Among the main findings are certain compounds, such as exopolysaccharides (EPS) and short-chain fatty acids (SCFAs), which have demonstrated their ability to neutralize ROS and strengthen the integrity of the intestinal barrier, thereby attenuating inflammatory responses. These antioxidants offer the dual benefit of mitigating oxidative stress and rebalancing the gut microbiota, which is often disrupted in IBD. Evidence from preclinical and clinical studies provides a better understanding of the mechanisms involved in the effects of these microbial antioxidants. Conventional treatments for IBD primarily focus on immune modulation. In this context, the integration of microbial-derived antioxidants could offer a complementary approach by addressing both oxidative damage and gut dysbiosis. Further research and clinical trials are essential to establish standardized treatment guidelines and clarify the long-term efficacy of these promising therapeutic agents.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de Investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de Investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andreea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Ailec Ho Plagaro
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Julio Gálvez
- Department of Pharmacology, Centro de Investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de Investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de Investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
24
|
Wang S, Chen L, Ma Z, Zhao L, Lu Y, Fu Y, Liu H. Gut microbiota mediates the anti-inflammatory effects of supplemental infrared irradiation in mice. Photochem Photobiol 2025; 101:458-470. [PMID: 39080821 DOI: 10.1111/php.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 03/19/2025]
Abstract
In recent years, studies have shown that low-dose supplemental infrared (IR) irradiation exhibits systemic anti-inflammatory effects. The gut microbiota is increasingly recognized as a potential mediator of these effects due to its role in regulating host metabolism and inflammatory responses. To investigate the role of gut microbiota diversity and metabolite changes in the mechanism of light-emitting diodes (LED) infrared's anti-inflammatory action, we conducted IR irradiation on mice. Serum inflammatory cytokines were measured using ELISA, and fecal samples were subjected to metagenomic, untargeted, and targeted metabolomic analyses. Our results demonstrated a significant increase in the anti-inflammatory cytokine IL-10 in the IR group, accompanied by a declining trend in pro-inflammatory cytokines. Gut microbiome analysis revealed distinct alterations in composition and functional genes between the groups, including the enrichment of beneficial bacteria like various species of Parabacteroides and Akkermansia muciniphila in the IR group. Notably, the IR group exhibited enrichment in carbohydrate metabolism pathways and a reduction in DNA damage and repair pathways. Furthermore, targeted metabolomic analysis highlighted a notable increase in short-chain fatty acids (SCFAs), including butyric acid and isobutyric acid, which positively correlated with the abundance of several beneficial bacteria. These findings suggest a potential interplay between gut microbiota-derived SCFAs and the anti-inflammatory response. In conclusion, our study provides comprehensive insights into the changes in gut microbiota species and functions associated with IR irradiation. Moreover, we emphasize the significance of altered SCFAs levels in the IR group, which may contribute to the observed anti-inflammatory effects. Our findings contribute valuable evidence supporting the role of low-dose infrared light irradiation as an anti-inflammatory therapy.
Collapse
Affiliation(s)
- Shijing Wang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Letian Chen
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Liting Zhao
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yueying Lu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, China
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
25
|
Chen M, Li Y, Zhai Z, Wang H, Lin Y, Chang F, Ge S, Sun X, Wei W, Wang D, Zhang M, Chen R, Yu H, Feng T, Huang X, Cheng D, Liu J, Di W, Hao Y, Yin P, Tang P. Bifidobacterium animalis subsp. lactis A6 ameliorates bone and muscle loss via modulating gut microbiota composition and enhancing butyrate production. Bone Res 2025; 13:28. [PMID: 40000617 PMCID: PMC11862215 DOI: 10.1038/s41413-024-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 02/27/2025] Open
Abstract
Systematic bone and muscle loss is a complex metabolic disease, which is frequently linked to gut dysfunction, yet its etiology and treatment remain elusive. While probiotics show promise in managing diseases through microbiome modulation, their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated. Employing dextran sulfate sodium (DSS)-induced gut dysfunction model and wide-spectrum antibiotics (ABX)-treated mice model, our study revealed that gut dysfunction instigates muscle and bone loss, accompanied by microbial imbalances. Importantly, Bifidobacterium animalis subsp. lactis A6 (B. lactis A6) administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria. This intervention effectively restored depleted butyrate levels in serum, muscle, and bone tissues caused by gut dysfunction. Furthermore, butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria. Importantly, butyrate inhibited the NF-κB pathway activation, and reduced the secretion of corresponding inflammatory factors in T cells. Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B. lactis A6. These discoveries offer new microbiome directions for translational and clinical research, providing promising strategies for preventing and managing musculoskeletal diseases.
Collapse
Affiliation(s)
- Ming Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuan Lin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feifan Chang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Siliang Ge
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xinyu Sun
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Wei Wei
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Duanyang Wang
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ruijing Chen
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Haikuan Yu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Taojin Feng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Dongliang Cheng
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Jiang Liu
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Di
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Pengbin Yin
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|
26
|
Jeong H, Lee B, Cho SY, Lee Y, Kim J, Hur S, Cho K, Kim KH, Kim SH, Nam KT. Microbiota-derived short-chain fatty acids determine stem cell characteristics of gastric chief cells. Dev Cell 2025; 60:599-612.e6. [PMID: 39642880 DOI: 10.1016/j.devcel.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
The gastric mucosa is a highly dynamic tissue that undergoes constant self-renewal through stem cell differentiation. Chief cells maintain a quiescent state in homeostasis but are responsible for regeneration after injury. Although the role of microbiome-host interactions in the intestine is well studied, less is known about these interactions in the stomach. Using the mouse organoid and germ-free mouse models, we show that microbiota-derived short-chain fatty acids (SCFAs) suppress the proliferation of chief cells in mice. This effect is mediated by activation of G-protein-coupled receptor 43. Most importantly, through metabolomics and transplantation studies, we show butyrate-producing Lactobacillus intestinalis modulates the proliferation of chief cells in mice. Our findings identify a mechanism by which the microbiota regulates the cell characteristics of chief cells, providing insight into the complex interplay between the host and its microbial environment and the mechanisms underlying gastric homeostasis, with potential therapeutic implications for gastric diseases.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Buhyun Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Soo Young Cho
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Yura Lee
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiseon Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sumin Hur
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyungrae Cho
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung-Hee Kim
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Science, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
27
|
Zhang X, Zeng X, Guo W, Zhou X, Zhang Y, Tang M, Fu J, Deng Y, Liang X, Zhao L, Li Z, Wang T, Li L, Xiao G. Chaihuang Qingyi Huoxue granule ameliorates severe acute pancreatitis by modulating gut microbiota and repairing the intestinal mucosal barrier. Front Cell Infect Microbiol 2025; 15:1514201. [PMID: 40041150 PMCID: PMC11876134 DOI: 10.3389/fcimb.2025.1514201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
Background During severe acute pancreatitis (SAP), damage to the intestinal mucosal barrier and translocation of intestinal pathogenic bacteria are key mechanisms that accelerate the disease progression of SAP. Chaihuang Qingyi Huoxue Granule (CH) is a herbal formula used in the clinical treatment of SAP. This study aims to investigate the role of CH in regulating gut microbiota and intestinal mucosal barrier in SAP rats. Methods Sodium taurocholate (3.5%) was retrogradely perfused into the biliopancreatic duct to establish the model of SAP in rats. CH (4.4 g/kg) was administered by gavage. Serum amylase, lipase, and endotoxin levels were measured. Hematoxylin-eosin (HE) staining was used to observe morphological changes in the pancreas and colon. The expression of zona occludens-1 (ZO-1) and occludin in the colon was examined by immunohistochemistry (IHC) and western blot. 16S rDNA gene sequencing was used to analyze the gut microbiota of the rats. The content of short-chain fatty acids (SCFAs) in the intestinal contents of the rats was determined by gas chromatography-mass spectrometry (GC-MS). Results CH reduced serum amylase, lipase, and endotoxin levels in SAP rats, alleviated pathological damage in the pancreas and colon, and restored the expression of ZO-1 and occludin. Moreover, CH alleviated gut microbiota dysbiosis in SAP rats, with restored gut microbiota diversity and structure. At the phylum level, the relative abundance of Firmicutes and Bacteroidetes increased, while that of Proteobacteria decreased. At the genus level, the abundance of Ruminococcus 1, Parabacteroides, Prevotellaceae UCG-001, Lachnospiraceae NK4A136 group, and Lactobacillus increased, while that of Escherichia-Shigella, Enterococcus, and Enterobacter decreased. In addition, CH increased the levels of SCFAs in the intestinal contents of SAP rats. Conclusion CH ameliorates SAP by maintaining the homeostasis and diversity of the gut microbiota, increasing the levels of SCFAs, and repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Xiaobin Zhang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xusen Zeng
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Guo
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zhou
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Zhang
- Department of Gastroenterological Surgery, Leshan Hospital of Traditional Chinese Medicine, Leshan, Sichuan, China
| | - Mingyun Tang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Fu
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuqing Deng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Liang
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tiangang Wang
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Li
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Guohui Xiao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
28
|
Wu S, Chen H, Yu R, Li H, Zhao J, Stanton C, Paul Ross R, Chen W, Yang B. Human milk oligosaccharides 2'-fucosyllactose and 3-fucosyllactose attenuate ovalbumin-induced food allergy through immunoregulation and gut microbiota modulation. Food Funct 2025; 16:1267-1283. [PMID: 39918321 DOI: 10.1039/d4fo04638b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The prebiotic properties of human milk oligosaccharides (HMOs) and emerging evidence of immunomodulatory effects suggest their potential therapeutic value in allergy management. 2'-Fucosyllactose (2'-FL) has been reported to alleviate food allergies, while the effect of other fucosylated HMOs on food allergy remains unclear. In this study, we assess the effect of two HMOs, 2'-FL and 3-fucosyllactose (3-FL), on symptomatology and immunological responses in an ovalbumin (OVA)-sensitized mouse model of food allergy as well as their influence on gut microbiota. The assessment of allergic symptoms, specific immunoglobulin E (IgE), and related gene expression levels in sensitized mice indicated that 3-FL was as effective as 2'-FL in alleviating food allergy. 2'-FL and 3-FL significantly decreased serum levels of OVA-specific IgE, mouse mast cell protease (mMCP-1) and IL-4 while increasing the levels of IFN-γ. Additionally, 2'-FL and 3-FL down-regulated gene expression of allergy-related cytokines in the small intestine and improved intestinal barrier damage. Furthermore, both 2'-FL and 3-FL treatment positively influenced the gut microbial profiles, in particular by enhancing the proportion of beneficial bacteria such as Lactobacillus and Bifidobacterium and decreasing the percentage of Turicibacter and Lachnospiraceae NK4A136 group, thereby modulating the immune system. Therefore, this study can provide insights into 2'-FL and 3-FL to alleviate OVA-induced allergy.
Collapse
Affiliation(s)
- Siya Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| | - Catherine Stanton
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
30
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
Fang X, Wang Z, Chen Q, Du Y, Sun H, Liu H, Feng Y, Li Z, Teng T, Shi B. Protective effect of the branched short-chain fatty acid isobutyrate on intestinal damage in weaned piglets through intestinal microbiota remodeling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1556-1568. [PMID: 39412364 DOI: 10.1002/jsfa.13930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 01/14/2025]
Abstract
BACKGROUND Postweaning intestinal damage in piglets is a challenging issue in the livestock industry. Short-chain fatty acids (SCFAs) are important metabolic products of the gut microbiota and are widely recognized for their role in maintaining normal colonic function and regulating the intestinal immune system. However, the effects of branched short-chain fatty acid (BSCFA) isobutyrate on intestinal health remain largely unknown. This study aims to explore the potential of isobutyrate for alleviating postweaning intestinal damage. RESULTS This study indicates that isobutyrate can alleviate diarrhea in weaned piglets, enhance their growth performance, and optimize the gut microbiota. This is mainly achieved through increasing the relative abundance of probiotic bacteria such as Lactobacillus, Megasphaera, and Prevotellaceae_UCG-003, while concurrently reducing the relative abundance of potentially harmful bacteria such as Clostridium_sensu_stricto-1 and Escherichia-Shigella. It promotes the production of SCFAs, including acetate, isobutyrate, and butyrate. Furthermore, it activates G-protein-coupled receptors (GPR43/109A), inhibits the TLR4/MyD88 signaling pathway, strengthens the intestinal barrier function, and regulates the expression of related cytokines. CONCLUSION In summary, exogenous isobutyrate can be considered a promising feed additive for improving the intestinal microbiota and regulating intestinal health in piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qinrui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Yongqing Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haowen Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Teng Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
32
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Cao H, Liu H, Dai X, Shi B, Yuan J, Shan J, Lin J. Qingchang suppository ameliorates mucosal inflammation in ulcerative colitis by inhibiting the differentiation and effector functions of Th1 and Th17 cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118865. [PMID: 39343108 DOI: 10.1016/j.jep.2024.118865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing Chang Suppository (QCS), a traditional Chinese medicine formula, has been shown to effectively alleviate mucosal inflammation in patients with ulcerative colitis (UC). While the mechanism of QCS appears to be related to the regulation of CD4+T cell subset responses, direct evidence demonstrating that QCS inhibits Th1 and Th17 cell activation in UC (particularly based on human data) remains lacking. Additionally, the precise mechanisms through which QCS affects these cells have yet to be fully elucidated. AIM OF STUDY This study aimed to investigate the effects of QCS on Th1 and Th17 cell responses in UC and to explore the underlying mechanisms. MATERIALS AND METHODS Twenty-eight patients with mild-to-moderate UC were recruited and treated with QCS for 12 weeks. Symptoms were assessed every two weeks, with sigmoidoscopies performed at baseline and at week 12. Intestinal mucosal biopsies and peripheral blood (PB) were collected at these time points. At the end of the trial, patients were categorized into responder and non-responder groups based on a modified Mayo disease activity index score. Healthy controls (HCs) were defined as subjects without IBD or colorectal carcinoma but with colon polyps. The frequencies of IFN-γ+CD4+T cells and IL-17A+CD4+T cells in PB and colonic mucosa were measured using flow cytometry. The expression levels and localization of T-bet, RORγT, IFN-γ, TNF-α, and IL-17A were determined via immunofluorescence, and JNK signaling activation was assessed through immunoblotting and immunohistochemistry. All parameters were compared across the three groups. RESULTS At week 12, responders showed a significant reduction in colonic mucosal inflammation compared to baseline, accompanied by decreased frequencies of IFN-γ+CD4+T and IL-17A+CD4+ T cells in both PB and the colonic epithelial layer. Notably, Th1 and Th17 cell activity around intestinal epithelial cells (IECs) was nearly undetectable, as evidenced by the diminished expression of T-bet, RORγT, IFN-γ, TNF-α, and IL-17A. Additionally, JNK phosphorylation in these cells was significantly reduced. In contrast, non-responders exhibited no meaningful improvement; colonic pathology remained unchanged, and elevated levels of IFN-γ+CD4+T and IL-17A+CD 4+T cells persisted in both the PB and colonic epithelial layer. The presence of Th1 and Th17 cells and their associated cytokines around IECs remained substantial, and there was no significant change in JNK activation. CONCLUSION QCS attenuates mucosal inflammation in UC patients by inhibiting the differentiation and effector functions of Th1 and Th17 cells, primarily through the regulation of the JNK signaling pathway.
Collapse
Affiliation(s)
- Hui Cao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Spleen and Stomach Diseases, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Shanghai Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoling Dai
- Department of Gastroenterology, Shanghai Putuo Traditional Chinese Medicine Hospital, Shanghai 200063, China
| | - Bei Shi
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Clinical Research Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Shan
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
34
|
Liang M, Dong Q, Wu W, Fan J. Short-Chain Fatty Acids: Promising Therapeutic Targets for Respiratory Syncytial Virus Infection. Clin Rev Allergy Immunol 2025; 68:8. [PMID: 39873814 DOI: 10.1007/s12016-024-09018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2024] [Indexed: 01/30/2025]
Abstract
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host. In addition, changes in SCFA levels and the structure of the intestinal microbiota have been observed after RSV infection. Therefore, there may be a link between SCFAs and RSV infection, and SCFAs are expected to be therapeutic targets for RSV infection.
Collapse
Affiliation(s)
- Mingxin Liang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Qinqin Dong
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Weiyi Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Juan Fan
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
35
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
36
|
Xie L, Wang L, Liao Y, Yao M, Mai T, Fan R, Han Y, Zhou G. Therapeutic potential of short-chain fatty acids for acute lung injury: a systematic review and meta-analysis of preclinical animal studies. Front Nutr 2025; 11:1528200. [PMID: 39845918 PMCID: PMC11752998 DOI: 10.3389/fnut.2024.1528200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Background Short-chain fatty acids (SCFAs), derived from the fermentation of dietary fiber by intestinal commensal bacteria, have demonstrated protective effects against acute lung injury (ALI) in animal models. However, the findings have shown variability across different studies. It is necessary to conduct a comprehensive evaluation of the efficacy of these treatments and their consistency. Objective This systematic review and meta-analysis aimed to explore the effects of SCFAs on ALI based on preclinical research evidence, in order to provide new treatment strategies for ALI. Methods We included studies that tested the effects of SCFAs on ALI in animal models. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search for relevant studies was conducted in the PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases up to February 2024. The data were extracted in accordance with the established selection criteria, and the risk of bias was evaluated for each study. Results A total of 16 articles were finally included in the meta-analysis. The results indicated that the SCFAs significantly reduced lung wet-to-dry weight (SMD = -2.75, 95% CI = -3.46 to -2.03, p < 0.00001), lung injury scores (SMD = -5.07, 95% CI = -6.25 to -3.89, p < 0.00001), myeloperoxidase (SMD = -3.37, 95% CI = -4.05 to -2.70, p < 0.00001), tumor necrosis factor-alpha (SMD = -3.31, 95% CI = -4.45 to -2.16, p < 0.00001) and malondialdehyde (SMD = -3.91, 95% CI = -5.37 to -2.44, p < 0.00001) levels in animal models of ALI. The results of the subgroup analysis indicated that the efficacy of SCFAs varies significantly with dosage and duration of treatment. Conclusion SCFAs can reduce inflammation and oxidative stress in animal models of ALI. The clinical efficacy of SCFAs for ALI deserves further in-depth research. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=584008, CRD42024584008.
Collapse
Affiliation(s)
- Liying Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linyan Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxin Liao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miaoen Yao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tong Mai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongrong Fan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengbiao Zhou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Azhar Ud Din M, Lin Y, Lyu C, Yi C, Fang A, Mao F. Advancing therapeutic strategies for graft-versus-host disease by targeting gut microbiome dynamics in allogeneic hematopoietic stem cell transplantation: current evidence and future directions. Mol Med 2025; 31:2. [PMID: 39754054 PMCID: PMC11699782 DOI: 10.1186/s10020-024-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system. Consequently, it significantly affects the overall well-being and susceptibility of the host to disease. Patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) may experience a disruption in the balance between the immune system and gut bacteria when treated with medicines and foreign cells. This can lead to secondary intestinal inflammation and GVHD. Thus, GM is both a reliable indicator of post-transplant mortality and a means of enhancing GVHD prevention and treatment after allo-HSCT. This can be achieved through various strategies, including nutritional support, probiotics, selective use of antibiotics, and fecal microbiota transplantation (FMT) to target gut microbes. This review examines research advancements and the practical use of intestinal bacteria in GVHD following allo-HSCT. These findings may offer novel insights into the prevention and treatment of GVHD after allo-HSCT.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Lin
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212399, Jiangsu, People's Republic of China
| | - Changkun Lyu
- School of Medical Technology, Shangqiu Medical College Shangqiu, Shangqiu, 476100, Henan, People's Republic of China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Anning Fang
- Basic Medical School, Anhui Medical College, 632 Furong Road, Economic and Technological Development Zone, Hefei, 230061, Anhui, People's Republic of China.
| | - Fei Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, People's Republic of China.
- Institute of Hematology, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Blakeley-Ruiz JA, Bartlett A, McMillan AS, Awan A, Walsh MV, Meyerhoffer AK, Vintila S, Maier JL, Richie TG, Theriot CM, Kleiner M. Dietary protein source alters gut microbiota composition and function. THE ISME JOURNAL 2025; 19:wraf048. [PMID: 40116459 PMCID: PMC12066410 DOI: 10.1093/ismejo/wraf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
The source of protein in a person's diet affects their total life expectancy. However, the mechanisms by which dietary protein sources differentially impact human health and life expectancy are poorly understood. Dietary choices impact the composition and function of the intestinal microbiota that ultimately modulate host health. This raises the possibility that health outcomes based on dietary protein sources might be driven by interactions between dietary protein and the gut microbiota. In this study, we determined the effects of seven different sources of dietary protein on the gut microbiota of mice using an integrated metagenomics-metaproteomics approach. The protein abundances measured by metaproteomics can provide microbial species abundances, and evidence for the molecular phenotype of microbiota members because measured proteins indicate the metabolic and physiological processes used by a microbial community. We showed that dietary protein source significantly altered the species composition and overall function of the gut microbiota. Different dietary protein sources led to changes in the abundance of microbial proteins involved in the degradation of amino acids and the degradation of glycosylations conjugated to dietary protein. In particular, brown rice and egg white protein increased the abundance of amino acid degrading enzymes. Egg white protein increased the abundance of bacteria and proteins usually associated with the degradation of the intestinal mucus barrier. These results show that dietary protein sources can change the gut microbiota's metabolism, which could have major implications in the context of gut microbiota mediated diseases.
Collapse
Affiliation(s)
- J Alfredo Blakeley-Ruiz
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alexandria Bartlett
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, United States
| | - Arthur S McMillan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Ayesha Awan
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Molly Vanhoy Walsh
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Alissa K Meyerhoffer
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Simina Vintila
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jessie L Maier
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Tanner G Richie
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, College of Agricultural Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
39
|
Chen S, Niu X, Zhang Y, Wen J, Bao M, Li Y, Gao Y, Wang X, Liu X, Yong Y, Yu Z, Ma X, Eun JB, Shim JH, Abd El-Aty AM, Ju X. Butyrolactone-I from marine fungi alleviates intestinal barrier damage caused by DSS through regulating lactobacillus johnsonii and its metabolites in the intestine of mice. J Nutr Biochem 2025; 135:109786. [PMID: 39447992 DOI: 10.1016/j.jnutbio.2024.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Butyrolactone-I (BTL-1), a secondary metabolite from the marine fungus Aspergillus terreus, exhibits numerous biological activities. Previous research has indicated that Butyrolactone-I alleviates intestinal epithelial inflammation via the TLR4/NF-κB and MAPK pathways. However, the mechanisms underlying its protection against intestinal barrier damage remain unclear. This study aims to further elucidate these mechanisms. We observed that BTL-1 administration increased the abundance of Lactobacillus johnsonii (LJ) in both in vivo and in vitro experiments, prompting an investigation into the effects of LJ and its metabolites on DSS-induced inflammatory bowel disease (IBD). The results demonstrated that BTL-1 significantly upregulated tight junction (TJ) and adherens junction (AJ) proteins, maintained intestinal barrier integrity, and alleviated DSS-induced IBD in mice. These effects were associated with the proliferation of LJ and its metabolites, such as butyric and propionic acids, and the inhibition of the MAPK signaling pathway in the colon. Interestingly, administering LJ alone produced a protective effect against DSS-induced IBD similar to that observed with BTL-1. Furthermore, butyric acid, a metabolite of LJ, also upregulated TJ/AJ proteins in intestinal epithelial cells through the MAPK signaling pathway. Our findings suggest that BTL-1 regulates intestinal flora, promotes LJ proliferation, protects intestinal barrier integrity, increases the concentrations of butyric and propionic acids, and ultimately inhibits the activation of the MAPK signaling pathway in mice to alleviate IBD. Therefore, BTL-1 could potentially be used as a natural drug to prevent IBD and maintain intestinal flora balance. We explored how butyrolactone-I exerts a preventive effect on IBD through intestinal bacteria (Lactobacillus johnsonii).
Collapse
Affiliation(s)
- Shengwei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xueting Niu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiaying Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Minglong Bao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yuan Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xinchen Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingbing Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Buk-gu, Gwangju, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China.
| |
Collapse
|
40
|
Yin Y, Yang T, Tian Z, Shi C, Yan C, Li H, Du Y, Li G. Progress in the investigation of the Firmicutes/Bacteroidetes ratio as a potential pathogenic factor in ulcerative colitis. J Med Microbiol 2025; 74. [PMID: 39886918 DOI: 10.1099/jmm.0.001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that presents significant challenges in terms of treatment owing to a pronounced likelihood of recurrence and an elevated risk of cancer development, thereby imposing substantial risks on affected individuals. The gut microbiota of Firmicutes and Bacteroidetes (F/B) can affect diseases associated with IBD, which is also a risk factor for breast cancer. This review discusses the hazards associated with UC, highlights the existing disparities in UC-associated gut microbiome research, explores the concept of the F/B ratio and scrutinizes its correlation with UC. Moreover, the differences in the F/B ratios between healthy individuals and those with UC were thoroughly examined. These findings suggest that an elevated F/B ratio may promote the occurrence and progression of UC. Consequently, the F/B ratio may play a significant role in UC by influencing gut microbiota composition and inflammatory responses, suggesting that future research should focus on this ratio as a potential biomarker for disease progression and therapeutic targets in managing UC.
Collapse
Affiliation(s)
- Yu Yin
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Tiezheng Yang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Ziyue Tian
- Hainan Provincial People's Hospital, Haikou 570100, PR China
| | - Chong Shi
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Chengqiu Yan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Hui Li
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Yu Du
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Guofeng Li
- Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen 518000, PR China
| |
Collapse
|
41
|
Mordant A, Blakeley-Ruiz JA, Kleiner M. Stable isotope fingerprinting can directly link intestinal microorganisms with their carbon source and captures diet-induced substrate switching in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627769. [PMID: 39713332 PMCID: PMC11661160 DOI: 10.1101/2024.12.10.627769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Diet has strong impacts on the composition and function of the gut microbiota with implications for host health. Therefore, it is critical to identify the dietary components that support growth of specific microorganisms in vivo. We used protein-based stable isotope fingerprinting (Protein-SIF) to link microbial species in gut microbiota to their carbon sources by measuring each microbe's natural 13C content (δ13C) and matching it to the 13C content of available substrates. We fed gnotobiotic mice, inoculated with a 13 member microbiota, diets in which the 13C content of all components was known. We varied the source of protein, fiber or fat to observe 13C signature changes in microbial consumers of these substrates. We observed significant changes in the δ13C values and abundances of specific microbiota species, as well as host proteins, in response to changes in 13C signature or type of protein, fiber, and fat sources. Using this approach we were able to show that upon switching dietary source of protein, fiber, or fat (1) some microbial species continued to obtain their carbon from the same dietary component (e.g., protein); (2) some species switched their main substrate type (e.g., from protein to carbohydrates); and (3) some species might derive their carbon through foraging on host compounds. Our results demonstrate that Protein-SIF can be used to identify the dietary-derived substrates assimilated into proteins by microbes in the intestinal tract; this approach holds promise for the analysis of microbiome substrate usage in humans without the need of substrate labeling. Significance The gut microbiota plays a critical role in the health of animals including humans, influencing metabolism, the immune system, and even behavior. Diet is one of the most significant factors in determining the function and composition of the gut microbiota, but our understanding of how specific dietary components directly impact individual microbes remains limited. We present the application of an approach that measures the carbon isotope "fingerprint" of proteins in biological samples. This fingerprint is similar to the fingerprint of the substrate used to make the proteins. We describe how we used this approach in mice to determine which dietary components specific intestinal microbes use as carbon sources to make their proteins. This approach can directly identify components of an animal's diet that are consumed by gut microbes.
Collapse
Affiliation(s)
- Angie Mordant
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| | | | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC
| |
Collapse
|
42
|
Luo Y, Sheikh TMM, Li X, Yuan Y, Yao F, Wang M, Guo X, Wu J, Shafiq M, Xie Q, Jiao X. Exploring the dynamics of gut microbiota, antibiotic resistance, and chemotherapy impact in acute leukemia patients: A comprehensive metagenomic analysis. Virulence 2024; 15:2428843. [PMID: 39620486 PMCID: PMC11622590 DOI: 10.1080/21505594.2024.2428843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/24/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024] Open
Abstract
Leukemia poses significant challenges to its treatment, and understanding its complex pathogenesis is crucial. This study used metagenomic sequencing to investigate the interplay between chemotherapy, gut microbiota, and antibiotic resistance in patients with acute leukemia (AL). Pre- and post-chemotherapy stool samples from patients revealed alterations in microbial richness, taxa, and antibiotic resistance genes (ARGs). The analysis revealed a decreased alpha diversity, increased dispersion in post-chemotherapy samples, and changes in the abundance of specific bacteria. Key bacteria such as Enterococcus, Klebsiella, and Escherichia coli have been identified as prevalent ARG carriers. Correlation analysis between gut microbiota and blood indicators revealed potential links between microbial species and inflammatory biomarkers, including C-reactive protein (CRP) and adenosine deaminase (ADA). This study investigated the impact of antibiotic dosage on microbiota and ARGs, revealing networks connecting co-occurring ARGs with microbial species (179 nodes, 206 edges), and networks associated with ARGs and antibiotic dosages (50 nodes, 50 edges). Antibiotics such as cephamycin and sulfonamide led to multidrug-resistant Klebsiella colonization. Our analyses revealed distinct microbial profiles with Salmonella enterica elevated post-chemotherapy in NF patients and Akkermansia muciniphila elevated pre-chemotherapy. These microbial signatures could inform strategies to modulate the gut microbiome, potentially mitigating the risk of neutropenic fever in patients undergoing chemotherapy. Finally, a comprehensive analysis of KEGG modules shed light on disrupted metabolic pathways after chemotherapy, providing insights into potential targets for managing side effects. Overall, this study revealed intricate relationships between gut microbiota, chemotherapy, and antibiotic resistance, providing new insights into improving therapy and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ying Luo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - YuMeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Fen Yao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Jilong Wu
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| |
Collapse
|
43
|
Dong X, Zhang J, Li W, Li Y, Jia L, Liu Z, Fu W, Zhang A. Yi-Shen-Hua-Shi regulates intestinal microbiota dysbiosis and protects against proteinuria in patients with chronic kidney disease: a randomized controlled study. PHARMACEUTICAL BIOLOGY 2024; 62:356-366. [PMID: 38720666 PMCID: PMC11085992 DOI: 10.1080/13880209.2024.2345080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
CONTEXT Yi-Shen-Hua-Shi (YSHS) is a traditional Chinese medicine that treats chronic kidney disease (CKD). However, its efficacy in reducing proteinuria and underlying mechanisms is unknown. OBJECTIVE This single-center randomized controlled trial explored whether YSHS could improve proteinuria and modulate the gut microbiota. MATERIALS AND METHODS 120 CKD patients were enrolled and randomized to receive the renin-angiotensin-aldosterone system (RAAS) inhibitor plus YSHS (n = 56) or RAAS inhibitor (n = 47) alone for 4 months, and 103 patients completed the study. We collected baseline and follow-up fecal samples and clinical outcomes from participants. Total bacterial DNA was extracted, and the fecal microbiome was analyzed using bioinformatics. RESULTS Patients in the intervention group had a significantly higher decrease in 24-h proteinuria. After 4 months of the YSHS intervention, the relative abundance of bacteria that have beneficial effects on the body, such as Faecalibacterium, Lachnospiraceae, Lachnoclostridium, and Sutterella increased significantly, while pathogenic bacteria such as the Eggerthella and Clostridium innocuum group decreased. However, we could not find these changes in the control group. Redundancy analysis showed that the decline in 24-h proteinuria during follow-up was significantly correlated with various taxa of gut bacteria, such as Lachnospiraceae and the Lachnoclostridium genus in the YSHS group. KEGG analysis also showed the potential role of YSHS in regulating glycan, lipid, and vitamin metabolism. DISCUSSION AND CONCLUSION The YSHS granule reduced proteinuria associated with mitigating intestinal microbiota dysbiosis in CKD patients. The definite mechanisms of YSHS to improve proteinuria need to be further explored. TRIAL REGISTRATION ChiCTR2300076136, retrospectively registered.
Collapse
Affiliation(s)
- Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yinping Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Linpei Jia
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Liu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Fu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Carvalho LM, Carvalho BG, Souza LL, da Mota JC, Ribeiro AA, Nicoletti CF. Obesity as an aggravating factor of systemic lupus erythematosus disease: What we already know and what we must explore. A rapid scoping review. Nutrition 2024; 128:112559. [PMID: 39244807 DOI: 10.1016/j.nut.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can affect various organs and systems. Symptoms of SLE can vary widely from person to person and over time, including fatigue, joint pain, skin rashes, fever, and inflammation of multiple organs. The association between SLE and excess body weight has been the subject of study, with evidence suggesting that overweight and obesity can worsen the disease´s clinical presentation. Obesity is linked to a state of low-grade chronic inflammation, which can exacerbate the inflammation present in SLE. Additionally, obesity may negatively impact treatment response, disease progression, and patient prognosis. Patients with SLE and obesity may face additional challenges in managing the disease, such as increased symptom severity, higher risk of cardiovascular and renal complications, and a reduced response to conventional treatments. Obesity can also influence the quality of life of patients with SLE, making a holistic approach that considers the individual's nutritional status essential. Therefore, understanding the relationship between obesity and SLE is crucial for optimizing treatment, improving clinical outcomes, and enhancing patients' quality of life. Further research is needed to elucidate the underlying pathophysiological mechanisms, develop more precise and personalized management strategies, and identify biomarkers that can predict disease prognosis and treatment response.
Collapse
Affiliation(s)
- Lucas M Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Beatriz G Carvalho
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia L Souza
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jhulia Cnl da Mota
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda A Ribeiro
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Carolina F Nicoletti
- Applied Physiology and Nutrition Research Group - School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
45
|
Jing J, Li X, Liu S, Yu J, Wang K, Li Y, Wang J, Wan X. Molecular patterns of microbial and metabolic interactions in septic patients with persistent lymphopenia. Microb Pathog 2024; 197:107093. [PMID: 39486555 DOI: 10.1016/j.micpath.2024.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/30/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Persistent lymphopenia can be regarded as an important index of acquired immune dysfunction in sepsis. Whether the specific immune factor changes in septic patients with lymphopenia and the correlation to gut microbiota and metabolites remain unclear. METHODS This single-center prospective observation conducted lymphocyte subgroup analysis of blood samples and 16S rRNA gene amplicons sequencing and untargeted metabolomics analysis of fecal samples from 36 subjects with the persistent (≥3d) (n = 21) and non-persistent lymphopenia (<3d) (n = 15). RESULTS The persistent lymphopenia showed higher the 28d mortality and 90d mortality, while significantly lower CD3+T/LY, CD3+T cells, CD3+CD4+T cells, CD3+CD8+T cells, Th1 cells, Th2 cells, CD45RA + Treg cells. The 16S rRNA results showed that Staphylococcus, Peptostreptococcus, Bulleidia, Leuconostoc were significant enriched in the persistent lymphopenia. The metabolomics analysis showed that α-Ketoisovaleric acid was increased and 7-DHCA, α-MCA, β-MCA, HCA, LCA-3S, CA, UCA and Citramalic acid were decreased in the persistent lymphopenia. CONCLUSION In the process of interaction between host receptors and gut microbiota in patients with persistent lymphopenia sepsis, with a significant reduction in gut microbiota diversity and bile acid metabolites. That can affect various inflammatory pathways of gut immune cells, causing immune dysfunction in the body, which may be one of the main causes of death.
Collapse
Affiliation(s)
- Juanjuan Jing
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xiaonan Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Shanshan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jiawen Yu
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Kaixuan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Yi Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Liaoning, 116011, Dalian, China.
| |
Collapse
|
46
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
47
|
Chen Y, Li X, Yang M, Jia C, He Z, Zhou S, Ruan P, Wang Y, Tang C, Pan W, Long H, Zhao M, Lu L, Peng W, Akbar A, Wu IX, Li S, Wu H, Lu Q. Time-restricted eating reveals a "younger" immune system and reshapes the intestinal microbiome in human. Redox Biol 2024; 78:103422. [PMID: 39561680 PMCID: PMC11616606 DOI: 10.1016/j.redox.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Time-restricted eating (TRE) has been shown to extent lifespans in drosophila and mouse models by affecting metabolic and anti-inflammatory activities. However, the effect of TRE on the human immune system, especially on immunosenescence, intestinal microbiome, and metabolism remains unclear. We conducted a 30-day 16:8 TRE single-arm clinical trial with 49 participants. Participants consumed daily meals from 9 a.m. to 5 p.m., provided by a nutrition canteen with a balanced, calorie-appropriate nutrition, which is designed by clinical nutritionists (ChiCTR2200058137). We monitored weight changes and weight-related parameters and focused on changes in the frequency of CD4+ senescent T cells, immune repertoire from peripheral blood, as well as serum metabolites and gut microbiota. We found that up to 95.9 % of subjects experienced sustained weight loss after TRE. The frequency of circulating senescent CD4+ T cells was decreased, while the frequency of Th1, Treg, Tfh-like, and B cells was increased. Regarding the immune repertoire, the proportions of T cell receptor alpha and beta chains were increased, whereas B cell receptor kappa and lambda chains were reduced. In addition, a reduced class switch recombination from immunoglobulin M (IgM) to immunoglobulin A (IgA) was observed. TRE upregulated the levels of anti-inflammatory and anti-aging serum metabolites named sphingosine-1-phosphate and prostaglandin-1. Additionally, several anti-inflammatory bacteria and probiotics were increased, such as Akkermansia and Rikenellaceae, and the composition of the gut microbiota tended to be "younger". Overall, TRE showed multiple anti-aging effects, which may help humans maintain a healthy lifestyle to stay "young". Clinical Trial Registration URL: https://www.chictr.org.cn/showproj.html?proj=159876.
Collapse
Affiliation(s)
- Yiran Chen
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China
| | - Xi Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Yang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Chen Jia
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Zhenghao He
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Suqing Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Pinglang Ruan
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Yikun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China
| | - Wenjing Pan
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, 210046, China; Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hai Long
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, 518057, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Arne Akbar
- Associate of the Institute of Healthy Ageing, Division of Infection & Immunity, University College of London, London, WC1E 6BT, United Kingdom
| | - Irene Xy Wu
- Xiangya School of Public Health, Central South University, 4/F, Changsha, Hunan, 410006, China
| | - Song Li
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, Hengyang Medical School, University of South China, Hengyang, Hunan, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China.
| | - Haijing Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China; Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, 210042, China; Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
48
|
Alvarez KLF, Davila-Del-Carpio G. The gut microbiota as a link between Alzheimer's disease and obesity. Am J Physiol Gastrointest Liver Physiol 2024; 327:G727-G732. [PMID: 39378307 DOI: 10.1152/ajpgi.00174.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/05/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is a degenerative disease that causes a progressive decline in memory and thinking skills. Over the past few years, diverse studies have shown that there is no single cause of AD; instead, it has been reported that factors such as genetics, lifestyle, and environment contribute to the pathogenesis of the disease. In this sense, it has been shown that obesity during middle age is one of the most prominent modifiable risk factors for AD. Of the multiple potential mechanisms linking obesity and AD, the gut microbiota (GM) has gained increasing attention in recent years. However, the underlying mechanisms that connect the GM with the process of neurodegeneration remain unclear. Through this narrative review, we present a comprehensive understanding of how alterations in the GM of people with obesity may result in systemic inflammation and affect pathways related to the pathogenesis of AD. We conclude with an analysis of the relationship between GM and insulin resistance, a risk factor for AD that is highly prevalent in people with obesity. Understanding the crosstalk between obesity, GM, and the pathogenesis of AD will help to design new strategies aimed at preventing neurodegeneration.
Collapse
Affiliation(s)
- Karla Lucia F Alvarez
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | | |
Collapse
|
49
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024; 102:418-429. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
50
|
Wu Z, Sun Y, Huang W, Jin Z, You F, Li X, Xiao C. Direct and indirect effects of estrogens, androgens and intestinal microbiota on colorectal cancer. Front Cell Infect Microbiol 2024; 14:1458033. [PMID: 39660281 PMCID: PMC11628516 DOI: 10.3389/fcimb.2024.1458033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Sex differences in colorectal cancer (CRC) has received considerable research attention recently, particularly regarding the influence of sex hormones and the intestinal microbiota. Estrogen, at the genetic and epigenetic levels, directly inhibits CRC cell proliferation by enhancing DNA mismatch repair, regulating miRNAs, blocking the cell cycle, and modulating ion channels. However, estradiol's activation of GPER promotes oncogene expression. Conversely, androgen contributes to epigenetic dysregulation and CRC progression via nuclear receptors while inducing apoptosis through membrane receptors. Specific gut microorganisms produce genotoxins and oncogenic metabolites that damage colonic cell DNA and contribute to cancer induction. Regarding the tumor microenvironment, estrogen mitigates intestinal inflammation, reverses immunosuppression, increases gut microbiome diversity and commensal bacteria abundance, and decreases pathogen enrichment. On the contrary, androgen disrupts intestinal microecology, diminish immunotherapy efficacy, and exacerbate colonic inflammation and tumor growth. The impact of estrogen and androgen is closely tied to their receptor status, elucidating their dual roles in CRC pathogenesis. This review comprehensively discusses the direct and indirect effects of sex hormones and the intestinal microbiota on CRC, considering environmental factors such as diet and lifestyle to propose novel prevention and treatment strategies.
Collapse
Affiliation(s)
- Zihong Wu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Sun
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenbo Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenzhen Jin
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|