1
|
Shen Y, Fan J, Li C, Wu F, Wu X, Tao L, Yang Q, Shen X. Restorative mechanisms of Shugan Yiyang capsule on male infertility through 'pharmaco-metabo-net' tripartite correlation analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156706. [PMID: 40220430 DOI: 10.1016/j.phymed.2025.156706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Shugan Yiyang capsule (SGYY), a commonly used traditional Chinese medicine formulation, is primarily indicated for the treatment of erectile dysfunction, yet existing studies on the therapeutic effects on male infertility (MI) are insufficient and the specific mechanisms remain poorly understood. Given the close relationship between MI, sperm quality, and erectile function, this study aims to investigate the role of SGYY in the restoration of MI and explore the underlying mechanisms. METHODS The efficacy of SGYY is comprehensively evaluated through pharmacodynamic, metabolomic, and network pharmacology. Sperm parameters, reproductive hormones, sexual behavior, neural enzymes, oxidative stress markers, pro-inflammatory cytokines, and testicular histopathology are measured to reveal the restorative effects of MI. Furthermore, urine and serum metabolomics, along with network pharmacology and surface plasmon resonance, are employed to explore the molecular mechanisms and predict core targets. RESULTS SGYY significantly improved overall health parameters, including body weight, water intake, urine output, food consumption, and spontaneous activity. Specifically, SGYY prominently recovered sexual behavior, ameliorated sperm quality, increased mitochondrial membrane potential, normalized reproductive hormones, upregulated endothelial nitric oxide synthase, attenuated oxidative stress markers, and pro-inflammatory cytokines, and repaired testicular pathological damage. Metabolomic analysis identified 47 candidate biomarkers, among which SGYY significantly modulated 39 potential biomarkers, encompassing 8 main metabolic pathways such as histidine metabolism, cysteine and methionine metabolism, propanoate metabolism, and taurine and hypotaurine metabolism. Additionally, network pharmacology predicted 8 core targets, comprising HSP90AA1, ESR1, MAPK1, CASP3, IL6, TNF, BCL2, and MAPK8. CONCLUSION SGYY improves sperm quality and erectile function by regulating oxidative stress, energy metabolism, and neurological function, thereby exerting a restorative effect on MI, as evidenced by the modulation of 8 main metabolic pathways, 39 potential biomarkers, and 8 core targets. Pharmacodynamic provides foundational validation, metabolomic uncovers intrinsic metabolic changes, and network pharmacology predicts therapeutic targets, with findings from the 'Pharmaco-Metabo-Net' tripartite correlation analysis providing a solid theoretical strategy and scientific evidence to support the clinical application of SGYY in restoring MI.
Collapse
Affiliation(s)
- Ying Shen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; National Engineering Research Center of Miao's Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Guiyang 550008, China
| | - Jian Fan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunmei Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Fuli Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Xiangli Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China
| | - Ling Tao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China.
| | - Qingbo Yang
- High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China; National Engineering Research Center of Miao's Medicines, Guizhou Yibai Pharmaceutical Co., Ltd., Guiyang 550008, China.
| | - Xiangchun Shen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 561113, China; High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Doddapaneni R, Tucker JD, Lu PJ, Lu QL. Synergistic Effect of Ribitol and Shikonin Promotes Apoptosis in Breast Cancer Cells. Int J Mol Sci 2025; 26:2661. [PMID: 40141303 PMCID: PMC11942206 DOI: 10.3390/ijms26062661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The mortality rate of breast cancer remains high, despite remarkable advances in chemotherapy. Therefore, it is imperative to identify new treatment options. In the present study, we investigated whether the metabolite ribitol enhances the cytotoxic effect of shikonin against breast cancer in vitro. Here, we screened a panel of small molecules targeting energy metabolism against breast cancer. The results of the study revealed that ribitol enhances shikonin's growth-inhibitory effects, with significant synergy. A significant (p < 0.01) increase in the percentage (56%) of apoptotic cells was detected in the combined treatment group, compared to shikonin single-treatment group (38%), respectively. The combined ribitol and shikonin treatment led to significant arrest of cell proliferation (40%) (p < 0.01) compared to untreated cells, as well as the induction of apoptosis. This was associated with upregulation of p53 (p < 0.05) and downregulation of c-Myc (p < 0.01), Bcl-xL (p < 0.001), and Mcl-1 (p < 0.05). Metabolomic analysis supports the premise that inhibition of the Warburg effect is involved in shikonin-induced cell death, which is likely further enhanced by dysregulation of glycolysis and the tricarboxylic acid (TCA) cycle, afflicted by ribitol treatment. In conclusion, the present study demonstrates that the metabolite ribitol selectively enhances the cytotoxic effect mediated by shikonin against breast cancer in vitro.
Collapse
Affiliation(s)
- Ravi Doddapaneni
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | | | | | - Qi L. Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| |
Collapse
|
3
|
Sharaf-Eldin W. Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies. J Mol Neurosci 2025; 75:28. [PMID: 39998573 PMCID: PMC11861012 DOI: 10.1007/s12031-025-02320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Dystroglycanopathies (DGPs) are a group of autosomal recessive neuromuscular diseases with significant clinical and genetic heterogeneity. They originate due to defects in the O-mannosyl glycosylation of α-dystroglycan (α-DG), a prominent linker between the intracellular cytoskeleton and the extracellular matrix (ECM). Fundamentally, such interactions are crucial for the integrity of muscle fibers and neuromuscular synapses, where their defects are mainly associated with muscle and brain dysfunction. To date, biallelic variants in 18 genes have been associated with DGPs, where the underlying cause is still undefined in a significant proportion of patients. Glycosylation of α-DG generates three core motifs where the core M3 is responsible for interaction with the basement membrane. Consistently, all gene defects that corrupt core M3 maturation have been identified as causes of DGPs. POMGNT1 which stimulates the generation of core M1 is also associated with DGPs, as it plays a central role in core M3 processing. Other genes involved in the glycosylation of α-DG seem unrelated to DPGs. The current review illustrates the O-mannosylation pathway of α-DG highlighting the functional properties of related genes and their contribution to the progression of DPGs. Different classes of DPGs are also elaborated characterizing the clinical features of each distinct type and phenotypes associated with each single gene. Finally, current therapeutic approaches with favorable outcomes are addressed. Potential achievements of preclinical and clinical studies would introduce effective curative therapies for this group of disorders in the near future.
Collapse
Affiliation(s)
- Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
4
|
Stemmerik MG, Tasca G, Gilhus NE, Servais L, Vicino A, Maggi L, Sansone V, Vissing J. Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. Brain 2025; 148:363-375. [PMID: 39397743 DOI: 10.1093/brain/awae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Muscle diseases cover a diverse group of disorders that, in most cases, are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated diseases, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate end points in therapeutic trials. We categorize these as either (i) disease unspecific markers; (ii) markers of specific pathways that may be used for more than one disease; or (iii) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
- Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, 4000 Liège, Belgium
| | - Alex Vicino
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Cataldi MP, Lu QL. Ribitol and ribose treatments differentially affect metabolism of muscle tissue in FKRP mutant mice. Sci Rep 2025; 15:1329. [PMID: 39779805 PMCID: PMC11711661 DOI: 10.1038/s41598-024-83661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain. Supplement of ribitol and ribose have been reported to increase the levels of CDP-ribitol in both cells and in muscles in vivo. Clinical trials with both ribitol and ribose have been reported for treating LGMD2I caused by mutations in the FKRP gene. Here we compared the comprehensive metabolite profiles of the skeletal muscle between ribitol-treated and ribose-treated FKRP mutant mice. The closely related pentose and pentitol show clearly differential impacts on metabolisms despite their similarity in enhancing the levels of CDP-ribitol and matriglycan synthesis. Supplement of ribitol changes lysophospholipid sub-pathway metabolite profiling with a trend towards normalization as reported in the muscle after AAV9-FKRP gene therapy. Ribose treatment significantly increases level of ribonate and elevates levels of advanced glycation end products. Further analysis is required to determine which metabolite is prudent to use for long-term daily treatment of dystroglycanopathies.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd., Charlotte, NC, 28203, USA.
| | - Qi L Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd., Charlotte, NC, 28203, USA.
| |
Collapse
|
6
|
Aldridge CM, Keene KL, Normeshie CA, Mychaleckyj JC, Hauck FR. Metabolomic profiles of infants classified as sudden infant death syndrome: a case-control analysis. EBioMedicine 2025; 111:105484. [PMID: 39644771 PMCID: PMC11667177 DOI: 10.1016/j.ebiom.2024.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Sudden Infant Death Syndrome (SIDS) is a leading cause of postneonatal mortality. The absence of specific biomarkers of SIDS diagnosis and risk leaves a significant gap in understanding SIDS pathophysiology. Metabolomics offers an avenue to better understand SIDS biology and identifying potential biomarkers. METHODS Using Metabolon Inc., global discovery panel, we analysed 828 metabolites from post-mortem serum samples of infants from the Chicago Infant Mortality Study (CIMS) and the NIH NeuroBioBank (NBB). In total, 300 infants (195 SIDS; 105 non-SIDS) across multiple race/ethnicities (70% Black, 13% White, and 16% Hispanic) were included. Metabolite associations with SIDS were performed using Welch's t-tests, linear and logistic regression, and network-cluster analyses. FINDINGS We identified thirty-five significant metabolite predictors of SIDS after adjustment for age, sex, race and ethnicity, and post-mortem interval, including ornithine (OR 21.98; p-value 6.44e-7), 5-hydroxylysine (OR 19.48; p-value 6.78e-7), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2) (OR 16.80; p-value 3.4e-7), ribitol (OR 8.19; p-value 4.2e-8), and arabitol/xylitol. Using Weighted Gene Co-expression Network Analysis (WGCNA), ten metabolite clusters were identified. Four exhibited significant associations with SIDS. The two most correlated clusters were enriched for metabolites in the tyrosine metabolism pathway and lipid (sphingomyelins) pathways. INTERPRETATION We identified metabolite biomarkers within key biological pathways and processes (e.g., nitrogen metabolism, lipid and fatty acid metabolism, stress response, nerve cell communication, hormone regulation, oxidative stress) with potential implications in SIDS pathology. Further research is needed to validate these biomarkers in additional SIDS cohorts. FUNDING The Chicago Infant Mortality Study was funded by Eunice Kennedy Shriver National Institute of Child Health and Human Development and the National Institute on Deafness and Other Communication Disorders under contract number NO1-HD-3-3188, the Centers for Disease Control and Prevention and the Association of Teachers of Preventive Medicine under cooperative agreement number U50/CCU300860-06, and the Playmates in Heaven Foundation. The current analyses were funded by Eunice Kennedy Shriver National Institute of Child Health and Human Development under 5R01HD101518-04.
Collapse
Affiliation(s)
- Chad M Aldridge
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Keith L Keene
- Department of Public Health Sciences, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Genome Sciences, University of Virginia, School of Medicine, Charlottesville, VA, USA; Center for Health Equity and Precision Public Health, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biology, Center for Health Disparities, East Carolina University, Greenville, NC, USA.
| | - Cornelius A Normeshie
- Department of Family Medicine, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Department of Genome Sciences, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - Fern R Hauck
- Department of Public Health Sciences, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Family Medicine, University of Virginia, School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Rajasingham T, Rodriguez HM, Betz A, Sproule DM, Sinha U. Validation of a novel western blot assay to monitor patterns and levels of alpha dystroglycan in skeletal muscle of patients with limb girdle muscular dystrophies. J Muscle Res Cell Motil 2024; 45:123-138. [PMID: 38635147 PMCID: PMC11316722 DOI: 10.1007/s10974-024-09670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Thulashitha Rajasingham
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA.
| | - Hector M Rodriguez
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Andreas Betz
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Douglas M Sproule
- Department of Clinical Development, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Uma Sinha
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| |
Collapse
|
9
|
Zhao J, Ge X, Li T, Yang M, Zhao R, Yan S, Wu H, Liu Y, Wang K, Xu Z, Jia J, Liu L, Dou T. Integrating metabolomics and transcriptomics to analyze the differences of breast muscle quality and flavor formation between Daweishan mini chicken and broiler. Poult Sci 2024; 103:103920. [PMID: 38909504 PMCID: PMC11253666 DOI: 10.1016/j.psj.2024.103920] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
The quality and flavor of chicken are affected by muscle metabolites and related regulatory genes, and the molecular regulation mechanism of meat quality is different among different breeds of chicken. In this study, 40 one-day-old Daweishan mini chicken (DM) and Cobb broiler (CB) were selected from each group, with 4 replicates and 10 chickens in each replicate. The chickens were reared until 90 d of age under the same management conditions. Then, metabolomics and transcriptomics data of 90-day-old DM (n = 4) and CB (n = 4) were integrated to analyze metabolites affecting breast muscle quality and flavor, and to explore the important genes regulating meat quality and flavor related metabolites. The results showed that a total of 38 significantly different metabolites (SDMs) and 420 differentially expressed genes (DEGs) were detected in the breast muscle of the 2 breeds. Amino acid and lipid metabolism may be the cause of meat quality and flavor difference between DM and CB chickens, involving metabolites such as L-methionine, betaine, N6, N6, N6-Trimethyl-L-lysine, L-anserine, glutathione, glutathione disulfide, L-threonine, N-Acetyl-L-aspartic acid, succinate, choline, DOPC, SOPC, alpha-linolenic acid, L-palmitoylcarnitine, etc. Important regulatory genes with high correlation with flavor amino acids (GATM, GSTO1) and lipids (PPARG, LPL, PLIN1, SCD, ANGPTL4, FABP7, GK, B4GALT6, UGT8, PLPP4) were identified by correlation analysis, and the gene-metabolite interaction network of breast muscle mass and flavor formation in DM chicken was constructed. This study showed that there were significant differences in breast metabolites between DM and CB chickens, mainly in amino acid and lipid metabolites. These 2 kinds of substances may be the main reasons for the difference in breast muscle quality and flavor between the 2 breeds. In general, this study could provide a theoretical basis for further research on the molecular regulatory mechanism of the formation of breast muscle quality and flavor differences between DM and CB chickens, and provide a reference for the development, utilization and genetic breeding of high-quality meat chicken breeds.
Collapse
Affiliation(s)
- Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xuehai Ge
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Tao Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ruohan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Yunnan Rural Revitalization Education Institute, Yunnan Open University, Kunming 650101, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Institute of Science and Technology, Chuxiong Normal University, Chuxiong 675099, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
11
|
Thewissen RMJ, Post MA, Maas DM, Veizaj R, Wagenaar I, Alsady M, Kools J, Bouman K, Zweers H, Meregalli PG, van der Kooi AJ, van Doorn PA, Groothuis JT, Lefeber DJ, Voermans NC. Oral ribose supplementation in dystroglycanopathy: A single case study. JIMD Rep 2024; 65:171-181. [PMID: 38736632 PMCID: PMC11078721 DOI: 10.1002/jmd2.12394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 05/14/2024] Open
Abstract
Three forms of muscular dystrophy-dystroglycanopathies are linked to the ribitol pathway. These include mutations in the isoprenoid synthase domain-containing protein (ISPD), fukutin-related protein (FKRP), and fukutin (FKTN) genes. The aforementioned enzymes are required for generation of the ribitol phosphate linkage in the O-glycan of alpha-dystroglycan. Mild cases of dystroglycanopathy present with slowly progressive muscle weakness, while in severe cases the eyes and brain are also involved. Previous research showed that ribose increased the intracellular concentrations of cytidine diphosphate-ribitol (CDP-ribitol) and had a therapeutic effect. Here, we report the safety and effects of oral ribose supplementation during 6 months in a patient with limb girdle muscular dystrophy type 2I (LGMD2I) due to a homozygous FKRP mutation. Ribose was well tolerated in doses of 9 g or 18 g/day. Supplementation with 18 g of ribose resulted in a decrease of creatine kinase levels of 70%. Moreover, metabolomics showed a significant increase in CDP-ribitol levels with 18 g of ribose supplementation (p < 0.001). Although objective improvement in clinical and patient-reported outcome measures was not observed, the patient reported subjective improvement of muscle strength, fatigue, and pain. This case study indicates that ribose supplementation in patients with dystroglycanopathy is safe and highlights the importance for future studies regarding its potential effects.
Collapse
Affiliation(s)
- R. M. J. Thewissen
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - M. A. Post
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. M. Maas
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - R. Veizaj
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - I. Wagenaar
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - M. Alsady
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - J. Kools
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - K. Bouman
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Pediatric NeurologyDonders Institute for Brain, Cognition and Behavior, Amalia Children's Hospital, Radboud University Medical CenterNijmegenThe Netherlands
| | - H. Zweers
- Department of GastroenterologyRadboud University Medical CenterNijmegenThe Netherlands
| | - P. G. Meregalli
- Department of CardiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - J. T. Groothuis
- Department of RehabilitationDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Lefeber
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
- Translational Metabolic Laboratory, Department of Laboratory MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - N. C. Voermans
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
12
|
Doody A, Alfano L, Diaz-Manera J, Lowes L, Mozaffar T, Mathews KD, Weihl CC, Wicklund M, Hung M, Statland J, Johnson NE. Defining clinical endpoints in limb girdle muscular dystrophy: a GRASP-LGMD study. BMC Neurol 2024; 24:96. [PMID: 38491364 PMCID: PMC10941356 DOI: 10.1186/s12883-024-03588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. METHODS/DESIGN The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). DISCUSSION To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. TRIAL REGISTRATION Clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Collapse
Affiliation(s)
- Amy Doody
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Linda Lowes
- Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | - Man Hung
- Roseman University, Salt Lake City, UT, USA
| | | | | |
Collapse
|
13
|
Azzag K, Gransee HM, Magli A, Yamashita AMS, Tungtur S, Ahlquist A, Zhan WZ, Onyebu C, Greising SM, Mantilla CB, Perlingeiro RCR. Enhanced Diaphragm Muscle Function upon Satellite Cell Transplantation in Dystrophic Mice. Int J Mol Sci 2024; 25:2503. [PMID: 38473751 PMCID: PMC10931593 DOI: 10.3390/ijms25052503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.
Collapse
Affiliation(s)
- Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Heather M. Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.M.G.); (W.-Z.Z.); (C.B.M.)
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Aline M. S. Yamashita
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Aaron Ahlquist
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Wen-Zhi Zhan
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.M.G.); (W.-Z.Z.); (C.B.M.)
| | - Chiemelie Onyebu
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
| | - Sarah M. Greising
- School of Kinesiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Carlos B. Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA; (H.M.G.); (W.-Z.Z.); (C.B.M.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Rita C. R. Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; (K.A.); (A.M.); (A.M.S.Y.); (S.T.); (A.A.); (C.O.)
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Jahncke JN, Miller DS, Krush M, Schnell E, Wright KM. Inhibitory CCK+ basket synapse defects in mouse models of dystroglycanopathy. eLife 2024; 12:RP87965. [PMID: 38179984 PMCID: PMC10942650 DOI: 10.7554/elife.87965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Daniel S Miller
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Milana Krush
- Neuroscience Graduate Program, Oregon Health & Science UniversityPortlandUnited States
| | - Eric Schnell
- Operative Care Division, Portland VA Health Care SystemPortlandUnited States
- Anesthesiology and Perioperative Medicine, Oregon Health & Science UniversityPortlandUnited States
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
15
|
Cataldi MP, Vannoy CH, Blaeser A, Tucker JD, Leroy V, Rawls R, Killilee J, Holbrook MC, Lu QL. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Mol Ther 2023; 31:3478-3489. [PMID: 37919902 PMCID: PMC10727973 DOI: 10.1016/j.ymthe.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| | - Charles H Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jason D Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Raegan Rawls
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jessalyn Killilee
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
16
|
Syed Mohamad SNA, Khatib A, So’ad SZM, Ahmed QU, Ibrahim Z, Nipun TS, Humaryanto H, AlAjmi MF, Khalifa SAM, El-Seedi HR. In Vitro Anti-Diabetic, Anti-Inflammatory, Antioxidant Activities and Toxicological Study of Optimized Psychotria malayana Jack Leaves Extract. Pharmaceuticals (Basel) 2023; 16:1692. [PMID: 38139818 PMCID: PMC10747829 DOI: 10.3390/ph16121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Psychotria malayana Jack (Family: Rubiaceae, local name: Salung) is a traditional herb used to treat diabetes. A previous study by our research group demonstrated that P. malayana methanolic and water extract exhibits significant potential as an effective agent for managing diabetes. Further research has been performed on the extraction optimization of this plant to enhance its inhibitory activity against α-glucosidase, a key enzyme associated with diabetes, and to reduce its toxicity. The objectives of this study are to evaluate the anti-diabetic, anti-inflammatory, and antioxidant properties of the optimized P. malayana leaf extract (OE), to evaluate its toxicity using a zebrafish embryo/larvae model, and to analyze its metabolites. The anti-diabetic effects were assessed by investigating α-glucosidase inhibition (AGI), while the inflammation inhibitory activity was performed using the soybean lipoxygenase inhibitory (SLOXI) test. The assessment of antioxidant activity was performed utilizing FRAP and DPPH assays. The toxicology study was conducted using the zebrafish embryo/larvae (Danio rerio) model. The metabolites present in the extracts were analyzed using GC-MS and LC-MS. OE demonstrated significant AGI and SLOXI activities, represented as 2.02 and 4.92 µg/mL for IC50 values, respectively. It exhibited potent antioxidant activities as determined by IC50 values of 13.08 µg/mL (using the DPPH assay) and 95.44 mmol TE/mg DW (using the FRAP assay), and also demonstrated an LC50 value of 224.29 µg/mL, which surpasses its therapeutic index of 111.03. OE exhibited a higher therapeutic index compared to that of the methanol extract (13.84) stated in the previous state of the art. This suggests that OE exhibits a lower level of toxicity, making it safer for use, and has the potential to be highly effective in its anti-diabetic activity. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) demonstrated the presence of several constituents in this extract. Among them, several compounds, such as propanoic acid, succinic acid, D-tagatose, myo-inositol, isorhamnetin, moracin M-3'-O-β-D-glucopyranoside, procyanidin B3, and leucopelargonidin, have been reported as possessing anti-diabetic and antioxidant activities. This finding offers great potential for future research in diabetes treatment.
Collapse
Affiliation(s)
- Sharifah Nurul Akilah Syed Mohamad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
- Central Research and Animal Facility, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia
- Faculty of Pharmacy, Airlangga University, Surabaya 60155, Indonesia
| | - Siti Zaiton Mat So’ad
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Qamar Uddin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Zalikha Ibrahim
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang Darul Makmur, Malaysia; (S.N.A.S.M.); (S.Z.M.S.); (Q.U.A.); (Z.I.)
| | - Tanzina Sharmin Nipun
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh;
| | | | - Mohamed F. AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Shaden A. M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden;
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
17
|
Geoffroy M, Pili L, Buffa V, Caroff M, Bigot A, Gicquel E, Rouby G, Richard I, Fragnoud R. CRISPR-Cas9 KO Cell Line Generation and Development of a Cell-Based Potency Assay for rAAV-FKRP Gene Therapy. Cells 2023; 12:2444. [PMID: 37887288 PMCID: PMC10604961 DOI: 10.3390/cells12202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Limb-Girdle Muscular Dystrophy R9 (LGMDR9) is a dystroglycanopathy caused by Fukutin-related protein (FKRP) defects leading to the deficiency of α-DG glycosylation, essential to membrane integrity. Recombinant adeno-associated viral vector (rAAV) gene therapy offers great therapeutic promise for such neuromuscular disorders. Pre-clinical studies have paved the way for a phase 1/2 clinical trial aiming to evaluate the safety and efficacy of FKRP gene therapy in LGMDR9 patients. To demonstrate product activity, quality, and consistency throughout product and clinical development, regulatory authorities request several quality controls, including a potency assay aiming to demonstrate and quantify the intended biological effect of the gene therapy product. In the present study, we generated FKRP knock-out (KO) cells fully depleted of α-DG glycosylation using CRISPR-Cas9 to assess the functional activity of a rAAV-FKRP gene therapy. We then developed a high-throughput On-Cell-Western methodology to evaluate the restoration of α-DG glycosylation in KO-FKRP cells and determine the biological activity of the FKRP transgene. The determination of the half maximal effective concentration (EC50) provides a method to compare the rAAV-FKRP batch using a reference standard. The generation of KO-FKRP muscle cells associated with the high-throughput On-Cell-Western technique may serve as a cell-based potency assay to assess rAAV-FKRP gene therapy products.
Collapse
Affiliation(s)
- Marine Geoffroy
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Louna Pili
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Valentina Buffa
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Maëlle Caroff
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Anne Bigot
- Institut de Myologie, Université Pierre et Marie Curie Paris 6, UM76 Univ. Paris 6/U974 UMR7215, CNRS Pitié-Salpétrière-INSERM, UMRS 974, 75000 Paris, France
| | - Evelyne Gicquel
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Grégory Rouby
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
- Atamyo Therapeutics, 91000 Evry, France
| | - Romain Fragnoud
- Généthon, 91000 Evry-Courcouronnes, France
- Université Paris-Saclay/Université Evry, INSERM, Généthon, Integrare Research Unit, UMR_S951, 91000 Evry, France
| |
Collapse
|
18
|
Doody A, Alfano L, Diaz-Manera J, Lowes L, Mozaffar T, Mathews K, Weihl CC, Wicklund M, Statland J, Johnson NE. Defining Clinical Endpoints in Limb Girdle Muscular Dystrophy: A GRASP-LGMD study. RESEARCH SQUARE 2023:rs.3.rs-3370395. [PMID: 37886601 PMCID: PMC10602119 DOI: 10.21203/rs.3.rs-3370395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The Limb Girdle Muscular Dystrophies (LGMDs) are characterized by progressive weakness of the shoulder and hip girdle muscles as a result of over 30 different genetic mutations. This study is designed to develop clinical outcome assessments across the group of disorders. Methods/design The primary goal of this study is to evaluate the utility of a set of outcome measures on a wide range of LGMD phenotypes and ability levels to determine if it would be possible to use similar outcomes between individuals with different phenotypes. We will perform a multi-center, 12-month study of 188 LGMD patients within the established Genetic Resolution and Assessments Solving Phenotypes in LGMD (GRASP-LGMD) Research Consortium, which is comprised of 11 sites in the United States and 2 sites in Europe. Enrolled patients will be clinically affected and have mutations in CAPN3 (LGMDR1), ANO5 (LGMDR12), DYSF (LGMDR2), DNAJB6 (LGMDD1), SGCA (LGMDR3), SGCB (LGMDR4), SGCD (LGMDR6), or SGCG (LGMDR5, or FKRP-related (LGMDR9). Discussion To the best of our knowledge, this will be the largest consortium organized to prospectively validate clinical outcome assessments (COAs) in LGMD at its completion. These assessments will help clinical trial readiness by identifying reliable, valid, and responsive outcome measures as well as providing data driven clinical trial decision making for future clinical trials on therapeutic agents for LGMD. The results of this study will permit more efficient clinical trial design. All relevant data will be made available for investigators or companies involved in LGMD therapeutic development upon conclusion of this study as applicable. Trial registration clinicaltrials.gov NCT03981289; Date of registration: 6/10/2019.
Collapse
|
19
|
Doddapaneni R, Tucker JD, Lu PJ, Lu QL. Metabolic Reprogramming by Ribitol Expands the Therapeutic Window of BETi JQ1 against Breast Cancer. Cancers (Basel) 2023; 15:4356. [PMID: 37686632 PMCID: PMC10486979 DOI: 10.3390/cancers15174356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Many cancer patients still lack effective treatments, and pre-existing or acquired resistance limits the clinical benefit of even the most advanced medicines. Recently, much attention has been given to the role of metabolism in cancer, expanding from the Warburg effect to highlight unique patterns that, in turn, may improve diagnostic and therapeutic approaches. Our recent metabolomics study revealed that ribitol can alter glycolysis in breast cancer cells. In the current study, we investigate the combinatorial effects of ribitol with several other anticancer drugs (chrysin, lonidamine, GSK2837808A, CB-839, JQ1, and shikonin) in various breast cancer cells (MDA-MB-231, MCF-7, and T-47D). The combination of ribitol with JQ1 synergistically inhibited the proliferation and migration of breast cancer cells cell-type dependently, only observed in the triple-negative MDA-MB-231 breast cancer cells. This synergy is associated with the differential effects of the 2 compounds on expression of the genes involved in cell survival and death, specifically downregulation in c-Myc and other anti-apoptotic proteins (Bcl-2, Bcl-xL, Mcl-1), but upregulation in p53 and cytochrome C levels. Glycolysis is differentially altered, with significant downregulation of glucose-6-phosphate and lactate by ribitol and JQ1, respectively. The overall effect of the combined treatment on metabolism and apoptosis-related genes results in significant synergy in the inhibition of cell growth and induction of apoptosis. Given the fact that ribitol is a metabolite with limited side effects, a combined therapy is highly desirable with relative ease to apply in the clinic for treating an appropriate cancer population. Our results also emphasize that, similar to traditional drug development, the therapeutic potential of targeting metabolism for cancer treatment may only be achieved in combination with other drugs and requires the identification of a specific cancer population. The desire to apply metabolomic intervention to a large scope of cancer types may be one of the reasons identification of this class of drugs in a clinical trial setting has been delayed.
Collapse
Affiliation(s)
- Ravi Doddapaneni
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Wake Forest University School of Medicine, 1000 Blythe Blvd., Charlotte, NC 28231, USA
| | | | | | - Qi L. Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Wake Forest University School of Medicine, 1000 Blythe Blvd., Charlotte, NC 28231, USA
| |
Collapse
|
20
|
Monticelli M, D'Onofrio T, Jaeken J, Morava E, Andreotti G, Cubellis MV. Congenital disorders of glycosylation: narration of a story through its patents. Orphanet J Rare Dis 2023; 18:247. [PMID: 37644541 PMCID: PMC10466741 DOI: 10.1186/s13023-023-02852-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Congenital disorders of glycosylation are a group of more than 160 rare genetic defects in protein and lipid glycosylation. Since the first clinical report in 1980 of PMM2-CDG, the most common CDG worldwide, research made great strides, but nearly all of them are still missing a cure. CDG diagnosis has been at a rapid pace since the introduction of whole-exome/whole-genome sequencing as a diagnostic tool. Here, we retrace the history of CDG by analyzing all the patents associated with the topic. To this end, we explored the Espacenet database, extracted a list of patents, and then divided them into three major groups: (1) Drugs/therapeutic approaches for CDG, (2) Drug delivery tools for CDG, (3) Diagnostic tools for CDG. Despite the enormous scientific progress experienced in the last 30 years, diagnostic tools, drugs, and biomarkers are still urgently needed.
Collapse
Affiliation(s)
- Maria Monticelli
- Department of Biology, University of Napoli "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Tania D'Onofrio
- Department of Biology, University of Napoli "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
| | - Jaak Jaeken
- Center of Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Eva Morava
- Department of Clinical Genomics and Laboratory of Medical Pathology, Mayo Clinic, Rochester, MN, USA
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy.
| | - Maria Vittoria Cubellis
- Department of Biology, University of Napoli "Federico II", Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
- Institute of Biomolecular Chemistry ICB, CNR, Via Campi Flegrei 34, Pozzuoli, 80078, Italy
- Stazione Zoologica "Anton Dohrn", Villa Comunale, Naples, Italy
| |
Collapse
|
21
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Wu B, Drains M, Shah SN, Lu PJ, Leroy V, Killilee J, Rawls R, Tucker JD, Blaeser A, Lu QL. Ribitol dose-dependently enhances matriglycan expression and improves muscle function with prolonged life span in limb girdle muscular dystrophy 2I mouse model. PLoS One 2022; 17:e0278482. [PMID: 36454905 PMCID: PMC9714851 DOI: 10.1371/journal.pone.0278482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Limb Girdle Muscular Dystrophy 2I (LGMDR9) is one of the most common LGMD characterized by defects in glycosylation of α-dystroglycan (matriglycan) resulting from mutations of Fukutin-related protein (FKRP). There is no effective therapy currently available. We recently demonstrated that ribitol supplement increases levels of matriglycan in cells in vitro and in FKRP-P448L (P448L) mutant mouse model through drinking water administration. To be clinically relevant, we have now conducted a dose-escalating efficacy study by gavage in P448L mutant mice. Six months of ribitol treatment daily significantly rescued functions of skeletal, respiratory, and cardiac muscles dose-dependently. This was associated with a dose dependent increase in matriglycan and improvement in muscle pathology with reductions in muscle degeneration, inflammatory infiltration and fibrosis. Importantly, ribitol significantly increased life span and muscle functions of the female animals receiving treatment from 10 months of age. The only observed side effect was gastrointestinal tract bloating with loose stool and this effect is also dose dependent. The results validate the mechanism that ribitol as a pre-substrate of glycosyltransferase is able to compensate for the decreased function of mutant FKRP with restoration of matriglycan expression and provide a guidance for future clinical trial design.
Collapse
Affiliation(s)
- Bo Wu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
- * E-mail: (BW); (QLL)
| | - Morgan Drains
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Sapana N. Shah
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Pei Juan Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Jessalyn Killilee
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Raegan Rawls
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Jason D. Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Atrium Health Musculoskeletal Institute, Carolinas Medical Center, Charlotte, North Carolina, United States of America
- * E-mail: (BW); (QLL)
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The limb-girdle muscular dystrophies (LGMDs) are a group of inherited muscle disorders with a common feature of limb-girdle pattern of weakness, caused by over 29 individual genes. This article describes the classification scheme, common subtypes, and the management of individuals with LGMD. RECENT FINDINGS Advances in genetic testing and next-generation sequencing panels containing all of the LGMD genes have led to earlier genetic confirmation, but also to more individuals with variants of uncertain significance. The LGMDs include disorders with autosomal recessive inheritance, which are often due to loss-of-function mutations in muscle structural or repair proteins and typically have younger ages of onset and more rapidly progressive presentations, and those with autosomal dominant inheritance, which can have older ages of presentation and chronic progressive disease courses. All cause progressive disability and potential loss of ability to walk or maintain a job due to progressive muscle wasting. Certain mutations are associated with cardiac or respiratory involvement. No disease-altering therapies have been approved by the US Food and Drug Administration (FDA) for LGMDs and standard treatment uses a multidisciplinary clinic model, but recessive LGMDs are potentially amenable to systemic gene replacement therapies, which are already being tested in clinical trials for sarcoglycan and FKRP mutations. The dominant LGMDs may be amenable to RNA-based therapeutic approaches. SUMMARY International efforts are underway to better characterize LGMDs, help resolve variants of uncertain significance, provide consistent and improved standards of care, and prepare for future clinical trials.
Collapse
|
24
|
Metabolomic Profiling of End-Stage Heart Failure Secondary to Chronic Chagas Cardiomyopathy. Int J Mol Sci 2022; 23:ijms231810456. [PMID: 36142367 PMCID: PMC9499603 DOI: 10.3390/ijms231810456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic Chagas cardiomyopathy (CCC) is the most frequent and severe clinical form of chronic Chagas disease, representing one of the leading causes of morbidity and mortality in Latin America, and a growing global public health problem. There is currently no approved treatment for CCC; however, omics technologies have enabled significant progress to be made in the search for new therapeutic targets. The metabolic alterations associated with pathogenic mechanisms of CCC and their relationship to cellular and immunopathogenic processes in cardiac tissue remain largely unknown. This exploratory study aimed to evaluate the potential underlying pathogenic mechanisms in the failing myocardium of patients with end-stage heart failure (ESHF) secondary to CCC by applying an untargeted metabolomic profiling approach. Cardiac tissue samples from the left ventricle of patients with ESHF of CCC etiology (n = 7) and healthy donors (n = 7) were analyzed using liquid chromatography-mass spectrometry. Metabolite profiles showed altered branched-chain amino acid and acylcarnitine levels, decreased fatty acid uptake and oxidation, increased activity of the pentose phosphate pathway, dysregulation of the TCA cycle, and alterations in critical cellular antioxidant systems. These findings suggest processes of energy deficit, alterations in substrate availability, and enhanced production of reactive oxygen species in the affected myocardium. This profile potentially contributes to the development and maintenance of a chronic inflammatory state that leads to progression and severity of CCC. Further studies involving larger sample sizes and comparisons with heart failure patients without CCC are needed to validate these results, opening an avenue to investigate new therapeutic approaches for the treatment and prevention of progression of this unique and severe cardiomyopathy.
Collapse
|
25
|
Brasil S, Allocca M, Magrinho SCM, Santos I, Raposo M, Francisco R, Pascoal C, Martins T, Videira PA, Pereira F, Andreotti G, Jaeken J, Kantautas KA, Perlstein EO, Ferreira VDR. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int J Mol Sci 2022; 23:8725. [PMID: 35955863 PMCID: PMC9369176 DOI: 10.3390/ijms23158725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Advances in research have boosted therapy development for congenital disorders of glycosylation (CDG), a group of rare genetic disorders affecting protein and lipid glycosylation and glycosylphosphatidylinositol anchor biosynthesis. The (re)use of known drugs for novel medical purposes, known as drug repositioning, is growing for both common and rare disorders. The latest innovation concerns the rational search for repositioned molecules which also benefits from artificial intelligence (AI). Compared to traditional methods, drug repositioning accelerates the overall drug discovery process while saving costs. This is particularly valuable for rare diseases. AI tools have proven their worth in diagnosis, in disease classification and characterization, and ultimately in therapy discovery in rare diseases. The availability of biomarkers and reliable disease models is critical for research and development of new drugs, especially for rare and heterogeneous diseases such as CDG. This work reviews the literature related to repositioned drugs for CDG, discovered by serendipity or through a systemic approach. Recent advances in biomarkers and disease models are also outlined as well as stakeholders' views on AI for therapy discovery in CDG.
Collapse
Affiliation(s)
- Sandra Brasil
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Mariateresa Allocca
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Salvador C. M. Magrinho
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- LAQV-Requimte, Chemistry Department, School of Science and Technology, Nova University of Lisbon, 2819-516 Caparica, Portugal
| | - Inês Santos
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Madalena Raposo
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Rita Francisco
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Carlota Pascoal
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Tiago Martins
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Sci and Volunteer Program from School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Paula A. Videira
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Florbela Pereira
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- LAQV-Requimte, Chemistry Department, School of Science and Technology, Nova University of Lisbon, 2819-516 Caparica, Portugal
| | - Giuseppina Andreotti
- Institute of Biomolecular Chemistry, National Research Council of Italy, 80078 Pozzuoli, Italy
| | - Jaak Jaeken
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Center for Metabolic Diseases, Department of Pediatrics, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Vanessa dos Reis Ferreira
- UCIBIO—Applied Molecular Biosciences Unit, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, Nova University of Lisbon, 2829-516 Caparica, Portugal
- CDG & Allies PPAIN—Professionals and Patient Associations International Network, Department of Life Sciences, School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
26
|
Skeletal Muscle Cells Derived from Induced Pluripotent Stem Cells: A Platform for Limb Girdle Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10061428. [PMID: 35740450 PMCID: PMC9220148 DOI: 10.3390/biomedicines10061428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.
Collapse
|
27
|
Gaertner A, Burr L, Klauke B, Brodehl A, Laser KT, Klingel K, Tiesmeier J, Schulz U, zu Knyphausen E, Gummert J, Milting H. Compound Heterozygous FKTN Variants in a Patient with Dilated Cardiomyopathy Led to an Aberrant α-Dystroglycan Pattern. Int J Mol Sci 2022; 23:ijms23126685. [PMID: 35743126 PMCID: PMC9223741 DOI: 10.3390/ijms23126685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Fukutin encoded by FKTN is a ribitol 5-phosphate transferase involved in glycosylation of α-dystroglycan. It is known that mutations in FKTN affect the glycosylation of α-dystroglycan, leading to a dystroglycanopathy. Dystroglycanopathies are a group of syndromes with a broad clinical spectrum including dilated cardiomyopathy and muscular dystrophy. In this study, we reported the case of a patient with muscular dystrophy, early onset dilated cardiomyopathy, and elevated creatine kinase levels who was a carrier of the compound heterozygous variants p.Ser299Arg and p.Asn442Ser in FKTN. Our work showed that compound heterozygous mutations in FKTN lead to a loss of fully glycosylated α-dystroglycan and result in cardiomyopathy and end-stage heart failure at a young age.
Collapse
Affiliation(s)
- Anna Gaertner
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| | - Lidia Burr
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Baerbel Klauke
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Andreas Brodehl
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Kai Thorsten Laser
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Karin Klingel
- Kardiopathologie, Institut für Pathologie und Neuropathologie, Universitätsklinikum Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany;
| | - Jens Tiesmeier
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Uwe Schulz
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Edzard zu Knyphausen
- Zentrum für Angeborene Herzfehler, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (K.T.L.); (E.z.K.)
| | - Jan Gummert
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
| | - Hendrik Milting
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Klinik für Thorax- und Kardiovaskularchirurgie, Herz und Diabeteszentrum NRW, Universitätsklinikum der Ruhr-Universität Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (L.B.); (B.K.); (A.B.); (J.T.); (U.S.); (J.G.)
- Correspondence: (A.G.); (H.M.)
| |
Collapse
|
28
|
Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, Kobayashi K, Lefeber DJ, Matsumoto R, Okada T, Endo T, Kanagawa M, Toda T. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 2022; 13:1847. [PMID: 35422047 PMCID: PMC9010444 DOI: 10.1038/s41467-022-29473-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2022] [Indexed: 01/05/2023] Open
Abstract
Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.
Collapse
Affiliation(s)
- Hideki Tokuoka
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Rieko Imae
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Hitomi Nakashima
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Hiroshi Manya
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Chiaki Masuda
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Shunsuke Hoshino
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Kazuhiro Kobayashi
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Dirk J. Lefeber
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Riki Matsumoto
- grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Takashi Okada
- grid.26999.3d0000 0001 2151 536XDivision of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Tamao Endo
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Motoi Kanagawa
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.255464.40000 0001 1011 3808Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tatsushi Toda
- grid.26999.3d0000 0001 2151 536XDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
29
|
Dyrda-Terniuk T, Sugajski M, Pryshchepa O, Śliwiak J, Buszewska-Forajta M, Pomastowski P, Buszewski B. The Study of Protein-Cyclitol Interactions. Int J Mol Sci 2022; 23:2940. [PMID: 35328362 PMCID: PMC8952220 DOI: 10.3390/ijms23062940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Investigation of interactions between the target protein molecule and ligand allows for an understanding of the nature of the molecular recognition, functions, and biological activity of protein-ligand complexation. In the present work, non-specific interactions between a model protein (Bovine Serum Albumin) and four cyclitols were investigated. D-sorbitol and adonitol represent the group of linear-structure cyclitols, while shikimic acid and D-(-)-quinic acid have cyclic-structure molecules. Various analytical methods, including chromatographic analysis (HPLC-MS/MS), electrophoretic analysis (SDS-PAGE), spectroscopic analysis (spectrofluorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy), and isothermal titration calorimetry (ITC), were applied for the description of protein-cyclitol interactions. Additionally, computational calculations were performed to predict the possible binding places. Kinetic studies allowed us to clarify interaction mechanisms that may take place during BSA and cyclitol interaction. The results allow us, among other things, to evaluate the impact of the cyclitol's structure on the character of its interactions with the protein.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Mateusz Sugajski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Oleksandra Pryshchepa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Joanna Śliwiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland;
| | - Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland;
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (T.D.-T.); (M.S.); (O.P.); (B.B.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
30
|
Chen Z, Guo Z, Niu J, Xu N, Sui X, Kareem HA, Hassan MU, Yan M, Zhang Q, Wang Z, Mi F, Kang J, Cui J, Wang Q. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis. CHEMOSPHERE 2022; 290:133368. [PMID: 34933027 DOI: 10.1016/j.chemosphere.2021.133368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.
Collapse
Affiliation(s)
- Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Nan Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Xin Sui
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quan Zhang
- Jiuquan Daye Seed Industry Co. Ltd., Jiefang Road 325#, Suzhouqu, Jiuquan, 735000, Gansu Province, China
| | - Zhaolan Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Science, Hohhot, 010010, Inner Mongolia, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, 010010, Inner Mongolia, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100094, China
| | - Jian Cui
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
31
|
Wu WJ, Sun SZ, Li BG. Congenital muscular dystrophy caused by beta1,3-N-acetylgalactosaminyltransferase 2 gene mutation: Two case reports. World J Clin Cases 2022; 10:1056-1066. [PMID: 35127920 PMCID: PMC8790464 DOI: 10.12998/wjcc.v10.i3.1056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mutations in the beta1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2) gene can lead to impaired glycosylation of α-dystroglycan, which, in turn, causes congenital muscular dystrophy (CMD). The clinical phenotypes of CMD are broad, and there are only a few reports of CMD worldwide.
CASE SUMMARY This report describes the cases of two children with CMD caused by B3GALNT2 gene mutation. The main manifestations of the two cases were abnormal walking posture, language development delay, and abnormal development of the white matter. Case 2 also had unreported symptoms of meningocele and giant arachnoid cyst. Both cases had compound heterozygous mutations of the B3GALNT2 gene, each containing a truncated mutation and a missense mutation, and three of the four loci had not been reported. Nineteen patients with CMD caused by B3GALNT2 gene mutation were found in the literature. Summary and analysis of the characteristics of CMD caused by B3GALNT2 gene mutation showed that 100% of the cases had nervous system involvement. Head magnetic resonance imaging often showed abnormal manifestations, and more than half of the children had eye and muscle involvement; some of the gene-related symptoms were self-healing.
CONCLUSION B3GALNT2 gene can be used as one of the candidate genes for screening CMD, cognitive development retardation, epilepsy, and multiple brain developmental malformations in infants.
Collapse
Affiliation(s)
- Wen-Juan Wu
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| | - Bao-Guang Li
- Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang 050031, Hebei Province, China
| |
Collapse
|
32
|
Kanagawa M. Dystroglycanopathy: From Elucidation of Molecular and Pathological Mechanisms to Development of Treatment Methods. Int J Mol Sci 2021; 22:ijms222313162. [PMID: 34884967 PMCID: PMC8658603 DOI: 10.3390/ijms222313162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/13/2023] Open
Abstract
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Graduate School of Medicine, Ehime University, 454 Shitsukawa, Toon 791-0295, Ehime, Japan
| |
Collapse
|
33
|
Kanagawa M. Advances in Pathophysiology of Dystroglycanopathies and Its Treatment Strategies. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2037.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine
| |
Collapse
|
34
|
Kanagawa M. Advances in Pathophysiology of Dystroglycanopathies and Its Treatment Strategies. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2037.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine
| |
Collapse
|
35
|
Bigotti MG, Brancaccio A. High degree of conservation of the enzymes synthesizing the laminin-binding glycoepitope of α-dystroglycan. Open Biol 2021; 11:210104. [PMID: 34582712 PMCID: PMC8478517 DOI: 10.1098/rsob.210104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The dystroglycan (DG) complex plays a pivotal role for the stabilization of muscles in Metazoa. It is formed by two subunits, extracellular α-DG and transmembrane β-DG, originating from a unique precursor via a complex post-translational maturation process. The α-DG subunit is extensively glycosylated in sequential steps by several specific enzymes and employs such glycan scaffold to tightly bind basement membrane molecules. Mutations of several of these enzymes cause an alteration of the carbohydrate structure of α-DG, resulting in severe neuromuscular disorders collectively named dystroglycanopathies. Given the fundamental role played by DG in muscle stability, it is biochemically and clinically relevant to investigate these post-translational modifying enzymes from an evolutionary perspective. A first phylogenetic history of the thirteen enzymes involved in the fabrication of the so-called 'M3 core' laminin-binding epitope has been traced by an overall sequence comparison approach, and interesting details on the primordial enzyme set have emerged, as well as substantial conservation in Metazoa. The optimization along with the evolution of a well-conserved enzymatic set responsible for the glycosylation of α-DG indicate the importance of the glycosylation shell in modulating the connection between sarcolemma and surrounding basement membranes to increase skeletal muscle stability, and eventually support movement and locomotion.
Collapse
Affiliation(s)
- Maria Giulia Bigotti
- School of Translational Health Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK,School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrea Brancaccio
- School of Biochemistry, University Walk, University of Bristol, Bristol BS8 1TD, UK,Institute of Chemical Sciences and Technologies ‘Giulio Natta’ (SCITEC) - CNR, Largo F.Vito 1, 00168, Rome, Italy
| |
Collapse
|
36
|
Dhoke NR, Kim H, Selvaraj S, Azzag K, Zhou H, Oliveira NAJ, Tungtur S, Ortiz-Cordero C, Kiley J, Lu QL, Bang AG, Perlingeiro RCR. A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Rep 2021; 36:109360. [PMID: 34260922 PMCID: PMC8327854 DOI: 10.1016/j.celrep.2021.109360] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene result in a broad spectrum of muscular dystrophy (MD) phenotypes, including the severe Walker-Warburg syndrome (WWS). Here, we develop a gene-editing approach that replaces the entire mutant open reading frame with the wild-type sequence to universally correct all FKRP mutations. We apply this approach to correct FKRP mutations in induced pluripotent stem (iPS) cells derived from patients displaying broad clinical severity. Our findings show rescue of functional α-dystroglycan (α-DG) glycosylation in gene-edited WWS iPS cell-derived myotubes. Transplantation of gene-corrected myogenic progenitors in the FKRPP448L-NSG mouse model gives rise to myofiber and satellite cell engraftment and, importantly, restoration of α-DG functional glycosylation in vivo. These findings suggest the potential feasibility of using CRISPR-Cas9 technology in combination with patient-specific iPS cells for the future development of autologous cell transplantation for FKRP-associated MDs.
Collapse
Affiliation(s)
- Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Hyunkee Kim
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Kiley
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
37
|
Lu QL. Revertant Phenomenon in DMD and LGMD2I and Its Therapeutic Implications: A Review of Study Under Mentorship of Terrence Partridge. J Neuromuscul Dis 2021; 8:S359-S367. [PMID: 34151854 PMCID: PMC8673541 DOI: 10.3233/jnd-210692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review recollects my initial research focus on revertant fibers (expressing dystrophin in the background of frame-shifting mutation) in Duchenne muscular dystrophy (DMD) muscles in Professor Terrence Partridge’s Muscle Cell Biology Laboratory in MRC Clinical Research Science Center, Harmmersmith Hospital, London, UK. Our data indicated that revertant fibers are most likely resulted from epigenetic random events which skip exon(s) flanking the mutated exon, leading to the restoration of the reading frame. Some of these events establish themselves as relatively permanent skipping patterns, a mechanism similar to multiple transcript species established in various cell types. With this hypothesis, antisense oligonucleotide-mediated exon skipping is likely to have a great chance to achieve restoration of therapeutic levels of dystrophin in DMD muscles. This leads to our first reports of local and systemic efficacy of antisense oligonucleotide-mediated exon skipping for DMD treatment. The experience under Terry’s mentorship shaped my thinking and led me to explore another revertant feature in the dystroglycanopathy caused by mutations in the Fukutin Related Protein (FKRP) gene which functions as a glycosyltransferase. Mutant FKRPs retain partial function and produce a fraction of normal to no detectable levels of laminin-binding α-dystroglycan (matriglycan) in most of the muscle fibers. Reversion to near normal levels of matriglycan expression in muscles with FKRP mutations depends on muscle regeneration and in muscles of neonate mice, suggesting that changes in metabolism and gene expression could be sufficient to compensate for the reduced function of mutant FKRP genes even those associated with severe congenital muscular dystrophy (CMD). This is now supported by our successful demonstration that supply of FKRP mutant mice with ribitol, a precursor for substrate of FKRP, is sufficient to restore the levels of matriglycan with therapeutic significance. Our data overall suggest that rare events of reversion in muscular dystrophy, and likely other diseases could provide unique insight for mechanisms and therapeutic exploitation.
Collapse
Affiliation(s)
- Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Musculoskeletal Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
38
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
39
|
Kölbel H, Preuße C, Brand L, von Moers A, Della Marina A, Schuelke M, Roos A, Goebel HH, Schara-Schmidt U, Stenzel W. Inflammation, fibrosis and skeletal muscle regeneration in LGMDR9 are orchestrated by macrophages. Neuropathol Appl Neurobiol 2021; 47:856-866. [PMID: 33973272 DOI: 10.1111/nan.12730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 05/01/2021] [Indexed: 11/29/2022]
Abstract
AIMS Variable degrees of inflammation, necrosis, regeneration and fibrofatty replacement are part of the pathological spectrum of the dystrophic process in alpha dystroglycanopathy LGMDR9 (FKRP-related, OMIM #607155), one of the most prevailing types of LGMDs worldwide. Inflammatory processes and their complex interplay with vascular, myogenic and mesenchymal cells may have a major impact on disease development. The purpose of our study is to describe the specific immune morphological features in muscle tissue of patients with LGMDR9 to enable a better understanding of the phenotype of muscle damage leading to disease progression. METHODS We have analysed skeletal muscle biopsies of 17 patients genetically confirmed as having LGMDR9 by histopathological and molecular techniques. RESULTS We identified CD206+ MHC class II+ and STAT6+ immune-repressed macrophages dominating the endomysial infiltrate in areas of myofibre regeneration and fibrosis. Additionally, PDGFRβ+ pericytes were located around MHC class II+ activated capillaries residing in close proximity to areas of fibrosis and regenerating fibres. Expression of VEGF was found on many regenerating neonatal myosin+ fibres, myofibres and CD206+ macrophages also co-expressed VEGF. CONCLUSION Our results show characteristic immune inflammatory features in LGMDR9 and more specifically shed light on the predominant role of macrophages and their function in vascular organisation, fibrosis and myogenesis. Understanding disease-specific immune phenomena potentially inform about possibilities for anti-fibrotic and anti-inflammatory therapeutic strategies, which may complement Ribitol replacement and gene therapies for LGMDR9 that may be available in the future.
Collapse
Affiliation(s)
- Heike Kölbel
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Lukas Brand
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Arpad von Moers
- Department of Paediatrics and Neuropaediatrics, DRK Klinikum Westend, Berlin, Germany
| | - Adela Della Marina
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Roos
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuropathology, Universitätsmedizin Mainz, Germany
| | - Ulrike Schara-Schmidt
- Department of Neuropaediatrics, Neuromuscular Centre, Universitätsmedizin Essen, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
40
|
Brown SC, Fernandez-Fuente M, Muntoni F, Vissing J. Phenotypic Spectrum of α-Dystroglycanopathies Associated With the c.919T>a Variant in the FKRP Gene in Humans and Mice. J Neuropathol Exp Neurol 2021; 79:1257-1264. [PMID: 33051673 DOI: 10.1093/jnen/nlaa120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the fukutin-related protein gene, FKRP, are the most frequent single cause of α-dystroglycanopathy. Rare FKRP mutations are clinically not well characterized. Here, we review the phenotype associated with the rare c.919T>A mutation in FKRP in humans and mice. We describe clinical and paraclinical findings in 6 patients, 2 homozygous, and 4-compound heterozygous for c.919T>A, and compare findings with a mouse model we generated, which is homozygous for the same mutation. In patients, the mutation at the homozygous state is associated with a severe congenital muscular dystrophy phenotype invariably characterized by severe multisystem disease and early death. Compound heterozygous patients have a severe limb-girdle muscular dystrophy phenotype, loss of ambulation before age 20 and respiratory insufficiency. In contrast, mice homozygous for the same mutation show no symptoms or signs of muscle disease. Evidence therefore defines the FKRP c.919T>A as a very severe mutation in humans. The huge discrepancy between phenotypes in humans and mice suggests that differences in protein folding/processing exist between human and mouse Fkrp. This emphasizes the need for more detailed structural analyses of FKRP and shows the challenges of developing appropriate animal models of dystroglycanopathies that mimic the disease course in humans.
Collapse
Affiliation(s)
- Susan C Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital, London, UK and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Ortiz-Cordero C, Magli A, Dhoke NR, Kuebler T, Selvaraj S, Oliveira NA, Zhou H, Sham YY, Bang AG, Perlingeiro RC. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. eLife 2021; 10:65443. [PMID: 33513091 PMCID: PMC7924940 DOI: 10.7554/elife.65443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in the fukutin-related protein (FKRP) cause Walker-Warburg syndrome (WWS), a severe form of congenital muscular dystrophy. Here, we established a WWS human induced pluripotent stem cell-derived myogenic model that recapitulates hallmarks of WWS pathology. We used this model to investigate the therapeutic effect of metabolites of the pentose phosphate pathway in human WWS. We show that functional recovery of WWS myotubes is promoted not only by ribitol but also by its precursor ribose. Moreover, we found that the combination of each of these metabolites with NAD+ results in a synergistic effect, as demonstrated by rescue of α-dystroglycan glycosylation and laminin binding capacity. Mechanistically, we found that FKRP residual enzymatic capacity, characteristic of many recessive FKRP mutations, is required for rescue as supported by functional and structural mutational analyses. These findings provide the rationale for testing ribose/ribitol in combination with NAD+ to treat WWS and other diseases associated with FKRP mutations.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| | - Neha R Dhoke
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Taylor Kuebler
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Nelio Aj Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Haowen Zhou
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Yuk Y Sham
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, United States
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
| | - Rita Cr Perlingeiro
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, United States.,Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, United States
| |
Collapse
|
42
|
Villar Quiles RN, Richard I, Bouchet-Seraphin C, Stojkovic T. [Limb-Girdle Muscular Dystrophy type R9 linked to the FKRP gene: state of the art and therapeutic perspectives]. Med Sci (Paris) 2021; 36 Hors série n° 2:28-33. [PMID: 33427633 DOI: 10.1051/medsci/2020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the FKRP gene encoding the fukutin-related protein (FKRP) cause a wide spectrum of myopathies, ranging from severe forms of congenital muscular dystrophies associated with structural abnormalities of the central nervous system, to exertional myalgia or asymptomatic hyperCKemia, and to a form of limb girdle muscular dystrophy, LGMD-R9, (ex-LGMD-2I). LGMD-R9 is characterized by a proximal girdle deficit predominantly in the lower limbs to start with, with respiratory and cardiac damage that may affect the vital prognosis. Serum CK levels are markedly elevated and, on muscle biopsy, is detected a dystrophic formula associated with a reduction in the glycosylation of α-dystroglycan by immunostains and immunoblotting. Muscle MRI typically shows damage to proximal muscles (iliopsoas, adductors, gluteus maximus, quadriceps) with relative preservation of the muscles of the anterior compartment of the thighs (gracilis and sartorius). Genetic analysis, by specific sequencing of the FKRP gene or of a panel grouping together all the genes involved in the glycosylation of α-dystroglycan, or a larger panel of genes, generally confirms the diagnosis, the most frequent mutation being the missense p.(Leu276Ile). Currently, treatment of LGMD-R9 is symptomatic, requiring a multidisciplinary approach. A prospective study of the natural history of the disease is currently underway in Europe (GNT-015-FKRP). New therapeutic approaches are envisaged, such as gene therapy mediated by vectors derived from the adeno-associated virus (AAV). This is effective in animal models, allowing correction of defects in the glycosylation of alpha-dystroglycan and an increase in its binding capacity to the extracellular matrix. At the same time, preclinical studies have shown, in an animal model, the efficacy of ribitol, an alcohol pentose found in natural compounds, which has led to a phase I trial whose clinical development is underway.
Collapse
Affiliation(s)
- Rocío Nur Villar Quiles
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Isabelle Richard
- Généthon, 91000 Évry, France. - Université Paris-Saclay, Université d'Évry, Inserm, Généthon, unité de recherche Integrare, UMR_S951, 91000 Évry, France
| | | | - Tanya Stojkovic
- Centre de Référence des maladies neuromusculaires Nord/Est/Île-de-France, APHP, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
43
|
Ortiz-Cordero C, Azzag K, Perlingeiro RCR. Fukutin-Related Protein: From Pathology to Treatments. Trends Cell Biol 2020; 31:197-210. [PMID: 33272829 DOI: 10.1016/j.tcb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022]
Abstract
Fukutin-related protein (FKRP) is a glycosyltransferase involved in the functional glycosylation of α-dystroglycan (DG), a key component in the link between the cytoskeleton and the extracellular matrix (ECM). Mutations in FKRP lead to dystroglycanopathies with broad severity, including limb-girdle and congenital muscular dystrophy. Studies over the past 5 years have elucidated the function of FKRP, which has expanded the number of therapeutic opportunities for patients carrying FKRP mutations. These include small molecules, gene delivery, and cell therapy. Here we summarize recent findings on the function of FKRP and describe available models for studying diseases and testing therapeutics. Lastly, we highlight preclinical studies that hold potential for the treatment of FKRP-associated dystroglycanopathies.
Collapse
Affiliation(s)
- Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
44
|
Mohamadian M, Naseri M, Ghandil P, Bahrami A, Momen AA. The first report of two homozygous sequence variants in FKRP and SELENON genes associated with syndromic congenital muscular dystrophy in Iran: Further expansion of the clinical phenotypes. J Gene Med 2020; 22:e3265. [PMID: 32864802 DOI: 10.1002/jgm.3265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/11/2020] [Accepted: 08/22/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Congenital muscular dystrophy (CMD) refers to hypotonia and delayed motor development that is manifested at or near the birth. Additional presentations have been observed in CMD syndromes. METHODS Thorough clinical examinations were performed on two unrelated Iranian families with typical symptoms of CMD and uncommon features such as intellectual disability and nephrolithiasis. The genomic DNA of probands were subjected to whole exome sequencing. Following the detection of candidate variants with a bioinformatic pipeline, the familial co-segregation analysis was carried out using polymerase chain reaction-based Sanger sequencing. RESULTS We identified a missense homozygous variant in the fukutin-related protein (FKRP) gene (c.968G>A, p.Arg323His) related to CMD-dystroglycanopathy type B5 (MDDGB5) and a frameshift homozygous variant in the selenoprotein N (SELENON) gene (c.1446delC, p.Asn483Thrfs*11) associated with congenital rigid-spine muscular dystrophy 1 (RSMD1), which were completely segregated with the phenotypes in the families. These variants were not found in either the 1000 Genomes Project or the Exome Aggregation Consortium. The present study provides the first report of these homozygous sequence variants in Iran. Moreover, our study was the first observation of nephrolithiasis in FKRP-related dystroglycanopathy and intellectual disability in SELENON-related myopathies. Based on in silico studies and molecular docking, these variations induced pathogenic effects on the proteins. CONCLUSIONS Our findings extend the genetic database of Iranian patients with CMD and, in general, the phenotypical spectrum of syndromic CMD. It is recommended to consider these variants for a more accurate clinical interpretation, prenatal diagnosis and genetic counseling in families with a history of CMD, especially in those combined with cognitive impairments or renal dysfunctions.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Akbar Momen
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Frederick DW, McDougal AV, Semenas M, Vappiani J, Nuzzo A, Ulrich JC, Becherer JD, Preugschat F, Stewart EL, Sévin DC, Kramer HF. Complementary NAD + replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet Muscle 2020; 10:30. [PMID: 33092650 PMCID: PMC7579925 DOI: 10.1186/s13395-020-00249-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disorder stemming from a loss of functional dystrophin. Current therapeutic options for DMD are limited, as small molecule modalities remain largely unable to decrease the incidence or mitigate the consequences of repetitive mechanical insults to the muscle during eccentric contractions (ECCs). METHODS Using a metabolomics-based approach, we observed distinct and transient molecular phenotypes in muscles of dystrophin-deficient MDX mice subjected to ECCs. Among the most chronically depleted metabolites was nicotinamide adenine dinucleotide (NAD), an essential metabolic cofactor suggested to protect muscle from structural and metabolic degeneration over time. We tested whether the MDX muscle NAD pool can be expanded for therapeutic benefit using two complementary small molecule strategies: provision of a biosynthetic precursor, nicotinamide riboside, or specific inhibition of the NAD-degrading ADP-ribosyl cyclase, CD38. RESULTS Administering a novel, potent, and orally available CD38 antagonist to MDX mice successfully reverted a majority of the muscle metabolome toward the wildtype state, with a pronounced impact on intermediates of the pentose phosphate pathway, while supplementing nicotinamide riboside did not significantly affect the molecular phenotype of the muscle. However, neither strategy sustainably increased the bulk tissue NAD pool, lessened muscle damage markers, nor improved maximal hindlimb strength following repeated rounds of eccentric challenge and recovery. CONCLUSIONS In the absence of dystrophin, eccentric injury contributes to chronic intramuscular NAD depletion with broad pleiotropic effects on the molecular phenotype of the tissue. These molecular consequences can be more effectively overcome by inhibiting the enzymatic activity of CD38 than by supplementing nicotinamide riboside. However, we found no evidence that either small molecule strategy is sufficient to restore muscle contractile function or confer protection from eccentric injury, undermining the modulation of NAD metabolism as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- David W Frederick
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Alan V McDougal
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Melisa Semenas
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | | | - Andrea Nuzzo
- Target Sciences, Computational Biology, GlaxoSmithKline R&D, Collegeville, PA, USA
| | - John C Ulrich
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - J David Becherer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Frank Preugschat
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| | - Eugene L Stewart
- Computational Sciences, Molecular Design, GlaxoSmithKline R&D, Collegeville, PA, USA.
| | | | - H Fritz Kramer
- Muscle Metabolism Unit, GlaxoSmithKline R&D, Research Triangle Park, NC, Collegeville, PA, USA
| |
Collapse
|
46
|
Abstract
In this review, we focus on the metabolism of mammalian glycan-associated monosaccharides, where the vast majority of our current knowledge comes from research done during the 1960s and 1970s. Most monosaccharides enter the cell using distinct, often tissue specific transporters from the SLC2A family. If not catabolized, these monosaccharides can be activated to donor nucleotide sugars and used for glycan synthesis. Apart from exogenous and dietary sources, all monosaccharides and their associated nucleotide sugars can be synthesized de novo, using mostly glucose to produce all nine nucleotide sugars present in human cells. Today, monosaccharides are used as treatment options for a small number of rare genetic disorders and even some common conditions. Here, we cover therapeutic applications of these sugars and highlight biochemical gaps that must be revisited as we go forward.
Collapse
Affiliation(s)
- Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
47
|
Nickolls AR, Lee MM, Zukosky K, Mallon BS, Bönnemann CG. Human embryoid bodies as a 3D tissue model of the extracellular matrix and α-dystroglycanopathies. Dis Model Mech 2020; 13:dmm042986. [PMID: 32423971 PMCID: PMC7328151 DOI: 10.1242/dmm.042986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The basal lamina is a specialized sheet of dense extracellular matrix (ECM) linked to the plasma membrane of specific cell types in their tissue context, which serves as a structural scaffold for organ genesis and maintenance. Disruption of the basal lamina and its functions is central to many disease processes, including cancer metastasis, kidney disease, eye disease, muscular dystrophies and specific types of brain malformation. The latter three pathologies occur in the α-dystroglycanopathies, which are caused by dysfunction of the ECM receptor α-dystroglycan. However, opportunities to study the basal lamina in various human disease tissues are restricted owing to its limited accessibility. Here, we report the generation of embryoid bodies from human induced pluripotent stem cells that model the basal lamina. Embryoid bodies cultured via this protocol mimic pre-gastrulation embryonic development, consisting of an epithelial core surrounded by a basal lamina and a peripheral layer of ECM-secreting endoderm. In α-dystroglycanopathy patient embryoid bodies, electron and fluorescence microscopy reveal ultrastructural basal lamina defects and reduced ECM accumulation. By starting from patient-derived cells, these results establish a method for the in vitro synthesis of patient-specific basal lamina and recapitulate disease-relevant ECM defects seen in the α-dystroglycanopathies. Finally, we apply this system to evaluate an experimental ribitol supplement therapy on genetically diverse α-dystroglycanopathy patient samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alec R Nickolls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michelle M Lee
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristen Zukosky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Barbara S Mallon
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Badolia R, Ramadurai DKA, Abel ED, Ferrin P, Taleb I, Shankar TS, Krokidi AT, Navankasattusas S, McKellar SH, Yin M, Kfoury AG, Wever-Pinzon O, Fang JC, Selzman CH, Chaudhuri D, Rutter J, Drakos SG. The Role of Nonglycolytic Glucose Metabolism in Myocardial Recovery Upon Mechanical Unloading and Circulatory Support in Chronic Heart Failure. Circulation 2020; 142:259-274. [PMID: 32351122 DOI: 10.1161/circulationaha.119.044452] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Significant improvements in myocardial structure and function have been reported in some patients with advanced heart failure (termed responders [R]) following left ventricular assist device (LVAD)-induced mechanical unloading. This therapeutic strategy may alter myocardial energy metabolism in a manner that reverses the deleterious metabolic adaptations of the failing heart. Specifically, our previous work demonstrated a post-LVAD dissociation of glycolysis and oxidative-phosphorylation characterized by induction of glycolysis without subsequent increase in pyruvate oxidation through the tricarboxylic acid cycle. The underlying mechanisms responsible for this dissociation are not well understood. We hypothesized that the accumulated glycolytic intermediates are channeled into cardioprotective and repair pathways, such as the pentose-phosphate pathway and 1-carbon metabolism, which may mediate myocardial recovery in R. METHODS We prospectively obtained paired left ventricular apical myocardial tissue from nonfailing donor hearts as well as R and nonresponders at LVAD implantation (pre-LVAD) and transplantation (post-LVAD). We conducted protein expression and metabolite profiling and evaluated mitochondrial structure using electron microscopy. RESULTS Western blot analysis shows significant increase in rate-limiting enzymes of pentose-phosphate pathway and 1-carbon metabolism in post-LVAD R (post-R) as compared with post-LVAD nonresponders (post-NR). The metabolite levels of these enzyme substrates, such as sedoheptulose-6-phosphate (pentose phosphate pathway) and serine and glycine (1-carbon metabolism) were also decreased in Post-R. Furthermore, post-R had significantly higher reduced nicotinamide adenine dinucleotide phosphate levels, reduced reactive oxygen species levels, improved mitochondrial density, and enhanced glycosylation of the extracellular matrix protein, α-dystroglycan, all consistent with enhanced pentose-phosphate pathway and 1-carbon metabolism that correlated with the observed myocardial recovery. CONCLUSIONS The recovering heart appears to direct glycolytic metabolites into pentose-phosphate pathway and 1-carbon metabolism, which could contribute to cardioprotection by generating reduced nicotinamide adenine dinucleotide phosphate to enhance biosynthesis and by reducing oxidative stress. These findings provide further insights into mechanisms responsible for the beneficial effect of glycolysis induction during the recovery of failing human hearts after mechanical unloading.
Collapse
Affiliation(s)
- Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Dinesh K A Ramadurai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes and Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City (E.D.A.)
| | - Peter Ferrin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Aspasia Thodou Krokidi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Stephen H McKellar
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Michael Yin
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Abdallah G Kfoury
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Omar Wever-Pinzon
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - James C Fang
- Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Craig H Selzman
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.)
| | - Jared Rutter
- Department of Biochemistry, University of Utah and Howard Hughes Medical Institute, Salt Lake City (J.R.)
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City (R.B., D.K.A.R., P.F., I.T., T.S.S., A.T.K., S.N., C.H.S., D.C., S.G.D.).,Utah Transplant Affiliated Hospitals Cardiac Transplant Program, University of Utah Healthcare and School of Medicine Intermountain Medical Center, Salt Lake VA Health Care System, Salt Lake City (R.B., I.T., S.H.M., M.Y., A.G.K., O.W.-P., J.C.F., C.H.S., S.G.D.)
| |
Collapse
|
49
|
Azzag K, Ortiz-Cordero C, Oliveira NAJ, Magli A, Selvaraj S, Tungtur S, Upchurch W, Iaizzo PA, Lu QL, Perlingeiro RCR. Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 2I. Skelet Muscle 2020; 10:10. [PMID: 32321586 PMCID: PMC7175515 DOI: 10.1186/s13395-020-00228-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Defects in α-dystroglycan (DG) glycosylation characterize a group of muscular dystrophies known as dystroglycanopathies. One of the key effectors in the α-DG glycosylation pathway is the glycosyltransferase fukutin-related protein (FKRP). Mutations in FKRP lead to a large spectrum of muscular dystrophies, including limb girdle muscular dystrophy 2I (LGMD2I). It remains unknown whether stem cell transplantation can promote muscle regeneration and ameliorate the muscle wasting phenotype associated with FKRP mutations. RESULTS Here we transplanted murine and human pluripotent stem cell-derived myogenic progenitors into a novel immunodeficient FKRP-mutant mouse model by intra-muscular injection. Upon both mouse and human cell transplantation, we observe the presence of donor-derived myofibers even in absence of pre-injury, and the rescue of α-DG functional glycosylation, as shown by IIH6 immunoreactivity. The presence of donor-derived cells expressing Pax7 under the basal lamina is indicative of satellite cell engraftment, and therefore, long-term repopulation potential. Functional assays performed in the mouse-to-mouse cohort revealed enhanced specific force in transplanted muscles compared to PBS-injected controls. CONCLUSIONS Altogether, our data demonstrate for the first time the suitability of a cell-based therapeutic approach to improve the muscle phenotype of dystrophic FKRP-mutant mice.
Collapse
Affiliation(s)
- Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Carolina Ortiz-Cordero
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nelio A J Oliveira
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Sridhar Selvaraj
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA
| | - Weston Upchurch
- Visible Heart Laboratories, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Iaizzo
- Visible Heart Laboratories, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, North Carolina, NC, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-128 CCRB, 2231 6th St. SE, Minneapolis, MN, 55455, USA.
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
50
|
Ribitol enhances matriglycan of α-dystroglycan in breast cancer cells without affecting cell growth. Sci Rep 2020; 10:4935. [PMID: 32188898 PMCID: PMC7080755 DOI: 10.1038/s41598-020-61747-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
The laminin-binding glycan (matriglycan) on α-dystroglycan (α-DG) enables diverse roles, from neuronal development to muscle integrity. Reduction or loss of matriglycan has also been implicated in cancer development and metastasis, and specifically associated with high-grade tumors and poor prognoses in breast cancers. Hyperglycosylation of α-DG with LARGE overexpression is shown to inhibit cancer cell growth and tumorigenicity. We recently demonstrated that ribitol, considered to be a metabolic end-product, enhances matriglycan expression in dystrophic muscles in vivo. In the current study, we tested the hypothesis that ribitol could also enhance matriglycan expression in cancer cells. Our results showed for the first time that ribitol is able to significantly enhance the expression of matriglycan on α-DG in breast cancer cells. The ribitol effect is associated with an increase in levels of CDP-ribitol, the substrate for the ribitol-5-phosphate transferases FKRP and FKTN. Direct use of CDP-ribitol is also effective for matriglycan expression. Ribitol treatment does not alter the expression of FKRP, FKTN as well as LARGEs and ISPD which are critical for the synthesis of matriglycan. The results suggest that alteration in substrates could also be involved in regulation of matriglycan expression. Interestingly, expression of matriglycan is related to cell cycle progression with highest levels in S and G2 phases and ribitol treatment does not alter the pattern. Although matriglycan up-regulation does not affect cell cycle progression and proliferation of the cancer cells tested, the novel substrate-mediated treatment opens a new approach easily applicable to experimental systems in vivo for further exploitation of matriglycan expression in cancer progression and for therapeutic potential.
Collapse
|