1
|
Blackburn PR, Eldomery MK, Pastor Loyola V, Shi Z, Arnoldo A, Malik F, Santiago T, Chami R. Novel ACTB::FER Promoter Swap Fusion Characterizes Rare Superficial Myoid/Myofibroblastic Tumors. Genes Chromosomes Cancer 2025; 64:e70050. [PMID: 40346937 PMCID: PMC12065055 DOI: 10.1002/gcc.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025] Open
Abstract
Pediatric fibroblastic, myofibroblastic, and myoid tumors encompass several entities, many with characteristic gene fusions that are now emerging as molecularly defined tumor groups. Here, we present two cases of spindle cell neoplasms with novel ACTB::FER promoter swap fusions. Both tumors presented in the extremities of pediatric patients (9-year-old and 6-year-old females) as superficial skin nodules with slow growth. Histologically, both tumors showed monomorphic spindle cell proliferation in short fascicles, but without significantly increased mitotic activity, high-grade atypia, or necrosis. Both cases showed diffuse positivity for SMA with patchy desmin expression. RNA sequencing confirmed fusion breakpoints, revealing transcriptional upregulation of FER. Neither patient has had evidence of interval growth or recurrence to date. While the biological significance of ACTB::FER fusions remains unclear, their recurrence and the absence of other clear oncogenic drivers suggest a distinct molecular pathway that may define a novel entity. Fusions of ACTB and FER genes with different partners have been observed in rare aggressive mesenchymal tumors; however, the ACTB::FER promoter swap fusion is currently unrecognized in soft tissue tumors. We report the first two cases of soft tissue tumors harboring ACTB::FER fusions and expand the molecular spectrum of mesenchymal tumors with kinase gene alterations. Further, we highlight the importance of target-agnostic approaches for the detection of rare kinase fusions, which may not be included on targeted next-generation sequencing panels.
Collapse
Affiliation(s)
| | | | | | - Zonggao Shi
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Anthony Arnoldo
- Division of PathologyThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Faizan Malik
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Teresa Santiago
- Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Rose Chami
- Division of PathologyThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
2
|
Keller P, Dawood M, Chohan BS, Minhas FUAA. HistoKernel: Whole slide image level Maximum Mean Discrepancy kernels for pan-cancer predictive modelling. Med Image Anal 2025; 101:103491. [PMID: 39938344 DOI: 10.1016/j.media.2025.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
In computational pathology, labels are typically available only at the whole slide image (WSI) or patient level, necessitating weakly supervised learning methods that aggregate patch-level features or predictions to produce WSI-level scores for clinically significant tasks such as cancer subtype classification or survival analysis. However, existing approaches lack a theoretically grounded framework to capture the holistic distributional differences between the patch sets within WSIs, limiting their ability to accurately and comprehensively model the underlying pathology. To address this limitation, we introduce HistoKernel, a novel WSI-level Maximum Mean Discrepancy (MMD) kernel designed to quantify distributional similarity between WSIs using their local feature representation. HistoKernel enables a wide range of applications, including classification, regression, retrieval, clustering, survival analysis, multimodal data integration, and visualization of large WSI datasets. Additionally, HistoKernel offers a novel perturbation-based method for patch-level explainability. Our analysis over large pan-cancer datasets shows that HistoKernel achieves performance that typically matches or exceeds existing state-of-the-art methods across diverse tasks, including WSI retrieval (n = 9324), drug sensitivity regression (n = 551), point mutation classification (n = 3419), and survival analysis (n = 2291). By pioneering the use of kernel-based methods for a diverse range of WSI-level predictive tasks, HistoKernel opens new avenues for computational pathology research especially in terms of rapid prototyping on large and complex computational pathology datasets. Code and interactive visualization are available at: https://histokernel.dcs.warwick.ac.uk/.
Collapse
Affiliation(s)
- Piotr Keller
- Tissue Image Analytics Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Muhammad Dawood
- Tissue Image Analytics Centre, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Brinder Singh Chohan
- Department of Cellular Pathology, Royal Derby Hospital, Derby, DE22 3NE, United Kingdom
| | | |
Collapse
|
3
|
Debortoli E, McGahan E, Yanes T, Berkman J, Fuentes-Bolanos N, Milch V, Steinberg J, McInerney-Leo A. Utility of genomic testing in children, adolescents, and young adults with cancer. J Natl Cancer Inst 2025; 117:601-610. [PMID: 39312684 DOI: 10.1093/jnci/djae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Genomic testing can inform the diagnosis and personalize management of cancers in children, adolescents, and young adults (CAYA). This scoping review explored the clinical utility and impact of genomic testing in general CAYA cancer cohorts. Relevant records published in English between 2017 and 2024 were identified by searching PubMed. 36 studies (32 original articles; 4 reviews) were identified on genomic testing in CAYA cancers, most of which were advanced cancers. Studies internationally reported that approximately 16%-18% of CAYAs with cancer carry an associated pathogenic germline variant where 40% are de novo, and can guide treatment (eg, DNA repair gene variants). Somatic variants, predominantly copy number or structural rearrangements, inform diagnosis in up to 95% of primary cancers. Between 18% and 69% of patients have a somatic variant with a matched therapy, but only one third receive the genomic-guided recommendation, predominantly due to declining patient condition. Few studies evaluated the impact of matched therapies on response and survival. Combining comprehensive DNA and RNA sequencing maximises sensitivity. Circulating tumour DNA was detected in most primary cancers and shows high concordance with tumour tissue. In conclusion, genomic testing of CAYA cancers is feasible, informs diagnoses and guides personalised care. Further research is needed on response to genomic-guided treatments.
Collapse
Affiliation(s)
- Emily Debortoli
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Ella McGahan
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Tatiane Yanes
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Jennifer Berkman
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| | - Noemi Fuentes-Bolanos
- School of Clinical Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
- Children's Cancer Institute, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Vivienne Milch
- Cancer Australia, Sydney, NSW, Australia
- Caring Futures Institute, Flinders University, Adelaide, SA, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Aideen McInerney-Leo
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Malik F, Eldomery MK, Wang W, Gheorghe G, Khanlari M. Myeloid sarcomas with CBFA2T3 : GLIS2 fusion: clinicopathologic characterization of 4 cases mimicking small round cell tumors. Am J Clin Pathol 2025; 163:377-387. [PMID: 39418128 DOI: 10.1093/ajcp/aqae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES Acute myeloid leukemia with CBFA2T3::GLIS2 fusion can initially present as extramedullary lesions (myeloid sarcoma), leading to a misdiagnosis of nonhematologic pediatric solid tumors. METHODS We characterized the clinicopathologic features of 4 cases of CBFA2T3::GLIS2 fusion-positive myeloid sarcoma in pediatric patients where the sarcoma presented either without leukemic involvement (isolated myeloid sarcoma; 3/4 [75%]) or had concurrent leukemic disease (1/4 [25%]). RESULTS All cases mimicked nonhematopoietic tumors at morphologic and immunophenotypic levels, so the initial evaluation did not raise suspicion for acute myeloid leukemia/myeloid sarcoma. After extensive workup, however, including molecular studies, the diagnosis of myeloid sarcoma with CBFA2T3::GLIS2 fusion was rendered. CONCLUSIONS This study highlights the need for a high suspicion index of GLIS2-rearranged myeloid sarcoma in the differential diagnosis of pediatric small round cell tumors in tissue biopsies and the application of adequate workup to avoid misdiagnosing this entity.
Collapse
MESH Headings
- Humans
- Sarcoma, Myeloid/genetics
- Sarcoma, Myeloid/pathology
- Sarcoma, Myeloid/diagnosis
- Diagnosis, Differential
- Female
- Male
- Child
- Oncogene Proteins, Fusion/genetics
- Child, Preschool
- Adolescent
- Sarcoma, Small Cell/diagnosis
- Sarcoma, Small Cell/genetics
- Sarcoma, Small Cell/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Faizan Malik
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mohammad K Eldomery
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Wei Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, US
| | - Gabriela Gheorghe
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| | - Mahsa Khanlari
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, US
| |
Collapse
|
5
|
Seidmann L, Wingerter A, Oliver Metzig M, Bornas A, El Malki K, Ustjanzew A, Ortmüller F, Kamyshanskiy Y, Kindler T, Laible M, Mohr X, Henninger N, Russo A, Beck O, Alt F, Wehling P, Roth W, Paret C, Faber J. The Chimeric Antigen Receptor T Cell Target Claudin 6 Is a Marker for Early Organ-Specific Epithelial Progenitors and Is Expressed in Some Pediatric Solid Tumor Entities. Cancers (Basel) 2025; 17:920. [PMID: 40149257 PMCID: PMC11940025 DOI: 10.3390/cancers17060920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The oncofetal membrane protein Claudin 6 (CLDN6) is an attractive target for T cell-based therapies. There is a lack of detailed analyses on the age-dependent expression of CLDN6 in normal tissues is lacking, which limits the expansion of CLDN6 CAR-T cell clinical trials to pediatric populations. Methods: We analyzed CLDN6 expression in extracranial solid tumors and normal tissues of children using RNA-sequencing data from over 500 pediatric solid tumor samples, qRT-PCR and immunohistochemistry (IHC) in more than 100 fresh-frozen tumor samples and, approximately, 250 formalin-fixed paraffin-embedded (FFPE) samples. We examined normal tissue expression via qRT-PCR in 32 different infant tissues and via IHC in roughly 290 tissues from donors across four age groups, as well as in fetal autopsy samples. Results: In fetal tissues, we detected CLDN6 expression primarily in the epithelial cells of several organs, including the skin, lungs, kidneys, intestinal tract, and pancreas, but not in undifferentiated blastemal cells. Postnatally, we found CLDN6-positive epithelial progenitors only during the first few weeks of life. In older-age groups, isolated clusters of CLDN6-positive progenitors were present, but in scarce quantities. In tumor tissues, we found strong and homogeneous CLDN6 expression in desmoplastic small round cell tumors and germ cell tumors. Wilms tumors demonstrated heterogeneous CLDN6 expression, notably absent in the blastemal component. Conclusions: These findings highlight an organ-specific presence of CLDN6-positive epithelial precursors that largely disappear in terminally differentiated epithelia within weeks after birth. Therefore, our data support CLDN6 as a viable therapeutic target in pediatric patients and justify their inclusion in basket studies for anti-CLDN6-based therapies.
Collapse
Affiliation(s)
- Larissa Seidmann
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Marie Oliver Metzig
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
| | - Angelina Bornas
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Khalifa El Malki
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Franziska Ortmüller
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Yevgeniy Kamyshanskiy
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Thomas Kindler
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- TRON-Translational Oncology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Xenia Mohr
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Nicole Henninger
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Olaf Beck
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Francesca Alt
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Pia Wehling
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Claudia Paret
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Research Center for Immunotherapy (FZI), 55131 Mainz, Germany
| | - Jörg Faber
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON), 55131 Mainz, Germany
- Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- University Cancer Center (UCT), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- German Cancer Consortium (DKTK), Site Frankfurt/Mainz, Germany, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Sookdeo J, Wang L, Bishop MW, Grieve L, Perrino M, Abdelhafeez AH, Khalatbari H, Malik F, Koo SC. SMARCA4-deficient primary bone sarcoma with "teratoid" features in a rhabdoid tumor predisposition syndrome patient. Virchows Arch 2025; 486:611-616. [PMID: 39112597 DOI: 10.1007/s00428-024-03887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 12/11/2024]
Abstract
SMARCA4 is a catalytic subunit of the SWItch/sucrose non-fermentable (SWI/SNF) complex. Truncating SMARCA4 germline pathogenic variants (PVs) lead to rhabdoid tumor predisposition syndrome type 2 (RTPS2), associated with small cell carcinoma of ovary hypercalcemic type (SCCOHT) and pediatric rhabdoid tumors. To our knowledge, no primary bone neoplasm with SMARCA4 loss is reported in the literature. We describe a primary high-grade sarcoma in the femur of a 13-year-old patient with undocumented germline history and without other lesions. The tumor showed morphologic features reminiscent of a "teratocarcinosarcoma," including high-grade primitive spindle and round cell morphology, low-grade fibroblastic proliferation, high-grade glandular epithelium, and low-grade squamous and mucinous epithelium. The tumor showed diffuse loss of SMARCA4 immunoexpression. We subsequently identified a heterozygous nonsense SMARCA4 PV in the patient's germline, with copy-neutral loss of heterozygosity in the tumor. Our report expands the spectrum of SMARCA4-deficient tumors, with implications for germline tumor predisposition and surveillance.
Collapse
Affiliation(s)
- Jonathan Sookdeo
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael W Bishop
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - LilyAnne Grieve
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Perrino
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Hedieh Khalatbari
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Faizan Malik
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Gao Y, Xu Y, Dong Z, Guo Y, Luo J, Wang F, Yan L, Zou X. Endophytic Fungal Diversity and Its Interaction Mechanism with Medicinal Plants. Molecules 2025; 30:1028. [PMID: 40076252 PMCID: PMC11902086 DOI: 10.3390/molecules30051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
This paper reviewed the diversity of endophytic fungi and their interactions with medicinal plants, along with the research methodologies utilized to investigate these interactions. It mainly includes the diversity of endophytic fungi, as well as distribution diversity, species diversity, and the diversity of their metabolites and functions, including antibacterial, anti-inflammatory, anti-tumor, insecticidal, antioxidant capabilities, and so on. The research methodologies employed to investigate the interactions between endophytic fungi and medicinal plants are categorized into metagenomics, transcriptomics, metatranscriptomics, proteomics, and metabolomics. Furthermore, this study anticipates the potential applications of secondary metabolites derived from endophytic fungi in both medicine and agriculture.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Yan Xu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Zhijia Dong
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Yuyang Guo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Jianghan Luo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Fuling Wang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; (Y.X.); (Z.D.); (Y.G.); (J.L.); (F.W.); (L.Y.)
| | - Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, Harbin 150076, China
| |
Collapse
|
8
|
Xiao H, Wang J, Weng Z, Lin X, Shu M, Shen J, Sun P, Cai M, Xiang X, Li B, Wei L, Shi Y, Lai J, Kuang M, Yun J, Chen S, Peng S. A histopathology-based artificial intelligence system assisting the screening of genetic alteration in intrahepatic cholangiocarcinoma. Br J Cancer 2025; 132:195-202. [PMID: 39623041 PMCID: PMC11747625 DOI: 10.1038/s41416-024-02910-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Targeted therapy for intrahepatic cholangiocarcinoma (ICC) shows superior survival outcomes but patients with certain targetable alterations are no more than 20%. Genetic alteration screening for all ICC patients is of high cost and not routinely performed. This study intends to develop a histopathology-based artificial intelligence (AI)-assisted system for predicting genetic alteration of ICC. METHODS We constructed a Genetic Alteration Prediction (GAP) system based on multi-instance learning and self-supervised learning to predict genetic alterations using whole-slide images (WSIs) of H&E-stained slides. A total of 2069 WSIs from 232 ICC patients underwent surgery of the FAH-SYSU dataset were used for model construction and adjustment by five-fold cross-validation. Another 150 patients from three medical centres were used as independent external validations. We also compared the cost-effectiveness of GAP-assisted precise treatment and all-sequencing strategy to non-sequencing strategy. RESULTS The GAP was able to predict actionable genetic alterations of ICC, including FGFR2 and IDH. The area under the receiver operating characteristic curves (AUC) for FGFR2 and IDH were 0.754 and 0.713 in the internal dataset, and 0.724 and 0.656 in the external dataset, respectively. Furthermore, compared to giving chemotherapy without sequencing for every patient, GAP-assisted precise treatment could increase 1 progression-free quality-adjusted life month with a cost of $13871.72, the co-responding figure for all-sequencing strategy is $44538.93. Decision curve analysis showed that AI-assisted strategy provides better clinical benefits. CONCLUSIONS We constructed an AI-assisted genetic alteration screening system which is predictable to ICC actionable targets and has potential to assist precise targeted treatment of advanced ICC.
Collapse
Affiliation(s)
- Han Xiao
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongpeng Weng
- Department of Biology and Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxuan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxian Shen
- State Key Laboratory of Oncology in Southern China, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muyan Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao Xiang
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lihong Wei
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiyu Shi
- Department of CSE, University of Notre Dame, Notre Dame, IN, USA
| | - Jiaming Lai
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato‑Pancreato‑Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Shuling Chen
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Lei S, Jia S, Takalkar S, Chang TC, Ma X, Szlachta K, Xu K, Cheng Z, Hui Y, Koo SC, Mead PE, Gao Q, Kumar P, Bailey CP, Sunny J, Pappo AS, Federico SM, Robinson GW, Gajjar A, Rubnitz JE, Jeha S, Pui CH, Inaba H, Wu G, Klco JM, Tatevossian RG, Mullighan CG. Genomic profiling of circulating tumor DNA for childhood cancers. Leukemia 2025; 39:420-430. [PMID: 39523434 DOI: 10.1038/s41375-024-02461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The utility of circulating tumor DNA (ctDNA) analysis has not been well-established for disease detection and monitoring of childhood cancers, especially leukemias. We developed PeCan-Seq, a deep sequencing method targeting diverse somatic genomic variants in cell-free samples in childhood cancer. Plasma samples were collected at diagnosis from 233 children with hematologic, solid and brain tumors. All children with hematologic malignancy (n = 177) had detectable ctDNA at diagnosis. The median ctDNA fraction was 0.77, and 97% of 789 expected tumor variants were identified, including sequence mutations, copy number variations, and structural variations responsible for oncogenic fusions. In contrast, ctDNA was detected in 19 of 38 solid tumor patients and 1 of 18 brain tumor patients. Somatic variants from ctDNA were correlated with minimal residual disease levels as determined by flow cytometry in serial plasma samples from patients with B-cell acute lymphoblastic leukemia (B-ALL). We showcase multi-tumor detection by ctDNA analysis for a patient with concurrent B-ALL and neuroblastoma. In conclusion, PeCan-seq sensitively identified heterogeneous ctDNA alterations from 1 mL plasma for childhood hematologic malignancies and a subset of solid tumors. PeCan-seq provides a robust, non-invasive approach to augment comprehensive genomic profiling at diagnosis and mutation-specific detection during disease monitoring.
Collapse
Affiliation(s)
- Shaohua Lei
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujuan Jia
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sunitha Takalkar
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karol Szlachta
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhongshan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yawei Hui
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colin P Bailey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jobin Sunny
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Ruth G Tatevossian
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Wang L, Voss R, Pastor V, Cardenas M, Kumar P, Maciaszek J, Namwanje M, Ma J, Neary J, Jin M, Umeda M, Wilkinson M, Payne-Turner D, Eldomery M, Ma J, Gu J, Dalton J, Melton S, Liu YC, Foy S, Rusch M, Wheeler D, Zhang J, Nichols K, Karol S, Inaba H, Ribeiro R, Rubnitz J, Klco J. Integrated Whole Genome and Transcriptome Sequencing as a Framework for Pediatric and Adolescent AML Diagnosis and Risk Assessment. RESEARCH SQUARE 2025:rs.3.rs-5775959. [PMID: 39975890 PMCID: PMC11838756 DOI: 10.21203/rs.3.rs-5775959/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pediatric acute myeloid leukemia (AML) exhibits distinct genetic characteristics, including unique driver alterations and mutations with prognostic and therapeutic significance. Emerging rare, recurrent genetic abnormalities and their associations with outcomes emphasize the need for high-throughput molecular diagnostic tools. Whole genome sequencing (WGS) reliably detects key AML biomarkers such as structural variants, mutations, and copy number alterations. Whole transcriptome sequencing (WTS) complements WGS by uncovering oncogene expression patterns, allele-specific expression, and gene expression signatures. In this study, we describe an integrated WGS and WTS clinical workflow for routine pediatric AML diagnosis and present a systematic evaluation of its application compared to conventional cytogenetics and standard molecular diagnostic methods. Our findings demonstrate that the integrated WGS and WTS (iWGS-WTS) approach improves the identification of clinically relevant genetic alterations, enhancing precise disease classification and risk assessment. Moreover, with advancements in workflow and bioinformatics pipelines, the testing turnaround time can be optimized to meet the demands of clinical decision-making, positioning iWGS-WTS as a practical and superior alternative to traditional diagnostic methods in pediatric AML management.
Collapse
Affiliation(s)
- Lu Wang
- St Jude Children's Research Hospital
| | | | | | | | | | | | | | - Jing Ma
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | - Jiali Gu
- St Jude Children's Research Hospital
| | | | | | | | - Scott Foy
- St. Jude Children's Research Hospital
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Armendariz DA, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. Genome Biol 2025; 26:10. [PMID: 39825430 PMCID: PMC11740497 DOI: 10.1186/s13059-025-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Genetic studies have associated thousands of enhancers with breast cancer (BC). However, the vast majority have not been functionally characterized. Thus, it remains unclear how BC-associated enhancers contribute to cancer. RESULTS Here, we perform single-cell CRISPRi screens of 3513 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of > 500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of BC-associated enhancers disrupts breast cancer gene programs. We observe BC-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple BC-associated enhancers indirectly regulate TP53. Comparative studies illustrate subtype specific functions between enhancers in ER + and ER - cells. Finally, we develop the pySpade package to facilitate analysis of single-cell enhancer screens. CONCLUSIONS Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel A Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Present Address: Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
12
|
Blackburn PR, Lei S, Jia S, Tatevossian RG, Koo SC. Liquid Biopsy Detection of a TP53 Variant in a "Disease-Free" Pediatric Patient with a History of TP53-Mutant Adrenocortical Carcinoma. Clin Chem 2025; 71:24-28. [PMID: 39749516 DOI: 10.1093/clinchem/hvae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Shaohua Lei
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sujuan Jia
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruth G Tatevossian
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Clinical Biomarkers Laboratory, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
13
|
Yu S, Li W, Lin X, Chen L, Chen W, Guo L, Shu Y. Genetic analysis of patients with low-frequency non-syndromic hearing loss. Mol Genet Genomics 2024; 300:5. [PMID: 39720982 DOI: 10.1007/s00438-024-02209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024]
Abstract
Low-frequency non-syndromic hearing loss (LFNSHL) is a rare auditory disorder affecting frequencies ≤ 2000 Hz. To elucidate its genetic basis, we conducted whole-exome sequencing on nine Chinese families (31 affected individuals) with LFNSHL. Four heterozygous pathogenic variants, including two novel variants, were identified in common LFNSHL-related genes (WFS1, DIAPH1) and less common genes (TNC, EYA4), achieving a 44% genetic diagnosis rate. All genetically diagnosed patients had early adulthood-onset hearing loss except for one WFS1 variant case, and all exhibited progressive hearing loss. Our findings indicate that LFNSHL is predominantly inherited in an autosomal dominant manner. Further review showed that WFS1 mutations typically cause childhood-onset LFNSHL, while DIAPH1 and EYA4 mutations result in adulthood-onset LFNSHL; interestingly, WFS1 mutations generally progress to moderate hearing loss, milder than DIAPH1, TNC, and EYA4 mutations. Additionally, tinnitus was more prevalent in patients with WFS1, DIAPH1, and EYA4 mutations than those with TNC mutations. Notably, hearing loss deteriorated at all frequencies, becoming markedly severe after age 50 for TNC and WFS1 mutations, and after age 40 for EYA4 mutations. Mutations in WFS1 were predominantly missense, with the p.Ser807 codon and the protein's C-terminal intracytoplasmic domain identified as mutation hotspots. Comparative analysis revealed a higher incidence of bilateral symmetrical progressive LFNSHL in genetically diagnosed patients than those without. This study, the first to investigate LFNSHL genetics in a Chinese cohort, underscores the complex genetic landscape and phenotypic variability of LFNSHL, providing valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sha Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, 200031, China
| | - Weitao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, 200031, China
| | - Xinhao Lin
- Fudan University, Shanghai, 200032, China
| | - Liheng Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, 200031, China
| | - Wenxia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Luo Guo
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine, Shanghai, 200031, China.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fen Yang Road, Shanghai, 200031, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- NHC Key Laboratory of Hearing Medicine, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
14
|
Eldomery MK, Maciaszek JL, Cain T, Loyola VP, Mothi SS, Wheeler DA, Tang L, Wang L, Klco JM, Blackburn PR. Evaluation of Bayesian point-based system on the variant classification of hereditary cancer predisposition genes. Genet Med 2024; 26:101276. [PMID: 39306722 DOI: 10.1016/j.gim.2024.101276] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
PURPOSE To assess the differences in variant classifications using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology 2015 guidelines and the Bayesian point-based classification system (here referred to as the point system) in 115 hereditary cancer predisposition genes and explore variant sub-tiering by the point system. METHODS Germline variant classifications for 721 pediatric patients from an in-house panel were retrospectively evaluated using the 2 scoring systems. RESULTS A total of 2376 unique variants were identified, with ∼23.5% exhibiting discordant classifications. Unique variants classified by the point system demonstrated a lower rate of variants of uncertain significance (VUS; ∼15%) compared with American College of Medical Genetics and Genomics and the Association for Molecular Pathology 2015 guidelines (∼36%). This change is attributed to unique variants with 1 benign supporting evidence (∼12%) or 1 benign strong evidence (∼4%) being classified as likely benign by the point system. Additionally, variants with conflicting/modified evidence (∼5% of 2376) are also resolved by the point system. Sub-tiering unique variants classified by the point system as VUS (n = 354) indicates ∼77.4% were VUS-Low (0-1 points), whereas the remaining ∼22.6% were VUS-Mid (2-3 points) and VUS-High (4-5 points). CONCLUSION The point system reduces the VUS rate and facilitates their sub-tiering. Future large-scale studies are warranted to explore the impact of the point system on improving VUS reporting and/or VUS clinical management.
Collapse
Affiliation(s)
- Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN.
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Taylor Cain
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Victor Pastor Loyola
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Suraj Sarvode Mothi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | - Li Tang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
15
|
Ma W, Tang W, Kwok JS, Tong AH, Lo CW, Chu AT, Chung BH, Hong Kong Genome Project. A review on trends in development and translation of omics signatures in cancer. Comput Struct Biotechnol J 2024; 23:954-971. [PMID: 38385061 PMCID: PMC10879706 DOI: 10.1016/j.csbj.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, proteomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical applications to improve diagnosis, prognosis, and treatment decision in cancer patients.
Collapse
Affiliation(s)
- Wei Ma
- Hong Kong Genome Institute, Hong Kong, China
| | - Wenshu Tang
- Hong Kong Genome Institute, Hong Kong, China
| | | | | | | | | | - Brian H.Y. Chung
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Kong Genome Project
- Hong Kong Genome Institute, Hong Kong, China
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Park JH, Lim JH, Kim S, Kim CH, Choi JS, Lim JH, Kim L, Chang JW, Park D, Lee MW, Kim S, Park IS, Han SH, Shin E, Roh J, Heo J. Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images. J Pathol Clin Res 2024; 10:e70004. [PMID: 39358807 PMCID: PMC11446692 DOI: 10.1002/2056-4538.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarcinoma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under the receiver operating characteristic curve of 0.7680 (0.7607-0.7720) and an area under the precision-recall curve of 0.8391 (0.8326-0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis. Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respectively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of our model and suggest that it can provide crucial information for rapid screening and treatment plans.
Collapse
Affiliation(s)
- Jun Hyeong Park
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - June Hyuck Lim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seonhwa Kim
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jun Hyeok Lim
- Division of Pulmonology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Lucia Kim
- Department of Pathology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Dongil Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Critical Care Medicine, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Myung-Won Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Il-Seok Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Seung Hoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Dontan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Eun Shin
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jin Roh
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaesung Heo
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
17
|
Owens CEL, Tan O, Kuroiwa-Trzmielina J, Shrestha RN, O'Brien T, Tyrrell V, Schofield DJ. The economic costs of precision medicine for clinical translational research among children with high-risk cancer. NPJ Precis Oncol 2024; 8:224. [PMID: 39367129 PMCID: PMC11452525 DOI: 10.1038/s41698-024-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Embedding precision medicine in paediatric oncology shows promise to have a positive impact on how children with cancer will be treated in the future. While there are a number of studies of precision medicine in childhood cancer, there is limited evidence available on the cost of implementing the related testing. This is the first Australian study that systematically measures the cost of using precision medicine in the care of high-risk childhood cancers, through the Zero Childhood Cancer Precision Medicine Programme. In 2021 Australian dollars, the estimated costs inclusive of genomic and preclinical testing were: (A) $12,743 per patient for access; (B) $14,262 per identification of molecular cause; and (C) $21,769 per MTB recommendation. The information gained supports the understanding of the cost of reporting clinically significant outcomes relevant to the biology of the tumour, diagnosis, prognosis and potentially improving clinical management for a child.
Collapse
Affiliation(s)
- Christopher E L Owens
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Owen Tan
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | | | - Rupendra N Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia.
| | - Tracey O'Brien
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Deborah J Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Zelley K, Schienda J, Gallinger B, Kohlmann WK, McGee RB, Scollon SR, Schneider KW. Update on Genetic Counselor Practice and Recommendations for Pediatric Cancer Predisposition Evaluation and Surveillance. Clin Cancer Res 2024; 30:3983-3989. [PMID: 39037753 DOI: 10.1158/1078-0432.ccr-24-1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
In July 2023, the American Association for Cancer Research held the second Childhood Cancer Predisposition Workshop, at which international experts in pediatric cancer predisposition met to update the previously published 2017 consensus statements on pediatric cancer predisposition syndromes. Since 2017, advances in tumor and germline genetic testing and increased understanding of cancer predisposition in patients with pediatric cancer have led to significant changes in clinical care. Here, we provide an updated genetic counseling framework for pediatric oncology professionals. The framework includes referral indications and timing, somatic and germline genetic testing options, testing for adult-onset cancer predisposition syndromes in children with and without cancer, evolving genetic counseling models to meet the increased demand for genetic testing, barriers to cancer genetic testing and surveillance in children, and psychosocial and equity considerations regarding cancer genetic testing and surveillance in children. Adaptable genetic counseling services are needed to provide support to pediatric oncology provider teams and diverse patients with pediatric cancer, cancer predisposition, and their families.
Collapse
Affiliation(s)
- Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Bailey Gallinger
- Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Wendy K Kohlmann
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Rose B McGee
- Division of Cancer Predisposition, Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah R Scollon
- Division of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas
| | - Kami Wolfe Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Children's Hospital of Colorado, Aurora, Colorado
| |
Collapse
|
19
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey ALW, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A Pan-Cancer Gene Panel for Childhood Malignancies to Enhance Cancer Monitoring and Early Detection. Clin Cancer Res 2024; 30:4100-4114. [PMID: 39047169 PMCID: PMC11393547 DOI: 10.1158/1078-0432.ccr-24-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE The purpose of the study was to design a pan-cancer gene panel for childhood malignancies and validate it using clinically characterized patient samples. EXPERIMENTAL DESIGN In addition to 5,275 coding exons, SJPedPanel also covers 297 introns for fusions/structural variations and 7,590 polymorphic sites for copy-number alterations. Capture uniformity and limit of detection are determined by targeted sequencing of cell lines using dilution experiment. We validate its coverage by in silico analysis of an established real-time clinical genomics (RTCG) cohort of 253 patients. We further validate its performance by targeted resequencing of 113 patient samples from the RTCG cohort. We demonstrate its power in analyzing low tumor burden specimens using morphologic remission and monitoring samples. RESULTS Among the 485 pathogenic variants reported in RTCG cohort, SJPedPanel covered 86% of variants, including 82% of 90 rearrangements responsible for fusion oncoproteins. In our targeted resequencing cohort, 91% of 389 pathogenic variants are detected. The gene panel enabled us to detect ∼95% of variants at allele fraction (AF) 0.5%, whereas the detection rate is ∼80% at AF 0.2%. The panel detected low-frequency driver alterations from morphologic leukemia remission samples and relapse-enriched alterations from monitoring samples, demonstrating its power for cancer monitoring and early detection. CONCLUSIONS SJPedPanel enables the cost-effective detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions by targeted sequencing of ∼0.15% of human genome for childhood malignancies. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
Affiliation(s)
- Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Vidya Balagopal
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anna L W Huskey
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhikai Liang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Joy Nakitandwe
- Department of Pathology and Laboratory Medicine, Diagnostics Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Maria Namwanje
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jamie Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Saradhi Mallampati
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
20
|
Lee JC, Koo SC, Furtado LV, Breuer A, Eldomery MK, Bag AK, Stow P, Rose G, Larkin T, Sances R, Kleinschmidt-DeMasters BK, Bodmer JL, Willard N, Gokden M, Dahiya S, Roberts K, Bertrand KC, Moreira DC, Robinson GW, Mo JQ, Ellison DW, Orr BA. Concurrent ependymal and ganglionic differentiation in a subset of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement. Acta Neuropathol Commun 2024; 12:143. [PMID: 39228008 PMCID: PMC11370057 DOI: 10.1186/s40478-024-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 09/05/2024] Open
Abstract
Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.
Collapse
Affiliation(s)
- Julieann C Lee
- Department of Pathology, Neuropathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Selene C Koo
- Department of Pathology, Molecular Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Larissa V Furtado
- Department of Pathology, Molecular Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alex Breuer
- Department of Pathology, Molecular Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad K Eldomery
- Department of Pathology, Molecular Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Asim K Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pat Stow
- Department of Pathology, Molecular Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gary Rose
- Department of Pathology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Trisha Larkin
- Department of Pediatrics, St. Joseph's Hospital, Tampa, FL, USA
| | - Rick Sances
- Department of Pathology, East TN Children's Hospital, Knoxville, TN, USA
| | | | - Jenna L Bodmer
- Department of Pathology, University of Colorado, Denver, CO, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado, Denver, CO, USA
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Kaleigh Roberts
- Division of Neuropathology, Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Kelsey C Bertrand
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Moreira
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, Division of Neuro-Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, CA, USA
| | - David W Ellison
- Department of Pathology, Neuropathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Brent A Orr
- Department of Pathology, Neuropathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| |
Collapse
|
21
|
Anelo OM, Ma J, Neary JL, Koo SC, Inaba H, Pinto SN, Nguyen NT, Hoang TN, Bui LN, Klco JM, Gheorghe G, Blackburn PR. Pediatric Erythroid Sarcoma Diagnostically Confirmed by Identification of a Recurrent NFIA::CBFA2T3 Fusion. Genes Chromosomes Cancer 2024; 63:e23251. [PMID: 38884198 DOI: 10.1002/gcc.23251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Erythroid sarcoma (ES) is exceedingly rare in the pediatric population with only a handful of reports of de novo cases, mostly occurring in the central nervous system (CNS) or orbit. It is clinically and pathologically challenging and can masquerade as a nonhematopoietic small round blue cell tumor. Clinical presentation of ES without bone marrow involvement makes diagnosis particularly difficult. We describe a 22-month-old female with ES who presented with a 2-cm mass involving the left parotid region and CNS. The presence of crush/fixation artifact from the initial biopsy made definitive classification of this highly proliferative and malignant neoplasm challenging despite an extensive immunohistochemical workup. Molecular studies including RNA-sequencing revealed a NFIA::CBFA2T3 fusion. This fusion has been identified in several cases of de novo acute erythroid leukemia (AEL) and gene expression analysis comparing this case to other AELs revealed a similar transcriptional profile. Given the diagnostically challenging nature of this tumor, clinical RNA-sequencing was essential for establishing a diagnosis.
Collapse
Affiliation(s)
- Obianuju Mercy Anelo
- Department of Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jennifer L Neary
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Soniya N Pinto
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nga Thi Nguyen
- Pediatric Oncology Center, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Thach Ngoc Hoang
- Pathology Department, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Lan Ngoc Bui
- Pediatric Oncology Center, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gabriela Gheorghe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
22
|
Yang M, Gunnarsson R, Duployez N, Zaliova M, Zuna J, Johansson B, Paulsson K. Postnatal origin of the chromosomal gains in older patients with high hyperdiploid acute lymphoblastic leukemia. Haematologica 2024; 109:1951-1955. [PMID: 38356456 PMCID: PMC11141671 DOI: 10.3324/haematol.2023.284128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Minjun Yang
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund
| | - Rebeqa Gunnarsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund
| | - Nicolas Duployez
- Laboratory of Hematology, Centre Hospitalier Universitaire (CHU) Lille, University of Lille, INSERM Unite 1277 Canther, Lille
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic; Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic; Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Bertil Johansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden; Department of Clinical Genetics and Pathology, Office for Medical Services, Region Skane, Lund
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund.
| |
Collapse
|
23
|
Ma J, Liu YC, Voss RK, Ma J, Palagani A, Caldwell E, Rosikiewicz W, Cardenas M, Foy S, Umeda M, Wilkinson MR, Inaba H, Klco JM, Rubnitz JE, Wang L. Genomic and global gene expression profiling in pediatric and young adult acute leukemia with PICALM::MLLT10 Fusion. Leukemia 2024; 38:981-990. [PMID: 38429501 PMCID: PMC11896021 DOI: 10.1038/s41375-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
PICALM MLLT10 fusion is a rare but recurrent genetic driver in acute leukemias. To better understand the genomic landscape of PICALM::MLLT10 (PM) positive acute leukemia, we performed genomic profiling and gene expression profiling in twenty PM-positive patients, including AML (n = 10), T-ALL/LLy (n = 8), Mixed-phenotype acute leukemia (MPAL), T/B (n = 1) and acute undifferentiated leukemia (AUL) (n = 1). Besides confirming the known activation of HOXA, differential gene expression analysis compared to hematopoietic stem cells demonstrated the enrichment of genes associated with cell proliferation-related pathways and relatively high expression of XPO1 in PM-AML and PM-T-ALL/LLy. Our study also suggested PHF6 disruption as a key cooperating event in PICALM::MLLT10-positive leukemias. In addition, we demonstrated differences in gene expression profiles as well as remarkably different spectra of co-occurring mutations between PM-AML and PM-T-ALL/LLy. Alterations affecting TP53 and NF1, hallmarks of PM-AML, are strongly associated with disease progression and relapse, whereas EZH2 alterations are highly enriched in PM-T-ALL/LLy. This comprehensive genomic and transcriptomic profiling provides insights into the pathogenesis and development of PICALM::MLLT10 positive acute leukemia.
Collapse
Affiliation(s)
- Jingqun Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca K Voss
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Palagani
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elizabeth Caldwell
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maria Cardenas
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
24
|
Ragnarsson C, Yang M, Moura-Castro LH, Aydın E, Gunnarsson R, Olsson-Arvidsson L, Lilljebjörn H, Fioretos T, Duployez N, Zaliova M, Zuna J, Castor A, Johansson B, Paulsson K. Constitutional and acquired genetic variants in ARID5B in pediatric B-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2024; 63:e23242. [PMID: 38738968 DOI: 10.1002/gcc.23242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
Constitutional polymorphisms in ARID5B are associated with an increased risk of developing high hyperdiploid (HeH; 51-67 chromosomes) pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). Here, we investigated constitutional and somatic ARID5B variants in 1335 BCP ALL cases from five different cohorts, with a particular focus on HeH cases. In 353 HeH ALL that were heterozygous for risk alleles and trisomic for chromosome 10, where ARID5B is located, a significantly higher proportion of risk allele duplication was seen for the SNPs rs7090445 (p = 0.009), rs7089424 (p = 0.005), rs7073837 (p = 0.03), and rs10740055 (p = 0.04). Somatic ARID5B deletions were seen in 16/1335 cases (1.2%), being more common in HeH than in other genetic subtypes (2.2% vs. 0.4%; p = 0.002). The expression of ARID5B in HeH cases with genomic deletions was reduced, consistent with a functional role in leukemogenesis. Whole-genome sequencing and RNA-sequencing in HeH revealed additional somatic events involving ARID5B, resulting in a total frequency of 3.6% of HeH cases displaying a somatic ARID5B aberration. Overall, our results show that both constitutional and somatic events in ARID5B are involved in the leukemogenesis of pediatric BCP ALL, particularly in the HeH subtype.
Collapse
Affiliation(s)
- Charlotte Ragnarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Paediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Minjun Yang
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Efe Aydın
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Rebeqa Gunnarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Nicolas Duployez
- Laboratory of Haematology, Centre Hospitalier Universitaire (CHU) Lille, University of Lille, INSERM Unité 1277 Canther, Lille, France
| | - Marketa Zaliova
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University/University Hospital Motol, Prague, Czech Republic
- Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Anders Castor
- Department of Paediatrics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Walker M, Mayr EM, Koppermann ML, Terron A, Wagner Y, Kling C, Pfarr N. [Molecular pathological analysis through the ages]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:173-179. [PMID: 38619582 PMCID: PMC11045621 DOI: 10.1007/s00292-024-01326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Molecular pathological examinations of tumor samples encompass a wide range of diagnostic analyses. Especially in recent years, numerous new biomarkers have come to the forefront-the analysis of which is crucial for therapy decisions. OBJECTIVES Within the field of molecular pathology, the demands of next generation sequencing (NGS)-based requirements have experienced massive growth in recent years. To meet this demand, methods are constantly being adapted and further developed. The following sections aim to illuminate how this trend arises and which analyses are gaining importance. METHODS The article provides an overview of the essential nucleic acid-based analysis techniques in the field of massive parallel sequencing. Terms such as DNA- and RNA-based techniques, as well as the associated analysis methods, are described, particularly with regard to their use in routine molecular pathological diagnostics. RESULTS The breadth of genomic sequencing has been steadily growing in recent years, particularly due to the increasing relevance of personalized medicine, along with the rising approvals of targeted therapeutics. This necessitates, among other things, the analysis of new biomarkers. The diagnostics as part of interdisciplinary molecular tumor boards (MTB) are now based on large gene panels (> 1 megabase). Furthermore, through the "Modellvorhaben Genomsequenzierung" § 64e, whole exome or whole genome sequencing has been made available for oncological patients. Given these developments, it is evident that future analyses will require the integration of additional omics fields, such as whole transcriptome analysis, epigenomics, and proteomics. CONCLUSION The challenges of personalized medicine along with the necessity of simultaneously assessing numerous new biomarkers require the implementation and execution of new techniques in molecular pathology whose complexity is steadily increasing.
Collapse
Affiliation(s)
- Maria Walker
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Eva-Maria Mayr
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Mai-Lan Koppermann
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Ana Terron
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Yoko Wagner
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
| | - Charlotte Kling
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Heidelberg, Deutschland
| | - Nicole Pfarr
- Institut für Pathologie, Technische Universität München, Trogerstr. 18, 81675, München, Deutschland.
| |
Collapse
|
26
|
Hammad R, Nobre L, Ryall S, Arnoldo A, Siddaway R, Bennett J, Tabori U, Hawkins C. The Clinical Utility of a Tiered Approach to Pediatric Glioma Molecular Characterization for Resource-Limited Settings. JCO Glob Oncol 2024; 10:e2300269. [PMID: 38754050 DOI: 10.1200/go.23.00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Molecular characterization is key to optimally diagnose and manage cancer. The complexity and cost of routine genomic analysis have unfortunately limited its use and denied many patients access to precision medicine. A possible solution is to rationalize use-creating a tiered approach to testing which uses inexpensive techniques for most patients and limits expensive testing to patients with the highest needs. Here, we tested the utility of this approach to molecularly characterize pediatric glioma in a cost- and time-sensitive manner. METHODS We used a tiered testing pipeline of immunohistochemistry (IHC), customized fusion panels or fluorescence in situ hybridization (FISH), and targeted RNA sequencing in pediatric gliomas. Two distinct diagnostic algorithms were used for low- and high-grade gliomas (LGGs and HGGs). The percentage of driver alterations identified, associated testing costs, and turnaround time (TAT) are reported. RESULTS The tiered approach successfully characterized 96% (95 of 99) of gliomas. For 82 LGGs, IHC, targeted fusion panel or FISH, and targeted RNA sequencing solved 35% (29 of 82), 29% (24 of 82), and 30% (25 of 82) of cases, respectively. A total of 64% (53 of 82) of samples were characterized without targeted RNA sequencing. Of 17 HGG samples, 13 were characterized by IHC and four were characterized by targeted RNA sequencing. The average cost per sample was more affordable when using the tiered approach as compared with up-front targeted RNA sequencing in LGG ($405 US dollars [USD] v $745 USD) and HGGs ($282 USD v $745 USD). The average TAT per sample was also shorter using the tiered approach (10 days for LGG, 5 days for HGG v 14 days for targeted RNA sequencing). CONCLUSION Our tiered approach molecularly characterized 96% of samples in a cost- and time-sensitive manner. Such an approach may be feasible in neuro-oncology centers worldwide, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Rawan Hammad
- Haematology Department, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Liana Nobre
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- Division of Hematology, Oncology and Palliative Care, Department of Pediatrics, University of Alberta & Stollery Children's Hospital, Edmonton, Canada
| | - Scott Ryall
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
| | - Anthony Arnoldo
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Robert Siddaway
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
| | - Julie Bennett
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Uri Tabori
- Division of Pediatric Haematology Oncology, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Cynthia Hawkins
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumour Research Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Jacobs JE, Davis L, McWeeney S. Single nucleotide variants in nuclear pore complex disassembly pathway associated with poor survival in osteosarcoma. Front Genet 2024; 15:1303404. [PMID: 38562379 PMCID: PMC10982431 DOI: 10.3389/fgene.2024.1303404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The bone tumor, osteosarcoma, remains challenging to treat in children and young adults, especially when patients present with metastatic disease. Developing new therapies based on genomic data from sequencing projects has proven difficult given the lack of recurrent genetic lesions across tumors. MYC overexpression has been associated with poor outcomes in osteosarcoma. However, other genomic markers of disease severity are lacking. Materials and Methods We utilized whole genome sequencing of 106 tumors and matched normal controls in order to define genomic characteristics that correlate with overall survival. Single nucleotide variants were overlaid onto annotated molecular pathways in order to define aberrant pathway signatures specific to aggressive osteosarcoma. Additionally, we calculated differential gene expression in a subsample of 71 tumors. Differentially expressed genes were then queried for known MYC-responsive genes. Results Molecular pathways specific to nuclear pore complex disassembly (NPCD) show significant correlation with poor overall survival in osteosarcoma when mutations were present. Genes involved in immune response and immune regulation are enriched in the differential expression analysis of samples with and without NPCD pathway aberrations. Furthermore, neither MYC nor MYC-responsive genes show differential expression between NPCD-aberrant and non-aberrant groups. The NPCD pathway mutations are dominated by regulatory region variants rather than protein-altering mutations, suggesting that dysregulation of genetic regulatory networks may be the underlying mechanism for their relation to osteosarcoma phenotype. Discussion Overall survival is significantly worse in patients whose tumors show aberrations in the NPCD pathway. Moreover, this difference in survival is not driven by MYC-overexpression, suggesting a novel mechanism for some aggressive osteosarcomas. These findings add light to the evolving understanding of the drivers of osteosarcoma and may aid in the search for new treatments based on patient-specific genetic data.
Collapse
Affiliation(s)
- James E. Jacobs
- Oregon Health & Science University, Portland, OR, United States
| | | | | |
Collapse
|
28
|
Arslan S, Schmidt J, Bass C, Mehrotra D, Geraldes A, Singhal S, Hense J, Li X, Raharja-Liu P, Maiques O, Kather JN, Pandya P. A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images. COMMUNICATIONS MEDICINE 2024; 4:48. [PMID: 38491101 PMCID: PMC10942985 DOI: 10.1038/s43856-024-00471-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The objective of this comprehensive pan-cancer study is to evaluate the potential of deep learning (DL) for molecular profiling of multi-omic biomarkers directly from hematoxylin and eosin (H&E)-stained whole slide images. METHODS A total of 12,093 DL models predicting 4031 multi-omic biomarkers across 32 cancer types were trained and validated. The study included a broad range of genetic, transcriptomic, and proteomic biomarkers, as well as established prognostic markers, molecular subtypes, and clinical outcomes. RESULTS Here we show that 50% of the models achieve an area under the curve (AUC) of 0.644 or higher. The observed AUC for 25% of the models is at least 0.719 and exceeds 0.834 for the top 5%. Molecular profiling with image-based histomorphological features is generally considered feasible for most of the investigated biomarkers and across different cancer types. The performance appears to be independent of tumor purity, sample size, and class ratio (prevalence), suggesting a degree of inherent predictability in histomorphology. CONCLUSIONS The results demonstrate that DL holds promise to predict a wide range of biomarkers across the omics spectrum using only H&E-stained histological slides of solid tumors. This paves the way for accelerating diagnosis and developing more precise treatments for cancer patients.
Collapse
Affiliation(s)
| | | | | | - Debapriya Mehrotra
- Panakeia Technologies, London, UK
- Department of Pathology, Barking, Havering and Redbridge University NHS Trust, Romford, UK
| | | | - Shikha Singhal
- Panakeia Technologies, London, UK
- Department of Pathology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK
| | | | - Xiusi Li
- Panakeia Technologies, London, UK
| | | | - Oscar Maiques
- Cytoskeleton and Cancer Metastasis Group, Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
- Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, London, UK
| | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | | |
Collapse
|
29
|
Furtado LV, Cardenas M, Santiago T, Ruiz RE, Shi Z, Pappo A, Kacar M. Novel MED15::ATF1 fusion in a pediatric melanoma with spitzoid features and aggressive presentation. Genes Chromosomes Cancer 2024; 63:e23230. [PMID: 38459940 DOI: 10.1002/gcc.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/11/2024] Open
Abstract
Childhood melanoma is a rare and biologically heterogeneous pediatric malignancy. The differential diagnosis of pediatric melanoma is usually broad, including a wide variety of spindle cell or epithelioid neoplasms. Different molecular alterations affecting the MAPK and PI3K/AKT/mTOR pathways, tumor suppressor genes, and telomerase reactivation have been implicated in melanoma tumorigenesis and progression. Here, we report a novel MED15::ATF1 fusion in a pediatric melanoma with spitzoid features and an aggressive clinical course.
Collapse
Affiliation(s)
- Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Cardenas
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert E Ruiz
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zonggao Shi
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marija Kacar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
30
|
Kolekar P, Balagopal V, Dong L, Liu Y, Foy S, Tran Q, Mulder H, Huskey AL, Plyler E, Liang Z, Ma J, Nakitandwe J, Gu J, Namwanje M, Maciaszek J, Payne-Turner D, Mallampati S, Wang L, Easton J, Klco JM, Ma X. SJPedPanel: A pan-cancer gene panel for childhood malignancies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.27.23299068. [PMID: 38076942 PMCID: PMC10705664 DOI: 10.1101/2023.11.27.23299068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Background Large scale genomics projects have identified driver alterations for most childhood cancers that provide reliable biomarkers for clinical diagnosis and disease monitoring using targeted sequencing. However, there is lack of a comprehensive panel that matches the list of known driver genes. Here we fill this gap by developing SJPedPanel for childhood cancers. Results SJPedPanel covers 5,275 coding exons of 357 driver genes, 297 introns frequently involved in rearrangements that generate fusion oncoproteins, commonly amplified/deleted regions (e.g., MYCN for neuroblastoma, CDKN2A and PAX5 for B-/T-ALL, and SMARCB1 for AT/RT), and 7,590 polymorphism sites for interrogating tumors with aneuploidy, such as hyperdiploid and hypodiploid B-ALL or 17q gain neuroblastoma. We used driver alterations reported from an established real-time clinical genomics cohort (n=253) to validate this gene panel. Among the 485 pathogenic variants reported, our panel covered 417 variants (86%). For 90 rearrangements responsible for oncogenic fusions, our panel covered 74 events (82%). We re-sequenced 113 previously characterized clinical specimens at an average depth of 2,500X using SJPedPanel and recovered 354 (91%) of the 389 reported pathogenic variants. We then investigated the power of this panel in detecting mutations from specimens with low tumor purity (as low as 0.1%) using cell line-based dilution experiments and discovered that this gene panel enabled us to detect ∼80% variants with allele fraction of 0.2%, while the detection rate decreases to ∼50% when the allele fraction is 0.1%. We finally demonstrate its utility in disease monitoring on clinical specimens collected from AML patients in morphologic remission. Conclusions SJPedPanel enables the detection of clinically relevant genetic alterations including rearrangements responsible for subtype-defining fusions for childhood cancers by targeted sequencing of ∼0.15% of human genome. It will enhance the analysis of specimens with low tumor burdens for cancer monitoring and early detection.
Collapse
|
31
|
Umeda M, Ma J, Westover T, Ni Y, Song G, Maciaszek JL, Rusch M, Rahbarinia D, Foy S, Huang BJ, Walsh MP, Kumar P, Liu Y, Yang W, Fan Y, Wu G, Baker SD, Ma X, Wang L, Alonzo TA, Rubnitz JE, Pounds S, Klco JM. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat Genet 2024; 56:281-293. [PMID: 38212634 PMCID: PMC10864188 DOI: 10.1038/s41588-023-01640-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.
Collapse
Affiliation(s)
- Masayuki Umeda
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yonghui Ni
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie L Maciaszek
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Delaram Rahbarinia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Benjamin J Huang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Priyadarshini Kumar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd A Alonzo
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
32
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Huang D, Zhu X, Ye S, Zhang J, Liao J, Zhang N, Zeng X, Wang J, Yang B, Zhang Y, Lao L, Chen J, Xin M, Nie Y, Saw PE, Su S, Song E. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature 2024; 625:593-602. [PMID: 38093017 DOI: 10.1038/s41586-023-06834-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.
Collapse
Affiliation(s)
- Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianyou Liao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Zeng
- Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bing Yang
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Min Xin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biotherapy Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
34
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
35
|
Blackburn PR, McGee RB, Mostafavi R, Carroll AJ, Mikhail FM, Armstrong GT, Furtado LV, Chiang J, Wheeler DA, Carey SS, Nichols KE, Upadhyaya SA. Constitutional balanced translocations involving SMARCB1: A rare cause of rhabdoid tumor predisposition syndrome. Genes Chromosomes Cancer 2024; 63:e23195. [PMID: 37548271 DOI: 10.1002/gcc.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rose B McGee
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Roya Mostafavi
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Chiang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven S Carey
- Department of Hospitalist Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Santhosh A Upadhyaya
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
36
|
Furtado LV, Santiago T, Shi Z, Wang L, Liu YC, Gartrell J, Ruiz RE. Novel HNRNPM::LEUTX fusion resulting from chromothripsis of chromosome 19 in a pediatric undifferentiated small round cell neoplasm. Genes Chromosomes Cancer 2023; 62:740-745. [PMID: 37366242 DOI: 10.1002/gcc.23187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Small round cell neoplasms comprise a diverse group of tumors characterized by a primitive/undifferentiated appearance. Although several entities are associated with recurrent gene fusions, many of these neoplasms have not been fully characterized, and novel molecular alterations are being discovered. Here, we report an undifferentiated small round cell neoplasm arising in the anterior mediastinum of a 17-month-old female. The tumor harbored a novel HNRNPM::LEUTX fusion resulting from chromothripsis of chromosome 19, which was identified by whole transcriptome sequencing, but not by targeted sequencing. The structural variations caused by the chromothripsis event also challenged the interpretation of the targeted sequencing findings. This report expands the spectrum of gene partners involved in LEUTX fusions and underscores the value of whole transcriptome sequencing in the diagnostic workup of undifferentiated small round cell tumors. It also highlights the interpretive challenges associated with complex genomic alterations. A careful evidence-based analysis of sequencing data along with histopathologic correlation is essential to ensure correct categorization of fusions.
Collapse
Affiliation(s)
- Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zonggao Shi
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lu Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jessica Gartrell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert E Ruiz
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
37
|
Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition? Int J Mol Sci 2023; 24:17020. [PMID: 38069345 PMCID: PMC10707471 DOI: 10.3390/ijms242317020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.
Collapse
Affiliation(s)
- Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| |
Collapse
|
38
|
Kirkham JK, Liu YC, Foy SG, Ma J, Gheorghe G, Furtado LV, Popescu MI, Klco JM, Karol SE, Blackburn PR. Clinical and genomic characterization of an ATRA-insensitive acute promyelocytic leukemia variant with a FNDC3B::RARB fusion. Genes Chromosomes Cancer 2023; 62:617-623. [PMID: 37283355 DOI: 10.1002/gcc.23180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.
Collapse
MESH Headings
- Male
- Humans
- Adolescent
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Translocation, Genetic
- Tretinoin/therapeutic use
- Leukemia, Myeloid, Acute/genetics
- Retinoic Acid Receptor alpha/genetics
- Genomics
- Oncogene Proteins, Fusion/genetics
- Fibronectins/genetics
Collapse
Affiliation(s)
- Justin K Kirkham
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Scott G Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gabriela Gheorghe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marcela I Popescu
- Department of Pediatric Hematology and Oncology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick R Blackburn
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Erdogan O, Özkaya ŞÇ, Erzik C, Bilguvar K, Arga KY, Bayraklı F. Toward Precision Oncology in Glioblastoma with a Personalized Cancer Genome Reporting Tool and Genetic Changes Identified by Whole Exome Sequencing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:426-433. [PMID: 37669106 DOI: 10.1089/omi.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Precision/personalized medicine in oncology has two key pillars: molecular profiling of the tumors and personalized reporting of the results in ways that are clinically contextualized and triangulated. Moreover, neurosurgery as a field stands to benefit from precision/personalized medicine and new tools for reporting of the molecular findings. In this context, glioblastoma (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Precision/personalized medicine has emerged as a promising approach for personalized therapy in GBM. In this study, we performed whole exome sequencing of tumor tissue samples from six newly diagnosed GBM patients and matched nontumor control samples. We report here the genetic alterations identified in the tumors, including single nucleotide variations, insertions or deletions (indels), and copy number variations, and attendant mutational signatures. Additionally, using a personalized cancer genome-reporting tool, we linked genomic information to potential therapeutic targets and treatment options for each patient. Our findings revealed heterogeneity in genetic alterations and identified targetable pathways, such as the PI3K/AKT/mTOR pathway. This study demonstrates the prospects of precision/personalized medicine in GBM specifically, and neurosurgical oncology more generally, including the potential for genomic profiling coupled with personalized cancer genome reporting. Further research and larger studies are warranted to validate these findings and advance the treatment options and outcomes for patients with GBM.
Collapse
Affiliation(s)
- Onur Erdogan
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Şeyma Çolakoğlu Özkaya
- Department of Medical Biology and Genetics, Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Kaya Bilguvar
- Department of Neurosurgery and Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Medical Biology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kazım Yalçın Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Fatih Bayraklı
- Department of Neurosurgery, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
40
|
Cupit-Link M, Hagiwara K, Zhang J, Federico SM. Clinical Response to a PARP Inhibitor and Chemotherapy in a Child with BARD1-Mutated Refractory Neuroblastoma: A Case Report. RESEARCH SQUARE 2023:rs.3.rs-3250117. [PMID: 37645774 PMCID: PMC10462232 DOI: 10.21203/rs.3.rs-3250117/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite advances in the treatment of high-risk neuroblastoma, approximately half of these patients die from the disease. Targeted therapy based on synthetic lethality associated with homologous recombination deficiency (HRD) caused by germline mutations in homologous recombination repair genes has shown great efficacy in several adult solid tumors. Here we report the first successful treatment of a pediatric patient with refractory neuroblastoma and a germline pathogenic mutation in BARD1 using a PARP inhibitor, talazoparib, in combination with cytotoxic chemotherapy and radiation therapy. Allele-specific expression in RNA-seq indicates bi-allelic loss of BARD1 in tumor; however, the HRD score was below the threshold currently used for HRD classification in adult cancers. Our study demonstrates that the use of PARP inhibition in combination with DNA-damaging agents should be considered in children with BARD1-mutated neuroblastoma and cautions against the use of HRD score alone as a biomarker for this pediatric population.
Collapse
Affiliation(s)
- Maggie Cupit-Link
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Sara M. Federico
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
41
|
Goldberger Z, Hauert S, Chang K, Kurtanich T, Alpar AT, Repond G, Wang Y, Gomes S, Krishnakumar R, Siddarth P, Swartz MA, Hubbell JA, Briquez PS. Membrane-localized neoantigens predict the efficacy of cancer immunotherapy. Cell Rep Med 2023; 4:101145. [PMID: 37552990 PMCID: PMC10439248 DOI: 10.1016/j.xcrm.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/24/2022] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Immune checkpoint immunotherapy (ICI) can re-activate immune reactions against neoantigens, leading to remarkable remission in cancer patients. Nevertheless, only a minority of patients are responsive to ICI, and approaches for prediction of responsiveness are needed to improve the success of cancer treatments. While the tumor mutational burden (TMB) correlates positively with responsiveness and survival of patients undergoing ICI, the influence of the subcellular localizations of the neoantigens remains unclear. Here, we demonstrate in both a mouse melanoma model and human clinical datasets of 1,722 ICI-treated patients that a high proportion of membrane-localized neoantigens, particularly at the plasma membrane, correlate with responsiveness to ICI therapy and improved overall survival across multiple cancer types. We further show that combining membrane localization and TMB analyses can enhance the predictability of cancer patient response to ICI. Our results may have important implications for establishing future clinical guidelines to direct the choice of treatment toward ICI.
Collapse
Affiliation(s)
- Zoe Goldberger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Sylvie Hauert
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kevin Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Trevin Kurtanich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Grégoire Repond
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Yue Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | | | - Prabha Siddarth
- Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL, USA.
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA; Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
42
|
van Belzen IAEM, Cai C, van Tuil M, Badloe S, Strengman E, Janse A, Verwiel ETP, van der Leest DFM, Kester L, Molenaar JJ, Meijerink J, Drost J, Peng WC, Kerstens HHD, Tops BBJ, Holstege FCP, Kemmeren P, Hehir-Kwa JY. Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS. BMC Cancer 2023; 23:618. [PMID: 37400763 DOI: 10.1186/s12885-023-11054-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/08/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gene fusions are important cancer drivers in pediatric cancer and their accurate detection is essential for diagnosis and treatment. Clinical decision-making requires high confidence and precision of detection. Recent developments show RNA sequencing (RNA-seq) is promising for genome-wide detection of fusion products but hindered by many false positives that require extensive manual curation and impede discovery of pathogenic fusions. METHODS We developed Fusion-sq to overcome existing disadvantages of detecting gene fusions. Fusion-sq integrates and "fuses" evidence from RNA-seq and whole genome sequencing (WGS) using intron-exon gene structure to identify tumor-specific protein coding gene fusions. Fusion-sq was then applied to the data generated from a pediatric pan-cancer cohort of 128 patients by WGS and RNA sequencing. RESULTS In a pediatric pan-cancer cohort of 128 patients, we identified 155 high confidence tumor-specific gene fusions and their underlying structural variants (SVs). This includes all clinically relevant fusions known to be present in this cohort (30 patients). Fusion-sq distinguishes healthy-occurring from tumor-specific fusions and resolves fusions in amplified regions and copy number unstable genomes. A high gene fusion burden is associated with copy number instability. We identified 27 potentially pathogenic fusions involving oncogenes or tumor-suppressor genes characterized by underlying SVs, in some cases leading to expression changes indicative of activating or disruptive effects. CONCLUSIONS Our results indicate how clinically relevant and potentially pathogenic gene fusions can be identified and their functional effects investigated by combining WGS and RNA-seq. Integrating RNA fusion predictions with underlying SVs advances fusion detection beyond extensive manual filtering. Taken together, we developed a method for identifying candidate gene fusions that is suitable for precision oncology applications. Our method provides multi-omics evidence for assessing the pathogenicity of tumor-specific gene fusions for future clinical decision making.
Collapse
Affiliation(s)
| | - Casey Cai
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marc van Tuil
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Shashi Badloe
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Eric Strengman
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Alex Janse
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | | | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
43
|
Robbe P, Schuh A. Genomic Stratification of Hematological Malignancies. Hemasphere 2023; 7:e902. [PMID: 37251914 PMCID: PMC10219718 DOI: 10.1097/hs9.0000000000000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Affiliation(s)
- Pauline Robbe
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Anna Schuh
- Department of Oncology, University of Oxford, United Kingdom
| |
Collapse
|
44
|
Yan R, Shen Y, Zhang X, Xu P, Wang J, Li J, Ren F, Ye D, Zhou SK. Histopathological bladder cancer gene mutation prediction with hierarchical deep multiple-instance learning. Med Image Anal 2023; 87:102824. [PMID: 37126973 DOI: 10.1016/j.media.2023.102824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Gene mutation detection is usually carried out by molecular biological methods, which is expensive and has a long-time cycle. In contrast, pathological images are ubiquitous. If clinically significant gene mutations can be predicted only through pathological images, it will greatly promote the widespread use of gene mutation detection in clinical practice. However, current gene mutation prediction methods based on pathological images are ineffective because of the inability to identify mutated regions in gigapixel Whole Slide Image (WSI). To address this challenge, hereby we propose a carefully designed framework for WSI-based gene mutation prediction, which consists of three parts. (i) The first part of cancerous area segmentation, based on supervised learning, quickly filters out a large number of non-mutated regions; (ii) the second part of cancerous patch clustering, based on the representations derived from contrastive learning, ensures the comprehensiveness of patch selection; and (iii) the third part of mutation classification, based on the proposed hierarchical deep multi-instance learning method (HDMIL), ensures that sufficient patches are considered and inaccurate selections are ignored. In addition, benefiting from a two-stage attention mechanism in HDMIL, the patches that are highly correlated with gene mutations can be identified. This interpretability can help a pathologist to analyze the correlation between gene mutation and histopathological morphology. Experimental results demonstrate that the proposed gene mutation prediction framework significantly outperforms the state-of-the-art methods. In the TCGA bladder cancer dataset, five clinically relevant gene mutations are well predicted.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xueyuan Zhang
- Zhijian Life Technology Co., Ltd., Beijing, 100036, China
| | - Peihang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jintao Li
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fei Ren
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; SKLP, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - S Kevin Zhou
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China; School of Biomedical Engineering & Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China.
| |
Collapse
|
45
|
Liu Y, Klein J, Bajpai R, Dong L, Tran Q, Kolekar P, Smith JL, Ries RE, Huang BJ, Wang YC, Alonzo TA, Tian L, Mulder HL, Shaw TI, Ma J, Walsh MP, Song G, Westover T, Autry RJ, Gout AM, Wheeler DA, Wan S, Wu G, Yang JJ, Evans WE, Loh M, Easton J, Zhang J, Klco JM, Meshinchi S, Brown PA, Pruett-Miller SM, Ma X. Etiology of oncogenic fusions in 5,190 childhood cancers and its clinical and therapeutic implication. Nat Commun 2023; 14:1739. [PMID: 37019972 PMCID: PMC10076316 DOI: 10.1038/s41467-023-37438-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathon Klein
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Dong
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Quang Tran
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenny L Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin J Huang
- Department of Pediatrics and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Todd A Alonzo
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy I Shaw
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tamara Westover
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander M Gout
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mignon Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute and the Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Editing, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
46
|
Fu F, Tao X, Jiang Z, Gao Z, Zhao Y, Li Y, Hu H, Shen L, Sun Y, Zhang Y. Identification of Germline Mutations in East-Asian Young Never-Smokers with Lung Adenocarcinoma by Whole-Exome Sequencing. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:182-189. [PMID: 37197646 PMCID: PMC10110802 DOI: 10.1007/s43657-022-00062-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 05/19/2023]
Abstract
Recently, an increasing number of young never-smokers are diagnosed with lung cancer. The aim of this study is to investigate the genetic predisposition of lung cancer in these patients and discover candidate pathogenic variants for lung adenocarcinoma in young never-smokers. Peripheral blood was collected from 123 never-smoking east-Asian patients diagnosed with lung adenocarcinoma before the age of 40. Whole-exome sequencing (WES) was conducted on genomic DNA extracted from peripheral blood cells. As a result, 3,481 single nucleotide variants were identified. By bioinformatical tools and the published gene list associated with genetic predisposition of cancer, pathogenic variants were detected in ten germline genes: ATR, FANCD2, FANCE, GATA2, HFE, MSH2, PDGFRA, PMS2, SDHB, and WAS. Patients with pathogenic variants were more likely to occur in females (9/10, 90.0%) and have stage IV lung adenocarcinoma (4/10, 40%). Furthermore, germline mutations in 17 genes (ASB18, B3GALT5, CLEC4F, COL6A6, CYP4B1, C6orf132, EXO1, GATA4, HCK, KCP, NPHP4, PIGX, PPIL2, PPP1R3G, RRBP1, SALL4, and TTC28), which occurred in at least two patients, displayed potentially pathogenic effects. Gene ontology analysis further showed that these genes with germline mutations were mainly located in nucleoplasm and associated with DNA repair-related biological processes. The study provides spectrum of pathogenic variants and functional explanation for genetic predisposition of lung adenocarcinoma in young never-smokers, which sheds a light on prevention and early diagnosis of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00062-1.
Collapse
Affiliation(s)
- Fangqiu Fu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xiaoting Tao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhonglin Jiang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhendong Gao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yue Zhao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuan Li
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Hong Hu
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Libing Shen
- International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| | - Yihua Sun
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032 China
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
47
|
Malhotra R, Javle V, Tanwar N, Gowda P, Varghese L, K A, Madhusudhan N, Jaiswal N, K. S. B, Chatterjee M, Prabhash K, Sreekanthreddy P, Rishi KD, Goswami HM, Veldore VH. An absolute approach to using whole exome DNA and RNA workflow for cancer biomarker testing. Front Oncol 2023; 13:1002792. [PMID: 36994199 PMCID: PMC10040847 DOI: 10.3389/fonc.2023.1002792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionThe concept of personalized medicine in cancer has emerged rapidly with the advancement of genome sequencing and the identification of clinically relevant variants that contribute to disease prognosis and facilitates targeted therapy options. In this study, we propose to validate a whole exome-based tumor molecular profiling for DNA and RNA from formalin-fixed paraffin-embedded (FFPE) tumor tissue.MethodsThe study included 166 patients across 17 different cancer types. The scope of this study includes the identification of single-nucleotide variants (SNVs), insertions/deletions (INDELS), copy number alterations (CNAs), gene fusions, tumor mutational burden (TMB), and microsatellite instability (MSI). The assay yielded a mean read depth of 200×, with >80% of on-target reads and a mean uniformity of >90%. Clinical maturation of whole exome sequencing (WES) (DNA and RNA)- based assay was achieved by analytical and clinical validations for all the types of genomic alterations in multiple cancers. We here demonstrate a limit of detection (LOD) of 5% for SNVs and 10% for INDELS with 97.5% specificity, 100% sensitivity, and 100% reproducibility.ResultsThe results were >98% concordant with other orthogonal techniques and appeared to be more robust and comprehensive in detecting all the clinically relevant alterations. Our study demonstrates the clinical utility of the exome-based approach of comprehensive genomic profiling (CGP) for cancer patients at diagnosis and disease progression.DiscussionThe assay provides a consolidated picture of tumor heterogeneity and prognostic and predictive biomarkers, thus helping in precision oncology practice. The primary intended use of WES (DNA+RNA) assay would be for patients with rare cancers as well as for patients with unknown primary tumors, and this category constitutes nearly 20–30% of all cancers. The WES approach may also help us understand the clonal evolution during disease progression to precisely plan the treatment in advanced stage disease.
Collapse
Affiliation(s)
| | - Vyomesh Javle
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Pooja Gowda
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Linu Varghese
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | - Anju K
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | - Nupur Jaiswal
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
| | | | | | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, India
| | | | | | | | - Vidya H. Veldore
- 4baseCare Onco Solutions Pvt. Ltd., Bangalore, India
- *Correspondence: Vidya H. Veldore,
| |
Collapse
|
48
|
Locher M, Jukic E, Vogi V, Keller MA, Kröll T, Schwendinger S, Oberhuber K, Verdorfer I, Mühlegger BE, Witsch-Baumgartner M, Nachbaur D, Willenbacher W, Gunsilius E, Wolf D, Zschocke J, Steiner N. Amp(1q) and tetraploidy are commonly acquired chromosomal abnormalities in relapsed multiple myeloma. Eur J Haematol 2023; 110:296-304. [PMID: 36433728 PMCID: PMC10107198 DOI: 10.1111/ejh.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
Long-term disease control in multiple myeloma (MM) is typically an unmet medical need, and most patients experience multiple relapses. Fluorescence in situ hybridization (FISH) is the standard technique to detect chromosomal abnormalities (CAs), which are important to estimate the prognosis of MM and the allocation of risk adapted therapies. In advanced stages, the importance of CAs needs further investigation. From 148 MM patients, two or more paired samples, at least one of which was collected at relapse, were analyzed by FISH. Using targeted next-generation sequencing, we molecularly investigated samples harboring relapse-associated CAs. Sixty-one percent of the patients showed a change in the cytogenetic profile during the disease course, including 10% who acquired high-risk cytogenetics. Amp(1q) (≥4 copies of 1q21), driven by an additional increase in copy number in patients who already had 3 copies of 1q21, was the most common acquired CA with 16% affected patients. Tetraploidy, found in 10% of the samples collected at the last time-point, was unstable over the course of the disease and was associated with TP53 lesions. Our results indicate that cytogenetic progression is common in relapsed patients. The relatively high frequency of amp(1q) suggests an active role for this CA in disease progression.
Collapse
Affiliation(s)
- Maurus Locher
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Vogi
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Teresa Kröll
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Schwendinger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Irmgard Verdorfer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Beatrix E Mühlegger
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Nachbaur
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.,syndena GmbH, connect to cure, Innsbruck, Austria
| | - Eberhard Gunsilius
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Medical Clinic 3, Oncology, Hematology, Immunoncology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Normann Steiner
- Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Wen Z, Wang S, Yang DM, Xie Y, Chen M, Bishop J, Xiao G. Deep learning in digital pathology for personalized treatment plans of cancer patients. Semin Diagn Pathol 2023; 40:109-119. [PMID: 36890029 DOI: 10.1053/j.semdp.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Over the past decade, many new cancer treatments have been developed and made available to patients. However, in most cases, these treatments only benefit a specific subgroup of patients, making the selection of treatment for a specific patient an essential but challenging task for oncologists. Although some biomarkers were found to associate with treatment response, manual assessment is time-consuming and subjective. With the rapid developments and expanded implementation of artificial intelligence (AI) in digital pathology, many biomarkers can be quantified automatically from histopathology images. This approach allows for a more efficient and objective assessment of biomarkers, aiding oncologists in formulating personalized treatment plans for cancer patients. This review presents an overview and summary of the recent studies on biomarker quantification and treatment response prediction using hematoxylin-eosin (H&E) stained pathology images. These studies have shown that an AI-based digital pathology approach can be practical and will become increasingly important in improving the selection of cancer treatments for patients.
Collapse
Affiliation(s)
- Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Donghan M Yang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Justin Bishop
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
50
|
Brayer KJ, Kang H, El-Naggar AK, Andreasen S, Homøe P, Kiss K, Mikkelsen L, Heegaard S, Pelaez D, Moeyersoms A, Tse DT, Guo Y, Lee DY, Ness SA. Dominant Gene Expression Profiles Define Adenoid Cystic Carcinoma (ACC) from Different Tissues: Validation of a Gene Signature Classifier for Poor Survival in Salivary Gland ACC. Cancers (Basel) 2023; 15:1390. [PMID: 36900183 PMCID: PMC10000625 DOI: 10.3390/cancers15051390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive malignancy that most often arises in salivary or lacrimal glands but can also occur in other tissues. We used optimized RNA-sequencing to analyze the transcriptomes of 113 ACC tumor samples from salivary gland, lacrimal gland, breast or skin. ACC tumors from different organs displayed remarkedly similar transcription profiles, and most harbored translocations in the MYB or MYBL1 genes, which encode oncogenic transcription factors that may induce dramatic genetic and epigenetic changes leading to a dominant 'ACC phenotype'. Further analysis of the 56 salivary gland ACC tumors led to the identification of three distinct groups of patients, based on gene expression profiles, including one group with worse survival. We tested whether this new cohort could be used to validate a biomarker developed previously with a different set of 68 ACC tumor samples. Indeed, a 49-gene classifier developed with the earlier cohort correctly identified 98% of the poor survival patients from the new set, and a 14-gene classifier was almost as accurate. These validated biomarkers form a platform to identify and stratify high-risk ACC patients into clinical trials of targeted therapies for sustained clinical response.
Collapse
Affiliation(s)
- Kathryn J. Brayer
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Huining Kang
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Department of Internal Medicine, Division of Epidemiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Adel K. El-Naggar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, 4600 Køge, Denmark
| | - Katalin Kiss
- Department of Pathology, Rigshospitalet, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Lauge Mikkelsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, 1165 Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Daniel Pelaez
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Acadia Moeyersoms
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- The Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Al-Rashid Orbital Vision Research Center, Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - David Y. Lee
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
- Department of Internal Medicine, Division of Hematology/Oncology, Section of Radiation Oncology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|