1
|
Zaiki Y, Yap PG, Gan CY, Rani MFA, Traini D, Wong TW. "Actual" peptide properties required for nanoparticle development in precision cancer therapeutic delivery. J Control Release 2025:113866. [PMID: 40412661 DOI: 10.1016/j.jconrel.2025.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/27/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Functionalizing nanoparticles with peptides (3-30 amino acids) reduces premature clearance and increases colloidal stability and targeting capacity of cancer therapeutics. Glutamate/lysine-rich zwitterionic and hydrophilic/neutral peptides minimize reticuloendothelial digestion of nanomedicine through reducing particle hydrophobicity and depressing plasma anti-PEG immunoglobulin that disrupts the PEG-based particle stealth. Anionic peptides negate protein corona formation and subsequent particle aggregation in vivo enabling efficient nanoparticles biodistribution and drug targeting by facilitating their endothelial/extracellular matrix pore diffusion. Cationic and hydrophobic peptides display a strong affinity for anionic cancer cell membrane and mediate membrane porosification or receptor binding leading to particle uptake and endocytosis. The peptide ionic and hydrophobicity/hydrophilicity attributes collectively facilitate endosomal escape, and nuclear and mitochondria targeting of nanoparticles. Peptides are required to present with different physicochemical attributes from administration site, through blood and extracellular matrix, to cancer site of action. Charge/hydrophilicity-hydrophobicity switching and projection of receptor-specific domain of peptides are attainable through pH-pKa interplay and labile bond hydrolysis of "unwanted" domain to give rise to new functional domains in response to pH, thermal and enzymatic stimuli. Co-introducing all functional attributes on a single peptide is challenging. Use of peptide blends risks leaching during nanoparticles production. Peptides-nanoparticles conjugation risks peptide conformational alterations and loss of acidic/basic termini affecting their roles in nanoparticle stabilization, targeting, membrane permeabilization and subcellular delivery.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Pei Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM campus, Lebuh Bukit Jambul, Bayan Lepas, 11900, Penang, Malaysia
| | - Chee Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM campus, Lebuh Bukit Jambul, Bayan Lepas, 11900, Penang, Malaysia
| | | | - Daniela Traini
- Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe, Sydney 2037, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Campus Macquarie Park, Sydney 2019, Australia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam 42300, Selangor, Malaysia; Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
2
|
Tao Z, Li Y, Huang Y, Hu L, Wang S, Wan L, She T, Shi Q, Lu S, Wang X, Zhong Y, Su T, Wang X, Long D, Li Y, Zhang J, Wang L, Long T, Zhu H, Lu X, Yang H. Multivalent assembly of nucleolin-targeted F3 peptide potentiates TRAIL's tumor penetration and antitumor effects. J Control Release 2025; 383:113835. [PMID: 40355045 DOI: 10.1016/j.jconrel.2025.113835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/15/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Tumor-targeting drug delivery holds great promise for cancer treatment but faces significant challenges in penetrating solid tumors to achieve optimal therapeutic efficacy. By harnessing the natural tissue-penetration effect conferred by the CendR motif, we identified that the nucleolin (NCL)-targeted peptide F3 possesses tumor-penetrating capabilities. Co-administration of F3 with doxorubicin and the apoptosis-inducing protein TRAIL enhanced effective tumor penetration and improved antitumor activity. Taking advantage of TRAIL's natural self-trimerization, we developed a novel fusion protein, F3-TRAIL. This design enabled the trivalent assembly of F3 when fused with TRAIL, significantly enhancing its binding to NCL-positive tumor endothelial and parenchymal cells, resulting in deeper tumor penetration and superior antitumor effects compared to TRAIL alone. Mechanistic studies revealed that the multivalent F3-enhanced engagement with tumor cells potentiated TRAIL to trigger death receptor-dependent apoptosis signaling, even in TRAIL-resistant tumor cells. Building on this success, we constructed F3-HexaTR using the SpyCatcher/SpyTag superglue ligation system to generate a hexameric TRAIL, further amplifying cytotoxicity and antitumor efficacy. Combined analysis of data from TCGA and GTEx revealed significantly elevated NCL expression across 18 solid tumor types, underscoring the clinical potential of F3-directed targeted therapy. These findings highlight that F3-mediated NCL targeting is an effective strategy to overcome tumor penetration barriers, particularly for protein drug delivery. This multivalent assembly approach represents an innovative avenue for enhancing the therapeutic efficacy of various agents in the treatment of solid tumors.
Collapse
Affiliation(s)
- Ze Tao
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingying Li
- Department of Laboratory Medicine, the West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yunchuan Huang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liqiang Hu
- West China-California Research Center for Predictive Intervention Medicine, Chengdu 610041, China
| | - Shisheng Wang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Wan
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianshan She
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiuxiao Shi
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyue Wang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhong
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Su
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyuan Wang
- Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhang
- SCMPA Key Laboratory for Quality Research and Control of Chemical Medicine, Chengdu Institute for Drug Control, Chengdu 610041, China
| | - Lijun Wang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Tingting Long
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hao Yang
- Division of Liver surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China; Proteomics-Metabolomics Platform, Core facilities, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Chen Y, Liu B, Tao S, Liu L, Gao J, Liang Y, Dong W, Zhou D. CITED2 Binding to EP300 Regulates Human Spermatogonial Stem Cell Proliferation and Survival Through HSPA6. Stem Cells Int 2025; 2025:2362489. [PMID: 40313859 PMCID: PMC12045681 DOI: 10.1155/sci/2362489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/22/2025] [Indexed: 05/03/2025] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for the initiation and continuation of spermatogenesis, a process fundamental to male fertility. Despite extensive studies on mouse SSCs, the mechanisms governing self-renewal and differentiation in human SSCs remain to be elucidated. This study investigated the regulatory mechanisms of SSCs by analyzing single-cell sequencing data from the GEO dataset of human testis. Analysis revealed dominant expression of CITED2 in human SSCs. Reduction of CITED2 levels in hSSC lines significantly inhibited proliferation and increased apoptosis. Protein interaction prediction and immunoprecipitation identified interactions between CITED2 and EP300 in SSC lines. RNA sequencing results indicated that CITED2 knockdown significantly affected the MAPK pathway and the HSPA6 gene. Overexpression of HSPA6 mitigated the proliferative and apoptotic changes provoked by CITED2 downregulation. These findings provide novel insights into the regulatory and functional mechanisms of CITED2-mediated hSSC development.
Collapse
Affiliation(s)
- Yongzhe Chen
- Gynecology and Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Bang Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Sisi Tao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Lvjun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Jianxin Gao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Ying Liang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Weilei Dong
- Gynecology and Obstetrics and Reproductive Medical Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan 421001, China
| | - Dai Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, Hunan 410000, China
- Research Department, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| |
Collapse
|
4
|
Li S, Zhang J, Wang X, Wang X, Song Y, Song X, Wang X, Cao W, Zhao C, Qi J, Zheng X, Xing Y. Super-Enhancer Target Gene CBP/p300-Interacting Transactivator With Glu/Asp-Rich C-Terminal Domain, 2 Cooperates With Transcription Factor Forkhead Box J3 to Inhibit Pulmonary Vascular Remodeling. Cell Prolif 2025:e13817. [PMID: 39907030 DOI: 10.1111/cpr.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The function of super-enhancers (SEs) in pulmonary hypertension (PH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), is currently unknown. We identified SEs-targeted genes in PASMCs with chromatin immunoprecipitation (ChIP)-sequence by H3K27ac antibody and proved that CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2 (CITED2) is an SEs-targeted gene through bioinformatics prediction, ChIP-PCR, dual-luciferase reporter gene assays and other experimental methods. We also found that the expression of CITED2 and the transcription factor Forkhead Box J3 (FOXJ3) was reduced in hypoxic mouse PASMCs. In addition, the expression of CITED2 and FOXJ3 also decreased in both the patients with idiopathic pulmonary arterial hypertension (iPAH) and the human PASMCs exposed to hypoxia. The decreased expression of CITED2 was reversed by co-transfection of FOXJ3 and SEs plasmids. Overexpressing of CITED2 attenuated the PASMCs proliferation induced by hypoxia. Lentiviral overexpression of CITED2 also reversed hypoxia-induced pulmonary hypertension mice model. Mechanically, the expression of CITED2 by affecting by FOXJ3, which binding with three SEs located in the about 2000 bp of TSS. In conclusion, we first identified that CITED2 is a kind of SEs-targeted gene, modulated by FOXJ3. The FOXJ3/SEs/CITED2 axis may become a new therapeutic target of PH.
Collapse
Affiliation(s)
- Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinyue Song
- Central Laboratory, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Weiwei Cao
- Department of Pharmaceutical Analysis, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| |
Collapse
|
5
|
Park J, Kim J. CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1589. [PMID: 39770431 PMCID: PMC11676443 DOI: 10.3390/ph17121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related death in men. Although current therapies can effectively manage the primary tumor, most patients with late-stage disease manifest with metastasis in different organs. From surgery to treatment intensification (TI), several combinations of therapies are administered to improve the prognosis of patients with metastatic PCa. Due to the high frequency of the mutation during the metastatic phase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genetic engineering tool can accelerate the effects of TI by enhancing targeted gene therapy or immunotherapy. This review describes the genetic background of metastatic PCa and how CRISPR/Cas9 technology can contribute to the field of PCa treatment development. It also discusses the current limitations of conventional PCa therapy and the potential of CRISPR-based PCa therapy.
Collapse
Affiliation(s)
- Jieun Park
- Department of Neurology, College of Medicine, Dongguk University, Ilsan, Goyang 10326, Republic of Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
Sun L, Meng H, Liu T, Zhao Q, Xia M, Zhao Z, Qian Y, Cui H, Zhong X, Chai K, Tian Y, Sun Y, Zhu B, Di J, Shui G, Zhang L, Zheng J, Guo S, Liu Y. Nucleolin malonylation as a nuclear-cytosol signal exchange mechanism to drive cell proliferation in Hepatocarcinoma by enhancing AKT translation. J Biol Chem 2024; 300:107785. [PMID: 39305961 PMCID: PMC11525140 DOI: 10.1016/j.jbc.2024.107785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/18/2024] Open
Abstract
Cancer cells undergo metabolic reprogramming that is intricately linked to malignancy. Protein acylations are especially responsive to metabolic changes, influencing signal transduction pathways and fostering cell proliferation. However, as a novel type of acylations, the involvement of malonylation in cancer remains poorly understood. In this study, we observed a significant reduction in malonyl-CoA levels in hepatocellular carcinoma (HCC), which correlated with a global decrease in malonylation. Subsequent nuclear malonylome analysis unveiled nucleolin (NCL) malonylation, which was notably enhanced in HCC biopsies. we demonstrated that NCL undergoes malonylation at lysine residues 124 and 398. This modification triggers the translocation of NCL from the nucleolus to nucleoplasm and cytoplasm, binding to AKT mRNA, and promoting AKT translation in HCC. Silencing AKT expression markedly attenuated HCC cell proliferation driven by NCL malonylation. These findings collectively highlight nuclear signaling in modulating AKT expression, suggesting NCL malonylation as a novel mechanism through which cancer cells drive cell proliferation.
Collapse
Affiliation(s)
- Liang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hanjing Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Qiong Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuting Qian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Keli Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
7
|
Lu X, Lan X, Fu X, Li J, Wu M, Xiao L, Zeng Y. Screening Preeclampsia Genes and the Effects of CITED2 on Trophoblastic Function. Int J Gen Med 2024; 17:3493-3509. [PMID: 39161403 PMCID: PMC11330746 DOI: 10.2147/ijgm.s475310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose Preeclampsia (PE) is a serious complication of obstetrics and represents a significant challenge in terms of understanding its underlying mechanism. It has been shown that a number of disorders involve dysregulation of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2). However, the relationship between PE and CITED2 is still mostly unclear. This work aimed to confirm the hub genes linked to PE and explore the roles of CITED2 in trophoblast using experimental and bioinformatic methods. Methods To determine the hub genes, bioinformatics research was performed on two datasets from the Gene Expression Omnibus (GEO) public database. Immune infiltration analysis and enrichment analysis were also used to identify the related pathways and immune cells. PCR and WB were then used to validate the mRNA and protein levels of CITED2 in the PE samples. Finally, the expression of CITED2 was knocked down using siRNA to investigate the function of CITED2 in trophoblast development in vitro. Results The study's findings showed that the NOTCH signaling pathways, glycolysis, and hypoxia were the main areas of enrichment for the six PE-related genes that were tested. The results of immune infiltration suggest that activated NK cells and regulatory T cells may play an important role in this process. CITED2 was significantly upregulated in the PE placenta. In functional tests, the knockdown of CITED2 may enhance apoptosis while suppressing migration, invasion, and proliferation of cells. Conclusion This study offers important proof that CITED2 influences trophoblast cell function and may one day be a therapeutic target for PE.
Collapse
Affiliation(s)
- Xiujing Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xi Lan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiaoqian Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Jing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Min Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yachang Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
8
|
Hao Y, Gu C, Luo W, Shen J, Xie F, Zhao Y, Song X, Han Z, He J. The role of protein post-translational modifications in prostate cancer. PeerJ 2024; 12:e17768. [PMID: 39148683 PMCID: PMC11326433 DOI: 10.7717/peerj.17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
Involving addition of chemical groups or protein units to specific residues of the target protein, post-translational modifications (PTMs) alter the charge, hydrophobicity, and conformation of a protein, which in turn influences protein function, protein-protein interaction, and protein aggregation. These alterations, which include phosphorylation, glycosylation, ubiquitination, methylation, acetylation, lipidation, and lactylation, are significant biological events in the development of cancer, and play vital roles in numerous biological processes. The processes behind essential functions, the screening of clinical illness signs, and the identification of therapeutic targets all depend heavily on further research into the PTMs. This review outlines the influence of several PTM types on prostate cancer (PCa) diagnosis, therapy, and prognosis in an effort to shed fresh light on the molecular causes and progression of the disease.
Collapse
Affiliation(s)
- Yinghui Hao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenqiong Gu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Shen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zeping Han
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
- Rehabilitation Medicine Institute of Panyu District, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Luo J, Chen Z, Qiao Y, Tien JCY, Young E, Mannan R, Mahapatra S, He T, Eyunni S, Zhang Y, Zheng Y, Su F, Cao X, Wang R, Cheng Y, Seri R, George J, Shahine M, Miner SJ, Vaishampayan U, Wang M, Wang S, Parolia A, Chinnaiyan AM. p300/CBP degradation is required to disable the active AR enhanceosome in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587346. [PMID: 38586029 PMCID: PMC10996709 DOI: 10.1101/2024.03.29.587346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which is exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition or the inhibition of its catalytic domain. In vivo experiments using an orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Zhixiang Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rithvik Seri
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam Shahine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ulka Vaishampayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Wang SS, Hall ML, Lee E, Kim SC, Ramesh N, Lee SH, Jang JY, Bold RJ, Ku JL, Hwang CI. Whole-genome bisulfite sequencing identifies stage- and subtype-specific DNA methylation signatures in pancreatic cancer. iScience 2024; 27:109414. [PMID: 38532888 PMCID: PMC10963232 DOI: 10.1016/j.isci.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Sarah S. Wang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Madison L. Hall
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Soon-Chan Kim
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Neha Ramesh
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Richard J. Bold
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
11
|
Arriaga JM, Ronaldson-Bouchard K, Picech F, Nunes de Almeida F, Afari S, Chhouri H, Vunjak-Novakovic G, Abate-Shen C. In vivo genome-wide CRISPR screening identifies CITED2 as a driver of prostate cancer bone metastasis. Oncogene 2024; 43:1303-1315. [PMID: 38454137 PMCID: PMC11101692 DOI: 10.1038/s41388-024-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Most cancer deaths are due to metastatic dissemination to distant organs. Bone is the most frequently affected organ in metastatic prostate cancer and a major cause of prostate cancer deaths. Yet, our partial understanding of the molecular factors that drive bone metastasis has been a limiting factor for developing preventative and therapeutic strategies to improve patient survival and well-being. Although recent studies have uncovered molecular alterations that occur in prostate cancer metastasis, their functional relevance for bone metastasis is not well understood. Using genome-wide CRISPR activation and inhibition screens we have identified multiple drivers and suppressors of prostate cancer metastasis. Through functional validation, including an innovative organ-on-a-chip invasion platform for studying bone tropism, our study identifies the transcriptional modulator CITED2 as a novel driver of prostate cancer bone metastasis and uncovers multiple new potential molecular targets for bone metastatic disease.
Collapse
Affiliation(s)
- Juan M Arriaga
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Oncological Sciences, Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | | | - Florencia Picech
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Francisca Nunes de Almeida
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Stephanie Afari
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Houssein Chhouri
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
12
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
13
|
Ning J, Chen L, Xiao G, Zeng Y, Shi W, Tanzhu G, Zhou R. The protein arginine methyltransferase family (PRMTs) regulates metastases in various tumors: From experimental study to clinical application. Biomed Pharmacother 2023; 167:115456. [PMID: 37696085 DOI: 10.1016/j.biopha.2023.115456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Tumor metastasis is the leading cause of mortality among advanced cancer patients. Understanding its mechanisms and treatment strategies is vital for clinical application. Arginine methylation, a post-translational modification catalyzed by protein arginine methyltransferases (PRMTs), is implicated in diverse physiological processes and disease progressions. Previous research has demonstrated PRMTs' involvement in tumor occurrence, progression, and metastasis. This review offers a comprehensive summary of the relationship between PRMTs, prognosis, and metastasis in various cancers. Our focus centers on elucidating the molecular mechanisms through which PRMTs regulate tumor metastasis. We also discuss relevant clinical trials and effective PRMT inhibitors, including chemical compounds, long non-coding RNA (lncRNA), micro-RNA (miRNA), and nanomaterials, for treating tumor metastasis. While a few studies present conflicting results, the overall trajectory suggests that inhibiting arginine methylation exhibits promise in curtailing tumor metastasis across various cancers. Nonetheless, the underlying mechanisms and molecular interactions are diverse. The development of inhibitors targeting arginine methylation, along with the progression of clinical trials, holds substantial potential in the field of tumor metastasis, meriting sustained attention.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yu Zeng
- Changsha Stomatological Hospital, Hunan University of Traditional Chinese Medicine, Changsha 410008, China
| | - Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China.
| |
Collapse
|
14
|
Fu L, Jung Y, Tian C, Ferreira RB, Cheng R, He F, Yang J, Carroll KS. Nucleophilic covalent ligand discovery for the cysteine redoxome. Nat Chem Biol 2023; 19:1309-1319. [PMID: 37248412 DOI: 10.1038/s41589-023-01330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
With an eye toward expanding chemistries used for covalent ligand discovery, we elaborated an umpolung strategy that exploits the 'polarity reversal' of sulfur when cysteine is oxidized to sulfenic acid, a widespread post-translational modification, for selective bioconjugation with C-nucleophiles. Here we present a global map of a human sulfenome that is susceptible to covalent modification by members of a nucleophilic fragment library. More than 500 liganded sulfenic acids were identified on proteins across diverse functional classes, and, of these, more than 80% were not targeted by electrophilic fragment analogs. We further show that members of our nucleophilic fragment library can impair functional protein-protein interactions involved in nuclear oncoprotein transport and DNA damage repair. Our findings reveal a vast expanse of ligandable sulfenic acids in the human proteome and highlight the utility of nucleophilic small molecules in the fragment-based covalent ligand discovery pipeline, presaging further opportunities using non-traditional chemistries for targeting proteins.
Collapse
Affiliation(s)
- Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Youngeun Jung
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Renan B Ferreira
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Ruifeng Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Kate S Carroll
- Department of Chemistry, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
15
|
Rezaei S, Nikpanjeh N, Rezaee A, Gholami S, Hashemipour R, Biavarz N, Yousefi F, Tashakori A, Salmani F, Rajabi R, Khorrami R, Nabavi N, Ren J, Salimimoghadam S, Rashidi M, Zandieh MA, Hushmandi K, Wang Y. PI3K/Akt signaling in urological cancers: Tumorigenesis function, therapeutic potential, and therapy response regulation. Eur J Pharmacol 2023; 955:175909. [PMID: 37490949 DOI: 10.1016/j.ejphar.2023.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In addition to environmental conditions, lifestyle factors, and chemical exposure, aberrant gene expression and mutations involve in the beginning and development of urological tumors. Even in Western nations, urological malignancies are among the top causes of patient death, and their prevalence appears to be gender dependent. The prognosis for individuals with urological malignancies remains dismal and unfavorable due to the ineffectiveness of conventional treatment methods. PI3K/Akt is a popular biochemical mechanism that is activated in tumor cells as a result of PTEN loss. PI3K/Akt escalates growth and metastasis. Moreover, due to the increase in tumor cell viability caused by PI3K/Akt activation, cancer cells may acquire resistance to treatment. This review article examines the function of PI3K/Akt in major urological tumors including bladder, prostate, and renal tumors. In prostate, bladder, and kidney tumors, the level of PI3K and Akt are notably elevated. In addition, the activation of PI3K/Akt enhances the levels of Bcl-2 and XIAP, hence increasing the tumor cell survival rate. PI3K/Akt ] upregulates EMT pathways and matrix metalloproteinase expression to increase urological cancer metastasis. Furthermore, stimulation of PI3K/Akt results in drug- and radio-resistant cancers, but its suppression by anti-tumor drugs impedes the tumorigenesis.
Collapse
Affiliation(s)
- Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Negin Nikpanjeh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Reza Hashemipour
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Negin Biavarz
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Tashakori
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Wang S, Wu X, Wang H, Song S, Hu Y, Guo Y, Chang S, Cheng Y, Zeng S. Role of FBXL5 in redox homeostasis and spindle assembly during oocyte maturation in mice. FASEB J 2023; 37:e23080. [PMID: 37462473 DOI: 10.1096/fj.202300244rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
As an E3 ubiquitin ligase, F-box and leucine-rich repeat protein 5 (FBXL5) participates in diverse biologic processes. However, the role of Fbxl5 in mouse oocyte meiotic maturation has not yet been fully elucidated. The present study revealed that mouse oocytes depleted of Fbxl5 were unable to complete meiosis, as Fbxl5 silencing led to oocyte meiotic failure with reduced rates of GVBD and polar body extrusion. In addition, Fbxl5 depletion induced aberrant mitochondrial dynamics as we noted the overproduction of reactive oxygen species (ROS) and the accumulation of phosphorylated γH2AX with Fbxl5 knockdown. We also found that Fbxl5-KD led to the abnormal accumulation of CITED2 proteins in mouse oocytes. Our in vitro ubiquitination assay showed that FBXL5 interacted with CITED2 and that it mediated the degradation of CITED2 protein through the ubiquitination-proteasome pathway. Collectively, our data revealed critical functions of FBXL5 in redox hemostasis and spindle assembly during mouse oocyte maturation.
Collapse
Affiliation(s)
- Shiwei Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Han Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuang Song
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuling Hu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyu Chang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanweilu Cheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Liu P, Ju M, Zheng X, Jiang Y, Yu X, Pan B, Luo R, Jia W, Zheng M. Methyltransferase-like 3 promotes cervical cancer metastasis by enhancing cathepsin L mRNA stability in an N6-methyladenosine-dependent manner. Cancer Sci 2023; 114:837-854. [PMID: 36382580 PMCID: PMC9986091 DOI: 10.1111/cas.15658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant RNA modification in eukaryotic cells. Methyltransferase-like 3 (METTL3), a major protein in the m6A methyltransferase complex, plays important roles in many malignancies, but its role in cervical cancer metastasis remains uncertain. Here, we found that METTL3 was significantly upregulated in cervical cancer tissue, and its upregulation was associated with a poor prognosis in cervical cancer patients. Knockdown of METTL3 significantly reduced cervical cancer cell migration and invasion. Conversely, METTL3 overexpression markedly promoted cervical cancer cell metastasis in vitro and in vivo. Furthermore, METTL3 mediated the m6A modification of cathepsin L (CTSL) mRNA at the 5'-UTR, and the m6A reader protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) bound to the m6A sites and enhanced CTSL mRNA stability. Our results indicated that METTL3 enhanced CTSL mRNA stability through an m6A-IGF2BP2-dependent mechanism, thereby promoting cervical cancer cell metastasis. These findings provide insights into a novel m6A modification pattern involved in cervical cancer development.
Collapse
Affiliation(s)
- Pingping Liu
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Mingxiu Ju
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xiaojing Zheng
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Yinan Jiang
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xingjuan Yu
- Department of Hepatobiliary OncologyCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Baoyue Pan
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Rongzhen Luo
- Department of PathologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Weihua Jia
- Biobank of Sun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Min Zheng
- Department of GynecologySun Yat‐Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| |
Collapse
|
18
|
Liu XJ, Lv TM, Sun S, Xu JY, Guan Q, Hao JH, Zhou ZC, Niu SL, Hua HM. Apoptotic effects of phenols from the twigs and leaves of Garcinia nujiangensis. Fitoterapia 2023; 166:105435. [PMID: 36731607 DOI: 10.1016/j.fitote.2023.105435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 02/03/2023]
Abstract
In order to find potential agents for treating cancer disease in naturally occurring compounds, we conducted a systematic phytochemical investigation on the endemic species of Garcinia nujiangensis. Three new biphenyl derivatives (1-3) and one new polycyclic polyprenylated benzophenone (4), together with four known benzophenone analogues (5-8), have been isolated from the CH2Cl2 extract of the twigs and leaves of G. nujiangensis. Their structures were determined by detailed spectroscopic analyses and comparison with structurally related known analogues. Experimental and calculated ECD method was used to determine the absolute configuration of 1 and 4. Moreover, compounds 5-7 were isolated for the first time from this species. The cytotoxicities of the new compounds were evaluated using HL-60, HepG2, and A549 human cancer cell lines. Compound 4 showed more significant antiproliferative effects against HepG2 cells with an IC50 value of 11.38 ± 0.79 μM than that of three biphenyl derivatives. The morphological features of apoptosis were evaluated in 4-treated HepG2 cells. Compound 4 effectively prevented the cell cycle progression of HepG2 cells in G2 phase. Additionally, western blot analysis indicated that treatment of 4 on HepG2 cells led to decreased expression of anti-apoptotic Bcl-2 and pro-Caspase-3, and increased protein expression of both pro-apoptotic Bax and cleaved PARP with reference to β-actin. Overall, our results suggested that the active polycyclic polyprenylated benzophenone derivatives in the twigs and leaves of G. nujiangensis can be used as a valuable source of bioactive compounds for the pharmaceutical industry.
Collapse
Affiliation(s)
- Xiao-Jia Liu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 00193, PR China; Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Tian-Meng Lv
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Sheng Sun
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jing-Yi Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Qi Guan
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jia-Hui Hao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Zhen-Chi Zhou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Sheng-Li Niu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
19
|
Paris EA, Bahr JM, Basu S, Barua A. Changes in Nucleolin Expression during Malignant Transformation Leading to Ovarian High-Grade Serous Carcinoma. Cancers (Basel) 2023; 15:cancers15030661. [PMID: 36765618 PMCID: PMC9913361 DOI: 10.3390/cancers15030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Ovarian high-grade serous carcinoma (HGSC) is a fatal malignancy of women. Alterations in the expression of nuclear proteins are early steps in malignant transformation; nucleolin is one such protein. Changes in nucleolin expression and circulatory levels during ovarian HGSC development are unknown. The study goal was to determine if tissue and circulatory levels of nucleolin change in response to malignant transformation leading to ovarian HGSC. METHODS Sera, ovaries, and BRCA+ fimbria from healthy subjects, and sera and tumor tissues from patients (n = 10 each), and healthy hens and hens with HGSC were examined in exploratory and prospective studies for nucleolin expression by immunohistochemistry, immunoblotting, gene expression, and immunoassay, and analyzed by analysis of variance (ANOVA). RESULTS Compared with normal, nucleolin expression was higher in patients and hens with ovarian HGSC and in women with a risk of HGSC (P < 0.05). Compared with normal (1400 + 105 pg/mL, n = 8), serum nucleolin levels were 1.5 and 1.7-fold higher in patients with early- (n = 5) and late-stage (n = 5) HGSC, respectively. Additionally, serum nucleolin levels increased significantly (P < 0.05) prior to the formation of detectable masses. CONCLUSION This pilot study concluded that tissue and serum levels of nucleolin increase in association with malignant changes in ovaries and fimbriae leading to ovarian HGSC.
Collapse
Affiliation(s)
- Elizabeth A. Paris
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janice M. Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanjib Basu
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Animesh Barua
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
20
|
Kim SH, Baek KH. Ovarian tumor deubiquitinase 6A regulates cell proliferation via deubiquitination of nucleolin and caspase‑7. Int J Oncol 2022; 61:127. [PMID: 36082810 DOI: 10.3892/ijo.2022.5417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022] Open
Abstract
Most proteins maintain protein homeostasis via post‑translational modifications, including the ubiquitin‑proteasome system. Deubiquitinating enzymes (DUBs) have essential intercellular roles, such as responses to DNA damage, proteolysis and apoptosis. Therefore, it is important to understand DUB‑related diseases to identify DUBs that target abnormally regulated proteins in cells. Ovarian tumor deubiquitinase 6A (OTUD6A) was previously reported as a downregulated DUB in HCT116 cells with p53 knockdown. Therefore, it was expected that the relationship between OTUD6A and p53 would affect cell proliferation. In the present study, putative substrates of OTUD6A related to the p53 signaling pathway were identified. Application of liquid chromatography‑tandem mass spectrometry and proteomic analysis led to the identification of nucleolin (known to bind p53) as a binding protein. In addition, immunoprecipitation studies determined that caspase‑7, an apoptotic protein, is associated with p53 signaling and is regulated by OTUD6A. It was further identified that OTUD6A regulates the protein stability of nucleolin, but not caspase‑7. It was also demonstrated that OTUD6A acts as a respective DUB through the deubiquitination of K48‑linked polyubiquitin chain of nucleolin and the K63‑linked polyubiquitin chain of caspase‑7. Furthermore, overexpression of OTUD6A induced cell proliferation via enhancing cell cycle progression of MCF7 cells. Taken together, OTUD6A may be proposed as a target for anticancer therapy.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam‑Si, Gyeonggi‑Do 13488, Republic of Korea
| |
Collapse
|
21
|
Integrated Machine Learning and Single-Sample Gene Set Enrichment Analysis Identifies a TGF-Beta Signaling Pathway Derived Score in Headneck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3140263. [PMID: 36090900 PMCID: PMC9458367 DOI: 10.1155/2022/3140263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/17/2022]
Abstract
Background The TGF-β signaling pathway is clinically predictive of pan-cancer. Nevertheless, its clinical prognosis and regulation of immune microenvironment (TME) characteristics as well as the prediction of immunotherapy efficacy need to be further elucidated in head and neck squamous cell carcinoma. Method At first, we summarized TGF-β related genes from previous published articles, used ssGSEA to establish the TGF-β risk score. Considering the complexity of its clinical application, we improved it with the LASSO-COX algorithm to construct the model. In addition, we explored the predictive efficacy of TGF-β risk score in the observation of TME phenotype and immunotherapy effect. Finally, the potency of TGF-β risk score in adjusting precise treatment of HNSC was evaluated. Results We systematically established TGF-β risk score with multi-level predictive ability. TGF-β risk score was employed to predict the tumor microenvironment status, which was negatively associated with NK cells but positively related to macrophages and fibroblasts. It reveals that patients with high TGF-β risk score predict “cold” TME status. In addition, higher risk scores indicate higher sensitivity to immunotherapy. Conclusion We first construct and validate TGF-β characteristics that can predict immune microenvironment phenotypes and immunotherapeutic effect in multiple datasets. Noteworthy, TGF-β risk score is helpful for individualized precise treatment of patients with the head and neck squamous cell carcinoma.
Collapse
|
22
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
23
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
24
|
Firlej V, Soyeux P, Nourieh M, Huet E, Semprez F, Allory Y, Londono-Vallejo A, de la Taille A, Vacherot F, Destouches D. Overexpression of Nucleolin and Associated Genes in Prostate Cancer. Int J Mol Sci 2022; 23:4491. [PMID: 35562881 PMCID: PMC9101690 DOI: 10.3390/ijms23094491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/09/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause of cancer death in men worldwide. If local PCa presents a favorable prognosis, available treatments for advanced PCa display limiting benefits due to therapeutic resistances. Nucleolin (NCL) is a ubiquitous protein involved in numerous cell processes, such as ribosome biogenesis, cell cycles, or angiogenesis. NCL is overexpressed in several tumor types in which it has been proposed as a diagnostic and prognostic biomarker. In PCa, NCL has mainly been studied as a target for new therapeutic agents. Nevertheless, little data are available concerning its expression in patient tissues. Here, we investigated the expression of NCL using a new cohort from Mondor Hospital and data from published cohorts. Results were then compared with NCL expression using in vitro models. NCL was overexpressed in PCa tissues compared to the normal tissues, but no prognostic values were demonstrated. Nine genes were highly co-expressed with NCL in patient tissues and tumor prostate cell lines. Our data demonstrate that NCL is an interesting diagnostic biomarker and propose a signature of genes co-expressed with NCL.
Collapse
Affiliation(s)
- Virginie Firlej
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Pascale Soyeux
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Maya Nourieh
- Department of Pathology, Institut Curie, F-92210 Saint-Cloud, France; (M.N.); (Y.A.)
| | - Eric Huet
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Fannie Semprez
- SPPIN—Saints-Pères Paris Institute for the Neurosciences, Université de Paris, CNRS, F-75006 Paris, France;
| | - Yves Allory
- Department of Pathology, Institut Curie, F-92210 Saint-Cloud, France; (M.N.); (Y.A.)
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Arturo Londono-Vallejo
- Institut Curie, PSL Research University, CNRS UMR 3244 « Telomeres and Cancer », F-75005 Paris, France;
| | - Alexandre de la Taille
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
- AP-HP, Hôpital Henri-Mondor, Service Urologie, F-94010 Creteil, France
| | - Francis Vacherot
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| | - Damien Destouches
- Univ Paris Est Creteil, TRePCa, F-94010 Creteil, France; (V.F.); (P.S.); (E.H.); (A.d.l.T.); (F.V.)
| |
Collapse
|
25
|
Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022; 13:865964. [PMID: 35493527 PMCID: PMC9046588 DOI: 10.3389/fimmu.2022.865964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, protein arginine methyltransferases (PRMTs) have emerged as new members of a gene expression regulator family in eukaryotes, and are associated with cancer pathogenesis and progression. Cancer immunotherapy has significantly improved cancer treatment in terms of overall survival and quality of life. Protein arginine methylation is an epigenetic modification function not only in transcription, RNA processing, and signal transduction cascades, but also in many cancer-immunity cycle processes. Arginine methylation is involved in the activation of anti-cancer immunity and the regulation of immunotherapy efficacy. In this review, we summarize the most up-to-date information on regulatory molecular mechanisms and different underlying arginine methylation signaling pathways in innate and adaptive immune responses during cancer. We also outline the potential of PRMT-inhibitors as effective combinatorial treatments with immunotherapy.
Collapse
Affiliation(s)
- Weijing Dai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianguo Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Siqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fajian He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiao Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Gong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zetian Yang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Fang Tang, ; Conghua Xie, ; Zhihao Wang, ;
| |
Collapse
|
26
|
Wu XC, Yu YZ, Zuo YZ, Song XL, Zhou ZE, Xiao Y, Luo DS, Yan WG, Zhao SC. Identification of UAP1L1 as a critical factor for prostate cancer and underlying molecular mechanism in tumorigenicity. J Transl Med 2022; 20:91. [PMID: 35168617 PMCID: PMC8845250 DOI: 10.1186/s12967-022-03291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Prostate cancer is the second most common cancer in men, and some new target genes are needed to predict the risk of prostate cancer progression and the treatment. Methods In this study, the effects of UAP1L1 (UAP1-like-1) on prostate cancer were investigated by detecting the proliferation, migration, invasion and apoptosis of prostate cancer cells in vitro using MTT, wound healing, Transwell and flow cytometry assay, and the tumor growth in vivo. The downstream genes and pathways of UAP1L1 were explored using Ingenuity Pathway Analysis (IPA), and screened by qRT-PCR and western blot. The effects of CDCA8 on prostate cancer cells were also verified in vitro, which was through detecting the change of proliferation, migration, invasion and apoptosis of prostate cancer cells after CDCA8 knockdown. Results The results indicated that UAP1L1 promoted the proliferation, migration and invasion of prostate cancer cells, which was inhibited by downregulating CDCA8. Furthermore, the promotion of CDCA8 knockdown on cell apoptosis was reduced when UAP1L1 was simultaneously overexpressed. Conclusions In conclusion, the results in this study revealed that UAP1L1 promoted the progression of prostate cancer through the downstream gene CDCA8. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03291-0.
Collapse
Affiliation(s)
- Xing-Cheng Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100720, China
| | - Yu-Zhong Yu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Zhi Zuo
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100720, China
| | - Xian-Lu Song
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhi-En Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100720, China
| | - Yu Xiao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dao-Sheng Luo
- Department of Urology, Dongguan Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Gang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100720, China.
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
27
|
Zhang D, Li Y, Yang S, Wang M, Yao J, Zheng Y, Deng Y, Li N, Wei B, Wu Y, Zhai Z, Dai Z, Kang H. Identification of a glycolysis-related gene signature for survival prediction of ovarian cancer patients. Cancer Med 2021; 10:8222-8237. [PMID: 34609082 PMCID: PMC8607265 DOI: 10.1002/cam4.4317] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ovarian cancer (OV) is deemed the most lethal gynecological cancer in women. The aim of this study was to construct an effective gene prognostic model for predicting overall survival (OS) in patients with OV. METHODS The expression profiles of glycolysis-related genes (GRGs) and clinical data of patients with OV were extracted from The Cancer Genome Atlas (TCGA) database. Univariate, multivariate, and least absolute shrinkage and selection operator Cox regression analyses were conducted, and a prognostic signature based on GRGs was constructed. The predictive ability of the signature was analyzed using training and test sets. RESULTS A gene risk signature based on nine GRGs (ISG20, CITED2, PYGB, IRS2, ANGPTL4, TGFBI, LHX9, PC, and DDIT4) was identified to predict the survival outcome of patients with OV. The signature showed a good prognostic ability for OV, particularly high-grade OV, in the TCGA dataset, with areas under the curve (AUC) of 0.709 and 0.762 for 3- and 5-year survival, respectively. Similar results were found in the test sets, and the AUCs of 3-, 5-year OS were 0.714 and 0.772 in the combined test set. And our signature was an independent prognostic factor. Moreover, a nomogram combining the prediction model and clinical factors was developed. CONCLUSION Our study established a nine-GRG risk model and nomogram to better predict OS in patients with OV. The risk model represents a promising and independent prognostic predictor for patients with OV. Moreover, our study on GRGs could offer guidance for the elucidation of underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Dai Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Thyroid, Breast and Vascular SurgeryXijing HospitalThe Air Force Medical UniversityXi'anChina
| | - Yiche Li
- Department of Tumor SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Si Yang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Meng Wang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jia Yao
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Yi Zheng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yujiao Deng
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Na Li
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Bajin Wei
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Ying Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Zhen Zhai
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhijun Dai
- Department of Breast SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Huafeng Kang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
28
|
Dai L, Wei D, Zhang J, Shen T, Zhao Y, Liang J, Ma W, Zhang L, Liu Q, Zheng Y. Aptamer-conjugated mesoporous polydopamine for docetaxel targeted delivery and synergistic photothermal therapy of prostate cancer. Cell Prolif 2021; 54:e13130. [PMID: 34599546 PMCID: PMC8560597 DOI: 10.1111/cpr.13130] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives It is imperative to develop efficient strategies on the treatment of prostate cancer. Here, we constructed multifunctional nanoparticles, namely AS1411@MPDA‐DTX (AMD) for targeted and synergistic chemotherapy/photothermal therapy of prostate cancer. Materials and Methods Mesoporous polydopamine (MPDA) nanoparticles were prepared by a one‐pot synthesis method, DTX was loaded through incubation, and AS1411 aptamer was modified onto MPDA by the covalent reaction. The prepared nanoparticles were characterized by ultra‐micro spectrophotometer, Fourier transform infrared spectra, transmission electron microscope, and so on. The targeting ability was detected by selective uptake and cell killing. The mechanism of AMD‐mediated synergistic therapy was detected by Western blot and immunofluorescence. Results The prepared nanoparticles can be easily synthesized and possessed excellent water solubility, stability, and controlled drug release ability, preferentially in acidic context. Based on in vitro and in vivo results, the nanoparticles can efficiently target prostate cancer cells, promote DTX internalization, and enhance the antitumor effects of chemo‐photothermal therapy strategies under the NIR laser irradiation. Conclusions As a multifunctional nanoplatform, AS1411@MPDA‐DTX could efficiently target prostate cancer cells, promote DTX internalization, and synergistically enhance the antiprostate cancer efficiency by combining with NIR irradiation.
Collapse
Affiliation(s)
- Liang Dai
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dapeng Wei
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jidong Zhang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tianyu Shen
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin, China
| | - Yuming Zhao
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Junqiang Liang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Wangteng Ma
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Limin Zhang
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Qingli Liu
- Department of Urology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Yue Zheng
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| |
Collapse
|
29
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO, Zhu H, Wang G, Wharram B, Lisok A, Brummet M, Saeki H, Huang T, Gabrielson K, Gabrielson E, Cope L, Kanaan YM, Afsari A, Naab T, Yfantis HG, Ambs S, Pomper MG, Sukumar S, Merino VF. CRYβB2 enhances tumorigenesis through upregulation of nucleolin in triple negative breast cancer. Oncogene 2021; 40:5752-5763. [PMID: 34341513 PMCID: PMC10064491 DOI: 10.1038/s41388-021-01975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Expression of β-crystallin B2 (CRYβB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYβB2-induced malignancy and the association of CRYβB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYβB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYβB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYβB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYβB2 and the nucleolar protein, nucleolin. CRYβB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYβB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYβB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYβB2 in primary TNBC correlates with decreased survival. In summary, CRYβB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYβB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.
Collapse
Affiliation(s)
- Yu Yan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan Wharram
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmine M Kanaan
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ali Afsari
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Tammey Naab
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vanessa F Merino
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Chen Y, Pan C, Wang X, Xu D, Ma Y, Hu J, Chen P, Xiang Z, Rao Q, Han X. Silencing of METTL3 effectively hinders invasion and metastasis of prostate cancer cells. Theranostics 2021; 11:7640-7657. [PMID: 34335955 PMCID: PMC8315076 DOI: 10.7150/thno.61178] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Since primary prostate cancer (PCa) can advance to the life-threatening metastatic PCa, exploring the molecular mechanisms underlying PCa metastasis is crucial for developing the novel targeted preventive strategies for decreasing the mortality of PCa. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and its specific roles in PCa progression remains elusive. Methods: Western blotting, quantitative real-time PCR and immunohistochemical analyses were used to detect target gene expression in PCa cells in vitro and prostate tissues from patients. RNA immunoprecipitation was conducted to analyze the specific binding of mRNA to the target protein. Migration and invasion assays were used to assess the migratory capacities of cancer cells. The correlation between target gene expression and survival rate of PCa patients was analyzed based the TCGA database. Results: We found that total RNA N6-methyladenosine (m6A) modification levels were markedly upregulated in human PCa tissues due to increased expression of methyltransferase like 3 (METTL3). Further studies revealed that the migratory and invasive capacities of PCa cells were markedly suppressed upon METTL3 knockdown. Mechanistically, METTL3 mediates m6A modification of USP4 mRNA at A2696, and m6A reader protein YTHDF2 binds to and induces degradation of USP4 mRNA by recruiting RNA-binding protein HNRNPD to the mRNA. Decrease of USP4 fails to remove the ubiquitin group from ELAVL1 protein, resulting in a reduction of ELAVL1 protein. Lastly, downregulation of ELAVL1 in turn increases ARHGDIA expression, promoting migration and invasion of PCa cells. Conclusions: Our findings highlight the role of METTL3 in modulating invasion and metastasis of PCa cells, providing insight into promising therapeutic strategies for hindering PCa progressing to deadly metastases.
Collapse
Affiliation(s)
- Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaotong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jianhang Hu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Peilin Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong China
| | - Qiu Rao
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
31
|
Furlan T, Kirchmair A, Sampson N, Puhr M, Gruber M, Trajanoski Z, Santer FR, Parson W, Handle F, Culig Z. MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1094-1107. [PMID: 33705753 DOI: 10.1016/j.ajpath.2021.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Tobias Furlan
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
32
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
33
|
Cangiano M, Grudniewska M, Salji MJ, Nykter M, Jenster G, Urbanucci A, Granchi Z, Janssen B, Hamilton G, Leung HY, Beumer IJ. Gene Regulation Network Analysis on Human Prostate Orthografts Highlights a Potential Role for the JMJD6 Regulon in Clinical Prostate Cancer. Cancers (Basel) 2021; 13:cancers13092094. [PMID: 33925994 PMCID: PMC8123677 DOI: 10.3390/cancers13092094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is a very common malignancy worldwide. Treatment resistant prostate cancer poses a big challenge to clinicians and is the second most common cause of premature death in men with cancer. Gene expression analysis has been performed on clinical tumours but to date none of the gene expression-based biomarkers for prostate cancer have been successfully integrated to into clinical practice to improve patient management and treatment choice. We applied a novel laboratory prostate cancer model to mimic clinical hormone responsive and resistant prostate cancer and tested whether a network of genes similarly regulated by transcription factors (gene products that control the expression of target genes) are associated with patient outcome. We identified regulons (networks of genes similarly regulated) from our preclinical prostate cancer models and further evaluated the top ranked JMJD6 gene related regulated network in three independent clinical patient cohorts. Abstract Background: Prostate cancer (PCa) is the second most common tumour diagnosed in men. Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide insight into progressive PCa. Herein, we exploited a graph-based enrichment score to integrate data from GRNs identified in preclinical prostate orthografts and differentially expressed genes in clinical resected PCa. We identified active regulons (transcriptional regulators and their targeted genes) associated with PCa recurrence following radical prostatectomy. Methods: The expression of known transcription factors and co-factors was analysed in a panel of prostate orthografts (n = 18). We searched for genes (as part of individual GRNs) predicted to be regulated by the highest number of transcriptional factors. Using differentially expressed gene analysis (on a per sample basis) coupled with gene graph enrichment analysis, we identified candidate genes and associated GRNs in PCa within the UTA cohort, with the most enriched regulon being JMJD6, which was further validated in two additional cohorts, namely EMC and ICGC cohorts. Cox regression analysis was performed to evaluate the association of the JMJD6 regulon activity with disease-free survival time in the three clinical cohorts as well as compared to three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). Results: 1308 regulons were correlated to transcriptomic data from the three clinical prostatectomy cohorts. The JMJD6 regulon was identified as the top enriched regulon in the UTA cohort and again validated in the EMC cohort as the top-ranking regulon. In both UTA and EMC cohorts, the JMJD6 regulon was significantly associated with cancer recurrence. Active JMJD6 regulon also correlated with disease recurrence in the ICGC cohort. Furthermore, Kaplan–Meier analysis confirmed shorter time to recurrence in patients with active JMJD6 regulon for all three clinical cohorts (UTA, EMC and ICGC), which was not the case for three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). In multivariate analysis, the JMJD6 regulon status significantly predicted disease recurrence in the UTA and EMC, but not ICGC datasets, while none of the three published signatures significantly prognosticate for cancer recurrence. Conclusions: We have characterised gene regulatory networks from preclinical prostate orthografts and applied transcriptomic data from three clinical cohorts to evaluate the prognostic potential of the JMJD6 regulon.
Collapse
Affiliation(s)
- Mario Cangiano
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Magda Grudniewska
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Mark J. Salji
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Matti Nykter
- Laboratory of Computational Biology, Institute of Biomedical Technology, Arvo Ylpön katu 34, 33520 Tampere, Finland;
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway;
| | - Zoraide Granchi
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Bart Janssen
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1QH, UK;
| | - Hing Y. Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Correspondence: (H.Y.L.); (I.J.B.)
| | - Inès J. Beumer
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
- Correspondence: (H.Y.L.); (I.J.B.)
| |
Collapse
|
34
|
Nucleolin Promotes Cisplatin Resistance in Cervical Cancer by the YB1-MDR1 Pathway. JOURNAL OF ONCOLOGY 2021; 2021:9992218. [PMID: 33976698 PMCID: PMC8084676 DOI: 10.1155/2021/9992218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/10/2021] [Indexed: 11/17/2022]
Abstract
Purpose Cervical cancer is the fourth most common cancer in women worldwide and is the main cause of cancer-related deaths in women. Cisplatin (DDP) is one of the major chemotherapeutic drugs for cervical cancer patients. But, drug resistance limits the effectiveness of cancer therapy. Nucleolin (NCL) is a nucleocytoplasmic multifunctional protein involved in the development of cancer. It has been reported that NCL may be a potential target for modulation of drug resistance. However, the precise molecular mechanisms are poorly understood. Materials and Methods Human cervical cancer Hela cells and their cisplatin-resistant cell line Hela/DDP were used in this study. The protein level of NCL in cervical cancer cells was measured by western blot analysis. Hela cells and Hela/DDP cells were transfected with NCL overexpression plasmid or NCL siRNA separately. MTT and EdU assay were performed to evaluate the cell viability and sensitivity to cisplatin. The drug efflux function of MDR1 protein was assessed by intracellular rhodamine-123 accumulation assay.The promoter activity of MDR1 was assessed by using a dual-luciferase reporter assay. Results We found that the protein level of NCL was elevated in Hela/DDP cells. Overexpression of NCL increased cervical cancer cell proliferation and attenuated the sensitivity to cisplatin. Overexpression of NCL increased Multidrug resistance (MDR1) gene expression and drug efflux. Our results demonstrated that NCL was highly related with cisplatin resistance in cervical cancer. NCL played an important role in MDR1 gene transcription through regulation of the transcription factor YB1. Conclusion Our findings revealed the novel role of NCL in cisplatin-resistant cervical cancer and NCL may be a potential therapeutic target for chemoresistance.
Collapse
|
35
|
PRMT5: a putative oncogene and therapeutic target in prostate cancer. Cancer Gene Ther 2021; 29:264-276. [PMID: 33854218 DOI: 10.1038/s41417-021-00327-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.
Collapse
|
36
|
The brominated flame retardants TBECH and DPTE alter prostate growth, histology and gene expression patterns in the mouse. Reprod Toxicol 2021; 102:43-55. [PMID: 33848595 DOI: 10.1016/j.reprotox.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and β, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαβ and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαβ affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαβ group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.
Collapse
|
37
|
Chakrapani B, Khan MIK, Kadumuri RV, Gupta S, Verma M, Awasthi S, Govindaraju G, Mahesh A, Rajavelu A, Chavali S, Dhayalan A. The uncharacterized protein FAM47E interacts with PRMT5 and regulates its functions. Life Sci Alliance 2021; 4:e202000699. [PMID: 33376131 PMCID: PMC7772775 DOI: 10.26508/lsa.202000699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) symmetrically dimethylates arginine residues in various proteins affecting diverse cellular processes such as transcriptional regulation, splicing, DNA repair, differentiation, and cell cycle. Elevated levels of PRMT5 are observed in several types of cancers and are associated with poor clinical outcomes, making PRMT5 an important diagnostic marker and/or therapeutic target for cancers. Here, using yeast two-hybrid screening, followed by immunoprecipitation and pull-down assays, we identify a previously uncharacterized protein, FAM47E, as an interaction partner of PRMT5. We report that FAM47E regulates steady-state levels of PRMT5 by affecting its stability through inhibition of its proteasomal degradation. Importantly, FAM47E enhances the chromatin association and histone methylation activity of PRMT5. The PRMT5-FAM47E interaction affects the regulation of PRMT5 target genes expression and colony-forming capacity of the cells. Taken together, we identify FAM47E as a protein regulator of PRMT5, which promotes the functions of this versatile enzyme. These findings imply that disruption of PRMT5-FAM47E interaction by small molecules might be an alternative strategy to attenuate the oncogenic function(s) of PRMT5.
Collapse
Affiliation(s)
- Baskar Chakrapani
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Rajashekar Varma Kadumuri
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Somlee Gupta
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Mamta Verma
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Sharad Awasthi
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Gayathri Govindaraju
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Arumugam Rajavelu
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | | |
Collapse
|
38
|
Zhu H, Li J, Li Y, Zheng Z, Guan H, Wang H, Tao K, Liu J, Wang Y, Zhang W, Li C, Li J, Jia L, Bai W, Hu D. Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. SCIENCE ADVANCES 2021; 7:eabd9923. [PMID: 33627425 PMCID: PMC7904261 DOI: 10.1126/sciadv.abd9923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Mechanical stimuli on cells and mechanotransduction are essential in many biological and pathological processes. Glucocorticoid is an important hormone, roles, and mechanisms of which in cellular mechanotransduction remain unknown. Here, we report that glucocorticoid counteracted cellular mechanoresponses dependently on a novel long noncoding RNA (lncRNA), LINC01569 Further, LINC01569 mediated glucocorticoid effects on mechanotransduction by destabilizing messenger RNA (mRNA) of mechanosensors including early growth response protein 1 (EGR1), Cbp/P300-interacting transactivator 2 (CITED2), and bone morphogenic protein 7 (BMP7) in glucocorticoid receptor-mediated mRNA decay (GMD) manner. Mechanistically, LINC01569 directly bound to the GMD factor Y-box-binding protein 1 (YBX1). Then, the LINC01569-YBX1 complex was guided to the mRNAs of EGR1, CITED2, and BMP7 through specific LINC01569-mRNA interaction, thereby contributing to the successful assembly of GMD complex and triggering GMD. Our results uncovered roles of glucocorticoid in cellular mechanotransduction and novel lncRNA-dependent GMD machinery and provided potential strategy for early intervention in mechanical disorder-associated diseases.
Collapse
Affiliation(s)
- Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yize Li
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Zheng
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongtao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiaqi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wanfu Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wendong Bai
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
- Department of Clinical Laboratory Center, Xinjiang Command General Hospital of Chinese People's Liberation Army, Urumqi, Xinjiang 830000, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
39
|
Yuan Y, Nie H. Protein arginine methyltransferase 5: a potential cancer therapeutic target. Cell Oncol (Dordr) 2021; 44:33-44. [PMID: 33469838 DOI: 10.1007/s13402-020-00577-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PRMT5 is a type II protein arginine methyltransferase that methylates histone or non-histone proteins. Arginine methylation by PRMT5 has been implicated in gene transcription, ribosome biogenesis, RNA transport, pre-mRNA splicing and signal transduction. High expression of PRMT5 has been observed in various cancers and PRMT5 overexpression has been reported to improve cancer cell survival, proliferation, migration and metabolism and to inhibit cancer cell apoptosis. In addition, PRMT5 has been found to be required for cancer stem cell survival, self-renewal and differentiation. Several microRNAs have been shown to regulate PRMT5 expression. As PRMT5 has oncogene-like properties, several PRMT5 inhibitors have been used to explore their efficacy as potential drugs for different types of cancer, and three of them are now being tested in clinical trials. CONCLUSIONS In this review, we summarize current knowledge on the role of PRMT5 in cancer development and progression, including its functions and underlying mechanisms. In addition, we highlight the rapid development of PRMT5 inhibitors and summarize ongoing clinical trials for cancer therapy. By affecting both tumor cells and the tumor microenvironment, PRMT5 inhibitors may serve as effective anti-cancer agents, especially when combined with immune therapies.
Collapse
Affiliation(s)
- Yuanyang Yuan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, China.
| |
Collapse
|
40
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
41
|
Sapir T, Shifteh D, Pahmer M, Goel S, Maitra R. Protein Arginine Methyltransferase 5 (PRMT5) and the ERK1/2 & PI3K Pathways: A Case for PRMT5 Inhibition and Combination Therapies in Cancer. Mol Cancer Res 2020; 19:388-394. [PMID: 33288733 DOI: 10.1158/1541-7786.mcr-20-0745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
The ERK1/2 (RAS, RAF, MEK, ERK) and PI3K (PI3K, AKT, mTOR, PTEN) pathways are the chief signaling pathways for cellular proliferation, survival, and differentiation. Overactivation and hyperphosphorylation of the ERK1/2 & PI3K pathways is frequently observed in cancer and is associated with poor patient prognosis. While it is well known that genetic alterations lead to the dysregulation of the ERK1/2 & PI3K pathways, increasing evidence showcase that epigenetic alterations also play a major role in the regulation of the ERK1/2 & PI3K pathways. Protein Arginine Methyltransferase 5 (PRMT5) is a posttranslational modifier for multiple cellular processes, which is currently being tested as a therapeutic target for cancer. PRMT5 has been shown to be overexpressed in many types of cancers, as well as negatively correlated with patient survival. Numerous studies are indicating that as a posttranslational modifier, PRMT5 is extensively involved in regulating the ERK1/2 & PI3K pathways. In addition, a large number of in vitro and in vivo studies are demonstrating that PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, show significant therapeutic effects in many cancer types. In this review, we explore the vast interactions that PRMT5 has with the ERK1/2 & PI3K pathways, and we make the case for further testing of PRMT5 inhibition, as well as PRMT5 and ERK1/2 & PI3K combination therapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Tzuriel Sapir
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - David Shifteh
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Moshe Pahmer
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York
| | - Sanjay Goel
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York
| | - Radhashree Maitra
- Department of Biology, Yeshiva College, Yeshiva University, New York, New York.
| |
Collapse
|
42
|
Ji W, Choi YJ, Kang MH, Sung KJ, Kim DH, Jung S, Choi CM, Lee JC, Rho JK. Efficacy of the CDK7 Inhibitor on EMT-Associated Resistance to 3rd Generation EGFR-TKIs in Non-Small Cell Lung Cancer Cell Lines. Cells 2020; 9:cells9122596. [PMID: 33287368 PMCID: PMC7761809 DOI: 10.3390/cells9122596] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is associated with resistance during EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy. Here, we investigated whether EMT is associated with acquired resistance to 3rd generation EGFR-TKIs, and we explored the effects of cyclin-dependent kinase 7 (CDK7) inhibitors on EMT-mediated EGFR-TKIs resistance in non-small cell lung cancer (NSCLC). We established 3rd generation EGFR-TKI resistant cell lines (H1975/WR and H1975/OR) via repeated exposure to WZ4002 and osimertinib. The two resistant cell lines showed phenotypic changes to a spindle-cell shape, had a reduction of epithelial marker proteins, an induction of vimentin expression, and enhanced cellular mobility. The EMT-related resistant cells had higher sensitivity to THZ1 than the parental cells, although THZ1 treatment did not inhibit EGFR activity. This phenomenon was also observed in TGF-β1 induced EMT cell lines. THZ1 treatment induced G2/M cell cycle arrest and apoptosis in all of the cell lines. In addition, THZ1 treatment led to drug-tolerant, EMT-related resistant cells, and these THZ1-tolerant cells partially recovered their sensitivity to 3rd generation EGFR-TKIs. Taken together, EMT was associated with acquired resistance to 3rd generation EGFR-TKIs, and CDK7 inhibitors could potentially be used as a therapeutic strategy to overcome EMT associated EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Wonjun Ji
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (W.J.); (C.-M.C.)
| | - Yun Jung Choi
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (Y.J.C.); (M.-H.K.); (K.J.S.); (D.H.K.)
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (Y.J.C.); (M.-H.K.); (K.J.S.); (D.H.K.)
| | - Ki Jung Sung
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (Y.J.C.); (M.-H.K.); (K.J.S.); (D.H.K.)
| | - Dong Ha Kim
- Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (Y.J.C.); (M.-H.K.); (K.J.S.); (D.H.K.)
| | - Sangyong Jung
- Department of Biomedical Sciences, Asan Medical Center, AMIST, College of Medicine, University of Ulsan, Seoul 05505, Korea;
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (W.J.); (C.-M.C.)
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Correspondence: (J.C.L.); (J.K.R.); Tel.: +82-2-3010-3208 (J.C.L.); +82-2-3010-2974 (J.K.R.); Fax: +82-2-3010-6961 (J.C.L. & J.K.R.)
| | - Jin Kyung Rho
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea; (W.J.); (C.-M.C.)
- Department of Convergence Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Korea
- Correspondence: (J.C.L.); (J.K.R.); Tel.: +82-2-3010-3208 (J.C.L.); +82-2-3010-2974 (J.K.R.); Fax: +82-2-3010-6961 (J.C.L. & J.K.R.)
| |
Collapse
|
43
|
Tsukasaki M, Huynh NCN, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T, Kiyonari H, Okamura T, Sakai M, Matsukawa T, Matsumoto M, Kobayashi Y, Penninger JM, Takayanagi H. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 2020; 2:1382-1390. [PMID: 33288951 DOI: 10.1038/s42255-020-00318-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/04/2020] [Indexed: 12/16/2022]
Abstract
Osteoclasts are the exclusive bone-resorbing cells, playing a central role in bone metabolism, as well as the bone damage that occurs under pathological conditions1,2. In postnatal life, haematopoietic stem-cell-derived precursors give rise to osteoclasts in response to stimulation with macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, both of which are produced by osteoclastogenesis-supporting cells such as osteoblasts and osteocytes1-3. However, the precise mechanisms underlying cell fate specification during osteoclast differentiation remain unclear. Here, we report the transcriptional profiling of 7,228 murine cells undergoing in vitro osteoclastogenesis, describing the stepwise events that take place during the osteoclast fate decision process. Based on our single-cell transcriptomic dataset, we find that osteoclast precursor cells transiently express CD11c, and deletion of receptor activator of nuclear factor-κB specifically in CD11c-expressing cells inhibited osteoclast formation in vivo and in vitro. Furthermore, we identify Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (Cited2) as the molecular switch triggering terminal differentiation of osteoclasts, and deletion of Cited2 in osteoclast precursors in vivo resulted in a failure to commit to osteoclast fate. Together, the results of this study provide a detailed molecular road map of the osteoclast differentiation process, refining and expanding our understanding of the molecular mechanisms underlying osteoclastogenesis.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Warunee Pluemsakunthai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mashito Sakai
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Toshiya Matsukawa
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, Institute for Oral Science, Matsumoto Dental University, Shiojiri, Japan
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Life Science Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
44
|
Fan X, Zhou J, Bi X, Liang J, Lu S, Yan X, Luo L, Yin Z. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem 2020; 89:108556. [PMID: 33249185 DOI: 10.1016/j.jnutbio.2020.108556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Chen C, Liu M, Tang Y, Sun H, Lin X, Liang P, Jiang B. LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol 2020; 235:5985-5994. [PMID: 31975412 DOI: 10.1002/jcp.29524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemic preconditioning (IP) is defined as a brief period of myocardial ischemia/reperfusion (I/R) that significantly reduces injury during the subsequent exposure to long-term I/R. However, the underlying mechanisms of myocardial IP are yet to be elucidated. This study investigated the expression and roles of long noncoding RNA (lncRNA) H19 in myocardial IP in vitro and in vivo. LncRNA H19 expression levels were analyzed by quantitative reverse-transcription polymerase chain reaction, cell viability was determined by the Cell Counting Kit-8 assay, apoptosis was evaluated based on the caspase 3 activity, and RNA immunoprecipitation was performed to examine the interaction between lncRNA H19 and nucleolin. The results of this study showed that lncRNA H19 expression was significantly upregulated in mouse hearts subjected to myocardial IP, in rat H9C2 cells exposed to H2 O2 preconditioning (H2 O2 -PC), and in neonatal rat cardiomyocytes subjected to hypoxia preconditioning. H19 knockdown abrogated the H2 O2 -PC-mediated protection in cardiomyocytes evidenced by the decreased cell viability and increased caspase-3 activity. Conversely, H19 overexpression enhanced the protective role of H2 O2 -PC in cardiomyocytes. In addition, H19 overexpression increased the expression of nucleolin, whereas H19 ablation abrogated H2 O2 -PC-induced upregulation of nucleolin in cardiomyocytes. Furthermore, H19 overexpression increased the stabilization of nucleolin; an interaction between H19 and nucleolin was identified using the RNA-protein interaction studies. Furthermore, nucleolin small interfering RNA relieved the protective role of lncRNA H19. These findings demonstrated that the lncRNA H19 is involved in myocardial IP via increasing the stability of nucleolin protein and lncRNA H19 may represent a potential therapeutic target for the treatment of the myocardial injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
47
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
48
|
Polarization and function of tumor-associated macrophages mediate graphene oxide-induced photothermal cancer therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111913. [PMID: 32473533 DOI: 10.1016/j.jphotobiol.2020.111913] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/11/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
Abstract
Polarization status of tumor-associated macrophages (TAMs) plays an essential role in tumor growth and invasion. However, emerging treatment like photothermal therapy (PTT), photodynamic therapy (PDT) paid little attention on TAMs. In recent years, photothermal therapy (PTT) has gained immense attention in the anti-tumor strategy field while the effect of PTT on macrophage polarization in a tumor microenvironment has rarely been reported. Here, we used graphene oxide (GO) combined with polyethylene glycol (PEG) as the photothermal material to induce heating effect in macrophages to define its anti-tumor effect in vitro and in vivo. Firstly, we treated the macrophage cell line RAW264.7 with near infrared (NIR) light irradiation and detected their polarization status by flow cytometric and mRNA expression analysis. Following this, we analyzed the migration and invasion ability of an osteosarcoma HOS cell line cultured in a conditioned medium (CM) that contains cytokine generated by macrophages with or without NIR treatment. Finally, we investigated the in vivo effects of NIR-induced macrophage polarization on osteosarcoma growth and invasion. GO-PEG (GP) showed great photothermal effect, thermal stability, and biocompatibility in vitro and in vivo. Photothermal materials can alleviate interleukin-4-induced M2 polarization of macrophages and modulate their anti-tumor capability. Thus, the migration and invasion capabilities of HOS cells were weakened, leading to an anti-tumor effect in a mouse subcutaneous tumor model. In conclusion, our study identified PTT treatment as an approach for preventing osteosarcoma invasion by inhibition of M2 polarization.
Collapse
|
49
|
Nucleolin represses transcription of the androgen receptor gene through a G-quadruplex. Oncotarget 2020; 11:1758-1776. [PMID: 32477465 PMCID: PMC7233804 DOI: 10.18632/oncotarget.27589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.
Collapse
|
50
|
Li X, Song Q, Guo X, Wang L, Zhang Q, Cao L, Ren Y, Wu X, Meng Z, Xu K. The Metastasis Potential Promoting Capacity of Cancer-Associated Fibroblasts Was Attenuated by Cisplatin via Modulating KRT8. Onco Targets Ther 2020; 13:2711-2723. [PMID: 32280245 PMCID: PMC7132007 DOI: 10.2147/ott.s246235] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are an essential component of tumor microenvironment. They are attracting increasing attentions due to their crucial role in tumor growth, drug-resistance and metastasis. Cisplatin is a first-line chemotherapy drug applying in various types of cancer. There are intensive studies on cisplatin's effect on tumor cells, however, its effect on CAFs remains poorly understood. In the present study, we investigated the effect of cisplatin on CAFs. Methods Cell migration was detected by wound healing assay. Cell invasion was performed by the transwell assay. mRNA expression was detected by quantitative PCR, and protein expression was detected by Western blotting. Tumor growth was measured using BALB/c nude mice tumor models. Results Cisplatin attenuated the promoting capacity of CAFs on lung cancer cell migration and invasion, via suppressing CAFs' effect on metastasis-related genes including Twist1, vascular endothelial growth factor receptor (VEGFR), MMP2, and AKT signaling pathway. Keratin 8 (KRT8) was identified as a target of cisplatin. KRT8 upregulation in CAFs is responsible for the inhibitory effect of cisplatin on lung cancer cells metastasis potential through AKT pathway suppression. The stimulation of AKT by AKT activator SC79 reversed KRT8's effect on cell migration. Importantly, in vivo study also showed that CAFs enhanced tumor growth significantly, and cisplatin effectively abrogated the promoting effect of CAFs on tumor growth. Conclusion Our results revealed a novel mechanism that cisplatin attenuated the metastasis promoting effect of CAFs via KRT8/AKT signaling pathway. This finding highlights KRT8 in CAFs as a potential therapeutic candidate for metastasis treatment.
Collapse
Affiliation(s)
- Xueqin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qianqian Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xueru Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Limin Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Qicheng Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Limin Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yinghui Ren
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Xiang Wu
- Core Facility Center, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|