1
|
Božič A, Podgornik R. Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages. PLoS One 2025; 20:e0320891. [PMID: 40193474 PMCID: PMC11975073 DOI: 10.1371/journal.pone.0320891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic offered an unprecedented glimpse into the evolution of its causative virus, SARS-CoV-2. It has been estimated that since its outbreak in late 2019, the virus has explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain. Spike protein of the virus exhibits the largest sequence variation in particular, with many individual mutations impacting target recognition, cellular entry, and endosomal escape of the virus. Moreover, recent studies unveiled a significant increase in the total charge on the spike protein during the evolution of the virus in the initial period of the pandemic. While this trend has recently come to a halt, we perform a sequence-based analysis of the spike protein of 2665 SARS-CoV-2 variants which shows that mutations in ionizable amino acids continue to occur with the newly emerging variants, with notable differences between lineages from different clades. What is more, we show that within mutations of amino acids which can acquire positive charge, the spike protein of SARS-CoV-2 exhibits a prominent preference for lysine residues over arginine residues. This lysine-to-arginine ratio increased at several points during spike protein evolution, most recently with BA.2.86 and its sublineages, including the recently dominant JN.1, KP.3, and XEC variants. The increased ratio is a consequence of mutations in different structural regions of the spike protein and is now among the highest among viral species in the Coronaviridae family. The impact of high lysine-to-arginine ratio in the spike proteins of BA.2.86 and its daughter lineages on viral fitness remains unclear; we discuss several potential mechanisms that could play a role and that can serve as a starting point for further studies.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Tyl MD, Merengwa VU, Cristea IM. Infection-induced lysine lactylation enables herpesvirus immune evasion. SCIENCE ADVANCES 2025; 11:eads6215. [PMID: 39772686 PMCID: PMC11708889 DOI: 10.1126/sciadv.ads6215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Aerobic glycolysis is a hallmark of many viral infections, leading to substantial accumulation of lactate. However, the regulatory roles of lactate during viral infections remain poorly understood. Here, we report that human cytomegalovirus (HCMV) infection leverages lactate to induce widespread protein lactylation and promote viral spread. We establish that lactyllysine is enriched in intrinsically disordered regions, regulating viral protein condensates and immune signaling transduction. Dynamic lactylation of immune factors suppresses immunity, a feature we show to be shared for HCMV and herpes simplex virus 1 infections, through regulation of RNA binding protein 14 and interferon-γ-inducible protein 16 (IFI16). K90 lactylation of the viral DNA sensor IFI16 inhibits recruitment of the DNA damage response kinase DNA-PK, preventing IFI16-driven virus gene repression and cytokine induction. Together, we characterize global protein lactylation dynamics during virus infection, finding that virus-induced lactate contributes to its immune evasion through direct inhibition of immune signaling pathways.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Victoria U. Merengwa
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
3
|
Song L, Zhong P, Yu R, Yuan Y, Zhou Y, Qian Y, Yang S, Yi H, Yang Z, Zhao W. Effect of HDAC9-induced deacetylation of glycolysis-related GAPDH lysine 219 on rotavirus replication in rotavirus-infected Caco-2 cells. Virus Genes 2024; 60:621-634. [PMID: 39302542 PMCID: PMC11568057 DOI: 10.1007/s11262-024-02104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.
Collapse
Affiliation(s)
- Lijun Song
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Peicheng Zhong
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Runyu Yu
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yue Yuan
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yujing Zhou
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Yupei Qian
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Siyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haosen Yi
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Zhiyan Yang
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Wenchang Zhao
- School of Pharmacy, Guangdong Medical University, NO.1, Xincheng Road, Dongguan, 523808, Guangdong Province, China.
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
4
|
Shenk T, Kulp III JL, Chiang LW. Drugs Targeting Sirtuin 2 Exhibit Broad-Spectrum Anti-Infective Activity. Pharmaceuticals (Basel) 2024; 17:1298. [PMID: 39458938 PMCID: PMC11510315 DOI: 10.3390/ph17101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 10/28/2024] Open
Abstract
Direct-acting anti-infective drugs target pathogen-coded gene products and are a highly successful therapeutic paradigm. However, they generally target a single pathogen or family of pathogens, and the targeted organisms can readily evolve resistance. Host-targeted agents can overcome these limitations. One family of host-targeted, anti-infective agents modulate human sirtuin 2 (SIRT2) enzyme activity. SIRT2 is one of seven human sirtuins, a family of NAD+-dependent protein deacylases. It is the only sirtuin that is found predominantly in the cytoplasm. Multiple, structurally distinct SIRT2-targeted, small molecules have been shown to inhibit the replication of both RNA and DNA viruses, as well as intracellular bacterial pathogens, in cell culture and in animal models of disease. Biochemical and X-ray structural studies indicate that most, and probably all, of these compounds act as allosteric modulators. These compounds appear to impact the replication cycles of intracellular pathogens at multiple levels to antagonize their replication and spread. Here, we review SIRT2 modulators reported to exhibit anti-infective activity, exploring their pharmacological action as anti-infectives and identifying questions in need of additional study as this family of anti-infective agents advances to the clinic.
Collapse
Affiliation(s)
- Thomas Shenk
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - John L. Kulp III
- Conifer Point Pharmaceuticals, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| | - Lillian W. Chiang
- Evrys Bio, LLC, Pennsylvania Biotechnology Center, 3805 Old Easton Road, Doylestown, PA 18902, USA;
| |
Collapse
|
5
|
Zhu C, Duan Y, Dong J, Jia H, Zhang L, Xing A, Li Z, Du B, Sun Q, Huang Y, Zhang Z, Pan L. Quantitative analysis of the lysine acetylome reveals the role of SIRT3-mediated HSP60 deacetylation in suppressing intracellular Mycobacterium tuberculosis survival. Microbiol Spectr 2024; 12:e0074924. [PMID: 38916288 PMCID: PMC11302147 DOI: 10.1128/spectrum.00749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Protein acetylation and deacetylation are key epigenetic modifications that regulate the initiation and development of several diseases. In the context of infection with Mycobacterium tuberculosis (M. tb), these processes are essential for host-pathogen interactions and immune responses. However, the specific effects of acetylation and deacetylation on cellular functions during M. tb infection are not fully understood. This study employed Tandem Mass Tag (TMT) labeling for quantitative proteomic profiling to examine the acetylproteome (acetylome) profiles of noninfected and M. tb-infected macrophages. We identified 715 acetylated peptides from 1,072 proteins and quantified 544 lysine acetylation sites (Kac) in 402 proteins in noninfected and M. tb-infected macrophages. Our research revealed a link between acetylation events and metabolic changes during M. tb infection. Notably, the deacetylation of heat shock protein 60 (HSP60), a key chaperone protein, was significantly associated with this process. Specifically, the deacetylation of HSP60 at K96 by sirtuin3 (SIRT3) enhances macrophage apoptosis, leading to the elimination of intracellular M. tb. These findings underscore the pivotal role of the SIRT3-HSP60 axis in the host immune response to M. tb. This study offers a new perspective on host protein acetylation and suggests that targeting host-directed therapies could be a promising approach for tuberculosis immunotherapy. IMPORTANCE Protein acetylation is crucial for the onset, development, and outcome of tuberculosis (TB). Our study comprehensively investigated the dynamics of lysine acetylation during M. tb infection, shedding light on the intricate host-pathogen interactions that underlie the pathogenesis of tuberculosis. Using an advanced quantitative lysine proteomics approach, different profiles of acetylation sites and proteins in macrophages infected with M. tb were identified. Functional enrichment and protein-protein network analyses revealed significant associations between acetylated proteins and key cellular pathways, highlighting their critical role in the host response to M. tb infection. Furthermore, the deacetylation of HSP60 and its influence on macrophage-mediated clearance of M. tb underscore the functional significance of acetylation in tuberculosis pathogenesis. In conclusion, this study provides valuable insights into the regulatory mechanisms governing host immune responses to M. tb infection and offers promising avenues for developing novel therapeutic interventions against TB.
Collapse
Affiliation(s)
- Chuanzhi Zhu
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuheng Duan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jing Dong
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongyan Jia
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Lanyue Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zihui Li
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Boping Du
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yinxia Huang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Liping Pan
- Laboratory of Molecular Biology, Beijing Key Laboratory for Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Zhao X, Hu Y, Zhao J, Liu Y, Ma X, Chen H, Xing Y. Role of protein Post-translational modifications in enterovirus infection. Front Microbiol 2024; 15:1341599. [PMID: 38596371 PMCID: PMC11002909 DOI: 10.3389/fmicb.2024.1341599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
Enteroviruses (EVs) are the main cause of a number of neurological diseases. Growing evidence has revealed that successful infection with enteroviruses is highly dependent on the host machinery, therefore, host proteins play a pivotal role in viral infections. Both host and viral proteins can undergo post-translational modification (PTM) which can regulate protein activity, stability, solubility and interactions with other proteins; thereby influencing various biological processes, including cell metabolism, metabolic, signaling pathways, cell death, and cancer development. During viral infection, both host and viral proteins regulate the viral life cycle through various PTMs and different mechanisms, including the regulation of host cell entry, viral protein synthesis, genome replication, and the antiviral immune response. Therefore, protein PTMs play important roles in EV infections. Here, we review the role of various host- and virus-associated PTMs during enterovirus infection.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yibo Hu
- Department of Orthopaedic Trauma, The Affiliated Hospital of Qinghai University, Qinghai, China
| | - Jun Zhao
- Department of Pathogen Biology, School of Medicine, Qinghai University, Qinghai, China
| | - Yan Liu
- Department of Immunology, School of Medicine, Qinghai, China
| | - Xueman Ma
- Department of Traditional Chinese Medicine, School of Medicine, Qinghai University, Qinghai, China
| | - Hongru Chen
- Department of Public Health, School of Medicine, Qinghai University, Qinghai, China
| | - Yonghua Xing
- Department of Genetics, School of Medicine, Qinghai University, Qinghai, China
| |
Collapse
|
7
|
Betsinger CN, Justice JL, Tyl MD, Edgar JE, Budayeva HG, Abu YF, Cristea IM. Sirtuin 2 promotes human cytomegalovirus replication by regulating cell cycle progression. mSystems 2023; 8:e0051023. [PMID: 37916830 PMCID: PMC10734535 DOI: 10.1128/msystems.00510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE This study expands the growing understanding that protein acetylation is a highly regulated molecular toggle of protein function in both host anti-viral defense and viral replication. We describe a pro-viral role for the human enzyme SIRT2, showing that its deacetylase activity supports HCMV replication. By integrating quantitative proteomics, flow cytometry cell cycle assays, microscopy, and functional virology assays, we investigate the temporality of SIRT2 functions and substrates. We identify a pro-viral role for the SIRT2 deacetylase activity via regulation of CDK2 K6 acetylation and the G1-S cell cycle transition. These findings highlight a link between viral infection, protein acetylation, and cell cycle progression.
Collapse
Affiliation(s)
- Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Joshua L. Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Julia E. Edgar
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Hanna G. Budayeva
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Yaa F. Abu
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, USA
| |
Collapse
|
8
|
Dale AL, Man L, Cordwell SJ. Global Acetylomics of Campylobacter jejuni Shows Lysine Acetylation Regulates CadF Adhesin Processing and Human Fibronectin Binding. J Proteome Res 2023; 22:3519-3533. [PMID: 37830485 DOI: 10.1021/acs.jproteome.3c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Lysine acetylation (KAc) is a reversible post-translational modification (PTM) that can alter protein structure and function; however, specific roles for KAc are largely undefined in bacteria. Acetyl-lysine immunoprecipitation and LC-MS/MS identified 5567 acetylated lysines on 1026 proteins from the gastrointestinal pathogen Campylobacter jejuni (∼63% of the predicted proteome). KAc was identified on proteins from all subcellular locations, including the outer membrane (OM) and extracellular proteins. Label-based LC-MS/MS identified proteins and KAc sites during growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts). 3410 acetylated peptides were quantified, and 784 (from 409 proteins) were differentially abundant in DOC growth. Changes in KAc involved multiple pathways, suggesting a dynamic role for this PTM in bile resistance. As observed elsewhere, we show KAc is primarily nonenzymatically mediated via acetyl-phosphate; however, the deacetylase CobB also contributes to a global elevation of this modification in DOC. We observed several multiply acetylated OM proteins and altered DOC abundance of acetylated peptides in the fibronectin (Fn)-binding adhesin CadF. We show KAc reduces CadF Fn binding and prevalence of lower mass variants. This study provides the first system-wide lysine acetylome of C. jejuni and contributes to our understanding of KAc as an emerging PTM in bacteria.
Collapse
Affiliation(s)
- Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia
- Sydney Mass Spectrometry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Hu M, You Y, Li Y, Ma S, Li J, Miao M, Quan Y, Yu W. Deacetylation of ACO2 Is Essential for Inhibiting Bombyx mori Nucleopolyhedrovirus Propagation. Viruses 2023; 15:2084. [PMID: 37896861 PMCID: PMC10612070 DOI: 10.3390/v15102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a specific pathogen of Bombyx mori that can significantly impede agricultural development. Accumulating evidence indicates that the viral proliferation in the host requires an ample supply of energy. However, the correlative reports of baculovirus are deficient, especially on the acetylation modification of tricarboxylic acid cycle (TCA cycle) metabolic enzymes. Our recent quantitative analysis of protein acetylome revealed that mitochondrial aconitase (ACO2) could be modified by (de)acetylation at lysine 56 (K56) during the BmNPV infection; however, the underlying mechanism is yet unknown. In order to understand this regulatory mechanism, the modification site K56 was mutated to arginine (Lys56Arg; K56R) to mimic deacetylated lysine. The results showed that mimic deacetylated mitochondrial ACO2 restricted enzymatic activity. Although the ATP production was enhanced after viral infection, K56 deacetylation of ACO2 suppressed BmN cellular ATP levels and mitochondrial membrane potential by affecting citrate synthase and isocitrate dehydrogenase activities compared with wild-type ACO2. Furthermore, the deacetylation of exogenous ACO2 lowered BmNPV replication and generation of progeny viruses. In summary, our study on ACO2 revealed the potential mechanism underlying WT ACO2 promotes the proliferation of BmNPV and K56 deacetylation of ACO2 eliminates this promotional effect, which might provide novel insights for developing antiviral strategies.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yi You
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yao Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Shiyi Ma
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Jiaqi Li
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
10
|
Meng X, Wang X, Zhu X, Zhang R, Zhang Z, Sun Y. Quantitative analysis of acetylation in peste des petits ruminants virus-infected Vero cells. Virol J 2023; 20:227. [PMID: 37817180 PMCID: PMC10563215 DOI: 10.1186/s12985-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is a highly contagious pathogen that strongly influences the productivity of small ruminants worldwide. Acetylation is an important post-translational modification involved in regulation of multiple biological functions. However, the extent and function of acetylation in host cells during PPRV infection remains unknown. METHODS Dimethylation-labeling-based quantitative proteomic analysis of the acetylome of PPRV-infected Vero cells was performed. RESULTS In total, 1068 proteins with 2641 modification sites were detected in response to PPRV infection, of which 304 differentially acetylated proteins (DAcPs) with 410 acetylated sites were identified (fold change < 0.83 or > 1.2 and P < 0.05), including 109 up-regulated and 195 down-regulated proteins. Gene Ontology (GO) classification indicated that DAcPs were mostly located in the cytoplasm (43%) and participated in cellular and metabolic processes related to binding and catalytic activity. Functional enrichment indicated that the DAcPs were involved in the minichromosome maintenance complex, unfolded protein binding, helicase activity. Only protein processing in endoplasmic reticulum pathway was enriched. A protein-protein interaction (PPI) network of the identified proteins further indicated that a various chaperone and ribosome processes were modulated by acetylation. CONCLUSIONS To the best of our knowledge, this is the first study on acetylome in PPRV-infected host cell. Our findings establish an important baseline for future study on the roles of acetylation in the host response to PPRV replication and provide novel insights for understanding the molecular pathological mechanism of PPRV infection.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China.
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| |
Collapse
|
11
|
Li R, Chen F, Li S, Yuan L, Zhao L, Tian S, Chen B. Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus-infected chestnut blight fungus. MOLECULAR PLANT PATHOLOGY 2023; 24:1126-1138. [PMID: 37278715 PMCID: PMC10423328 DOI: 10.1111/mpp.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus-host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography-tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Sugarcane Biology, College of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|
12
|
Roche KL, Remiszewski S, Todd MJ, Kulp JL, Tang L, Welsh AV, Barry AP, De C, Reiley WW, Wahl A, Garcia JV, Luftig MA, Shenk T, Tonra JR, Murphy EA, Chiang LW. An allosteric inhibitor of sirtuin 2 deacetylase activity exhibits broad-spectrum antiviral activity. J Clin Invest 2023; 133:e158978. [PMID: 37317966 PMCID: PMC10266789 DOI: 10.1172/jci158978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Most drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations. The broad-spectrum activity achieved by host targeting can be especially useful in combating emerging viruses and for treatment of diseases caused by multiple viral pathogens, such as opportunistic agents in immunosuppressed patients. We have developed a family of compounds that modulate sirtuin 2, an NAD+-dependent deacylase, and now report the properties of a member of that family, FLS-359. Biochemical and x-ray structural studies show that the drug binds to sirtuin 2 and allosterically inhibits its deacetylase activity. FLS-359 inhibits the growth of RNA and DNA viruses, including members of the coronavirus, orthomyxovirus, flavivirus, hepadnavirus, and herpesvirus families. FLS-359 acts at multiple levels to antagonize cytomegalovirus replication in fibroblasts, causing modest reductions in viral RNAs and DNA, together with a much greater reduction in infectious progeny, and it exhibits antiviral activity in humanized mouse models of infection. Our results highlight the potential of sirtuin 2 inhibitors as broad-spectrum antivirals and set the stage for further understanding of how host epigenetic mechanisms impact the growth and spread of viral pathogens.
Collapse
Affiliation(s)
- Kathryn L. Roche
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Stacy Remiszewski
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Matthew J. Todd
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - John L. Kulp
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Liudi Tang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Alison V. Welsh
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chandrav De
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | | | - Angela Wahl
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, Division of Infectious Diseases, Center for AIDS Research, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas Shenk
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - James R. Tonra
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| | - Eain A. Murphy
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
- Microbiology and Immunology Department, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lillian W. Chiang
- Evrys Bio LLC, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania, USA
| |
Collapse
|
13
|
Park JW, Tyl MD, Cristea IM. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection. Biomolecules 2023; 13:biom13050869. [PMID: 37238738 DOI: 10.3390/biom13050869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
Collapse
Affiliation(s)
- Ji Woo Park
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Bachman LO, Zwezdaryk KJ. Targeting the Host Mitochondria as a Novel Human Cytomegalovirus Antiviral Strategy. Viruses 2023; 15:v15051083. [PMID: 37243170 DOI: 10.3390/v15051083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Human cytomegalovirus (HCMV) exploits host mitochondrial function to promote viral replication. HCMV gene products have been described to directly interact and alter functional or structural aspects of host mitochondria. Current antivirals against HCMV, such as ganciclovir and letermovir, are designed against viral targets. Concerns with the current antivirals include toxicity and viral resistance. Targeting host mitochondrial function is a promising alternative or complimentary antiviral approach as (1) drugs targeting host mitochondrial function interact with host targets, minimizing viral resistance, and (2) host mitochondrial metabolism plays key roles in HCMV replication. This review describes how HCMV alters mitochondrial function and highlights pharmacological targets that can be exploited for novel antiviral development.
Collapse
Affiliation(s)
- Lauryn O Bachman
- Department of Cell and Molecular Biology, Tulane University School of Science and Engineering, New Orleans, LA 70112, USA
| | - Kevin J Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Ducker C, Ratnam M, Shaw PE, Layfield R. Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1. Protein Expr Purif 2023; 203:106216. [PMID: 36528218 DOI: 10.1016/j.pep.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcription factor ELK-1 serves as a paradigm for cellular responses to mitogens and can synergise with androgen receptor to promote prostate cancer progression, although in vitro protein function analyses to date have largely overlooked its complex PTM landscapes. We expressed and purified human ELK-1 using mammalian (HEK293T), insect (Sf9) and bacterial (E. coli) systems in parallel and compared PTMs imparted upon purified proteins, along with their performance in DNA and protein interaction assays. Phosphorylation of ELK-1 within its transactivation domain, known to promote DNA binding, was most apparent in protein isolated from human cells and accordingly conferred the strongest DNA binding in vitro, while protein expressed in insect cells bound most efficiently to the androgen receptor. We observed lysine acetylation, a hitherto unreported PTM of ELK-1, which appeared highest in insect cell-derived ELK-1 but was also present in HEK293T-derived ELK-1. Acetylation of ELK-1 was enhanced in HEK293T cells following starvation and mitogen stimulation, and modified lysines showed overlap with previously identified regulatory SUMOylation and ubiquitination sites. Our data demonstrate that the choice of recombinant expression system can be tailored to suit biochemical application rather than to maximise soluble protein production and suggest the potential for crosstalk and antagonism between different PTMs of ELK-1.
Collapse
Affiliation(s)
- Charles Ducker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Manohar Ratnam
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
16
|
Pinto SM, Subbannayya Y, Kim H, Hagen L, Górna MW, Nieminen AI, Bjørås M, Espevik T, Kainov D, Kandasamy RK. Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. iScience 2022; 26:105895. [PMID: 36590899 PMCID: PMC9794516 DOI: 10.1016/j.isci.2022.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Corresponding author
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Proteomics and Modomics Experimental Core, PROMEC, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Maria W. Górna
- Structural Biology Group, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Anni I. Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014Helsinki, Finland
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway,Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA,Corresponding author
| |
Collapse
|
17
|
Crook OM, Davies CTR, Breckels LM, Christopher JA, Gatto L, Kirk PDW, Lilley KS. Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE. Nat Commun 2022; 13:5948. [PMID: 36216816 PMCID: PMC9550814 DOI: 10.1038/s41467-022-33570-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
The steady-state localisation of proteins provides vital insight into their function. These localisations are context specific with proteins translocating between different subcellular niches upon perturbation of the subcellular environment. Differential localisation, that is a change in the steady-state subcellular location of a protein, provides a step towards mechanistic insight of subcellular protein dynamics. High-accuracy high-throughput mass spectrometry-based methods now exist to map the steady-state localisation and re-localisation of proteins. Here, we describe a principled Bayesian approach, BANDLE, that uses these data to compute the probability that a protein differentially localises upon cellular perturbation. Extensive simulation studies demonstrate that BANDLE reduces the number of both type I and type II errors compared to existing approaches. Application of BANDLE to several datasets recovers well-studied translocations. In an application to cytomegalovirus infection, we obtain insights into the rewiring of the host proteome. Integration of other high-throughput datasets allows us to provide the functional context of these data.
Collapse
Affiliation(s)
- Oliver M Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK.
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| | - Colin T R Davies
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa M Breckels
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Josie A Christopher
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Paul D W Kirk
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
18
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
19
|
Cook KC, Tsopurashvili E, Needham JM, Thompson SR, Cristea IM. Restructured membrane contacts rewire organelles for human cytomegalovirus infection. Nat Commun 2022; 13:4720. [PMID: 35953480 PMCID: PMC9366835 DOI: 10.1038/s41467-022-32488-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2022] [Indexed: 12/24/2022] Open
Abstract
Membrane contact sites (MCSs) link organelles to coordinate cellular functions across space and time. Although viruses remodel organelles for their replication cycles, MCSs remain largely unexplored during infections. Here, we design a targeted proteomics platform for measuring MCS proteins at all organelles simultaneously and define functional virus-driven MCS alterations by the ancient beta-herpesvirus human cytomegalovirus (HCMV). Integration with super-resolution microscopy and comparisons to herpes simplex virus (HSV-1), Influenza A, and beta-coronavirus HCoV-OC43 infections reveals time-sensitive contact regulation that allows switching anti- to pro-viral organelle functions. We uncover a stabilized mitochondria-ER encapsulation structure (MENC). As HCMV infection progresses, MENCs become the predominant mitochondria-ER contact phenotype and sequentially recruit the tethering partners VAP-B and PTPIP51, supporting virus production. However, premature ER-mitochondria tethering activates STING and interferon response, priming cells against infection. At peroxisomes, ACBD5-mediated ER contacts balance peroxisome proliferation versus membrane expansion, with ACBD5 impacting the titers of each virus tested.
Collapse
Affiliation(s)
- Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Elene Tsopurashvili
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US
| | - Jason M Needham
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Sunnie R Thompson
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL, 35294, US
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, US.
| |
Collapse
|
20
|
Zheng M, Jin G, Zhou Z. Post-Translational Modification of Lamins: Mechanisms and Functions. Front Cell Dev Biol 2022; 10:864191. [PMID: 35656549 PMCID: PMC9152177 DOI: 10.3389/fcell.2022.864191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022] Open
Abstract
Lamins are the ancient type V intermediate filament proteins contributing to diverse biological functions, such as the maintenance of nuclear morphology, stabilization of chromatin architecture, regulation of cell cycle progression, regulation of spatial-temporal gene expressions, and transduction of mechano-signaling. Deregulation of lamins is associated with abnormal nuclear morphology and chromatin disorganization, leading to a variety of diseases such as laminopathy and premature aging, and might also play a role in cancer. Accumulating evidence indicates that lamins are functionally regulated by post-translational modifications (PTMs) including farnesylation, phosphorylation, acetylation, SUMOylation, methylation, ubiquitination, and O-GlcNAcylation that affect protein stabilization and the association with chromatin or associated proteins. The mechanisms by which these PTMs are modified and the relevant functionality become increasingly appreciated as understanding of these changes provides new insights into the molecular mechanisms underlying the laminopathies concerned and novel strategies for the management. In this review, we discussed a range of lamin PTMs and their roles in both physiological and pathological processes, as well as potential therapeutic strategies by targeting lamin PTMs.
Collapse
Affiliation(s)
- Mingyue Zheng
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
22
|
Horníková L, Bruštíková K, Huérfano S, Forstová J. Nuclear Cytoskeleton in Virus Infection. Int J Mol Sci 2022; 23:ijms23010578. [PMID: 35009004 PMCID: PMC8745530 DOI: 10.3390/ijms23010578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
The nuclear lamina is the main component of the nuclear cytoskeleton that maintains the integrity of the nucleus. However, it represents a natural barrier for viruses replicating in the cell nucleus. The lamina blocks viruses from being trafficked to the nucleus for replication, but it also impedes the nuclear egress of the progeny of viral particles. Thus, viruses have evolved mechanisms to overcome this obstacle. Large viruses induce the assembly of multiprotein complexes that are anchored to the inner nuclear membrane. Important components of these complexes are the viral and cellular kinases phosphorylating the lamina and promoting its disaggregation, therefore allowing virus egress. Small viruses also use cellular kinases to induce lamina phosphorylation and the subsequent disruption in order to facilitate the import of viral particles during the early stages of infection or during their nuclear egress. Another component of the nuclear cytoskeleton, nuclear actin, is exploited by viruses for the intranuclear movement of their particles from the replication sites to the nuclear periphery. This study focuses on exploitation of the nuclear cytoskeleton by viruses, although this is just the beginning for many viruses, and promises to reveal the mechanisms and dynamic of physiological and pathological processes in the nucleus.
Collapse
|
23
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
24
|
Neumann-Staubitz P, Lammers M, Neumann H. Genetic Code Expansion Tools to Study Lysine Acylation. Adv Biol (Weinh) 2021; 5:e2100926. [PMID: 34713630 DOI: 10.1002/adbi.202100926] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022]
Abstract
Lysine acylation is a ubiquitous protein modification that controls various aspects of protein function, such as the activity, localization, and stability of enzymes. Mass spectrometric identification of lysine acylations has witnessed tremendous improvements in sensitivity over the last decade, facilitating the discovery of thousands of lysine acylation sites in proteins involved in all essential cellular functions across organisms of all domains of life. However, the vast majority of currently known acylation sites are of unknown function. Semi-synthetic methods for installing lysine derivatives are ideally suited for in vitro experiments, while genetic code expansion (GCE) allows the installation and study of such lysine modifications, especially their dynamic properties, in vivo. An overview of the current state of the art is provided, and its potential is illustrated with case studies from recent literature. These include the application of engineered enzymes and GCE to install lysine modifications or photoactivatable crosslinker amino acids. Their use in the context of central metabolism, bacterial and viral pathogenicity, the cytoskeleton and chromatin dynamics, is investigated.
Collapse
Affiliation(s)
- Petra Neumann-Staubitz
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| | - Michael Lammers
- Institute for Biochemistry, Department Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Heinz Neumann
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany
| |
Collapse
|
25
|
Cakir M, Obernier K, Forget A, Krogan NJ. Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. mSystems 2021; 6:e0038821. [PMID: 34519533 PMCID: PMC8547474 DOI: 10.1128/msystems.00388-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
Collapse
Affiliation(s)
- Merve Cakir
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
26
|
Sánchez-García FJ, Pérez-Hernández CA, Rodríguez-Murillo M, Moreno-Altamirano MMB. The Role of Tricarboxylic Acid Cycle Metabolites in Viral Infections. Front Cell Infect Microbiol 2021; 11:725043. [PMID: 34595133 PMCID: PMC8476952 DOI: 10.3389/fcimb.2021.725043] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host cell metabolism is essential for the viral replication cycle and, therefore, for productive infection. Energy (ATP) is required for the receptor-mediated attachment of viral particles to susceptible cells and for their entry into the cytoplasm. Host cells must synthesize an array of biomolecules and engage in intracellular trafficking processes to enable viruses to complete their replication cycle. The tricarboxylic acid (TCA) cycle has a key role in ATP production as well as in the synthesis of the biomolecules needed for viral replication. The final assembly and budding process of enveloped viruses, for instance, require lipids, and the TCA cycle provides the precursor (citrate) for fatty acid synthesis (FAS). Viral infections may induce host inflammation and TCA cycle metabolic intermediates participate in this process, notably citrate and succinate. On the other hand, viral infections may promote the synthesis of itaconate from TCA cis-aconitate. Itaconate harbors anti-inflammatory, anti-oxidant, and anti-microbial properties. Fumarate is another TCA cycle intermediate with immunoregulatory properties, and its derivatives such as dimethyl fumarate (DMF) are therapeutic candidates for the contention of virus-induced hyper-inflammation and oxidative stress. The TCA cycle is at the core of viral infection and replication as well as viral pathogenesis and anti-viral immunity. This review highlights the role of the TCA cycle in viral infections and explores recent advances in the fast-moving field of virometabolism.
Collapse
Affiliation(s)
- Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Celia Angélica Pérez-Hernández
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel Rodríguez-Murillo
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
27
|
Gao X, Lei J, Zhu Y, Chen X, Mao F, Miao M, Quan Y, Yu W. Role of the Bombyx mori nucleopolyhedrovirus LEF3 acetylation on viral replication. Microb Pathog 2021; 158:105109. [PMID: 34314811 DOI: 10.1016/j.micpath.2021.105109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/25/2022]
Abstract
Late expression factor 3 (LEF3) is a single-stranded DNA binding protein of Bombyx mori nucleopolyhedrovirus (BmNPV) with multiple functions. It is an essential factor for viral DNA replication and plays an important regulatory role during BmNPV infection. Our recent quantitative analysis of protein acetylome revealed for the first time that LEF3 can be acetylated at four lysine residues during the viral infection, but the underlying mechanism is unknown. Among the modification sites, two of them (K18 and K27) are located in the conserved nuclear localization sequence region. The acetylation level for K18 especially was up-regulated approximately 7.4 times after 36 h of post-infection. To understand the regulatory function of this modification, site-direct mutagenesis for acetylated mimic (K18Q) or deacetylated mimic (K18R) mutants was performed on LEF3. The fluorescence analysis results showed that the replication capacity of the virus was significantly reduced after K18 acetylation. Meanwhile, co-localization analysis revealed that acetylation at K18 caused LEF3 to lose its nuclear targeting ability and affected the interaction between LEF3 and P143, retaining P143 in the cytoplasm. And further Yeast two-hybrid analysis results also confirmed that the acetylation at K18 did affect the interaction between LEF3 and P143. In conclusion, the acetylation of LEF3 at K18 might act as one of the antiviral strategies for silkworm host by affecting nuclear localization of LEF3, interaction with P143, and then blocking viral replication.
Collapse
Affiliation(s)
- Xu Gao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Jihai Lei
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Yajie Zhu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Xi Chen
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Fuxiang Mao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Meng Miao
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Zhejiang Province, Hangzhou, 310018, PR China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, PR China.
| |
Collapse
|
28
|
Murray-Nerger LA, Cristea IM. Lamin post-translational modifications: emerging toggles of nuclear organization and function. Trends Biochem Sci 2021; 46:832-847. [PMID: 34148760 DOI: 10.1016/j.tibs.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Nuclear lamins are ancient type V intermediate filaments with diverse functions that include maintaining nuclear shape, mechanosignaling, tethering and stabilizing chromatin, regulating gene expression, and contributing to cell cycle progression. Despite these numerous roles, an outstanding question has been how lamins are regulated. Accumulating work indicates that a range of lamin post-translational modifications (PTMs) control their functions both in homeostatic cells and in disease states such as progeria, muscular dystrophy, and viral infection. Here, we review the current knowledge of the diverse types of PTMs that regulate lamins in a site-specific manner. We highlight methods that can be used to characterize lamin PTMs whose functions are currently unknown and provide a perspective on the future of the lamin PTM field.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
P300-mediated NEDD4 acetylation drives ebolavirus VP40 egress by enhancing NEDD4 ligase activity. PLoS Pathog 2021; 17:e1009616. [PMID: 34111220 PMCID: PMC8191996 DOI: 10.1371/journal.ppat.1009616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
The final stage of Ebola virus (EBOV) replication is budding from host cells, where the matrix protein VP40 is essential for driving this process. Many post-translational modifications such as ubiquitination are involved in VP40 egress, but acetylation has not been studied yet. Here, we characterize NEDD4 is acetylated at a conserved Lys667 mediated by the acetyltransferase P300 which drives VP40 egress process. Importantly, P300-mediated NEDD4 acetylation promotes NEDD4-VP40 interaction which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. Finally, we find that Zaire ebolavirus production is dramatically reduced in P300 knockout cell lines, suggesting that P300-mediated NEDD4 acetylation may have a physiological effect on Ebola virus life cycle. Thus, our study identifies an acetylation-dependent regulatory mechanism that governs VP40 ubiquitination and provides insights into how acetylation controls EBOV VP40 egress. Ebola virus (EBOV) is one of the deadliest pathogens, causing fatal hemorrhagic fever diseases in humans and primates. In this study, we find that P300-mediated NEDD4 acetylation facilitates EBOV egress. Acetylation promotes NEDD4-VP40 interactions which enhances NEDD4 E3 ligase activity and is essential for the activation of VP40 ubiquitination and subsequent egress. This study implies that inhibitory effect of acetylation can be regarded as an attractive candidate of drug target for the treatment of Ebola virus disease.
Collapse
|
30
|
Mitochondria and Peroxisome Remodeling across Cytomegalovirus Infection Time Viewed through the Lens of Inter-ViSTA. Cell Rep 2021; 32:107943. [PMID: 32726614 DOI: 10.1016/j.celrep.2020.107943] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Nearly all biological processes rely on the finely tuned coordination of protein interactions across cellular space and time. Accordingly, generating protein interactomes has become routine in biological studies, yet interpreting these datasets remains computationally challenging. Here, we introduce Inter-ViSTA (Interaction Visualization in Space and Time Analysis), a web-based platform that quickly builds animated protein interaction networks and automatically synthesizes information on protein abundances, functions, complexes, and subcellular localizations. Using Inter-ViSTA with proteomics and molecular virology, we define virus-host interactions for the human cytomegalovirus (HCMV) anti-apoptotic protein, pUL37x1. We find that spatiotemporal controlled interactions underlie pUL37x1 functions, facilitating the pro-viral remodeling of mitochondria and peroxisomes during infection. Reciprocal isolations, microscopy, and genetic manipulations further characterize these associations, revealing the interplay between pUL37x1 and the MIB complex, which is critical for mitochondrial integrity. At the peroxisome, we show that pUL37x1 activates PEX11β to regulate fission, a key aspect of virus assembly and spread.
Collapse
|
31
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
32
|
Song B, Liu D, Greco TM, Cristea IM. Post-translational modification control of viral DNA sensors and innate immune signaling. Adv Virus Res 2021; 109:163-199. [PMID: 33934827 PMCID: PMC8489191 DOI: 10.1016/bs.aivir.2021.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate innate immune system confers host cells with mechanisms to protect against both evolutionarily ancient pathogens and newly emerging pathogenic strains. Innate immunity relies on the host cell's ability to distinguish between self and pathogen-derived molecules. To achieve this, the innate immune system uses germline encoded receptors called pattern recognition receptors (PRRs), which recognize various molecular signatures, including nucleic acids, proteins, lipids, glycans and glycolipids. Among these molecules, the recognition of pathogenic, mislocalized, or damaged DNA by cellular protein receptors, commonly called DNA sensors, represents a major surveillance pathway for initiating immune signaling. The ability of cells to temporally regulate DNA sensor activation and subsequent signal termination is critical for effective immune signaling. These same mechanisms are also co-opted by pathogens to promote their replication. Therefore, there is significant interest in understanding DNA sensor regulatory networks during microbial infections and autoimmune disease. One emerging aspect of DNA sensor regulation is through post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, ADP-ribosylation, SUMOylation, methylation, deamidation, glutamylation. In this chapter, we discuss how PTMs have been shown to positively or negatively impact DNA sensor functions via diverse mechanisms, including direct regulation of enzymatic activity, protein-protein and protein-DNA interactions, protein translocations and protein turnover. In addition, we highlight the ability of virus-induced PTMs to promote immune evasion. We also discuss the recent evidence linking PTMs on DNA sensors with human diseases and more broadly, highlight promising directions for future research on PTM-mediated regulation of DNA sensor-dependent immune signaling.
Collapse
Affiliation(s)
- Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
33
|
Sheng X, Cristea IM. The antiviral sirtuin 3 bridges protein acetylation to mitochondrial integrity and metabolism during human cytomegalovirus infection. PLoS Pathog 2021; 17:e1009506. [PMID: 33857259 PMCID: PMC8078788 DOI: 10.1371/journal.ppat.1009506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 01/22/2023] Open
Abstract
Regulation of mitochondrial structure and function is a central component of infection with viruses, including human cytomegalovirus (HCMV), as a virus means to modulate cellular metabolism and immune responses. Here, we link the activity of the mitochondrial deacetylase SIRT3 and global mitochondrial acetylation status to host antiviral responses via regulation of both mitochondrial structural integrity and metabolism during HCMV infection. We establish that SIRT3 deacetylase activity is necessary for suppressing virus production, and that SIRT3 maintains mitochondrial pH and membrane potential during infection. By defining the temporal dynamics of SIRT3-substrate interactions during infection, and overlaying acetylome and proteome information, we find altered SIRT3 associations with the mitochondrial fusion factor OPA1 and acetyl-CoA acyltransferase 2 (ACAA2), concomitant with changes in their acetylation levels. Using mutagenesis, microscopy, and virology assays, we determine OPA1 regulates mitochondrial morphology of infected cells and inhibits HCMV production. OPA1 acetylation status modulates these functions, and we establish K834 as a site regulated by SIRT3. Control of SIRT3 protein levels or enzymatic activity is sufficient for regulating mitochondrial filamentous structure. Lastly, we establish a virus restriction function for ACAA2, an enzyme involved in fatty acid beta-oxidation. Altogether, we highlight SIRT3 activity as a regulatory hub for mitochondrial acetylation and morphology during HCMV infection and point to global acetylation as a reflection of mitochondrial health. Given their functions in cellular metabolism and immune responses, mitochondria are targeted and disrupted by numerous prevalent viral pathogens, including human cytomegalovirus (HCMV). To characterize mechanisms underlying mitochondrial regulation during HCMV infection in human fibroblasts, this study integrates enzyme-substrate interaction studies, mass spectrometry quantification of protein abundance and acetylation, mutagenesis, microscopy, and virology assays. These analyses establish a link between the mitochondrial acetylation status and mitochondrial structure and metabolism during HCMV infection. We demonstrate that the mitochondrial deacetylase SIRT3 acts in host defense by modulating proteins that regulate mitochondrial structure and fatty acid oxidation. SIRT3 helps to maintain mitochondrial integrity through several mechanisms, including regulation of mitochondrial pH, membrane potential, and the balance between mitochondrial fission and fusion. As excess mitochondrial acetylation is detrimental to mitochondrial metabolism, the virus-induced alterations in SIRT3 functions and mitochondrial acetylation may be linked to known HCMV pathologies, such as the metabolic syndrome and cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States of America
- * E-mail:
| |
Collapse
|
34
|
Omenn GS. Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years. Mol Cell Proteomics 2021; 20:100062. [PMID: 33640492 PMCID: PMC8058560 DOI: 10.1016/j.mcpro.2021.100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
We celebrate the 10th anniversary of the launch of the HUPO Human Proteome Project (HPP) and its major milestone of confident detection of at least one protein from each of 90% of the predicted protein-coding genes, based on the output of the entire proteomics community. The Human Genome Project reached a similar decadal milestone 20 years ago. The HPP has engaged proteomics teams around the world, strongly influenced data-sharing, enhanced quality assurance, and issued stringent guidelines for claims of detecting previously "missing proteins." This invited perspective complements papers on "A High-Stringency Blueprint of the Human Proteome" and "The Human Proteome Reaches a Major Milestone" in special issues of Nature Communications and Journal of Proteome Research, respectively, released in conjunction with the October 2020 virtual HUPO Congress and its celebration of the 10th anniversary of the HUPO HPP.
Collapse
Affiliation(s)
- Gilbert S Omenn
- University of Michigan Medical School, Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, Ann Arbor, Michigan, USA.
| |
Collapse
|
35
|
Murray-Nerger LA, Justice JL, Rekapalli P, Hutton JE, Cristea I. Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair. Nucleic Acids Res 2021; 49:2044-2064. [PMID: 33533922 PMCID: PMC7913768 DOI: 10.1093/nar/gkab019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pranav Rekapalli
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
36
|
Abstract
The study of metabolic changes associated with host-pathogen interactions have largely focused on the strategies that microbes use to subvert host metabolism to support their own proliferation. However, recent reports demonstrate that changes in host cell metabolism can also be detrimental to pathogens and restrict their growth. In this Review, I present a framework to consider how the host cell exploits the multifaceted roles of metabolites to defend against microbes. I also highlight how the rewiring of metabolic processes can strengthen cellular barriers to microbial invasion, regulate microbial virulence programs and factors, limit microbial access to nutrient sources and generate toxic environments for microbes. Collectively, the studies described here support a critical role for the rewiring of cellular metabolism in the defense against microbes. Further study of host-pathogen interactions from this framework has the potential to reveal novel aspects of host defense and metabolic control, and may inform how human metabolism impacts the progression of infectious disease.
Collapse
Affiliation(s)
- Lena Pernas
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
37
|
Howard TR, Cristea IM. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Biomolecules 2020; 10:biom10121591. [PMID: 33255247 PMCID: PMC7761228 DOI: 10.3390/biom10121591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear DNA sensors are critical components of the mammalian innate immune system, recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well as to suppress viral gene expression. These host defense responses involve complex signaling processes that, through protein–protein interactions (PPIs) and post-translational modifications (PTMs), drive extensive remodeling of the cellular transcriptome, proteome, and secretome to generate an antiviral environment. As such, a holistic understanding of these changes is required to understand the mechanisms through which nuclear DNA sensors act. The advent of omics techniques has revolutionized the speed and scale at which biological research is conducted and has been used to make great strides in uncovering the molecular underpinnings of DNA sensing. Here, we review the contribution of proteomics approaches to characterizing nuclear DNA sensors via the discovery of functional PPIs and PTMs, as well as proteome and secretome changes that define a host antiviral environment. We also highlight the value of and future need for integrative multiomic efforts to gain a systems-level understanding of DNA sensors and their influence on epigenetic and transcriptomic alterations during infection.
Collapse
|
38
|
Adhikari S, Nice EC, Deutsch EW, Lane L, Omenn GS, Pennington SR, Paik YK, Overall CM, Corrales FJ, Cristea IM, Van Eyk JE, Uhlén M, Lindskog C, Chan DW, Bairoch A, Waddington JC, Justice JL, LaBaer J, Rodriguez H, He F, Kostrzewa M, Ping P, Gundry RL, Stewart P, Srivastava S, Srivastava S, Nogueira FCS, Domont GB, Vandenbrouck Y, Lam MPY, Wennersten S, Vizcaino JA, Wilkins M, Schwenk JM, Lundberg E, Bandeira N, Marko-Varga G, Weintraub ST, Pineau C, Kusebauch U, Moritz RL, Ahn SB, Palmblad M, Snyder MP, Aebersold R, Baker MS. A high-stringency blueprint of the human proteome. Nat Commun 2020; 11:5301. [PMID: 33067450 PMCID: PMC7568584 DOI: 10.1038/s41467-020-19045-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP's tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
Collapse
Grants
- WT101477MA Wellcome Trust
- R24 GM127667 NIGMS NIH HHS
- U24 CA210985 NCI NIH HHS
- U19 AG023122 NIA NIH HHS
- U24 CA210967 NCI NIH HHS
- R01 GM087221 NIGMS NIH HHS
- R01 GM114141 NIGMS NIH HHS
- U24 CA115102 NCI NIH HHS
- P30 ES017885 NIEHS NIH HHS
- R01 HL111362 NHLBI NIH HHS
- Wellcome Trust
- 208391/Z/17/Z Wellcome Trust
- International Macquarie Research Excellence Scholarship
- NHMRC 1010303 (MSB, ECN); Cancer Council NSW RG19-04 (MSB, SBA, ECN); Cancer Institute NSW Fellowship 15/ECF/1-38 (SBA), Sydney Vital CINSW Translational Cancer Research Centre grant (MSB, SBA, SA), “Fight on the Beaches” (MSB, SBA, ECN, SA)
- Department of Health | National Health and Medical Research Council (NHMRC)
- Cancer Institute NSW (Cancer Institute New South Wales)
- “Fight on the Beaches” research grant
Collapse
Affiliation(s)
- Subash Adhikari
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Edouard C Nice
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Faculty of Medicine, Nursing and Health Sciences, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Eric W Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Lydie Lane
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109-2218, USA
| | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Young-Ki Paik
- Yonsei Proteome Research Center, 50 Yonsei-ro, Sudaemoon-ku, Seoul, 120-749, South Korea
| | | | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, 28049, Madrid, Spain
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jennifer E Van Eyk
- Cedars Sinai Medical Center, Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Los Angeles, CA, 90048, USA
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Cecilia Lindskog
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Amos Bairoch
- Faculty of Medicine, SIB-Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, University of Geneva, CMU, Michel-Servet 1, 1211, Geneva, Switzerland
| | - James C Waddington
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, Microbiology and Diagnostics, Fahrenheitstrasse, 428359, Bremen, Germany
| | - Peipei Ping
- Cardiac Proteomics and Signaling Laboratory, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, Division of Cardiovascular Medicine and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Peter Stewart
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | | | - Sudhir Srivastava
- Cancer Biomarkers Research Branch, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Suite 5E136, Rockville, MD, 20852, USA
| | - Fabio C S Nogueira
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Gilberto B Domont
- Proteomics Unit and Laboratory of Proteomics, Institute of Chemistry, Federal University of Rio de Janeiro, Av Athos da Silveria Ramos, 149, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Yves Vandenbrouck
- University of Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Maggie P Y Lam
- Departments of Medicine-Cardiology and Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Fibrosis Research and Translation, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Wennersten
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Marc Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jochen M Schwenk
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 17121, Solna, Sweden
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0404, La Jolla, CA, 92093-0404, USA
| | | | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, UT Health, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Charles Pineau
- University of Rennes, Inserm, EHESP, IREST, UMR_S 1085, F-35042, Rennes, France
| | - Ulrike Kusebauch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Robert L Moritz
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Magnus Palmblad
- Leiden University Medical Center, Leiden, 2333, The Netherlands
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ruedi Aebersold
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, WA, 98109, USA
- Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Mark S Baker
- Faculty of Medicine, Health and Human Sciences, Department of Biomedical Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Department of Genetics, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
39
|
Song B, Greco TM, Lum KK, Taber CE, Cristea IM. The DNA Sensor cGAS is Decorated by Acetylation and Phosphorylation Modifications in the Context of Immune Signaling. Mol Cell Proteomics 2020; 19:1193-1208. [PMID: 32345711 PMCID: PMC7338091 DOI: 10.1074/mcp.ra120.001981] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared with the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses-HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection.
Collapse
Affiliation(s)
- Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Caroline E Taber
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
40
|
Kennedy MA, Hofstadter WA, Cristea IM. TRANSPIRE: A Computational Pipeline to Elucidate Intracellular Protein Movements from Spatial Proteomics Data Sets. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1422-1439. [PMID: 32401031 PMCID: PMC7737664 DOI: 10.1021/jasms.0c00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein localization is paramount to protein function, and the intracellular movement of proteins underlies the regulation of numerous cellular processes. Given advances in spatial proteomics, the investigation of protein localization at a global scale has become attainable. Also becoming apparent is the need for dedicated analytical frameworks that allow the discovery of global intracellular protein movement events. Here, we describe TRANSPIRE, a computational pipeline that facilitates TRanslocation ANalysis of SPatIal pRotEomics data sets. TRANSPIRE leverages synthetic translocation profiles generated from organelle marker proteins to train a probabilistic Gaussian process classifier that predicts changes in protein distribution. This output is then integrated with information regarding co-translocating proteins and complexes and enriched gene ontology associations to discern the putative regulation and function of movement. We validate TRANSPIRE performance for predicting nuclear-cytoplasmic shuttling events. Analyzing an existing data set of nuclear and cytoplasmic proteomes during Kaposi Sarcoma-associated herpesvirus (KSHV)-induced cellular mRNA decay, we confirm that TRANSPIRE readily discerns expected translocations of RNA binding proteins. We next investigate protein translocations during infection with human cytomegalovirus (HCMV), a β-herpesvirus known to induce global organelle remodeling. We find that HCMV infection induces broad changes in protein localization, with over 800 proteins predicted to translocate during virus replication. Evident are protein movements related to HCMV modulation of host defense, metabolism, cellular trafficking, and Wnt signaling. For example, the low-density lipoprotein receptor (LDLR) translocates to the lysosome early in infection in conjunction with its degradation, which we validate by targeted mass spectrometry. Using microscopy, we also validate the translocation of the multifunctional kinase DAPK3, a movement that may contribute to HCMV activation of Wnt signaling.
Collapse
Affiliation(s)
- Michelle A Kennedy
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - William A Hofstadter
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| |
Collapse
|
41
|
Zhu L, Fung SY, Xie G, Wong LYR, Jin DY, Cai Z. Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab. Mol Cell Proteomics 2020; 19:1303-1309. [PMID: 32424026 PMCID: PMC7833549 DOI: 10.1074/mcp.ra119.001897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
MERS is a life-threatening disease and MERS-CoV has the potential to cause the next pandemic. Protein acetylation is known to play a crucial role in host response to viral infection. Acetylation of viral proteins encoded by other RNA viruses have been reported to affect viral replication. It is therefore of interest to see whether MERS-CoV proteins are also acetylated. Viral proteins obtained from infected cells were trypsin-digested into peptides. Acetylated peptides were enriched by immunoprecipitation and subject to nano-LC-Orbitrap analysis. Bioinformatic analysis was performed to assess the conservation level of identified acetylation sites and to predict the upstream regulatory factors. A total of 12 acetylation sites were identified from 7 peptides, which all belong to the replicase polyprotein pp1ab. All identified acetylation sites were found to be highly conserved across MERS-CoV sequences in NCBI database. Upstream factors, including deacetylases of the SIRT1 and HDAC families as well as acetyltransferases of the TIP60 family, were predicted to be responsible for regulating the acetylation events identified. Western blotting confirms that acetylation events indeed occur on pp1ab protein by expressing NSP4 in HEK293 cells. Acetylation events on MERS-CoV viral protein pp1ab were identified for the first time, which indicate that MERS-CoV might use the host acetylation machinery to regulate its enzyme activity and to achieve optimal replication. Upstream factors were predicted, which might facilitate further analysis of the regulatory mechanism of MERS-CoV replication.
Collapse
Affiliation(s)
- Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sin-Yee Fung
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Lok-Yin Roy Wong
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
42
|
Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat Commun 2020; 11:806. [PMID: 32041945 PMCID: PMC7010728 DOI: 10.1038/s41467-020-14586-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
The co-evolution and co-existence of viral pathogens with their hosts for millions of years is reflected in dynamic virus-host protein-protein interactions (PPIs) that are intrinsic to the spread of infections. Here, we investigate the system-wide dynamics of protein complexes throughout infection with the herpesvirus, human cytomegalovirus (HCMV). Integrating thermal shift assays and mass spectrometry quantification with virology and microscopy, we monitor the temporal formation and dissociation of hundreds of functional protein complexes and the dynamics of host-host, virus-host, and virus-virus PPIs. We establish pro-viral roles for cellular protein complexes and translocating proteins. We show the HCMV receptor integrin beta 1 dissociates from extracellular matrix proteins, becoming internalized with CD63, which is necessary for virus production. Moreover, this approach facilitates characterization of essential viral proteins, such as pUL52. This study of temporal protein complex dynamics provides insights into mechanisms of HCMV infection and a resource for biological and therapeutic studies. Here, Hashimoto et al. apply mass spectrometry-based thermal proximity coaggregation to characterize the temporal dynamics of virus-host protein-protein interactions during human cytomegalovirus (HCMV) infection, uncovering proviral functions including the internalization of the HCMV receptor integrin beta 1 with CD63.
Collapse
|
43
|
Omenn GS, Lane L, Overall CM, Corrales FJ, Schwenk JM, Paik YK, Van Eyk JE, Liu S, Pennington S, Snyder MP, Baker MS, Deutsch EW. Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. J Proteome Res 2019; 18:4098-4107. [PMID: 31430157 PMCID: PMC6898754 DOI: 10.1021/acs.jproteome.9b00434] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Human Proteome Project (HPP) annually reports on progress made throughout the field in credibly identifying and characterizing the complete human protein parts list and making proteomics an integral part of multiomics studies in medicine and the life sciences. NeXtProt release 2019-01-11 contains 17 694 proteins with strong protein-level evidence (PE1), compliant with HPP Guidelines for Interpretation of MS Data v2.1; these represent 89% of all 19 823 neXtProt predicted coding genes (all PE1,2,3,4 proteins), up from 17 470 one year earlier. Conversely, the number of neXtProt PE2,3,4 proteins, termed the "missing proteins" (MPs), has been reduced from 2949 to 2129 since 2016 through efforts throughout the community, including the chromosome-centric HPP. PeptideAtlas is the source of uniformly reanalyzed raw mass spectrometry data for neXtProt; PeptideAtlas added 495 canonical proteins between 2018 and 2019, especially from studies designed to detect hard-to-identify proteins. Meanwhile, the Human Protein Atlas has released version 18.1 with immunohistochemical evidence of expression of 17 000 proteins and survival plots as part of the Pathology Atlas. Many investigators apply multiplexed SRM-targeted proteomics for quantitation of organ-specific popular proteins in studies of various human diseases. The 19 teams of the Biology and Disease-driven B/D-HPP published a total of 160 publications in 2018, bringing proteomics to a broad array of biomedical research.
Collapse
Affiliation(s)
- Gilbert S. Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, Michigan 48109-2218, United States
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| | - Lydie Lane
- CALIPHO Group, SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Christopher M. Overall
- Life Sciences Institute, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Room 4.401, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Jochen M. Schwenk
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Room 425, Building #114, 50 Yonsei-ro, Seodaemoon-ku, Seoul 120-749, South Korea
| | - Jennifer E. Van Eyk
- Advanced Clinical BioSystems Research Institute, Cedars Sinai Precision Biomarker Laboratories, Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Siqi Liu
- BGI Group-Shenzhen, Yantian District, Shenzhen 518083, China
| | - Stephen Pennington
- School of Medicine, University College Dublin, Conway Institute Belfield, Dublin 4, Ireland
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Alway Building, 300 Pasteur Drive and 3165 Porter Drive, Palo Alto, California 94304, United States
| | - Mark S. Baker
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, 75 Talavera Road, North Ryde, NSW 2109, Australia
| | - Eric W. Deutsch
- Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109-5263, United States
| |
Collapse
|
44
|
Murray LA, Combs AN, Rekapalli P, Cristea IM. Methods for characterizing protein acetylation during viral infection. Methods Enzymol 2019; 626:587-620. [PMID: 31606092 DOI: 10.1016/bs.mie.2019.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lysine acetylation is a prevalent posttranslational modification that acts as a regulator of protein function, subcellular localization, and interactions. A growing body of work has highlighted the importance of temporal alterations in protein acetylation during infection with a range of human viruses. It has become clear that both cellular and viral proteins are decorated by lysine acetylations, and that these modifications contribute to core host defense and virus replication processes. Further defining the extent and dynamics of protein acetylation events during the progression of an infection can provide an important new perspective on the intricate mechanisms underlying the biology and pathogenesis of virus infections. Here, we provide protocols for identifying, quantifying, and probing the regulation of lysine acetylations during viral infection. We describe the use of acetyl-lysine immunoaffinity purification and quantitative mass spectrometry for assessing the cellular acetylome at different stages of an infection. As an alternative to traditional antibody-mediated western blotting, we discuss the benefits of targeted mass spectrometry approaches for detecting and quantifying site-specific acetylations on proteins of interest. Specifically, we provide a protocol using parallel reaction monitoring (PRM). We further discuss experimental considerations that are specific to studying viral infections. Finally, we provide a brief overview of the types of assays that can be employed to characterize the function of an acetylation event in the context of infection. As a method to interrogate the regulation of acetylation, we describe the Fluor de Lys assay for monitoring the enzymatic activities of deacetylases.
Collapse
Affiliation(s)
- Laura A Murray
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States
| | - Ashton N Combs
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States
| | - Pranav Rekapalli
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ, United States.
| |
Collapse
|
45
|
Hashimoto Y, Kinoshita N, Greco TM, Federspiel JD, Jean Beltran PM, Ueno N, Cristea IM. Mechanical Force Induces Phosphorylation-Mediated Signaling that Underlies Tissue Response and Robustness in Xenopus Embryos. Cell Syst 2019; 8:226-241.e7. [PMID: 30852251 DOI: 10.1016/j.cels.2019.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/17/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Mechanical forces are essential drivers of numerous biological processes, notably during development. Although it is well recognized that cells sense and adapt to mechanical forces, the signal transduction pathways that underlie mechanosensing have remained elusive. Here, we investigate the impact of mechanical centrifugation force on phosphorylation-mediated signaling in Xenopus embryos. By monitoring temporal phosphoproteome and proteome alterations in response to force, we discover and validate elevated phosphorylation on focal adhesion and tight junction components, leading to several mechanistic insights into mechanosensing and tissue restoration. First, we determine changes in kinase activity profiles during mechanoresponse, identifying the activation of basophilic kinases. Pathway interrogation using kinase inhibitor treatment uncovers a crosstalk between the focal adhesion kinase (FAK) and protein kinase C (PKC) in mechanoresponse. Second, we find LIM domain 7 protein (Lmo7) as upregulated upon centrifugation, contributing to mechanoresponse. Third, we discover that mechanical compression force induces a mesenchymal-to-epithelial transition (MET)-like phenotype.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA; Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Noriyuki Kinoshita
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pierre M Jean Beltran
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan.
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
46
|
Regulation of targeting determinants in interorganelle communication. Curr Opin Cell Biol 2019; 57:106-114. [PMID: 30807956 DOI: 10.1016/j.ceb.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023]
Abstract
The field of interorganelle communication is now established as a major aspect of intracellular organisation, with a profusion of material and signals exchanged between organelles. One way to address interorganelle communication is to study the interactions of the proteins involved, particularly targeting interactions, which are a key way to regulate activity. While most peripheral membrane proteins have single determinants for membrane targeting, proteins involved in interorganelle communication have more than one such determinant, sometimes as many as four, as in Vps13. Here we review the targeting determinants, showing how they can be relatively hard to find, how they are regulated, and how proteins integrate information from multiple targeting determinants.
Collapse
|