1
|
Sakakibara N, Nozu K. Tubular proteinuria due to hereditary endocytic receptor disorder of the proximal tubule: Dent disease and chronic benign proteinuria. Pediatr Nephrol 2025:10.1007/s00467-025-06745-x. [PMID: 40163114 DOI: 10.1007/s00467-025-06745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
The proximal tubule has a highly efficient endocytic pathway dedicated to reabsorbing albumin and low-molecular-weight proteins that have passed through the glomerular filtration barrier. This pathway is dependent on multi-ligand receptors: megalin and cubilin. Abnormalities in genes associated with endocytosis in the proximal tubule can lead to tubular proteinuria, where the urine contains albumin and low-molecular-weight proteins. Dent disease is a hereditary X-linked disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, nephrolithiasis, and progressive kidney dysfunction, often leading to CKD stage 5. CLCN5 is the gene responsible for Dent disease-1 and encodes the voltage-gated chloride channel ClC-5. Meanwhile, OCRL is the causative gene of Dent disease-2 and encodes phosphatidylinositol 4,5-bisphosphate 5-phosphatase, and its variants are also associated with Lowe syndrome. ClC-5 and OCRL are essential to the endocytic machinery, and their loss affects endosomal acidification and trafficking, resulting in disruption of megalin and cubilin recycling. CUBN, which encodes cubilin, was originally identified as the causative gene of Imerslund-Gräsbeck syndrome, a disorder of megaloblastic anemia associated with proteinuria. However, recently, a biallelic C-terminal variant of CUBN was shown to be responsible for isolated proteinuria without kidney dysfunction. This proteinuria is recognized as a new disease concept called chronic benign proteinuria (proteinuria, chronic benign: PROCHOB), which contradicts the common belief that proteinuria is harmful and ultimately leads to kidney damage. This article deepens the understanding of genetic tubular proteinuria and its origins, focusing on the role of megalin- and cubilin-mediated endocytosis in the proximal tubule.
Collapse
Affiliation(s)
- Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| |
Collapse
|
2
|
Kulkarni K, Hussain T. Megalin: A Sidekick or Nemesis of the Kidney? J Am Soc Nephrol 2025; 36:293-300. [PMID: 39607686 PMCID: PMC11801750 DOI: 10.1681/asn.0000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Megalin is an endocytic receptor in the proximal tubules that reabsorbs filtered proteins in the kidneys. Recycling of megalin after endocytosis and its expression on the apical plasma membrane of the proximal tubule are critical for its function. The expression of megalin in the kidney undergoes dynamic changes under physiologic and pathophysiologic conditions. Receptors and various effector signaling components regulate megalin expression and, potentially, function. Genetic manipulation and rare mutations in megalin suggest that a lack of or deficiency in megalin expression/function promotes tubular proteinuria and albuminuria. However, the role of megalin in kidney diseases associated with obesity, diabetes, hypertension, and nephrotoxicity remains unclear. To address these questions, animal and human studies have indicated megalin as a protective, injurious, and potentially urinary marker of nephropathy. This article reviews the literature on the regulation of megalin expression and the role of megalin in the pathophysiology of the kidney under experimental and clinical conditions. Moreover, this review articulates the need for studies that can clarify whether megalin can serve as a therapeutic target, in one way or the other, to treat kidney disease.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | | |
Collapse
|
3
|
Zhang D, Liu S, Xi B, Zhu Y, Chen Y, Zhang J, Liu A. Imerslund-Gräsbeck syndrome in a child with a novel compound heterozygous mutations in the AMN gene: a case report. Ital J Pediatr 2024; 50:191. [PMID: 39334390 PMCID: PMC11438361 DOI: 10.1186/s13052-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Imerslund-Gräsbeck syndrome (IGS) is an autosomal recessive disorder characterized by selective vitamin B12 malabsorption, resulting in vitamin B12 deficiency and impaired reabsorption of proximal tubular proteins.This case highlights a previously unidentified compound heterozygous variant in the Amnionless (AMN) gene that causes IGS syndrome and underscores the importance of long-term oral vitamin B12 replacement therapy in managing the condition. CASE PRESENTATION In this retrospective analysis, we present the clinical data of a 3-year and 6-month-old female child diagnosed with IGS at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, in November 2018. The child was admitted to the hospital due to a history of anemia persisting for over a month. There was no previous significant medical history. The admission examination revealed megaloblastic anemia with proteinuria. Serum vitamin B12 levels were decreased, while folic acid and renal function were normal. The patient was diagnosed with megaloblastic anemia and started long-term oral vitamin B12 replacement therapy. Throughout the follow-up period, blood tests consistently showed normal results, while proteinuria persisted. In November 2019, the child and her parents underwent whole exome sequencing analysis, which revealed a novel compound heterozygous variant in the AMN gene: c.162 + 1G > A and c.922 C > T (p.Q308X) in the child, c.162 + 1G > A in the father, and c.922 C > T (p.Q308X) in the mother. Therefore, this child was further diagnosed with IGS. CONCLUSIONS In this case, whole exome sequencing proves to be highly practical in daily healthcare for diagnosing and refining rare or ultra-rare diseases with ambiguous phenotypes or genetic diversity. It is also valuable for prognostic evaluation and personalized management. Additionally, the oral vitamin B12 treatment demonstrated positive clinical effects for the child, offering a new option for patients unable to undergo intramuscular vitamin B12 replacement therapy.
Collapse
Affiliation(s)
- Dedong Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Siying Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bixin Xi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongbing Zhu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiasi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Mucha P, Kus F, Cysewski D, Smolenski RT, Tomczyk M. Vitamin B 12 Metabolism: A Network of Multi-Protein Mediated Processes. Int J Mol Sci 2024; 25:8021. [PMID: 39125597 PMCID: PMC11311337 DOI: 10.3390/ijms25158021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.
Collapse
Affiliation(s)
- Patryk Mucha
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Filip Kus
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
- Laboratory of Protein Biochemistry, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (P.M.); (F.K.); (R.T.S.)
| |
Collapse
|
5
|
Lackner EM, Cowan IA, Long KR, Weisz OA, Shipman KE. Fluid shear stress-induced changes in megalin trafficking enhance endocytic capacity in proximal tubule cells. Front Physiol 2024; 15:1404248. [PMID: 38948083 PMCID: PMC11211581 DOI: 10.3389/fphys.2024.1404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Proximal tubule (PT) cells maintain a high-capacity apical endocytic pathway to recover essentially all proteins that escape the glomerular filtration barrier. The multi ligand receptors megalin and cubilin play pivotal roles in the endocytic uptake of normally filtered proteins in PT cells but also contribute to the uptake of nephrotoxic drugs, including aminoglycosides. We previously demonstrated that opossum kidney (OK) cells cultured under continuous fluid shear stress (FSS) are superior to cells cultured under static conditions in recapitulating essential functional properties of PT cells in vivo. To identify drivers of the high-capacity, efficient endocytic pathway in the PT, we compared FSS-cultured OK cells with less endocytically active static-cultured OK cells. Megalin and cubilin expression are increased, and endocytic uptake of albumin in FSS-cultured cells is > 5-fold higher compared with cells cultured under static conditions. To understand how differences in receptor expression, distribution, and trafficking rates contribute to increased uptake, we used biochemical, morphological, and mathematical modeling approaches to compare megalin traffic in FSS- versus static-cultured OK cells. Our model predicts that culturing cells under FSS increases the rates of all steps in megalin trafficking. Importantly, the model explains why, despite seemingly counterintuitive observations (a reduced fraction of megalin at the cell surface, higher colocalization with lysosomes, and a shorter half-life of surface-tagged megalin in FSS-cultured cells), uptake of albumin is dramatically increased compared with static-grown cells. We also show that FSS-cultured OK cells more accurately exhibit the mechanisms that mediate uptake of nephrotoxic drugs in vivo compared with static-grown cells. This culture model thus provides a useful platform to understand drug uptake mechanisms, with implications for developing interventions in nephrotoxic injury prevention.
Collapse
Affiliation(s)
| | | | | | | | - Katherine E. Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Lackner EM, Cowan IA, Long KR, Weisz OA, Shipman KE. Fluid Shear Stress-Induced Changes in Megalin Trafficking Enhance Endocytic Capacity in Proximal Tubule Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581213. [PMID: 38562767 PMCID: PMC10983855 DOI: 10.1101/2024.02.22.581213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proximal tubule (PT) cells maintain a high-capacity apical endocytic pathway to recover essentially all proteins that escape the glomerular filtration barrier. The multiligand receptors megalin and cubilin play pivotal roles in the endocytic uptake of normally filtered proteins in PT cells but also contribute to the uptake of nephrotoxic drugs, including aminoglycosides. We previously demonstrated that opossum kidney (OK) cells cultured under continuous fluid shear stress (FSS) are superior to cells cultured under static conditions in recapitulating essential functional properties of PT cells in vivo. To identify drivers of the high-capacity, efficient endocytic pathway in the PT, we compared FSS-cultured OK cells with less endocytically active static-cultured OK cells. Megalin and cubilin expression are increased, and endocytic uptake of albumin in FSS-cultured cells is >5-fold higher compared with cells cultured under static conditions. To understand how differences in receptor expression, distribution, and trafficking rates contribute to increased uptake, we used biochemical, morphological, and mathematical modeling approaches to compare megalin traffic in FSS- versus static-cultured OK cells. Our model predicts that culturing cells under FSS increases the rates of all steps in megalin trafficking. Importantly, the model explains why, despite seemingly counterintuitive observations (a reduced fraction of megalin at the cell surface, higher colocalization with lysosomes, and a shorter half-life of surface-tagged megalin in FSS-cultured cells), uptake of albumin is dramatically increased compared with static-grown cells. We also show that FSS-cultured OK cells more accurately exhibit the mechanisms that mediate uptake of nephrotoxic drugs in vivo compared with static-grown cells. This culture model thus provides a useful platform to understand drug uptake mechanisms, with implications for developing interventions in nephrotoxic injury prevention.
Collapse
Affiliation(s)
- Emily M. Lackner
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Isabella A. Cowan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kimberly R. Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ora A. Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine E. Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Yang H, He L, Gong H, Wan C, Ding J, Liao P, Wang X. Identification of novel pathogenic variants of CUBN in patients with isolated proteinuria. Mol Genet Genomic Med 2024; 12:e2353. [PMID: 38488435 PMCID: PMC10941600 DOI: 10.1002/mgg3.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Although proteinuria is long recognized as an independent risk factor for progressive chronic kidney diseases, not all forms of proteinuria are detrimental to kidney function, one of which is isolated proteinuria caused by cubilin (CUBN)-specific mutations. CUBN encodes an endocytic receptor, initially found to be responsible for the Imerslund-Gräsbeck syndrome (IGS; OMIM #261100) characterized by a combined phenotype of megaloblastic anemia and proteinuria. METHODS After analyzing their clinical and pathological characterizations, next-generation sequencing for renal disease genes or whole-exome sequencing (WES) was performed on four patients with non-progressive isolated proteinuria. CUBN biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing, immunohistochemistry, minigene assay, and multiple in silico prediction tools, including 3D protein modeling. RESULTS Here, we present four patients with isolated proteinuria caused by CUBN C-terminal biallelic pathogenic variants, all of which showed no typical IGS symptoms, such as anemia and vitamin B12 deficiency. Their urine protein levels fluctuated between +~++ and estimated glomerular filtration rate (eGFR) were normal or slightly higher. Mild mesangial hypercellularity was found in three children's renal biopsies. A homozygous splice-site variant of CUBN (c.6821+3 (IVS44) A>G) was proven to result in the exon 44 skipping and premature translation termination by cDNA sequencing and immunohistochemistry. Compound heterozygous mutations were identified among the other three children, including another novel splice-site variant (c.10764+1 (IVS66) G>A) causing the retention of first 4 nucleotides in intron 66 by minigene assay, two unreported missense mutations (c.4907G>A (p.R1636Q); c. 9095 A>G (p.Y3032C)), and two reported missense mutations in China (c.8938G>A (p.D2980N); c. 9287T>C (p.L3096P)), locating behind the vitamin B12-binding domain, affecting CUB11, CUB16, CUB22, CUB23, and CUB27 domains, respectively. CONCLUSION These results demonstrate that above CUBN mutations may cause non-progressive and isolated proteinuria, expanding the variant spectrum of CUBN and benefiting our understanding of proteinuria and renal function.
Collapse
Affiliation(s)
- Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Lanfen He
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Hongjian Gong
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Chunhui Wan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Juanjuan Ding
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Panli Liao
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
8
|
Skeby CK, Hummelgaard S, Gustafsen C, Petrillo F, Frederiksen KP, Olsen D, Kristensen T, Ivarsen P, Madsen P, Christensen EI, Nielsen R, Birn H, Glerup S, Weyer K. Proprotein convertase subtilisin/kexin type 9 targets megalin in the kidney proximal tubule and aggravates proteinuria in nephrotic syndrome. Kidney Int 2023; 104:754-768. [PMID: 37406929 DOI: 10.1016/j.kint.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Proteinuria is a prominent feature of chronic kidney disease. Interventions that reduce proteinuria slow the progression of chronic kidney disease and the associated risk of cardiovascular disease. Here, we propose a mechanistic coupling between proteinuria and proprotein convertase subtilisin/kexin type 9 (PCSK9), a regulator of cholesterol and a therapeutic target in cardiovascular disease. PCSK9 undergoes glomerular filtration and is captured by megalin, the receptor responsible for driving protein reabsorption in the proximal tubule. Accordingly, megalin-deficient mice and patients carrying megalin pathogenic variants (Donnai Barrow syndrome) were characterized by elevated urinary PCSK9 excretion. Interestingly, PCSK9 knockout mice displayed increased kidney megalin while PCSK9 overexpression resulted in its reduction. Furthermore, PCSK9 promoted trafficking of megalin to lysosomes in cultured proximal tubule cells, suggesting that PCSK9 is a negative regulator of megalin. This effect can be accelerated under disease conditions since either genetic destruction of the glomerular filtration barrier in podocin knockout mice or minimal change disease (a common cause of nephrotic syndrome) in patients resulted in enhanced tubular PCSK9 uptake and urinary PCSK9 excretion. Pharmacological PCSK9 inhibition increased kidney megalin while reducing urinary albumin excretion in nephrotic mice. Thus, glomerular damage increases filtration of PCSK9 and concomitantly megalin degradation, resulting in escalated proteinuria.
Collapse
Affiliation(s)
- Cecilie K Skeby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Camilla Gustafsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | | | - Ditte Olsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Tilde Kristensen
- Department of Internal Medicine, Renal Unit, Regional Hospital Viborg, Viborg, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Ivarsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | | | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Draupnir Bio, INCUBA Skejby, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Billah MM, Deng H, Dutta P, Liu J. Effects of receptor properties on particle internalization through receptor-mediated endocytosis. SOFT MATTER 2023; 19:5907-5915. [PMID: 37483086 DOI: 10.1039/d3sm00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Receptor-mediated endocytosis (RME) is a highly complex process carried out by bioparticles, such as viruses and drug carriers, to enter cells. The discovery of both clathrin-dependent and clathrin-free pathways makes the RME process even more intriguing. Numerical models have been developed to facilitate the exploration of the process. However, the impacts of the receptor properties on RME have been less studied partially due to the oversimplifications of the receptor models. In this paper, we implement a stochastic model to systematically investigate the effects of mechanical (receptor flexure), geometrical (receptor length) and biochemical (ligand-receptor cutoff) properties of receptors, on RME with and without the existence of clathrin. Our simulation results show that the receptor's flexural rigidity plays an important role in RME with clathrin. There is a threshold beyond which particle internalization will not occur. Without clathrin, it is very difficult to achieve complete endocytosis with ligand-receptor interactions alone. A shorter receptor length and longer ligand-receptor reaction cutoff promote the formation of ligand-receptor bonds and facilitate particle internalization. Complete internalization can only be obtained with an extremely short receptor length and long reaction cutoff. Therefore, there are most likely some additional mechanisms to drive the membrane deformation in clathrin-free RME. Our results yield important fundamental insights into RME and provide crucial guidance when correlating the simulation results with experimental observations.
Collapse
Affiliation(s)
- Md Muhtasim Billah
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | | | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
10
|
Rbaibi Y, Long KR, Shipman KE, Ren Q, Baty CJ, Kashlan OB, Weisz OA. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol Biol Cell 2023; 34:ar74. [PMID: 37126375 PMCID: PMC10295476 DOI: 10.1091/mbc.e22-11-0510] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023] Open
Abstract
The kidney proximal tubule (PT) elaborates a uniquely high-capacity apical endocytic pathway to retrieve albumin and other proteins that escape the glomerular filtration barrier. Megalin and cubilin/amnionless (CUBAM) receptors engage Dab2 in these cells to mediate clathrin-dependent uptake of filtered ligands. Knockout of megalin or Dab2 profoundly inhibits apical endocytosis and is believed to atrophy the endocytic pathway. We generated CRISPR/Cas9 knockout (KO) clones lacking cubilin, megalin, or Dab2 expression in highly differentiated PT cells and determined the impact on albumin internalization and endocytic pathway function. KO of each component had different effects on the concentration dependence of albumin uptake as well its distribution within PT cells. Reduced uptake of a fluid phase marker was also observed, with megalin KO cells having the most dramatic decline. Surprisingly, protein levels and distribution of key endocytic proteins were preserved in KO PT cell lines and in megalin KO mice, despite the reduced endocytic activity. Our data highlight specific functions of megalin, cubilin, and Dab2 in apical endocytosis and demonstrate that these proteins drive endocytic flux without compromising the physical integrity of the apical endocytic pathway. Our studies suggest a novel model to explain how these components coordinate endocytic uptake in PT cells.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Kimberly R. Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Katherine E. Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China, 100084
| | - Catherine J. Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ossama B. Kashlan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
11
|
Goto S, Hosojima M, Kabasawa H, Saito A. The endocytosis receptor megalin: From bench to bedside. Int J Biochem Cell Biol 2023; 157:106393. [PMID: 36863658 DOI: 10.1016/j.biocel.2023.106393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
The large (∼600 kDa) endocytosis receptor megalin/low-density lipoprotein receptor-related protein 2 is highly expressed at the apical membrane of proximal tubular epithelial cells (PTECs). Megalin plays an important role in the endocytosis of various ligands via interactions with intracellular adaptor proteins, which mediate the trafficking of megalin in PTECs. Megalin mediates the retrieval of essential substances, including carrier-bound vitamins and elements, and impairment of the endocytic process may result in the loss of those substances. In addition, megalin reabsorbs nephrotoxic substances such as antimicrobial (colistin, vancomycin, and gentamicin) or anticancer (cisplatin) drugs and advanced glycation end product-modified or fatty acid-containing albumin. The megalin-mediated uptake of these nephrotoxic ligands causes metabolic overload in PTECs and leads to kidney injury. Blockade or suppression of the megalin-mediated endocytosis of nephrotoxic substances may represent a novel therapeutic strategy for drug-induced nephrotoxicity or metabolic kidney disease. Megalin reabsorbs urinary biomarker proteins such as albumin, α1-microglobulin, β2-microglobulin, and liver-type fatty acid-binding protein; thus, the above-mentioned megalin-targeted therapy may have an effect on the urinary excretion of these biomarkers. We have previously established a sandwich enzyme-linked immunosorbent assay to measure the ectodomain (A-megalin) and full-length (C-megalin) forms of urinary megalin using monoclonal antibodies against the amino- and carboxyl-terminals of megalin, respectively, and reported their clinical usefulness. In addition, there have been reports of patients with novel pathological anti-brush border autoantibodies targeting megalin in the kidney. Even with these breakthroughs in the characterization of megalin, a large number of issues remain to be addressed in future research.
Collapse
Affiliation(s)
- Sawako Goto
- Departments of Applied Molecular Medicine, Japan
| | - Michihiro Hosojima
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | - Hideyuki Kabasawa
- Departments of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Niigata, Japan
| | | |
Collapse
|
12
|
McCorvie TJ, Ferreira D, Yue WW, Froese DS. The complex machinery of human cobalamin metabolism. J Inherit Metab Dis 2023; 46:406-420. [PMID: 36680553 DOI: 10.1002/jimd.12593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Douglas Ferreira
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
13
|
Erban T, Sopko B, Bodrinova M, Talacko P, Chalupnikova J, Markovic M, Kamler M. Proteomic insight into the interaction of Paenibacillus larvae with honey bee larvae before capping collected from an American foulbrood outbreak: Pathogen proteins within the host, lysis signatures and interaction markers. Proteomics 2023; 23:e2200146. [PMID: 35946602 DOI: 10.1002/pmic.202200146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023]
Abstract
American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Miroslava Bodrinova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, Prague, Czechia
| | - Julie Chalupnikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague, Czechia
| | - Martin Kamler
- Bee Research Institute at Dol, Libcice nad Vltavou, Czechia
| |
Collapse
|
14
|
Sivakumar S, Miellet S, Clarke C, Hartley PS. Insect nephrocyte function is regulated by a store operated calcium entry mechanism controlling endocytosis and Amnionless turnover. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104453. [PMID: 36341969 DOI: 10.1016/j.jinsphys.2022.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Insect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general. Although dynamic changes to intracellular calcium are fundamental to the function of many cell types, there are currently no studies of intracellular calcium signalling in nephrocytes. In this work we aimed to characterise calcium signalling in the pericardial nephrocytes of Drosophila melanogaster. To achieve this, a genetically encoded calcium reporter (GCaMP6) was expressed in nephrocytes to monitor intracellular calcium both in vivo within larvae and in vitro within dissected adults. Larval nephrocytes exhibited stochastically timed calcium waves. A calcium signal could be initiated in preparations of adult nephrocytes and abolished by EGTA, or the store operated calcium entry (SOCE) blocker 2-APB, as well as RNAi mediated knockdown of the SOCE genes Stim and Orai. Neither the presence of calcium-free buffer nor EGTA affected the binding of the endocytic cargo albumin to nephrocytes but they did impair the subsequent accumulation of albumin within nephrocytes. Pre-treatment with EGTA, calcium-free buffer or 2-APB led to significantly reduced albumin binding. Knock-down of Stim and Orai was non-lethal, caused an increase to nephrocyte size and reduced albumin binding, reduced the abundance of the endocytic cargo receptor Amnionless and disrupted the localisation of Dumbfounded at the filtration slit diaphragm. These data indicate that pericardial nephrocytes exhibit stochastically timed calcium waves in vivo and that SOCE mediates the localisation of the endocytic co-receptor Amnionless. Identifying the signals both up and downstream of SOCE may highlight mechanisms relevant to the renal and excretory functions of a broad range of species, including humans.
Collapse
Affiliation(s)
- Shruthi Sivakumar
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, NSW, Australia
| | - Charlotte Clarke
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK.
| |
Collapse
|
15
|
Yadav SPS, Yu A, Zhao J, Singh J, Kakkar S, Chakraborty S, Mechref Y, Molitoris B, Wagner MC. Glycosylation of a key cubilin Asn residue results in reduced binding to albumin. J Biol Chem 2022; 298:102371. [PMID: 35970386 PMCID: PMC9485058 DOI: 10.1016/j.jbc.2022.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/28/2022] Open
Abstract
Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.
Collapse
Affiliation(s)
- Shiv Pratap Singh Yadav
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Saloni Kakkar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Bruce Molitoris
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
16
|
Shipman KE, Long KR, Cowan IA, Rbaibi Y, Baty CJ, Weisz OA. An Adaptable Physiological Model of Endocytic Megalin Trafficking in Opossum Kidney Cells and Mouse Kidney Proximal Tubule. FUNCTION 2022; 3:zqac046. [PMID: 36325513 PMCID: PMC9614980 DOI: 10.1093/function/zqac046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023] Open
Abstract
The cells that comprise the proximal tubule (PT) are specialized for high-capacity apical endocytosis necessary to maintain a protein-free urine. Filtered proteins are reclaimed via receptor-mediated endocytosis facilitated by the multiligand receptors megalin and cubilin. Despite the importance of this pathway, we lack a detailed understanding of megalin trafficking kinetics and how they are regulated. Here, we utilized biochemical and quantitative imaging methods in a highly differentiated model of opossum kidney (OK) cells and in mouse kidney in vivo to develop mathematical models of megalin traffic. A preliminary model based on biochemically quantified kinetic parameters was refined by colocalization of megalin with individual apical endocytic compartment markers. Our model predicts that megalin is rapidly internalized, resulting in primarily intracellular distribution of the receptor at steady state. Moreover, our data show that early endosomes mature rapidly in PT cells and suggest that Rab11 is the primary mediator of apical recycling of megalin from maturing endocytic compartments. Apical recycling represents the rate-limiting component of endocytic traffic, suggesting that this step has the largest impact in determining the endocytic capacity of PT cells. Adaptation of our model to the S1 segment of mouse PT using colocalization data obtained in kidney sections confirms basic aspects of our model and suggests that our OK cell model largely recapitulates in vivo membrane trafficking kinetics. We provide a downloadable application that can be used to adapt our working parameters to further study how endocytic capacity of PT cells may be altered under normal and disease conditions.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kimberly R Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Isabella A Cowan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Catherine J Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Vitamin B12 as a Cholinergic System Modulator and Blood Brain Barrier Integrity Restorer in Alzheimer's Disease. Eur J Pharm Sci 2022; 174:106201. [PMID: 35523375 DOI: 10.1016/j.ejps.2022.106201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
So far, the cholinergic hypothesis of Alzheimer's disease (AD) remains the fundamental explanation for the complex etiopathology of AD. However, therapeutics raising synaptic acetylcholine (Ach) or having cholinergic receptors agonistic activity had shown limited clinical efficacy, possibly, due to lacking capability to aggregate cholinergic receptors within the degenerated cholinergic neurons. Vitamin-B12 (B12) is an epigenetic modifier. It has a specific CNS transport system via the cubam receptors. The later enclose a cholinergic aggregator; agrin protein, suggesting that B12 administration may cause cholinergic receptors aggregation. Further, B12 involvement in homocysteine (Hcy) metabolism may restore blood brain barrier (BBB) integrity disrupted by elevated Hcy levels in AD. Here in, using a pharmacological model of cholinergic amnesia, three different B12 doses were compared to the standard of care; donepezil (DON) regarding cholinergic system modulation, and Hcy metabolic pathways. Further, AD-associated cerebro-vascular pathology was assessed by morphometric analyses of cerebro-vasculature morphology and ultrastructure using scanning and transmission electron-microscopes, respectively. Consequent effect on key AD-hallmarks and behavioral cognitive tests was also examined. The highest B12-tested dose (B12-HD) showed the greatest hippocampal cholinergic modulation with dose-dependent preferential upregulation of one cholinergic receptor over the other. Altered Hcy metabolism was proved to be a consequence of cholinergic disruption that was variably reversed by different B12 doses. In spite of equipotent effect of DON and B12-HD therapies in decreasing β-amyloid synthesis, B12-HD-treated group revealed the greatest restoration of BBB integrity indicating superior capability of β-amyloid clearance. Therefore, B12-HD therapy may represent a promising AD-modifying agent with extra-ability over conventional cholinergic modulators to aggregate cholinergic receptors.
Collapse
|
18
|
Guéant JL, Guéant-Rodriguez RM, Alpers DH. Vitamin B12 absorption and malabsorption. VITAMINS AND HORMONES 2022; 119:241-274. [PMID: 35337622 DOI: 10.1016/bs.vh.2022.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamin B12 is assimilated and transported by complex mechanisms that involve three transport proteins, intrinsic factor (IF), haptocorrin (HC) and transcobalamin (TC) and their respective membrane receptors. Vitamin deficiency is mainly due to inadequate dietary intake in vegans, and B12 malabsorption is related to digestive diseases. This review explores the physiology of vitamin B12 absorption and the mechanisms and diseases that produce malabsorption. In the stomach, B12 is released from food carrier proteins and binds to HC. The degradation of HC by pancreatic proteases and the pH change trigger the transfer of B12 to IF in the duodenum. Cubilin and amnionless are the two components of the receptor that mediates the uptake of B12 in the distal ileum. Part of liver B12 is excreted in bile, and undergoes an enterohepatic circulation. The main causes of B12 malabsorption include inherited disorders (Intrinsic factor deficiency, Imerslund-Gräsbeck disease, Addison's pernicious anemia, obesity, bariatric surgery and gastrectomies. Other causes include pancreatic insufficiency, obstructive Jaundice, tropical sprue and celiac disease, bacterial overgrowth, parasitic infestations, Zollinger-Ellison syndrome, inflammatory bowel diseases, chronic radiation enteritis of the distal ileum and short bowel. The assessment of B12 deficit is recommended in the follow-up of subjects with bariatric surgery. The genetic causes of B12 malabsorption are probably underestimated in adult cases with B12 deficit. Despite its high prevalence in the general population and in the elderly, B12 malabsorption cannot be anymore assessed by the Schilling test, pointing out the urgent need for an equivalent reliable test.
Collapse
Affiliation(s)
- Jean-Louis Guéant
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; Department of Hepato-Gastroenterology, University Hospital of Nancy, Nancy, France.
| | - Rosa-Maria Guéant-Rodriguez
- University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France
| | - David H Alpers
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
19
|
Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol Rev 2022; 102:1625-1667. [PMID: 35378997 PMCID: PMC9255719 DOI: 10.1152/physrev.00014.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.
Collapse
Affiliation(s)
- Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Dept.of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Shiv Pratap S. Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Mark C. Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
20
|
Cubilin and Amnionless Protein are Novel Target Antigens in Anti-Brush Border Antibody Disease. Kidney Int 2022; 101:1063-1068. [PMID: 35276203 DOI: 10.1016/j.kint.2022.02.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
21
|
Baker KM, Parikh NS, Salsbery KT, Shaw GR, Steiner RD, Oelstrom MJ, Manalang MA. A 17-Month-old Boy With Pancytopenia Caused by a Rare Genetic Defect of Vitamin B12 Malabsorption. J Pediatr Hematol Oncol 2022; 44:e444-e446. [PMID: 34054045 DOI: 10.1097/mph.0000000000002213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/25/2021] [Indexed: 11/26/2022]
Abstract
Imerslund-Gräsbeck syndrome is an autosomal recessive disorder of vitamin B12 malabsorption presenting with megaloblastic anemia and mild proteinuria in childhood. The disorder is caused by biallelic pathogenic variants in the CUBN or AMN genes, which encode proteins involved in B12 absorption. We present the case of a 17-month-old boy with failure to thrive, pancytopenia, and fevers. His megaloblastic anemia was overlooked leading to unnecessary invasive testing. Findings on bone marrow biopsy prompted investigation for genetic disorders of B12 metabolism. Exome sequencing uncovered 1 known pathogenic variant and 1 novel likely pathogenic variant in CUBN, confirming the diagnosis of Imerslund-Gräsbeck syndrome.
Collapse
Affiliation(s)
| | | | | | | | - Robert D Steiner
- Pediatrics and Prevention Genetics LLC
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Matthew J Oelstrom
- Pediatric Intensive Care Unit, Marshfield Children's Hospital, Marshfield
| | | |
Collapse
|
22
|
Atienza-Manuel A, Castillo-Mancho V, De Renzis S, Culi J, Ruiz-Gómez M. Endocytosis mediated by an atypical CUBAM complex modulates slit diaphragm dynamics in nephrocytes. Development 2021; 148:272711. [PMID: 34738617 PMCID: PMC8710305 DOI: 10.1242/dev.199894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/22/2021] [Indexed: 01/14/2023]
Abstract
The vertebrate endocytic receptor CUBAM, consisting of three cubilin monomers complexed with a single amnionless molecule, plays a major role in protein reabsorption in the renal proximal tubule. Here, we show that Drosophila CUBAM is a tripartite complex composed of Amnionless and two cubilin paralogues, Cubilin and Cubilin2, and that it is required for nephrocyte slit diaphragm (SD) dynamics. Loss of CUBAM-mediated endocytosis induces dramatic morphological changes in nephrocytes and promotes enlarged ingressions of the external membrane and SD mislocalisation. These phenotypes result in part from an imbalance between endocytosis, which is strongly impaired in CUBAM mutants, and exocytosis in these highly active cells. Of note, rescuing receptor-mediated endocytosis by Megalin/LRP2 or Rab5 expression only partially restores SD positioning in CUBAM mutants, suggesting a specific requirement of CUBAM in SD degradation and/or recycling. This finding and the reported expression of CUBAM in podocytes suggest a possible unexpected conserved role for this endocytic receptor in vertebrate SD remodelling. Summary: A genetic study revealing that endocytosis mediated by an atypical CUBAM endocytic receptor, composed of Amnionless and two Cubilin paralogues, regulates slit diaphragm remodelling in Drosophila nephrocytes.
Collapse
Affiliation(s)
- Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Vicente Castillo-Mancho
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Stefano De Renzis
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
23
|
Iida A, Sano K, Inokuchi M, Nomura J, Suzuki T, Kuriki M, Sogabe M, Susaki D, Tonosaki K, Kinoshita T, Hondo E. Cubam receptor-mediated endocytosis in hindgut-derived pseudoplacenta of a viviparous teleost (Xenotoca eiseni). J Exp Biol 2021; 224:269277. [PMID: 34170318 PMCID: PMC8278012 DOI: 10.1242/jeb.242613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
Nutrient transfer from mother to embryo is essential for reproduction in viviparous animals. In the viviparous teleost Xenotoca eiseni (family Goodeidae), the intraovarian embryo intakes the maternal component secreted into the ovarian fluid via the trophotaenia. Our previous study reported that the epithelial layer cells of the trophotaenia incorporate a maternal protein via vesicle trafficking. However, the molecules responsible for the absorption were still elusive. Here, we focused on Cubam (Cubilin-Amnionless) as a receptor involved in the absorption, and cathepsin L as a functional protease in the vesicles. Our results indicated that the Cubam receptor is distributed in the apical surface of the trophotaenia epithelium and then is taken into the intracellular vesicles. The trophotaenia possesses acidic organelles in epithelial layer cells and cathepsin L-dependent proteolysis activity. This evidence does not conflict with our hypothesis that receptor-mediated endocytosis and proteolysis play roles in maternal macromolecule absorption via the trophotaenia in viviparous teleosts. Such nutrient absorption involving endocytosis is not a specific trait in viviparous fish. Similar processes have been reported in the larval stage of oviparous fish or the suckling stage of viviparous mammals. Our findings suggest that the viviparous teleost acquired trophotaenia-based viviparity from a modification of the intestinal absorption system common in vertebrates. This is a fundamental study to understand the strategic variation of the reproductive system in vertebrates.
Collapse
Affiliation(s)
- Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8601, Aichi, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, Sakado 350-0295, Saitama, Japan
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Jumpei Nomura
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8601, Aichi, Japan
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8601, Aichi, Japan
| | - Mao Kuriki
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Maina Sogabe
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8507, Japan
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Kanagawa, Japan
| | - Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Kanagawa, Japan
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Kanagawa, Japan
| | - Eiichi Hondo
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya 464-8601, Aichi, Japan
| |
Collapse
|
24
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Bi Y, Chen X. The digestive system of mandarin fish (Siniperca chuatsi) can adapt to domestication by feeding with artificial diet. AQUACULTURE 2021; 538:736546. [DOI: 10.1016/j.aquaculture.2021.736546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
|
25
|
Yadav SPS, Sandoval RM, Zhao J, Huang Y, Wang E, Kumar S, Campos-Bilderback SB, Rhodes G, Mechref Y, Molitoris BA, Wagner MC. Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol Renal Physiol 2021; 320:F114-F129. [PMID: 33283642 PMCID: PMC7847050 DOI: 10.1152/ajprenal.00428.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid
- Disease Models, Animal
- Glomerular Filtration Rate
- Histocompatibility Antigens Class I/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Liver/metabolism
- Lysine
- Male
- Microscopy, Fluorescence, Multiphoton
- Protein Binding
- Protein Carbamylation
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Fc/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Scattering, Small Angle
- Serum Albumin/metabolism
- Tandem Mass Spectrometry
- Time Factors
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Shiv Pratap S Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Exing Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Sudhanshu Kumar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark C Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Edwards A, Christensen EI, Unwin RJ, Norden AGW. Predicting the protein composition of human urine in normal and pathological states: Quantitative description based on Dent1 disease (
CLCN5
mutation). J Physiol 2020; 599:323-341. [DOI: 10.1113/jp280740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023] Open
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering Boston University Boston MA USA
| | | | - Robert J. Unwin
- Department of Renal Medicine Royal Free Campus University College London London UK
| | - Anthony G. W. Norden
- Department of Renal Medicine Royal Free Campus University College London London UK
| |
Collapse
|
27
|
Chen RY, Li XZ, Lin Q, Zhu Y, Shen YY, Xu QY, Zhu XM, Chen LQ, Wu HY, Chen XQ. Proteinuria as a presenting sign of combined methylmalonic acidemia and homocysteinemia: case report. BMC MEDICAL GENETICS 2020; 21:183. [PMID: 32957924 PMCID: PMC7507264 DOI: 10.1186/s12881-020-01122-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
Background Disorders of the metabolism and absorption of vitamin B12 can lead to decrease in activity of methionine synthetase and methylmalonate coenzyme A mutase (MMUT), which results in increased levels of methylmalonic acid and homocysteine in blood and urine. Often, combined methylmalonic acidemia (MMA) and homocysteinemia is misdiagnosed due to a lack of specific symptoms. The clinical manifestations are diverse, but proteinuria as the initial presentation is rare. Case presentation Two cases of MMA with homocysteinemia in children are reported. Proteinuria were a primary presenting symptom, followed by anemia and neurologic symptoms (frequent convulsions and unstable walking, respectively). Screening of amino acids and acyl carnitine in serum showed that the propionyl carnitine:acetylcarnitine ratio increased. Profiling of urinary organic acids by gas chromatography–mass spectrometry revealed high levels of methylmalonic acid. Homocysteine content in blood was increased. Comprehensive genetic analyses of peripheral blood-derived DNA demonstrated heterozygous variants of methylmalonic aciduria type C and homocystinuria (MMACHC) and amnionless (AMN) genes in our two patients, respectively. After active treatment, the clinical manifestations in Case 1 were relieved and urinary protein ceased to be observed; Case 2 had persistent proteinuria and was lost to follow-up. Conclusions Analyses of the organic acids in blood and urine suggested MMA combined with homocysteinemia. In such diseases, reports of renal damage are uncommon and proteinuria as the initial presentation is rare. Molecular analysis indicated two different genetic causes. Although the pathologic mechanisms were related to vitamin B12, the severity and prognosis of renal lesions were different. Therefore, gene detection provides new insights into inherited metabolic diseases.
Collapse
Affiliation(s)
- Ru-Yue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Zhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun-Yan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qin-Ying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue-Ming Zhu
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin-Qi Chen
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hai-Ying Wu
- Department of Endocrinology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xu-Qin Chen
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
28
|
Abstract
Albuminuria acts as a marker of progressive chronic kidney disease and as an indicator for initiation of hypertension treatment via modulation of the renin-angiotensin-aldosterone system with angiotensin receptor blockers or angiotensin-converting enzyme inhibitors. However, the true significance of albuminuria has yet to be fully defined. Is it merely a marker of underlying pathophysiology, or does it play a causal role in the progression of kidney disease? The answer remains under debate. In this issue of the JCI, Bedin et al. used next-generation sequencing data to identify patients with chronic proteinuria who had biallelic variants in the cubilin gene (CUBN). Through investigation of these pathogenic mutations in CUBN, the authors have further illuminated the clinical implications of albuminuria.
Collapse
|
29
|
Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, Christensen EI, Baty CJ, Kashlan OB, Weisz OA. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Renal Physiol 2020; 318:F1284-F1294. [PMID: 32200668 DOI: 10.1152/ajprenal.00030.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Proximal tubule (PT) cells express a single saturable albumin-binding site whose affinity matches the estimated tubular concentration of albumin; however, albumin uptake capacity is greatly increased under nephrotic conditions. Deciphering the individual contributions of megalin and cubilin to the uptake of normal and nephrotic levels of albumin is impossible in vivo, as knockout of megalin in mice globally disrupts PT endocytic uptake. We quantified concentration-dependent albumin uptake in an optimized opossum kidney cell culture model and fit the kinetic profiles to identify albumin-binding affinities and uptake capacities. Mathematical deconvolution fit best to a three-component model that included saturable high- and low-affinity uptake sites for albumin and underlying nonsaturable uptake consistent with passive uptake of albumin in the fluid phase. Knockdown of cubilin or its chaperone amnionless selectively reduced the binding capacity of the high-affinity site, whereas knockdown of megalin impacted the low-affinity site. Knockdown of disabled-2 decreased the capacities of both binding sites. Additionally, knockdown of megalin or disabled-2 profoundly inhibited the uptake of a fluid phase marker, with cubilin knockdown having a more modest effect. We propose a novel model for albumin retrieval along the PT in which cubilin and megalin receptors have different functions in recovering filtered albumin in proximal tubule cells. Cubilin binding to albumin is tuned to capture normally filtered levels of the protein. In contrast, megalin binding to albumin is of lower affinity, and its expression is also essential for enabling the recovery of high concentrations of albumin in the fluid phase.
Collapse
Affiliation(s)
- Qidong Ren
- School of Medicine, Tsinghua University, Beijing, China.,Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Jiang HX, Feng Z, Zhu ZB, Xia CH, Zhang W, Guo J, Liu BL, Wang Y, Liu YN, Liu WJ. Advances of the experimental models of idiopathic membranous nephropathy (Review). Mol Med Rep 2020; 21:1993-2005. [PMID: 32186751 PMCID: PMC7115214 DOI: 10.3892/mmr.2020.11014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Idiopathic membranous nephropathy (IMN) is one of the main types of chronic kidney disease in adults and one of the most common causes of end-stage renal disease. In recent years, the morbidity of IMN among primary glomerular diseases has markedly increased, while the pathogenesis of the disease remains unclear. To address this, a number of experimental models, including Heymann nephritis, anti-thrombospondin type-1 domain-containing 7A antibody-induced IMN, cationic bovine serum albumin, anti-human podocyte antibodies and zymosan-activated serum-induced C5b-9, have been established. This review comprehensively summarized the available animal and cell models for IMN. The limitations and advantages of the current models were discussed and two improved models were introduced to facilitate the selection of an appropriate model for further studies on IMN.
Collapse
Affiliation(s)
- Han Xue Jiang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zhendong Feng
- Beijing Chinese Medicine Hospital Pinggu Hospital, Beijing 101200, P.R. China
| | - Ze Bing Zhu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Chen Hui Xia
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Wenting Zhang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jing Guo
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Bao-Li Liu
- Department of Nephrology, Beijing Traditional Chinese Medicine Hospital, Capital Medical University, Beijing 100010, P.R. China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yu Ning Liu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of The Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
31
|
Hussain SA, Ammad Ud Din M, Boppana LKT, Kapoor A, Jamshed S. Suspected Metformin-induced Cobalamin Deficiency Mimicking Thrombotic Thrombocytopenic Purpura. Cureus 2020; 12:e6921. [PMID: 32190475 PMCID: PMC7064264 DOI: 10.7759/cureus.6921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thrombotic thrombocytopenic purpura (TTP) can often be life threatening and requires timely diagnosis and prompt initiation of plasmapharesis. Cobalamin deficiency can closely mimic TTP and distinguishing between the two diseases can prove to be a diagnostic challenge. Previously, cobalamin-related pseudo-TTP has been associated with pernicious anemia, dietary insufficiency and hereditary disorders of cobalamin activation. Here in, we discuss the first case of suspected metformin-induced cobalamin deficiency causing pseudo-TTP. Our patient was a 36-year-old female with type 2 diabetes mellitus on metformin for eight years who presented with hemolytic anemia, thrombocytopenia, schistocytes and mild acute renal failure. The initial impression was TTP; however, further workup revealed very low serum cobalamin levels and elevated methylmalonic acid levels. Apart from metformin use, no other cause of cobalamin deficiency was identified. We recommended upper gastrointestinal endoscopy to definitively rule out pernicious anemia.
Collapse
Affiliation(s)
| | | | | | - Ankita Kapoor
- Internal Medicine, Rochester General Hospital, Rochester, USA
| | - Saad Jamshed
- Hematology/Oncology, Rochester Regional Health, Rochester, USA
| |
Collapse
|
32
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020; 130:335-344. [PMID: 31613795 PMCID: PMC6934218 DOI: 10.1172/jci129937] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
33
|
Bedin M, Boyer O, Servais A, Li Y, Villoing-Gaudé L, Tête MJ, Cambier A, Hogan J, Baudouin V, Krid S, Bensman A, Lammens F, Louillet F, Ranchin B, Vigneau C, Bouteau I, Isnard-Bagnis C, Mache CJ, Schäfer T, Pape L, Gödel M, Huber TB, Benz M, Klaus G, Hansen M, Latta K, Gribouval O, Morinière V, Tournant C, Grohmann M, Kuhn E, Wagner T, Bole-Feysot C, Jabot-Hanin F, Nitschké P, Ahluwalia TS, Köttgen A, Andersen CBF, Bergmann C, Antignac C, Simons M. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J Clin Invest 2020. [PMID: 31613795 DOI: 10.1172/jci12937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUNDProteinuria is considered an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear whether all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS), which is characterized by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding.METHODSWe used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling, and epidemiological methods.RESULTSWe identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene were associated with chronic isolated proteinuria and early childhood onset. Since the proteinuria in these patients had a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and the use of proteinuria-lowering treatments. However, renal function was normal in all cases. By contrast, we did not found any biallelic CUBN variants in proteinuric patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that 4 C-terminal CUBN variants are associated with albuminuria and slightly increased GFR in meta-analyses of large population-based cohorts.CONCLUSIONCollectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsy.FUNDINGATIP-Avenir program, Fondation Bettencourt-Schueller (Liliane Bettencourt Chair of Developmental Biology), Agence Nationale de la Recherche (ANR) Investissements d'avenir program (ANR-10-IAHU-01) and NEPHROFLY (ANR-14-ACHN-0013, to MS), Steno Collaborative Grant 2018 (NNF18OC0052457, to TSA and MS), Heisenberg Professorship of the German Research Foundation (KO 3598/5-1, to AK), Deutsche Forschungsgemeinschaft (DFG) Collaborative Research Centre (SFB) KIDGEM 1140 (project 246781735, to CB), and Federal Ministry of Education and Research (BMB) (01GM1515C, to CB).
Collapse
Affiliation(s)
| | - Olivia Boyer
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Pediatric Nephrology and
| | - Aude Servais
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Nephrology, Necker Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Marie-Josephe Tête
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | - Alexandra Cambier
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Julien Hogan
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | - Veronique Baudouin
- Department of Pediatric Nephrology and Transplantation, Robert-Debré Hospital, APHP, Paris, France
| | | | | | - Florie Lammens
- Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | - Bruno Ranchin
- Department of Pediatric Nephrology, Hospices Civils de Lyon, Bron, France
| | - Cecile Vigneau
- Centre Hospitalier Universitaire de Rennes, INSERM U1085 IRSET-9, Rennes, France
| | - Iseline Bouteau
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | | | | - Tobias Schäfer
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Lars Pape
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Markus Gödel
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Günter Klaus
- Department of Child and Adolescent Medicine, University Medical Center Marburg-Giessen, Marburg, Germany
| | - Matthias Hansen
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Kay Latta
- KfH-Nierenzentrum für Kinder und Jugendliche und Clementine-Kinderhospital, Frankfurt, Germany
| | - Olivier Gribouval
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
| | | | - Carole Tournant
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | - Maik Grohmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
| | - Elisa Kuhn
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Timo Wagner
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Christine Bole-Feysot
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | - Patrick Nitschké
- Bioinformatic Platform, INSERM UMR 1163, Institut Imagine, Paris, France
- Bioinformatics Core Facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Université de Paris, Paris, France
| | | | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Carsten Bergmann
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
- Center for Human Genetics, Mainz, Germany
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Corinne Antignac
- Laboratory of Hereditary Kidney Disease, Imagine Institute, INSERM U1163, Université de Paris, Paris, France
- Department of Genetics, Necker Hospital, APHP, Paris, France
| | | |
Collapse
|
34
|
|
35
|
Zachar R, Mikkelsen MK, Skjødt K, Marcussen N, Zamani R, Jensen BL, Svenningsen P. The epithelial Na+ channel α- and γ-subunits are cleaved at predicted furin-cleavage sites, glycosylated and membrane associated in human kidney. Pflugers Arch 2019; 471:1383-1396. [DOI: 10.1007/s00424-019-02321-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 01/28/2023]
|
36
|
Sabaratnam R, Geertsen L, Skjødt K, Højlund K, Dimke H, Lund L, Svenningsen P. In human nephrectomy specimens, the kidney level of tubular transport proteins does not correlate with their abundance in urinary extracellular vesicles. Am J Physiol Renal Physiol 2019; 317:F560-F571. [DOI: 10.1152/ajprenal.00242.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human urinary extracellular vesicles (uEVs) contain proteins from all nephron segments. An assumption for years has been that uEVs might provide a noninvasive liquid biopsy that reflect physiological regulation of transporter protein expression in humans. We hypothesized that protein abundance in human kidney tissue and uEVs are directly related and tested this in paired collections of nephrectomy tissue and urine sample from 12 patients. Kidney tissue was fractioned into total kidney protein, crude membrane (plasma membrane and large intracellular vesicles)-enriched, and intracellular vesicle-enriched fractions as well as sections for immunolabeling. uEVs were isolated from spot urine samples. Antibodies were used to quantify six segment-specific proteins [proximal tubule-expressed Na+-phosphate cotransporters (NaPi-2a), thick ascending limb-expressed Tamm-Horsfall protein and renal outer medullary K+ channels, distal convoluted tubule-expressed NaCl cotransporters, intercalated cell-expressed V-type H+-ATPase subunit G3 (ATP6V1G3), and principal cell-expressed aquaporin 2] and three uEV markers (exosomal CD63, microvesicle marker vesicle‐associated membrane protein 3, and β-actin) in each fraction. By Western blot analysis and immunofluorescence labeling, we found significant positive correlations between the abundance of CD63, NaCl cotransporters, aquaporin 2, and ATP6V1G3, respectively, within the different kidney-derived fractions. We detected all nine proteins in uEVs, but their level did not correlate with kidney tissue protein abundance. uEV protein levels showed higher interpatient variability than kidney-derived fractions, indicating that factors, besides kidney protein abundance, contribute to the uEV protein level. Our data suggest that, in a random sample of nephrectomy patients, uEV protein level is not a predictor of kidney protein abundance.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, Section of Molecular Diabetes and Metabolism, Institute of Clinical Research, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Louise Geertsen
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Karsten Skjødt
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Section of Molecular Diabetes and Metabolism, Institute of Clinical Research, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Dimke
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark
- Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
37
|
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Dev Cell 2019; 51:7-20.e6. [PMID: 31474562 PMCID: PMC6783362 DOI: 10.1016/j.devcel.2019.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.
Collapse
|
38
|
Fyfe JC, Hemker SL, Frampton A, Raj K, Nagy PL, Gibbon KJ, Giger U. Inherited selective cobalamin malabsorption in Komondor dogs associated with a CUBN splice site variant. BMC Vet Res 2018; 14:418. [PMID: 30591068 PMCID: PMC6309081 DOI: 10.1186/s12917-018-1752-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Three Komondor dogs in a small family and 3 sporadic cases exhibited a constellation of signs that included juvenile-onset of failure-to-thrive, inappetence, vomiting and/or diarrhea, and weakness. In each we documented dyshematopoiesis, increased anion gap, methylmalonic acidemia/-uria, and serum cobalamin deficiency. Urine protein electrophoresis demonstrated excretion of cubam ligands. All clinical signs and metabolic abnormalities, except proteinuria, were reversed by regular parenteral cobalamin administration. The pattern of occurrence and findings in the disorder suggested an autosomal recessive inheritance of cobalamin malabsorption with proteinuria, a condition in humans called Imerslund-Gräsbeck syndrome. The purpose of this study was to determine the molecular cause of this disorder in Komondors. RESULTS Whole genome sequencing of two affected Komondor dogs of unknown relatedness and one parent and a clinically-normal littermate of an affected dog revealed a pathogenic single-base change in the CUBN intron 55 splice donor consensus sequence (NM_001003148.1: c.8746 + 1G > A) that was homozygous in affected dogs and heterozygous in the unaffected parents. Alleles of the variant co-segregated with alleles of the disease locus in the entire family and all more distantly-related sporadic cases. A population study using a simple allele-specific DNA test indicated mutant allele frequencies of 8.3 and 4.5% among North American and Hungarian Komondors, respectively. CONCLUSIONS DNA testing can be used diagnostically in Komondors when clinical signs are suggestive of cobalamin deficiency or to inform Komondor breeders prospectively and prevent occurrence of future affected dogs. This represents the third cubilin variant causing inherited selective cobalamin malabsorption in a large animal ortholog of human Imerslund-Gräsbeck syndrome.
Collapse
Affiliation(s)
- John C. Fyfe
- Laboratory of Comparative Medical Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 USA
- Department of Microbiology & Molecular Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 USA
| | - Shelby L. Hemker
- Laboratory of Comparative Medical Genetics, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 USA
- Present address: Department of Pediatrics, Division of Nephrology, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| | - Alycia Frampton
- Section of Medical Genetics, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104-6010 USA
| | - Karthik Raj
- Section of Medical Genetics, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104-6010 USA
| | - Peter L. Nagy
- Laboratory of Personalized Genomic Medicine, Department of Pathology & Cell Biology, Columbia University - College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032 USA
- Present address: MNG Laboratories™, 5424 Glenridge Drive NE, Atlanta, GA 30342 USA
| | - Kristi J. Gibbon
- Oregon Veterinary Referral Associates, 444 B Street, Springfield, OR 97477 USA
- Cottonwood Heights, USA
| | - Urs Giger
- Section of Medical Genetics, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104-6010 USA
| |
Collapse
|