1
|
Wang C, Yu T, Xia Y, Tao F, Sun J, Zhao J, Mao X, Tang M, Yin L, Yang Y, Tan W, Shen L, Zhang S. Serum metabolomic characteristics of COVID-19 patients co-infection with echovirus. Virulence 2025; 16:2497907. [PMID: 40310893 PMCID: PMC12051534 DOI: 10.1080/21505594.2025.2497907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/04/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Currently, the Omicron variant of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate globally. In our multiplex respiratory pathogen detection, we identified numerous instances of co-infection with Echovirus (ECHO) among Coronavirus Disease 2019 (COVID-19) patients, which exacerbated the clinical symptoms of these patients. Such co-infections are likely to impact the subsequent medical treatment. To date, there are no reports on the pathogenic mechanisms related to COVID-19 co-infected with ECHO. Therefore, this study employed the TM Widely-Targeted metabolomics approach to analyze the serum metabolomes of COVID-19 patients with single SARS-CoV-2 infection (COVID-19), COVID-19 patients co-infected with ECHO (COVID-19 + ECHO), and healthy individuals (Control) recruited from routine physical examinations during the same period. Concurrent clinical laboratory tests were performed on the patients to reveal the differences in metabolomic characteristics between the COVID-19 patients and the COVID-19 + ECHO patients, as well as to explore potential metabolic pathways that may exacerbate disease progression. Our findings indicate that both clinical examination indicators and the pathways enriched by differential metabolites confirm that patients with dual infection exhibit higher inflammatory and immune responses compared to those with single COVID-19 infections. This difference is likely reflected through abnormalities in the glycerophospholipid metabolic pathway, with the metabolite Sn-Glycero-3-Phosphocholine playing a crucial role in this process. Finally, we established a diagnostic model based on logistic regression using five differential metabolites, which accurately differentiates between the dual infection population and the single COVID-19 infection population (AUC = 0.828).
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Tingyu Yu
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Ying Xia
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Feng Tao
- The Key Laboratory for Precision Diagnosis and Treatment of Thrombotic Diseases in Xiangyang City, Zaoyang First People’s Hospital, Zaoyang, Hubei Province, China
| | - Jiali Sun
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Jianzhong Zhao
- Department of Clinical Laboratory, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Xiaogang Mao
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Mengjun Tang
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Shuaijie Zhang
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
2
|
Li X, Li L, Tian J, Su R, Sun J, Li Y, Wang L, Zhou H, Sha S, Xiao J, Dong H, Huo C, Hu Y, Yang H. SREBP2-dependent lipid droplet formation enhances viral replication and deteriorates lung injury in mice following IAV infection. Emerg Microbes Infect 2025; 14:2470371. [PMID: 39968754 PMCID: PMC11873989 DOI: 10.1080/22221751.2025.2470371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
Influenza A virus (IAV) is a significant zoonotic pathogen that poses a considerable challenge to public health due to its continuous mutations. Lipid droplets (LDs) have been shown to play an important role in the process of several viral infections. However, their role in IAV infection remains unclear. Here, we found that IAV infection altered the lipid metabolism and increased the content of LDs in the lungs of mice. In vitro, IAV infection also mediated the formation of LDs in A549 cells. Besides, inhibition of the formation of lipid droplets can significantly suppress IAV replication and the release of inflammatory factors, indicating that LDs could facilitate the virus replication and inflammatory response. Furthermore, we discovered that IAV infection could activate the SREBP2, a crucial lipid-regulating transcription factor that regulates the expressions of downstream proteins named HMGCR and HMGCS. HMGCR and HMGCS involved in the process of cholesterol synthesis, which further promoted the formation of LDs. Additionally, the use of fatostatin that specifically inhibits the maturation of SREBP2 was able to significantly suppress the viral replication of H5N1 in cells and effectively ameliorated IAV-induced lung injury in mice, which eventually promoted the survival rate of infected mice. Taken together, we demonstrate the essential roles of lipid metabolism and LD formation in IAV replication and pathogenesis, which may better facilitate the advancement of new strategies against IAV infection, especially the highly pathogenic H5N1 virus.
Collapse
Affiliation(s)
- Xinsen Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lu Li
- Infectious Disease Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ruijing Su
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jiali Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yuli Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Lige Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hongye Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Shuhan Sha
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jin Xiao
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Zhongmu Institutes of China Animal Husbandry Industry Co., Ltd, Beijing, People’s Republic of China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, People’s Republic of China
| | - Caiyun Huo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yanxin Hu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Tang H, Jiang F, Zhang Z, Yang J, Li L, Zhang Q. Metabolism-associated protein network constructing and host-directed anti-influenza drug repurposing. Brief Bioinform 2025; 26:bbaf163. [PMID: 40315435 PMCID: PMC12048005 DOI: 10.1093/bib/bbaf163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/05/2025] [Accepted: 03/23/2025] [Indexed: 05/04/2025] Open
Abstract
Host-directed antivirals offer a promising strategy for addressing the challenge of viral resistance. Virus-host interactions often trigger stage-specific metabolic reprogramming in the host, and the causal links between these interactions and virus-induced metabolic changes provide valuable insights for identifying host targets. In this study, we present a workflow for repurposing host-directed antivirals using virus-induced protein networks. These networks capture the dynamic progression of viral infection by integrating host proteins directly interacting with the virus and enzymes associated with significantly altered metabolic fluxes, identified through dual-species genome-scale metabolic models. This approach reveals numerous hub nodes as potential host targets. As a case study, 50 approved drugs with potential anti-influenza virus A (IVA) activity were identified through eight stage-specific IVA-induced protein networks, each comprising 699-899 hub nodes. Lisinopril, saxagliptin, and gliclazide were further validated for anti-IVA efficacy in vitro through assays measuring the inhibition of cytopathic effects and viral titers in A549 cells infected with IVA PR8. This workflow paves the way for the rapid repurposing of host-directed antivirals.
Collapse
Affiliation(s)
- Hao Tang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Feng Jiang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Zhi Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Jiaojiao Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Lu Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Shizishan Street 1, Wuhan, 430070 Hubei, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Shizishan Street 1, Wuhan, 430070 Hubei, China
| | - Qingye Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Shizishan Street 1, Wuhan, 430070 Hubei, China
| |
Collapse
|
4
|
Chen F, Matsuda A, Sporn PHS, Casalino-Matsuda SM. Hypercapnia Increases Influenza A Virus Infection of Bronchial Epithelial Cells by Augmenting Cellular Cholesterol via mTOR and Akt. Int J Mol Sci 2025; 26:4133. [PMID: 40362373 PMCID: PMC12071803 DOI: 10.3390/ijms26094133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Hypercapnia, the elevation of CO2 in blood and tissue, is a risk factor for mortality in patients with severe lung disease and pulmonary infections. We previously showed that hypercapnia increases viral replication and mortality in mice infected with influenza A virus (IAV). Elevated CO2 also augmented cholesterol content and pseudo-SARS-CoV-2 entry in bronchial epithelial cells. Interestingly, cellular cholesterol facilitates IAV uptake, replication, assembly, and egress from cells. Here, we report that hypercapnia increases viral protein expression in airway epithelium of mice infected with IAV. Elevated CO2 also enhanced IAV adhesion and internalization, viral protein expression, and viral replication in bronchial epithelial cells. Hypercapnia increased the expression and activation of the transcription factor sterol-regulatory element binding protein 2 (SREBP2), resulting in elevated expression of cholesterol synthesis enzymes, decreased expression of a cholesterol efflux transporter, and augmented cellular cholesterol. Moreover, reducing cellular cholesterol with an SREBP2 inhibitor or statins blocked hypercapnia-induced increases in viral adhesion and internalization, viral protein expression, and IAV replication. Inhibitors of mTOR and Akt also blocked the effect of hypercapnia on viral growth. Our findings suggest that targeting cholesterol synthesis and/or mTOR/Akt signaling may hold promise for reducing susceptibility to influenza infection in patients with advanced lung disease and hypercapnia.
Collapse
Affiliation(s)
- Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aiko Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter H. S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Li Y, Jiao J, Qiao H, Wang C, Li L, Jin F, Ye D, Chen Y, Zhang Q, Li M, Zhao Z, Zhang J, Wang L. Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung-Gut Axis and Lipid Droplet Modulation. Pharmaceuticals (Basel) 2025; 18:468. [PMID: 40283905 PMCID: PMC12030469 DOI: 10.3390/ph18040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Acute lung injury (ALI) is a major cause of death in patients with various viral pneumonias. Our team previously identified four volatile compounds from aromatic Chinese medicines. Based on molecular compatibility theory, we defined their combination as aromatic molecular compatibility (AC), though its therapeutic effects and underlying mechanisms remain unclear. Methods: This study used influenza A virus (IAV) A/PR/8/34 to construct cell and mouse models of ALI to explore AC's protective effects against viral infection. The therapeutic effect of AC was verified by evaluating the antiviral efficacy in the mouse models, including improvements in their lung and colon inflammation, oxidative stress, and the suppression of the NLRP3 inflammasome. In addition, 16S rDNA and lipid metabolomics were used to analyze the potential therapeutic mechanisms of AC. Results: Our in vitro and in vivo studies demonstrated that AC increased the survival of the IAV-infected cells and mice, inhibited influenza virus replication and the expression of proinflammatory factors in the lung tissues, and ameliorated barrier damage in the colonic tissues. In addition, AC inhibited the expression of ROS and the NLRP3 inflammasome and improved the inflammatory cell infiltration into the lung tissues. Finally, AC effectively regulated intestinal flora disorders and lipid metabolism in the model mice, significantly reduced cholesterol and triglyceride expression, and thus reduced the abnormal accumulation of lipid droplets (LDs) after IAV infection. Conclusions: In this study, we demonstrated that AC could treat IAV-induced ALIs through multiple pathways, including antiviral and anti-inflammatory pathways and modulation of the intestinal flora and the accumulation of LDs.
Collapse
Affiliation(s)
- Yi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Jiakang Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Haoyi Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Conghui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Linze Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Fengyu Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Danni Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Qi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhongpeng Zhao
- Beijing Minhai Biotechnology Co., Ltd., Beijing 102600, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102401, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Y.L.)
| |
Collapse
|
6
|
Soultsioti M, de Jong AWM, Blomberg N, Tas A, Giera M, Snijder EJ, Bárcena M. Perturbation of de novo lipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles. J Virol 2025; 99:e0228224. [PMID: 39976449 PMCID: PMC11915874 DOI: 10.1128/jvi.02282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Coronaviruses hijack host cell metabolic pathways and resources to support their replication. They induce extensive host endomembrane remodeling to generate viral replication organelles and exploit host membranes for assembly and budding of their enveloped progeny virions. Because of the overall significance of host membranes, we sought to gain insight into the role of host factors involved in lipid metabolism in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV). We employed a single-cycle infection approach in combination with pharmacological inhibitors, biochemical assays, lipidomics, and light and electron microscopy. Pharmacological inhibition of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN), key host factors in de novo fatty acid biosynthesis, led to pronounced inhibition of MERS-CoV particle release. Inhibition of ACC led to a profound metabolic switch in Huh7 cells, altering their lipidomic profile and inducing lipolysis. However, despite the extensive changes induced by the ACC inhibitor, the biogenesis of viral replication organelles remained unaffected. Instead, ACC inhibition appeared to affect the trafficking and post-translational modifications of the MERS-CoV envelope proteins. Electron microscopy revealed an accumulation of nucleocapsids in early budding stages, indicating that MERS-CoV assembly is adversely impacted by ACC inhibition. Notably, inhibition of palmitoylation resulted in similar effects, while supplementation of exogenous palmitic acid reversed the compound's inhibitory effects, possibly reflecting a crucial need for palmitoylation of the MERS-CoV spike and envelope proteins for their role in virus particle assembly.IMPORTANCEMiddle East respiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a zoonotic respiratory disease of limited transmissibility between humans. However, MERS-CoV is still considered a high-priority pathogen and is closely monitored by WHO due to its high lethality rate of around 35% of laboratory-confirmed infections. Like other positive-strand RNA viruses, MERS-CoV relies on the host cell's endomembranes to support various stages of its replication cycle. However, in spite of this general reliance of MERS-CoV replication on host cell lipid metabolism, mechanistic insights are still very limited. In our study, we show that pharmacological inhibition of acetyl-CoA carboxylase (ACC), a key enzyme in the host cell's fatty acid biosynthesis pathway, significantly disrupts MERS-CoV particle assembly without exerting a negative effect on the biogenesis of viral replication organelles. Furthermore, our study highlights the potential of ACC as a target for the development of host-directed antiviral therapeutics against coronaviruses.
Collapse
Affiliation(s)
- M. Soultsioti
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - A. W. M. de Jong
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - N. Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - A. Tas
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - M. Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - E. J. Snijder
- Molecular Virology Laboratory, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, the Netherlands
| | - M. Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Zailani H, Satyanarayanan SK, Liao WC, Su KP, Chang JPC. Omega-3 Polyunsaturated Fatty Acids in Chronic Obstructive Pulmonary Disease Patients with COVID-19: A Review. Curr Nutr Rep 2025; 14:12. [PMID: 39760917 DOI: 10.1007/s13668-024-00599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE OF THE REVIEW Mounting evidence indicates that individuals with chronic obstructive pulmonary disease (COPD) face a heightened risk of severe outcomes upon contracting coronavirus disease 2019 (COVID-19). Current medications for COVID-19 often carry side effects, necessitating alternative therapies with improved tolerance. This review explores the biological mechanisms rendering COPD patients more susceptible to severe COVID-19 and investigates the potential of omega-3 polyunsaturated fatty acids (n-3 PUFAs) in mitigating the severity of COVID-19 in COPD patients. RECENT FINDINGS Current evidence indicates that COPD patients are at an increased risk of severe COVID-19 due to factors including compromised pulmonary function, dysregulated inflammation, weakened immune response, increased oxidative stress, elevated expression of angiotensin-converting enzyme (ACE2) receptors in the lungs, and genetic predispositions. Remarkably, n-3 PUFAs exhibit the potential in ameliorating the clinical outcomes of COPD patients with COVID-19 by modulating inflammation, reinforcing the body's antioxidant defenses, reducing viral entry and replication, and enhancing immunity. N-3 PUFAs hold potential for improving COVID-19 outcomes in patients with COPD. However, there has been limited investigation into the therapeutic effects of n-3 PUFAs in enhancing clinical outcomes for COPD patients. Rigorous clinical studies are essential to evaluate the impact of n-3 PUFAs on COPD patients with concurrent COVID-19 infection.
Collapse
Grants
- MOST 109-2320-B-038-057- MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039- 047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- MOST 109-2320-B-038-057- MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039- 047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, 111-28, 111-47, 111-48, and 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education, Taiwan
- CMRC-CMA-2 Higher Education Sprout Project by the Ministry of Education, Taiwan
- CMU 110- AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taiwan
- CMU 110- AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taiwan
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital
Collapse
Affiliation(s)
- Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Senthil Kumaran Satyanarayanan
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong Science Park, Hong Kong, China
| | - Wei-Chih Liao
- Division of Pulmonary and Critical Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.
- College of Medicine, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Child and Adolescent Psychiatry Division, Department of Psychiatry, China Medical University Hospital, No. 2 Yu-Der Rd, North District, Taichung, 404, Taiwan.
| |
Collapse
|
8
|
Marano V, Vlachová Š, Tiano SML, Cortese M. A portrait of the infected cell: how SARS-CoV-2 infection reshapes cellular processes and pathways. NPJ VIRUSES 2024; 2:66. [PMID: 40295886 PMCID: PMC11721117 DOI: 10.1038/s44298-024-00076-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/22/2024] [Indexed: 04/30/2025]
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses exert a profound influence on cellular organelles and metabolic pathway by usurping host processes to promote their replication. In this review, we present a portrait of selected cellular pathways perturbed in SARS-CoV-2 infection: the effect of viral translation, replication and assembly on the morphology and function of the ER, the remodelling of degradative pathways with a focus on the autophagic processes, and the alterations affecting cellular membranes and lipid metabolism. For each of these cellular processes, we highlight the specific viral and host factors involved and their interplay in this microscopic tug-of-war between pro-viral and anti-viral effects that ultimately tip the scale toward the propagation or the resolution of the infection.
Collapse
Affiliation(s)
- Valentina Marano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- University of Rome Tor Vergata, Rome, Italy
| | - Štěpánka Vlachová
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
- University of Campania Luigi Vanvitelli, Caserta, Italy.
| |
Collapse
|
9
|
Chen H, Liu J, Tang G, Hao G, Yang G. Bioinformatic Resources for Exploring Human-virus Protein-protein Interactions Based on Binding Modes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae075. [PMID: 39404802 PMCID: PMC11658832 DOI: 10.1093/gpbjnl/qzae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/21/2024]
Abstract
Historically, there have been many outbreaks of viral diseases that have continued to claim millions of lives. Research on human-virus protein-protein interactions (PPIs) is vital to understanding the principles of human-virus relationships, providing an essential foundation for developing virus control strategies to combat diseases. The rapidly accumulating data on human-virus PPIs offer unprecedented opportunities for bioinformatics research around human-virus PPIs. However, available detailed analyses and summaries to help use these resources systematically and efficiently are lacking. Here, we comprehensively review the bioinformatic resources used in human-virus PPI research, and discuss and compare their functions, performance, and limitations. This review aims to provide researchers with a bioinformatic toolbox that will hopefully better facilitate the exploration of human-virus PPIs based on binding modes.
Collapse
Affiliation(s)
- Huimin Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Jiaxin Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gege Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guangfu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
10
|
Evers P, Uguccioni SM, Ahmed N, Francis ME, Kelvin AA, Pezacki JP. miR-24-3p Is Antiviral Against SARS-CoV-2 by Downregulating Critical Host Entry Factors. Viruses 2024; 16:1844. [PMID: 39772154 PMCID: PMC11680362 DOI: 10.3390/v16121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option. In the present work, miR-24-3p was identified to inhibit SARS-CoV-2 entry, replication, and production; furthermore, this inhibition was retained against common mutations improving SARS-CoV-2 fitness. To determine the mechanism of action, bioinformatic tools were employed, identifying numerous potential effectors promoting infection targeted by miR-24-3p. Of these targets, several key host proteins for priming and facilitating SARS-CoV-2 entry were identified: furin, NRP1, NRP2, and SREBP2. With further experimental analysis, we show that miR-24-3p directly downregulates these viral entry factors to impede infection when producing virions and when infecting the target cell. Furthermore, we compare the findings with coronavirus, HCoV-229E, which relies on different factors strengthening the miR-24-3p mechanism. Taken together, the following work suggests that miR-24-3p could be an avenue to treat current coronaviruses and those likely to emerge.
Collapse
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Spencer M. Uguccioni
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alyson A. Kelvin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; (M.E.F.); (A.A.K.)
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - John P. Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N6, Canada; (P.E.); (S.M.U.)
| |
Collapse
|
11
|
Soares VC, Dias SSG, Santos JC, Bozza PT. Unlocking secrets: lipid metabolism and lipid droplet crucial roles in SARS-CoV-2 infection and the immune response. J Leukoc Biol 2024; 116:1254-1268. [PMID: 39087951 DOI: 10.1093/jleuko/qiae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Lipid droplets (LDs) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and nonstructural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. SARS-CoV-2 infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LDs participate in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.
Collapse
Affiliation(s)
- Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Julia Cunha Santos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
12
|
Cui R, Liao Q, Zhao Y, Wang L, Zhang Y, Liu S, Gan Z, Chen Y, Shi Y, Shi L, Li M, Jin Y. Metal and Photocatalyst-Free Amide Synthesis via Decarbonylative Condensation of Alkynes and Photoexcited Nitroarenes. Org Lett 2024; 26:8222-8227. [PMID: 39315674 DOI: 10.1021/acs.orglett.4c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Depending on the intrinsic photoactivity of nitroarenes, we herein developed a practical Brønsted acid-catalyzed decarbonylative amide synthesis from alkynes and photoexcited nitroarenes without any metal or photocatalyst. This method exhibited compatibility with water and air, broad substrate applicability, marvelous functional group tolerance, and wide applications in scale-up synthesis, late-stage functionalization, and total synthesis. Mechanism studies and DFT calculations supported that a 1,3,2-dioxazole intermediate was involved, and gaseous carbon monoxide was the only byproduct during amide construction.
Collapse
Affiliation(s)
- Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuanxia Zhao
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yufei Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yi Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Chan CCY, Guo Q, Chan JFW, Tang K, Cai JP, Chik KKH, Huang Y, Dai M, Qin B, Ong CP, Chu AWH, Chan WM, Ip JD, Wen L, Tsang JOL, Wang TY, Xie Y, Qin Z, Cao J, Ye ZW, Chu H, To KKW, Ge XY, Ni T, Jin DY, Cui S, Yuen KY, Yuan S. Identification of novel small-molecule inhibitors of SARS-CoV-2 by chemical genetics. Acta Pharm Sin B 2024; 14:4028-4044. [PMID: 39309487 PMCID: PMC11413674 DOI: 10.1016/j.apsb.2024.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/16/2024] [Indexed: 09/25/2024] Open
Abstract
There are only eight approved small molecule antiviral drugs for treating COVID-19. Among them, four are nucleotide analogues (remdesivir, JT001, molnupiravir, and azvudine), while the other four are protease inhibitors (nirmatrelvir, ensitrelvir, leritrelvir, and simnotrelvir-ritonavir). Antiviral resistance, unfavourable drug‒drug interaction, and toxicity have been reported in previous studies. Thus there is a dearth of new treatment options for SARS-CoV-2. In this work, a three-tier cell-based screening was employed to identify novel compounds with anti-SARS-CoV-2 activity. One compound, designated 172, demonstrated broad-spectrum antiviral activity against multiple human pathogenic coronaviruses and different SARS-CoV-2 variants of concern. Mechanistic studies validated by reverse genetics showed that compound 172 inhibits the 3-chymotrypsin-like protease (3CLpro) by binding to an allosteric site and reduces 3CLpro dimerization. A drug synergistic checkerboard assay demonstrated that compound 172 can achieve drug synergy with nirmatrelvir in vitro. In vivo studies confirmed the antiviral activity of compound 172 in both Golden Syrian Hamsters and K18 humanized ACE2 mice. Overall, this study identified an alternative druggable site on the SARS-CoV-2 3CLpro, proposed a potential combination therapy with nirmatrelvir to reduce the risk of antiviral resistance and shed light on the development of allosteric protease inhibitors for treating a range of coronavirus diseases.
Collapse
Affiliation(s)
- Chris Chun-Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Qian Guo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Yixin Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Mei Dai
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chon Phin Ong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Allen Wing-Ho Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Wan-Mui Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jonathan Daniel Ip
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Jessica Oi-Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Tong-Yun Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| | - Xing-Yi Ge
- College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha 410082, China
| | - Tao Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Dong-Yan Jin
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
- Academician Workstation of Hainan Province, Hainan Medical University-the University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Haikou 571100, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
- Department of Infectious Diseases and Microbiology, the University of Hong Kong-Shenzhen Hospital, Shenzhen 518000, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
B Gowda SG, Shekhar C, Gowda D, Chen Y, Chiba H, Hui SP. Mass spectrometric approaches in discovering lipid biomarkers for COVID-19 by lipidomics: Future challenges and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:1041-1065. [PMID: 37102760 DOI: 10.1002/mas.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Chandra Shekhar
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
16
|
Jiang D, Yang L, Meng X, Xu Q, Zhou X, Liu B. Let-7f-5p Modulates Lipid Metabolism by Targeting Sterol Regulatory Element-Binding Protein 2 in Response to PRRSV Infection. Vet Sci 2024; 11:392. [PMID: 39330771 PMCID: PMC11435751 DOI: 10.3390/vetsci11090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.
Collapse
Affiliation(s)
- Dongfeng Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
17
|
Du Q, Liang R, Wu M, Yang M, Xie Y, Liu Q, Tang K, Lin X, Yuan S, Shen J. Alisol B 23-acetate broadly inhibits coronavirus through blocking virus entry and suppresses proinflammatory T cells responses for the treatment of COVID-19. J Adv Res 2024; 62:273-290. [PMID: 37802148 PMCID: PMC11331179 DOI: 10.1016/j.jare.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
INTRODUCTION Emerging severe acute respiratory syndrome (SARS) coronavirus (CoV)-2 causes a global health disaster and pandemic. Seeking effective anti-pan-CoVs drugs benefit critical illness patients of coronavirus disease 2019 (COVID-19) but also may play a role in emerging CoVs of the future. OBJECTIVES This study tested the hypothesis that alisol B 23-acetate could be a viral entry inhibitor and would have proinflammatory inhibition for COVID-19 treatment. METHODS SARS-CoV-2 and its variants infected several cell lines were applied to evaluate the anti-CoVs activities of alisol B 23-aceate in vitro. The effects of alisol B 23-acetate on in vivo models were assessed by using SARS-CoV-2 and its variants challenged hamster and human angiotensin-converting enzyme 2 (ACE2) transgenic mice. The target of alisol B 23-acetate to ACE2 was analyzed using hydrogen/deuterium exchange (HDX) mass spectrometry (MS). RESULTS Alisol B 23-acetate had inhibitory effects on different species of coronavirus. By using HDX-MS, we found that alisol B 23-acetate had inhibition potency toward ACE2. In vivo experiments showed that alisol B 23-acetate treatment remarkably decreased viral copy, reduced CD4+ T lymphocytes and CD11b+ macrophages infiltration and ameliorated lung damages in the hamster model. In Omicron variant infected human ACE2 transgenic mice, alisol B 23-acetate effectively alleviated viral load in nasal turbinate and reduced proinflammatory cytokines interleukin 17 (IL17) and interferon γ (IFNγ) in peripheral blood. The prophylactic treatment of alisol B 23-acetate by intranasal administration significantly attenuated Omicron viral load in the hamster lung tissues. Moreover, alisol B 23-acetate treatment remarkably inhibited proinflammatory responses through mitigating the secretions of IFNγ and IL17 in the cultured human and mice lymphocytes in vitro. CONCLUSION Alisol B 23-acetate could be a promising therapeutic agent for COVID-19 treatment and its underlying mechanisms might be attributed to viral entry inhibition and anti-inflammatory activities.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Minxiao Yang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Qing Liu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3 Sassoon Road, Pokfulam, Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
18
|
Zhang Z, Hu Y, Zheng X, Chen C, Zhao Y, Lin H, He N. Differential short-term and long-term metabolic and cytokine responses to infection of severe fever with thrombocytopenia syndrome virus. Metabolomics 2024; 20:84. [PMID: 39066899 DOI: 10.1007/s11306-024-02150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a wide geographic distribution. The primary clinical manifestations of SFTS are fever and thrombocytopenia, with multiorgan failure being the leading cause of death. While most patients recover with treatment, little is known about the potential long-term metabolic effects of SFTSV infection. OBJECTIVES This study aimed to shed light on dysregulated metabolic pathways and cytokine responses following SFTSV infection, which pose significant risks to the short-term and long-term health of affected individuals. METHODS Fourteen laboratory-confirmed clinical SFTS cases and thirty-eight healthy controls including 18 SFTSV IgG-positive and 20 IgG-negative individuals were recruited from Taizhou city of Zhejiang province, Eastern China. Inclusion criteria of healthy controls included residing in the study area for at least one year, absence of fever or other symptoms in the past two weeks, and no history of SFTS diagnosis. Ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to obtain the relative abundance of plasma metabolites. Short-term metabolites refer to transient alterations present only during SFTSV infection, while long-term metabolites persistently deviate from normal levels even after recovery from SFTSV infection. Additionally, the concentrations of 12 cytokines were quantified through fluorescence intensity measurements. Differential metabolites were screened using orthogonal projections to latent structures discriminant analysis (OPLS-DA) and the Wilcoxon rank test. Metabolic pathway analysis was performed using MetaboAnalyst. Between-group differences of metabolites and cytokines were examined using the Wilcoxon rank test. Correlation matrices between identified metabolites and cytokines were analyzed using Spearman's method. RESULTS AND CONCLUSIONS We screened 122 long-term metabolites and 108 short-term metabolites by analytical comparisons and analyzed their correlations with 12 cytokines. Glycerophospholipid metabolism (GPL) was identified as a significant short-term metabolic pathway suggesting that the activation of GPL might be linked to the self-replication of SFTSV, whereas pentose phosphate pathway and alanine, aspartate, and glutamate metabolism were indicated as significant long-term metabolic pathways playing a role in combating long-standing oxidative stress in the patients. Furthermore, our study suggests a new perspective that α-ketoglutarate could serve as a dietary supplement to protect recovering SFTS patients.
Collapse
Affiliation(s)
- Zhiyi Zhang
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yafei Hu
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China
| | - Xiang Zheng
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China
| | - Cairong Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China
| | - Yishuang Zhao
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China
| | - Haijiang Lin
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China.
| | - Na He
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
20
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
21
|
Mehraeen E, Abbaspour F, Banach M, SeyedAlinaghi S, Zarebidoki A, Tamehri Zadeh SS. The prognostic significance of insulin resistance in COVID-19: a review. J Diabetes Metab Disord 2024; 23:305-322. [PMID: 38932824 PMCID: PMC11196450 DOI: 10.1007/s40200-024-01385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/31/2023] [Indexed: 06/28/2024]
Abstract
Objectives Emerging publications indicate that diabetes predisposes patients with COVID-19 to more severe complications, which is partly attributed to inflammatory condition. In the current review, we reviewed recent published literature to provide evidence on the role of insulin resistance (IR) in diabetes, the association between diabetes and COVID-19 severity and mortality, the impact of COVID-19 infection on incident new-onset diabetes, mechanisms responsible for IR in COVID-19 patients, and the predictive value of different surrogates of IR in COVID-19. Method The literature search performs to find out studies that have assessed the association between IR surrogates and morbidity and mortality in patients with COVID-19. Results We showed that there is a bulk of evidence in support of the fact that diabetes is a potent risk factor for enhanced morbidity and mortality in COVID-19 patients. COVID-19 patients with diabetes are more prone to remarkable dysglycemia compared to those without diabetes, which is associated with an unfavourable prognosis. Furthermore, SARS-COV2 can make patients predispose to IR and diabetes via activating ISR, affecting RAAS signaling pathway, provoking inflammation, and changing the expression of PPARɣ and SREBP-1. Additionally, higher IR is associated with increased morbidity and mortality in COVID-19 patients and different surrogates of IR can be utilized as a prognostic biomarker for COVID-19 patients. Conclusion Different surrogates of IR can be utilized as predictors of COVID-19 complications and death.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Faeze Abbaspour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), 93338 Lodz, Poland
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Zarebidoki
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Saeed Tamehri Zadeh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, P.O. Box 19395-4763, Tehran, Iran
| |
Collapse
|
22
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
24
|
Liang R, Ye ZW, Qin Z, Xie Y, Yang X, Sun H, Du Q, Luo P, Tang K, Hu B, Cao J, Wong XHL, Ling GS, Chu H, Shen J, Yin F, Jin DY, Chan JFW, Yuen KY, Yuan S. PMI-controlled mannose metabolism and glycosylation determines tissue tolerance and virus fitness. Nat Commun 2024; 15:2144. [PMID: 38459021 PMCID: PMC10923791 DOI: 10.1038/s41467-024-46415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.
Collapse
Affiliation(s)
- Ronghui Liang
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zi-Wei Ye
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zhenzhi Qin
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yubin Xie
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaomeng Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Haoran Sun
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
| | - Qiaohui Du
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Peng Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bodan Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xavier Hoi-Leong Wong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Guang-Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
| | - Jasper Fuk-Woo Chan
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Academician Workstation of Hainan Province, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, China
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China
- Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong- Shenzhen Hospital, Shenzhen, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
- Guangzhou Laboratory, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Wang Y, Gao L. Cholesterol: A friend to viruses. Int Rev Immunol 2024; 43:248-262. [PMID: 38372266 DOI: 10.1080/08830185.2024.2314577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.
Collapse
Affiliation(s)
- Yingchun Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
26
|
Shi X, Zhang Q, Yang N, Wang Q, Zhang Y, Xu X. PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication. mBio 2024; 15:e0319723. [PMID: 38259103 PMCID: PMC10865979 DOI: 10.1128/mbio.03197-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) requires complete dependence on the metabolic system of the host cell to complete its life cycle. There is a strong link between efficient viral replication and cellular lipid synthesis. However, the mechanism by which PEDV interacts with host cells to hijack cellular lipid metabolism to promote its replication remains unclear. In this study, PEDV infection significantly enhanced the expression of lipid synthesis-related genes and increased cellular lipid accumulation. Furthermore, using liquid chromatography-tandem mass spectrometry, we identified heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) as the interacting molecule of PEDV NSP9. We demonstrated that the expression of HNRNPA3 was downregulated by PEDV-induced miR-218-5p through targeting its 3' untranslated region. Interestingly, knocking down HNRNPA3 facilitated the PEDV replication by promoting cellular lipid synthesis. We next found that the knockdown of HNRNPA3 potentiated the transcriptional activity of sterol regulatory element-binding transcription factor 1 (SREBF1) through zinc finger protein 135 (ZNF135) as well as PI3K/AKT and JNK signaling pathways. In summary, we propose a model in which PEDV downregulates HNRNPA3 expression to promote the expression and activation of SREBF1 and increase cellular lipid accumulation, providing a novel mechanism by which PEDV interacts with the host to utilize cellular lipid metabolism to promote its replication.IMPORTANCEAs the major components and structural basis of the viral replication complexes of positive-stranded RNA viruses, lipids play an essential role in viral replication. However, how PEDV manipulates host cell lipid metabolism to promote viral replication by interacting with cell proteins remains poorly understood. Here, we found that SREBF1 promotes cellular lipid synthesis, which is essential for PEDV replication. Moreover, HNRNPA3 negatively regulates SREBF1 activation and specifically reduces lipid accumulation, ultimately inhibiting PEDV dsRNA synthesis. Our study provides new insight into the mechanisms by which PEDV hijacks cell lipid metabolism to benefit viral replication, which can offer a potential target for therapeutics against PEDV infection.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
27
|
Liu MH, Lin XL, Xiao LL. SARS-CoV-2 nucleocapsid protein promotes TMAO-induced NLRP3 inflammasome activation by SCAP-SREBP signaling pathway. Tissue Cell 2024; 86:102276. [PMID: 37979395 DOI: 10.1016/j.tice.2023.102276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
The sterol regulatory element-binding protein (SREBP) activation and cytokine level were significantly increased in coronavirus disease-19. The NLRP3 inflammasome is an amplifier for cellular inflammation. This study aimed to elucidate the modulatory effect of SARS-CoV-2 nucleocapsid protein (SARS-CoV-2 NP) on trimethylamine N-oxide (TMAO)-induced lipogenesis and NLRP3 inflammasome activation and the underlying mechanisms in vascular smooth muscle cells (VSMCs). Our data indicated that SARS-CoV-2 NP activates the dissociation of the SREBP cleavage activating protein (SCAP) from the endoplasmic reticulum, resulting in SREBP activation, increased lipogenic gene expression, and NLRP3 inflammasome activation. TMAO was applied to VSMC-induced NLRP3 inflammasome by promoting the SCAP-SREBP complex endoplasmic reticulum-to-Golgi translocation, which facilitates directly binding of SARS-CoV-2 NP to the NLRP3 protein for NLRP3 inflammasome assembly. SARS-CoV-2 NP amplified the TMAO-induced lipogenic gene expression and NLRP3 inflammasome. Knockdown of SCAP-SREBP2 can effectively reduce lipogenic gene expression and alleviate NLRP3 inflammasome-mediated systemic inflammation in VSMCs stimulated with TMAO and SARS-CoV-2 NP. These results reveal that SARS-CoV-2 NP amplified TMAO-induced lipogenesis and NLRP3 inflammasome activation via priming the SCAP-SREBP signaling pathway.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Department of Clinical Laboratory, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, People's Republic of China.
| | - Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong 516002, People's Republic of China
| | - Le-Le Xiao
- Intensive Care Unit, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, People's Republic of China.
| |
Collapse
|
28
|
Denker L, Dixon AM. The cell edit: Looking at and beyond non-structural proteins to understand membrane rearrangement in coronaviruses. Arch Biochem Biophys 2024; 752:109856. [PMID: 38104958 DOI: 10.1016/j.abb.2023.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded RNA virus that sits at the centre of the recent global pandemic. As a member of the coronaviridae family of viruses, it shares features such as a very large genome (>30 kb) that is replicated in a purpose-built replication organelle. Biogenesis of the replication organelle requires significant and concerted rearrangement of the endoplasmic reticulum membrane, a job that is carried out by a group of integral membrane non-structural proteins (NSP3, 4 and 6) expressed by the virus along with a host of viral replication enzymes and other factors that support transcription and replication. The primary sites for RNA replication within the replication organelle are double membrane vesicles (DMVs). The small size of DMVs requires generation of high membrane curvature, as well as stabilization of a double-membrane arrangement, but the mechanisms that underlie DMV formation remain elusive. In this review, we discuss recent breakthroughs in our understanding of the molecular basis for membrane rearrangements by coronaviruses. We incorporate established models of NSP3-4 protein-protein interactions to drive double membrane formation, and recent data highlighting the roles of lipid composition and host factor proteins (e.g. reticulons) that influence membrane curvature, to propose a revised model for DMV formation in SARS-CoV-2.
Collapse
Affiliation(s)
- Lea Denker
- Warwick Medical School, Biomedical Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7SH, UK.
| |
Collapse
|
29
|
Franco JH, Harris RA, Ryan WG, Taylor RT, McCullumsmith RE, Chattopadhyay S, Pan ZK. Retinoic Acid-Mediated Inhibition of Mouse Coronavirus Replication Is Dependent on IRF3 and CaMKK. Viruses 2024; 16:140. [PMID: 38257840 PMCID: PMC10819102 DOI: 10.3390/v16010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The ongoing COVID-19 pandemic has revealed the shortfalls in our understanding of how to treat coronavirus infections. With almost 7 million case fatalities of COVID-19 globally, the catalog of FDA-approved antiviral therapeutics is limited compared to other medications, such as antibiotics. All-trans retinoic acid (RA), or activated vitamin A, has been studied as a potential therapeutic against coronavirus infection because of its antiviral properties. Due to its impact on different signaling pathways, RA's mechanism of action during coronavirus infection has not been thoroughly described. To determine RA's mechanism of action, we examined its effect against a mouse coronavirus, mouse hepatitis virus strain A59 (MHV). We demonstrated that RA significantly decreased viral titers in infected mouse L929 fibroblasts and RAW 264.7 macrophages. The reduced viral titers were associated with a corresponding decrease in MHV nucleocapsid protein expression. Using interferon regulatory factor 3 (IRF3) knockout RAW 264.7 cells, we demonstrated that RA-induced suppression of MHV required IRF3 activity. RNA-seq analysis of wildtype and IRF3 knockout RAW cells showed that RA upregulated calcium/calmodulin (CaM) signaling proteins, such as CaM kinase kinase 1 (CaMKK1). When treated with a CaMKK inhibitor, RA was unable to upregulate IRF activation during MHV infection. In conclusion, our results demonstrate that RA-induced protection against coronavirus infection depends on IRF3 and CaMKK.
Collapse
Affiliation(s)
- Justin H. Franco
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - Ryan A. Harris
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - William G. Ryan
- Department of Neurosciences and Neurological Disorders, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
- Department of Microbiology Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhixing K. Pan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA (S.C.)
| |
Collapse
|
30
|
Fan Y, Liu X, Guan F, Hang X, He X, Jin J. Investigating the Potential Shared Molecular Mechanisms between COVID-19 and Alzheimer's Disease via Transcriptomic Analysis. Viruses 2024; 16:100. [PMID: 38257800 PMCID: PMC10821526 DOI: 10.3390/v16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SARS-CoV-2 caused the COVID-19 pandemic. COVID-19 may elevate the risk of cognitive impairment and even cause dementia in infected individuals; it may accelerate cognitive decline in elderly patients with dementia, possibly in Alzheimer's disease (AD) patients. However, the mechanisms underlying the interplay between AD and COVID-19 are still unclear. To investigate the underlying mechanisms and associations between AD progression and SARS-CoV-2 infection, we conducted a series of bioinformatics research into SARS-CoV-2-infected cells, COVID-19 patients, AD patients, and SARS-CoV-2-infected AD patients. We identified the common differentially expressed genes (DEGs) in COVID-19 patients, AD patients, and SARS-CoV-2-infected cells, and these DEGs are enriched in certain pathways, such as immune responses and cytokine storms. We constructed the gene interaction network with the signaling transduction module in the center and identified IRF7, STAT1, STAT2, and OAS1 as the hub genes. We also checked the correlations between several key transcription factors and the SARS-CoV-2 and COVID-19 pathway-related genes. We observed that ACE2 expression is positively correlated with IRF7 expression in AD and coronavirus infections, and interestingly, IRF7 is significantly upregulated in response to different RNA virus infections. Further snRNA-seq analysis indicates that NRGN neurons or endothelial cells may be responsible for the increase in ACE2 and IRF7 expression after SARS-CoV-2 infection. The positive correlation between ACE2 and IRF7 expressions is confirmed in the hippocampal formation (HF) of SARS-CoV-2-infected AD patients. Our findings could contribute to the investigation of the molecular mechanisms underlying the interplay between AD and COVID-19 and to the development of effective therapeutic strategies for AD patients with COVID-19.
Collapse
Affiliation(s)
- Yixian Fan
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Guan
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyi Hang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Jin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging of the Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Bgatova N, Savchenko S, Lamanov A, Taskaeva I, Ayzikovich B, Gritcinger V, Letyagin A, Korolev M. Intracellular organelles remodeling in myocardial endotheliocytes in COVID-19: an autopsy-based study. Ultrastruct Pathol 2024; 48:66-74. [PMID: 38007715 DOI: 10.1080/01913123.2023.2286977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
It is known that the unfavorable outcome in patients infected with SARS-CoV-2 may be associated with the development of complications caused by heart damage due to the direct virus action. The mechanism of these cardiovascular injuries caused by SARS-CoV-2 infection has not been fully understood; however, the study of COVID-19-associated myocardial microcirculatory dysfunction can represent the useful strategy to solving this challenge. Thus, here we aimed to study the ultrastructural organization of endothelial cells of myocardial capillaries in patients with COVID-19. The morphology of endotheliocytes of the myocardial blood capillaries in patients with COVID-19 was studied on cardiac autopsy material using transmission electron microscopy. The endotheliocytes of myocardial capillaries in patients with COVID-19 were characterized by the abundant rough endoplasmic reticulum (ER) membranes, the Golgi complex, and free polysomal complexes of ribosomes and lipids. The presence of double membrane vesicles with virions and zippered ER was detected in the cytoplasm of endotheliocytes. The revealed endothelial ultrastructural changes indicate the remodeling of intracellular membranes during SARS-CoV-2 infection. Our findings confirm the formation of virus-induced structures in myocardial endothelial cells considered critical for viral replication and assembly. The data may elucidate the mechanisms of endothelial dysfunction development in patients with COVID-19 to provide potential targets for drug therapy.
Collapse
Affiliation(s)
- Nataliya Bgatova
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Savchenko
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Alexei Lamanov
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Iuliia Taskaeva
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Boris Ayzikovich
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Valentina Gritcinger
- Department of Forensic Medicine, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Andrey Letyagin
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
32
|
Ding C, Chen Y, Miao G, Qi Z. Research Advances on the Role of Lipids in the Life Cycle of Human Coronaviruses. Microorganisms 2023; 12:63. [PMID: 38257890 PMCID: PMC10820681 DOI: 10.3390/microorganisms12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Coronaviruses (CoVs) are emerging pathogens with a significant potential to cause life-threatening harm to human health. Since the beginning of the 21st century, three highly pathogenic and transmissible human CoVs have emerged, triggering epidemics and posing major threats to global public health. CoVs are enveloped viruses encased in a lipid bilayer. As fundamental components of cells, lipids can play an integral role in many physiological processes, which have been reported to play important roles in the life cycle of CoVs, including viral entry, uncoating, replication, assembly, and release. Therefore, research on the role of lipids in the CoV life cycle can provide a basis for a better understanding of the infection mechanism of CoVs and provide lipid targets for the development of new antiviral strategies. In this review, research advances on the role of lipids in different stages of viral infection and the possible targets of lipids that interfere with the viral life cycle are discussed.
Collapse
Affiliation(s)
- Cuiling Ding
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Yibo Chen
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| | - Gen Miao
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China;
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; (C.D.); (Y.C.)
| |
Collapse
|
33
|
Cesar-Silva D, Pereira-Dutra FS, Giannini ALM, Maya-Monteiro CM, de Almeida CJG. Lipid compartments and lipid metabolism as therapeutic targets against coronavirus. Front Immunol 2023; 14:1268854. [PMID: 38106410 PMCID: PMC10722172 DOI: 10.3389/fimmu.2023.1268854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Lipids perform a series of cellular functions, establishing cell and organelles' boundaries, organizing signaling platforms, and creating compartments where specific reactions occur. Moreover, lipids store energy and act as secondary messengers whose distribution is tightly regulated. Disruption of lipid metabolism is associated with many diseases, including those caused by viruses. In this scenario, lipids can favor virus replication and are not solely used as pathogens' energy source. In contrast, cells can counteract viruses using lipids as weapons. In this review, we discuss the available data on how coronaviruses profit from cellular lipid compartments and why targeting lipid metabolism may be a powerful strategy to fight these cellular parasites. We also provide a formidable collection of data on the pharmacological approaches targeting lipid metabolism to impair and treat coronavirus infection.
Collapse
Affiliation(s)
- Daniella Cesar-Silva
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Filipe S. Pereira-Dutra
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Lucia Moraes Giannini
- Laboratory of Functional Genomics and Signal Transduction, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa M. Maya-Monteiro
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratory of Endocrinology and Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Cecília Jacques G. de Almeida
- Laboratory of Immunopharmacology, Department of Genetics, Oswaldo Cruz Institute, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
35
|
Soares VC, Dias SSG, Santos JC, Azevedo-Quintanilha IG, Moreira IBG, Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, da Silva MAN, Barreto-Vieira DF, Souza TM, Bozza PT. Inhibition of the SREBP pathway prevents SARS-CoV-2 replication and inflammasome activation. Life Sci Alliance 2023; 6:e202302049. [PMID: 37669865 PMCID: PMC10481517 DOI: 10.26508/lsa.202302049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
SARS-CoV-2 induces major cellular lipid rearrangements, exploiting the host's metabolic pathways to replicate. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that control lipid metabolism. SREBP1 is associated with the regulation of fatty acids, whereas SREBP2 controls cholesterol metabolism, and both isoforms are associated with lipid droplet (LD) biogenesis. Here, we evaluated the effect of SREBP in a SARS-CoV-2-infected lung epithelial cell line (Calu-3). We showed that SARS-CoV-2 infection induced the activation of SREBP1 and SREBP2 and LD accumulation. Genetic knockdown of both SREBPs and pharmacological inhibition with the dual SREBP activation inhibitor fatostatin promote the inhibition of SARS-CoV-2 replication, cell death, and LD formation in Calu-3 cells. In addition, we demonstrated that SARS-CoV-2 induced inflammasome-dependent cell death by pyroptosis and release of IL-1β and IL-18, with activation of caspase-1, cleavage of gasdermin D1, was also reduced by SREBP inhibition. Collectively, our findings help to elucidate that SREBPs are crucial host factors required for viral replication and pathogenesis. These results indicate that SREBP is a host target for the development of antiviral strategies.
Collapse
Affiliation(s)
- Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Programa de Imunologia e Inflamação, Universidade Federal do Rio de Janeiro, (UFRJ), Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Julia Cunha Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Isaclaudia G Azevedo-Quintanilha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Isabela Batista Gonçalves Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Jairo R Temerozo
- Laboratório de Pesquisas Sobre o Timo and Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT/NIM), Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcos Alexandre Nunes da Silva
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Debora Ferreira Barreto-Vieira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Thiago Ml Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Chen F, Matsuda A, Budinger GRS, Sporn PHS, Casalino-Matsuda SM. Hypercapnia increases ACE2 expression and pseudo-SARS-CoV-2 entry in bronchial epithelial cells by augmenting cellular cholesterol. Front Immunol 2023; 14:1251120. [PMID: 37901225 PMCID: PMC10600497 DOI: 10.3389/fimmu.2023.1251120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aiko Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Peter H. S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
37
|
Dias SSG, Cunha-Fernandes T, Soares VC, de Almeida CJG, Bozza PT. Lipid droplets in Zika neuroinfection: Potential targets for intervention? Mem Inst Oswaldo Cruz 2023; 118:e230044. [PMID: 37820117 PMCID: PMC10566564 DOI: 10.1590/0074-02760230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
Lipid droplets (LD) are evolutionarily conserved lipid-enriched organelles with a diverse array of cell- and stimulus-regulated proteins. Accumulating evidence demonstrates that intracellular pathogens exploit LD as energy sources, replication sites, and part of the mechanisms of immune evasion. Nevertheless, LD can also favor the host as part of the immune and inflammatory response to pathogens. The functions of LD in the central nervous system have gained great interest due to their presence in various cell types in the brain and for their suggested involvement in neurodevelopment and neurodegenerative diseases. Only recently have the roles of LD in neuroinfections begun to be explored. Recent findings reveal that lipid remodelling and increased LD biogenesis play important roles for Zika virus (ZIKV) replication and pathogenesis in neural cells. Moreover, blocking LD formation by targeting DGAT-1 in vivo inhibited virus replication and inflammation in the brain. Therefore, targeting lipid metabolism and LD biogenesis may represent potential strategies for anti-ZIKV treatment development. Here, we review the progress in understanding LD functions in the central nervous system in the context of the host response to Zika infection.
Collapse
Affiliation(s)
- Suelen Silva Gomes Dias
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Tamires Cunha-Fernandes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Vinicius Cardoso Soares
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Programa de Imunologia e Inflamação, Rio de Janeiro, RJ, Brasil
| | - Cecília JG de Almeida
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| | - Patricia T Bozza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunofarmacologia, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
38
|
Wiśniewski OW, Czyżniewski B, Żukiewicz-Sobczak W, Gibas-Dorna M. Nutritional Behavior in European Countries during COVID-19 Pandemic-A Review. Nutrients 2023; 15:3451. [PMID: 37571387 PMCID: PMC10420667 DOI: 10.3390/nu15153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
COVID-19 is highly linked with hyperinflammation and dysfunction of the immune cells. Studies have shown that adequate nutrition, a modifiable factor affecting immunity and limiting systemic inflammation, may play an adjunct role in combating the negative consequences of SARS-CoV-2 infection. Due to the global lockdown conditions, the COVID-19 pandemic has contributed, among others, to restrictions on fresh food availability and changes in lifestyle and eating behaviors. The aim of this paper was to review the data regarding eating habits in European countries within the general population of adults and some specific subpopulations, including obese, diabetic, and psychiatric patients, during the COVID-19 pandemic. The PubMed database and the official websites of medical organizations and associations were searched for the phrases "COVID" and "eating habits". Papers regarding the pediatric population, non-European countries, presenting aggregated data from different countries worldwide, and reviews were excluded. During the COVID-19 pandemic, unhealthy lifestyles and eating behaviors were commonly reported. These included increased snacking, intake of caloric foods, such as sweets, pastries, and beverages, and a decline in physical activity. Data suggest that poor eating habits that create a positive energy balance have persisted over time as an additional post-COVID negative consequence.
Collapse
Affiliation(s)
- Oskar Wojciech Wiśniewski
- Department of Cardiology-Intensive Therapy and Internal Medicine, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Bartłomiej Czyżniewski
- Faculty of Medicine, Collegium Medicum, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland;
| | - Wioletta Żukiewicz-Sobczak
- Department of Nutrition and Food, Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland;
| | - Magdalena Gibas-Dorna
- Collegium Medicum, Institute of Health Sciences, University of Zielona Gora, 28 Zyty Street, 65-046 Zielona Gora, Poland
| |
Collapse
|
39
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
40
|
Li G, Jin Y, Chen B, Lin A, Wang E, Xu F, Hu G, Xiao C, Liu H, Hou X, Zhang B, Song J. Exploring the Relationship between the Gut Mucosal Virome and Colorectal Cancer: Characteristics and Correlations. Cancers (Basel) 2023; 15:3555. [PMID: 37509218 PMCID: PMC10376985 DOI: 10.3390/cancers15143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The fecal virome has been reported to be associated with CRC. However, little is known about the mucosal virome signature in CRC. This study aimed to determine the viral community within CRC tissues and their contributions to colorectal carcinogenesis. Colonic mucosal biopsies were harvested from patients with CRC (biopsies of both neoplasia and adjacent normal tissue (CRC-A)) and healthy controls (HC). The shot-gun metagenomic sequencing of virus-like particles (VLPs) was performed on the biopsies. Viral community, functional pathways, and their correlations to clinical data were analyzed. Fluorescence in situ hybridizations (FISH) for the localization of viruses in the intestine was performed, as well as quantitative PCR for the detection of Torque teno virus load in human mucosal VLP DNA. A greater number and proportion of core species were found in CRC tissues than in CRC-A and HC tissues. The diversity of the mucosal virome in CRC tissues was significantly increased compared to that in HC and CRC-A tissues. The mucosal virome signature of CRC tissues were significantly different from those of HC and CRC-A tissues at the species level. The abundances of eukaryotic viruses from the Anelloviridae family and its sub-species Torque teno virus (TTV) were significantly higher in CRC patients than in HC. Furthermore, increased levels of TTV in the intestinal lamina propria were found in the CRC group. Multiple viral functions of TTV associated with carcinogenesis were enriched in CRC tissues. We revealed for the first time that the mucosal virobiota signature of CRC is characterized by a higher diversity and more eukaryotic viruses. The enrichment of TTV species in CRC tissues suggests that they may play an oncogenic role in CRC. Targeting eukaryotic viruses in the gut may provide novel strategies for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China; (B.C.); (A.L.); (C.X.)
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China; (B.C.); (A.L.); (C.X.)
| | - Erchuan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Fenghua Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Gengcheng Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Chuanxing Xiao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China; (B.C.); (A.L.); (C.X.)
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (G.L.); (Y.J.); (E.W.); (F.X.); (G.H.); (X.H.)
| |
Collapse
|
41
|
Romani A, Sergi D, Zauli E, Voltan R, Lodi G, Vaccarezza M, Caruso L, Previati M, Zauli G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front Nutr 2023; 10:1152254. [PMID: 37324739 PMCID: PMC10267353 DOI: 10.3389/fnut.2023.1152254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mauro Vaccarezza
- Curtin Medical School & Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maurizio Previati
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
43
|
New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approaches. CHINESE HERBAL MEDICINES 2023; 15:157-168. [PMCID: PMC9993661 DOI: 10.1016/j.chmed.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 03/11/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high pathogenicity and infectiousness has become a sudden and lethal pandemic worldwide. Currently, there is no accepted specific drug for COVID-19 treatment. Therefore, it is extremely urgent to clarify the pathogenic mechanism and develop effective therapies for patients with COVID-19. According to several reliable reports from China, traditional Chinese medicine (TCM), especially for three Chinese patent medicines and three Chinese medicine formulas, has been demonstrated to effectively alleviate the symptoms of COVID-19 either used alone or in combination with Western medicines. In this review, we systematically summarized and analyzed the pathogenesis of COVID-19, the detailed clinical practice, active ingredients investigation, network pharmacology prediction and underlying mechanism verification of three Chinese patent medicines and three Chinese medicine formulas in the COVID-19 combat. Additionally, we summarized some promising and high-frequency drugs of these prescriptions and discussed their regulatory mechanism, which provides guidance for the development of new drugs against COVID-19. Collectively, by addressing critical challenges, for example, unclear targets and complicated active ingredients of these medicines and formulas, we believe that TCM will represent promising and efficient strategies for curing COVID-19 and related pandemics.
Collapse
|
44
|
Guan Y, Wang Y, Fu X, Bai G, Li X, Mao J, Yan Y, Hu L. Multiple functions of stress granules in viral infection at a glance. Front Microbiol 2023; 14:1138864. [PMID: 36937261 PMCID: PMC10014870 DOI: 10.3389/fmicb.2023.1138864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Stress granules (SGs) are distinct RNA granules induced by various stresses, which are evolutionarily conserved across species. In general, SGs act as a conservative and essential self-protection mechanism during stress responses. Viruses have a long evolutionary history and viral infections can trigger a series of cellular stress responses, which may interact with SG formation. Targeting SGs is believed as one of the critical and conservative measures for viruses to tackle the inhibition of host cells. In this systematic review, we have summarized the role of SGs in viral infection and categorized their relationships into three tables, with a particular focus on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Moreover, we have outlined several kinds of drugs targeting SGs according to different pathways, most of which are potentially effective against SARS-CoV-2. We believe this review would offer a new view for the researchers and clinicians to attempt to develop more efficacious treatments for virus infection, particularly for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xudong Fu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Guannan Bai
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yongbin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
45
|
DRaW: prediction of COVID-19 antivirals by deep learning-an objection on using matrix factorization. BMC Bioinformatics 2023; 24:52. [PMID: 36793010 PMCID: PMC9931173 DOI: 10.1186/s12859-023-05181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Due to the high resource consumption of introducing a new drug, drug repurposing plays an essential role in drug discovery. To do this, researchers examine the current drug-target interaction (DTI) to predict new interactions for the approved drugs. Matrix factorization methods have much attention and utilization in DTIs. However, they suffer from some drawbacks. METHODS We explain why matrix factorization is not the best for DTI prediction. Then, we propose a deep learning model (DRaW) to predict DTIs without having input data leakage. We compare our model with several matrix factorization methods and a deep model on three COVID-19 datasets. In addition, to ensure the validation of DRaW, we evaluate it on benchmark datasets. Furthermore, as an external validation, we conduct a docking study on the COVID-19 recommended drugs. RESULTS In all cases, the results confirm that DRaW outperforms matrix factorization and deep models. The docking results approve the top-ranked recommended drugs for COVID-19. CONCLUSIONS In this paper, we show that it may not be the best choice to use matrix factorization in the DTI prediction. Matrix factorization methods suffer from some intrinsic issues, e.g., sparsity in the domain of bioinformatics applications and fixed-unchanged size of the matrix-related paradigm. Therefore, we propose an alternative method (DRaW) that uses feature vectors rather than matrix factorization and demonstrates better performance than other famous methods on three COVID-19 and four benchmark datasets.
Collapse
|
46
|
Jagoda E, Marnetto D, Senevirathne G, Gonzalez V, Baid K, Montinaro F, Richard D, Falzarano D, LeBlanc EV, Colpitts CC, Banerjee A, Pagani L, Capellini TD. Regulatory dissection of the severe COVID-19 risk locus introgressed by Neanderthals. eLife 2023; 12:e71235. [PMID: 36763080 PMCID: PMC9917435 DOI: 10.7554/elife.71235] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.
Collapse
Affiliation(s)
- Evelyn Jagoda
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
| | - Gayani Senevirathne
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Victoria Gonzalez
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Kaushal Baid
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of BariBariItaly
| | - Daniel Richard
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Darryl Falzarano
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
| | - Emmanuelle V LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Arinjay Banerjee
- Department of Veterinary Microbiology, University of SaskatchewanSaskatoonCanada
- Vaccine and Infectious Disease Organization, University of SaskatchewanSaskatoonCanada
- Department of Biology, University of WaterlooWaterlooCanada
- Department of Laboratory Medicine and Pathobiology, University of TorontoTorontoCanada
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of TartuTartuEstonia
- Department of Biology, University of PadovaPadovaItaly
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
47
|
Lipidomics analysis in drug discovery and development. Curr Opin Chem Biol 2023; 72:102256. [PMID: 36586190 DOI: 10.1016/j.cbpa.2022.102256] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022]
Abstract
Despite being a relatively new addition to the Omics' landscape, lipidomics is increasingly being recognized as an important tool for the identification of druggable targets and biochemical markers. In this review we present recent advances of lipid analysis in drug discovery and development. We cover current state of the art technologies which are constantly evolving to meet demands in terms of sensitivity and selectivity. A careful selection of important examples is then provided, illustrating the versatility of lipidomics analysis in the drug discovery and development process. Integration of lipidomics with other omics', stem-cell technologies, and metabolic flux analysis will open new avenues for deciphering pathophysiological mechanisms and the discovery of novel targets and biomarkers.
Collapse
|
48
|
Harris WS, Tintle NL, Sathyanarayanan SP, Westra J. Association between blood N-3 fatty acid levels and the risk of coronavirus disease 2019 in the UK Biobank. Am J Clin Nutr 2023; 117:357-363. [PMID: 36863828 PMCID: PMC9972865 DOI: 10.1016/j.ajcnut.2022.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The role of nutritional status and the risk of contracting and/or experiencing adverse outcomes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are unclear. Preliminary studies suggest that higher n-3 PUFA intakes are protective. OBJECTIVES This study aimed to compare the risk of 3 coronavirus disease 2019 (COVID-19) outcomes (testing positive for SARS-CoV-2, hospitalization, and death) as a function of the baseline plasma DHA levels. METHODS The DHA levels (% of total fatty acids [FAs]) were measured by nuclear magnetic resonance. The 3 outcomes and relevant covariates were available for 110,584 subjects (hospitalization and death) and for 26,595 ever-tested subjects (positive for SARS-CoV-2) in the UK Biobank prospective cohort study. Outcome data between 1 January, 2020, and 23 March, 2021, were included. The Omega-3 Index (O3I) (RBC EPA + DHA%) values across DHA% quintiles were estimated. The multivariable Cox proportional hazards models were constructed, and linear (per 1 SD) relations with the risk of each outcome were computed as HRs. RESULTS In the fully adjusted models, comparing the fifth to the first DHA% quintiles, the HRs (95% confidence intervals) for testing positive, being hospitalized, and dying with COVID-19 were 0.79 (0.71, 0.89, P < 0.001), 0.74 (0.58, 0.94, P < 0.05), and 1.04 (0.69-1.57, not significant), respectively. On a per 1-SD increase in DHA% basis, the HRs for testing positive, hospitalization, and death, were 0.92 (0.89, 0.96, P < 0.001), 0.89 (0.83, 0.97, P < 0.01), and 0.95 (0.83, 1.09), respectively. The estimated O3I values across DHA quintiles ranged from 3.5% (quintile 1) to 8% (quintile 5). CONCLUSIONS These findings suggest that nutritional strategies to increase the circulating n-3 PUFA levels, such as increased consumption of oily fish and/or use of n-3 FA supplements, may reduce the risk of adverse COVID-19 outcomes.
Collapse
Affiliation(s)
- William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, College of Nursing, University of Illinois-Chicago, Chicago, IL, USA
| | | | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| |
Collapse
|
49
|
Proprotein convertases regulate trafficking and maturation of key proteins within the secretory pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:1-54. [PMID: 36707198 DOI: 10.1016/bs.apcsb.2022.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proprotein Convertases (PCs) are serine endoproteases that regulate the homeostasis of protein substrates in the cell. The PCs family counts 9 members-PC1/3, PC2, PC4, PACE4, PC5/6, PC7, Furin, SKI-1/S1P, and PCSK9. The first seven PCs are known as Basic Proprotein Convertases due to their propensity to cleave after polybasic clusters. SKI-1/S1P requires the additional presence of hydrophobic residues for processing, whereas PCSK9 is catalytically dead after autoactivation and exerts its functions using mechanisms alternative to direct cleavage. All PCs traffic through the canonical secretory pathway, reaching different compartments where the various substrates reside. Despite PCs members do not share the same subcellular localization, most of the cellular organelles count one or more Proprotein Convertases, including ER, Golgi stack, endosomes, secretory granules, and plasma membranes. The widespread expression of these enzymes at the systemic level speaks for their importance in the homeostasis of a large number of biological functions. Among others, PCs cleave precursors of hormones and growth factors and activate receptors and transcription factors. Notably, dysregulation of the enzymatic activity of Proprotein Convertases is associated to major human pathologies, such as cardiovascular diseases, cancer, diabetes, infections, inflammation, autoimmunity diseases, and Parkinson. In the current COVID-19 pandemic, Furin has further attracted the attention as a key player for conferring high pathogenicity to SARS-CoV-2. Here, we review the Proprotein Convertases family and their most important substrates along the secretory pathway. Knowledge about the complex functions of PCs is important to identify potential drug strategies targeting this class of enzymes.
Collapse
|
50
|
Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol 2023; 11:120-128. [PMID: 36623520 PMCID: PMC9873268 DOI: 10.1016/s2213-8587(22)00355-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Non-clinical evidence and a few human studies with short follow-ups suggest increased risk of dyslipidaemia in the post-acute phase of COVID-19 (ie, >30 days after SARS-CoV-2 infection). However, detailed large-scale controlled studies with longer follow-ups and in-depth assessment of the risks and burdens of incident dyslipidaemia in the post-acute phase of COVID-19 are not yet available. We, therefore, aimed to examine the risks and 1-year burdens of incident dyslipidaemia in the post-acute phase of COVID-19 among people who survive the first 30 days of SARS-CoV-2 infection. METHODS In this cohort study, we used the national health-care databases of the US Department of Veterans Affairs to build a cohort of 51 919 participants who had a positive COVID-19 test and survived the first 30 days of infection between March 1, 2020, and Jan 15, 2021; a non-infected contemporary control group (n=2 647 654) that enrolled patients between March 1, 2020, and Jan 15, 2021; and a historical control group (n=2 539 941) that enrolled patients between March 1, 2018, and Jan 15, 2019. Control groups had no evidence of SARS-CoV-2 infection, and participants in all three cohorts were free of dyslipidaemia before cohort enrolment. We then used inverse probability weighting using predefined and algorithmically-selected high dimensional variables to estimate the risks and 1-year burdens of incident dyslipidaemia, lipid-lowering medications use, and a composite of these outcomes. We reported two measures of risk: hazard ratios (HRs) and burden per 1000 people at 12 months. Additionally, we estimated the risks and burdens of incident dyslipidaemia outcomes in mutually exclusive groups based on the care setting of the acute infection (ie, participants who were non-hospitalised, hospitalised, or admitted to intensive care during the acute phase of SARS-CoV-2 infection). FINDINGS In the post-acute phase of the SARS-CoV-2 infection, compared with the non-infected contemporary control group, those in the COVID-19 group had higher risks and burdens of incident dyslipidaemia, including total cholesterol greater than 200 mg/dL (hazard ratio [HR] 1·26, 95% CI 1·22-1·29; burden 22·46, 95% CI 19·14-25·87 per 1000 people at 1 year), triglycerides greater than 150 mg/dL (1·27, 1·23-1·31; 22·03, 18·85-25·30), LDL cholesterol greater than 130 mg/dL (1·24, 1·20-1·29; 18·00, 14·98-21·11), and HDL cholesterol lower than 40 mg/dL (1·20, 1·16-1·25; 15·58, 12·52-18·73). The risk and burden of a composite of these abnormal lipid laboratory outcomes were 1·24 (95% CI 1·21-1·27) and 39·19 (95% CI 34·71-43·73), respectively. There was also increased risk and burden of incident lipid-lowering medications use (HR 1·54, 95% CI 1·48-1·61; burden 25·50, 95% CI 22·61-28·50). A composite of any dyslipidaemia outcome (laboratory abnormality or lipid-lowering medications use) yielded an HR of 1·31 (95% CI 1·28-1·34) and a burden of 54·03 (95% CI 49·21-58·92). The risks and burdens of these post-acute outcomes increased in a graded fashion corresponding to the severity of the acute phase of COVID-19 infection (ie, whether patients were non-hospitalised, hospitalised, or admitted to intensive care). The results were consistent in analyses comparing the COVID-19 group to the non-infected historical control group. INTERPRETATION Our findings suggest increased risks and 1-year burdens of incident dyslipidaemia and incident lipid-lowering medications use in the post-acute phase of COVID-19 infection. Post-acute care for those with COVID-19 should involve attention to dyslipidaemia as a potential post-acute sequela of SARS-CoV-2 infection. FUNDING US Department of Veterans Affairs.
Collapse
Affiliation(s)
- Evan Xu
- Clinical Epidemiology Center, Research and Development Service, VA Saint Louis Health Care System, Saint Louis, MO, USA; Veterans Research and Education Foundation of Saint Louis, Saint Louis, MO, USA
| | - Yan Xie
- Clinical Epidemiology Center, Research and Development Service, VA Saint Louis Health Care System, Saint Louis, MO, USA; Veterans Research and Education Foundation of Saint Louis, Saint Louis, MO, USA
| | - Ziyad Al-Aly
- Clinical Epidemiology Center, Research and Development Service, VA Saint Louis Health Care System, Saint Louis, MO, USA; Nephrology Section, Medicine Service, VA Saint Louis Health Care System, Saint Louis, MO, USA; Veterans Research and Education Foundation of Saint Louis, Saint Louis, MO, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Institute for Public Health, Washington University in Saint Louis, Saint Louis, MO, USA.
| |
Collapse
|