1
|
Meng C, Lin K, Shi W, Teng H, Wan X, DeBruine A, Wang Y, Liang X, Leo J, Chen F, Gu Q, Zhang J, Van V, Maldonado KL, Gan B, Ma L, Lu Y, Zhao D. Histone methyltransferase ASH1L primes metastases and metabolic reprogramming of macrophages in the bone niche. Nat Commun 2025; 16:4681. [PMID: 40394007 DOI: 10.1038/s41467-025-59381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
Bone metastasis is a major cause of cancer death; however, the epigenetic determinants driving this process remain elusive. Here, we report that histone methyltransferase ASH1L is genetically amplified and is required for bone metastasis in men with prostate cancer. ASH1L rewires histone methylations and cooperates with HIF-1α to induce pro-metastatic transcriptome in invading cancer cells, resulting in monocyte differentiation into lipid-associated macrophage (LA-TAM) and enhancing their pro-tumoral phenotype in the metastatic bone niche. We identified IGF-2 as a direct target of ASH1L/HIF-1α and mediates LA-TAMs' differentiation and phenotypic changes by reprogramming oxidative phosphorylation. Pharmacologic inhibition of the ASH1L-HIF-1α-macrophages axis elicits robust anti-metastasis responses in preclinical models. Our study demonstrates epigenetic alterations in cancer cells reprogram metabolism and features of myeloid components, facilitating metastatic outgrowth. It establishes ASH1L as an epigenetic driver priming metastasis and macrophage plasticity in the bone niche, providing a bona fide therapeutic target in metastatic malignancies.
Collapse
Affiliation(s)
- Chenling Meng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Shi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinhai Wan
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anna DeBruine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yin Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xin Liang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Javier Leo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Feiyu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianlin Gu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivien Van
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kiersten L Maldonado
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Teng M, Guo J, Xu X, Ci X, Mo Y, Kohen Y, Ni Z, Chen S, Guo WY, Bakht M, Ku S, Sigouros M, Luo W, Macarios CM, Xia Z, Chen M, Ul Haq S, Yang W, Berlin A, van der Kwast T, Ellis L, Zoubeidi A, Zheng G, Ming J, Wang Y, Cui H, Lok BH, Raught B, Beltran H, Qin J, He HH. Circular RMST cooperates with lineage-driving transcription factors to govern neuroendocrine transdifferentiation. Cancer Cell 2025; 43:891-904.e10. [PMID: 40250444 DOI: 10.1016/j.ccell.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Circular RNA (circRNA) is a class of noncoding RNA with regulatory potentials. Its role in the transdifferentiation of prostate and lung adenocarcinoma into neuroendocrine prostate cancer (NEPC) and small cell lung cancer (SCLC) remains unexplored. Here, we identified circRMST as an exceptionally abundant circRNA predominantly expressed in NEPC and SCLC, with strong conservation between humans and mice. Functional studies using shRNA, siRNA, CRISPR-Cas13, and Cas9 consistently demonstrate that circRMST is essential for tumor growth and the expression of ASCL1, a master regulator of neuroendocrine fate. Genetic knockout of Rmst in NEPC genetic engineered mouse models prevents neuroendocrine transdifferentiation, maintaining tumors in an adenocarcinoma state. Mechanistically, circRMST physically interacts with lineage transcription factors NKX2-1 and SOX2. Loss of circRMST induces NKX2-1 protein degradation through autophagy-lysosomal pathway and alters the genomic binding of SOX2, collectively leading to the loss of ASCL1 transcription.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Jiacheng Guo
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xinpei Ci
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yakup Kohen
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zuyao Ni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wang Yuan Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Martin Bakht
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Shengyu Ku
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wenqin Luo
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Ziting Xia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sami Ul Haq
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wen Yang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alejandro Berlin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Theo van der Kwast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Leigh Ellis
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Brian Raught
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Himisha Beltran
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Shen J, Lu L, Chen Z, Guo W, Wang S, Liu Z, Gong X, Qi Y, Jin R, Zhang C. Multi-omics analysis constructs a novel neuroendocrine prostate cancer classifier and classification system. Sci Rep 2025; 15:13901. [PMID: 40263498 PMCID: PMC12015331 DOI: 10.1038/s41598-025-96683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a subtype of prostate cancer (PCa) with poor prognosis and high heterogeneity, currently lacks accurate markers. This study aims to identify a robust NEPC classifier and provide new perspectives for resolving intra- tumoral heterogeneity. Multi-omics analysis included 19 bulk transcriptomics, 14 single-cell transcriptomics, 1 spatial transcriptomics, 16 published NE signatures and 10 cellular experiments combined with multiple machine learning algorithms to construct a novel NEPC classifier and classification. A comprehensive single-cell atlas of prostate cancer was created from 70 samples, comprising 196,309 cells, among which 9% were identified as NE cells. Within this framework and in combination with bulk transcriptomics, a total of 100 high-quality NE-specific feature genes were identified and differentiated into NEPup sig and NEPdown sig. The random forest (RF) algorithm proved to be the most effective classifier for NEPC, leading to the establishment of the NEP100 model, which demonstrated robust validation across various datasets. In clinical settings, the use of the NEP100 model can greatly improve the diagnostic and prognostic prediction of NEPC. Hierarchical clustering based on NEP100 revealed four distinct NEPC subtypes, designated VR_O, Prol_N, Prol_P, and EMT_Y, each of which presented unique biological characteristics. This allows us to select different targeted therapeutic strategies for different subtypes of phenotypic pathways. Notably, NEP100 expression correlated positively with neuroendocrine differentiation and disease progression, while the VR-NE phenotype dominated by VR_O cells indicated a propensity for treatment resistance. Furthermore, AMIGO2, a component of the NEP100 signature, was associated with chemotherapy resistance and a poor prognosis, indicating that it is a pivotal target for future therapeutic strategies. This study used multi-omics analysis combined with machine learning to construct a novel NEPC classifier and classification system. NEP100 provides a clinically actionable framework for NEPC diagnosis and subtyping.
Collapse
Affiliation(s)
- Junxiao Shen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Luyuan Lu
- Department of General Surgery, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zujie Chen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Guo
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shuwen Wang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ziqiao Liu
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuke Gong
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiming Qi
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ruyi Jin
- Department of Dermatology, NHC Key Laboratory of Immunodermatology, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, People's Republic of China
| | - Cheng Zhang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
4
|
Wang H, Zhang S, Pan Q, Guo J, Li N, Chen L, Xu J, Zhou J, Gu Y, Wang X, Zhang G, Lian Y, Zhang W, Lin N, Jin Z, Zang Y, Lan W, Cheng X, Tan M, Chen FX, Jiang J, Liu Q, Zheng M, Qin J. Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer. NATURE CANCER 2025; 6:629-646. [PMID: 40102673 DOI: 10.1038/s43018-025-00928-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
The transdifferentiation from adenocarcinoma to neuroendocrine prostate cancer (NEPC) in men confers antiandrogen therapy resistance. Here our analysis combining CRISPR‒Cas9 screening with single-cell RNA sequencing tracking of tumor transition demonstrated that antiandrogen-induced zinc finger MYND-type containing 8 (ZMYND8)-dependent epigenetic programming orchestrates NEPC transdifferentiation. Ablation of Zmynd8 prevents NEPC development, while ZMYND8 upregulation mediated by achaete-scute homolog 1 promotes NEPC differentiation. We show that forkhead box protein M1 (FOXM1) stabilizes ZMYND8 binding to chromatin regions characterized by H3K4me1-H3K14ac modification and FOXM1 targeting. Antiandrogen therapy releases the SWI/SNF chromatin remodeling complex from the androgen receptor, facilitating its interaction with ZMYND8-FOXM1 to upregulate critical neuroendocrine lineage regulators. We develop iZMYND8-34, a small molecule designed to inhibit ZMYND8's histone recognition, which effectively blocks NEPC development. These findings reveal the critical role of ZMYND8-dependent epigenetic programming induced by androgen deprivation therapy in orchestrating lineage fate. Targeting ZMYND8 emerges as a promising strategy for impeding NEPC development.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyu Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naiheng Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zige Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Minjia Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
5
|
Lee J, Lee Y. The role of transcription factors in prostate cancer progression. Mol Cells 2025; 48:100193. [PMID: 39938868 PMCID: PMC11907451 DOI: 10.1016/j.mocell.2025.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
Prostate cancer is one of the most common malignancies in men, with most cases initially responding to androgen deprivation therapy. However, a significant number of patients eventually develop castration-resistant prostate cancer, an aggressive form of the disease. Although androgen receptor (AR) pathway inhibitors target AR signaling, and have extended survival in patients with castration-resistant prostate cancer, prolonged treatment can lead to the emergence of neuroendocrine prostate cancer (NEPC), a lethal subtype characterized by the expression of neuroendocrine markers and reduced AR activity. The transition from adenocarcinoma to NEPC is driven by lineage plasticity, wherein cancer cells adopt a neuroendocrine phenotype to evade treatment. Consequently, NEPC patients face poor clinical outcomes and limited effective treatment options. To improve outcomes, it is crucial to understand the molecular mechanisms driving NEPC development. In this review, we highlight the role of transcription factors in this process and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
6
|
Lee J, Park J, Hur Y, Um D, Choi HS, Park J, Kim Y, Lee JS, Choi K, Kim E, Park YB, Choi JM, Kim TK, Lee Y. ETV5 reduces androgen receptor expression and induces neural stem-like properties during neuroendocrine prostate cancer development. Proc Natl Acad Sci U S A 2025; 122:e2420313122. [PMID: 40117308 PMCID: PMC11962414 DOI: 10.1073/pnas.2420313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive subtype induced by hormone therapy, lacks effective treatments. This study explored the role of E26 transformation-specific variant 5 (ETV5) in NEPC development. Analysis of multiple prostate cancer datasets revealed that NEPC is characterized by significantly elevated ETV5 expression compared to other subtypes. ETV5 expression increased progressively under hormone therapy through epigenetic modifications. ETV5 induced neural stem-like features in prostate cancer cells and facilitated their differentiation into NEPC under hormone treatment conditions, both in vitro and in vivo. Our molecular mechanistic study identified PBX3 and TLL1 as target genes of ETV5 that contribute to ETV5 overexpression-induced castration resistance and stemness. Notably, obeticholic acid, identified as an ETV5 inhibitor in this study, exhibited promising efficacy in suppressing NEPC development. This study highlights ETV5 as a key transcription factor that facilitates NEPC development and underscores its potential as a therapeutic target for this aggressive cancer subtype.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yewon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu41566, Republic of Korea
| | - Young Bin Park
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
| | - Jae-Mun Choi
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
- Department of Bio-Artificial Intelligence Convergence, Chungnam National University, Daejeon34134, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong30019, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
7
|
Wang Y, Xue H, Zhu X, Lin D, Chen Z, Dong X, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang C, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2404938. [PMID: 40091506 DOI: 10.1002/advs.202404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Prostate cancer (PCa) stands as a leading cause of cancer-related mortality among men, with treatment-induced neuroendocrine prostate cancer (NEPC) posing a challenge as an ARPI-resistant subtype. The role of transcription factors (TFs) in PCa progression and NEPC transdifferentiation remains inadequately understood, underscoring a critical gap in current research. In this study, an internal Z score-based approach is developed to identify lineage-specific TF profiles in prostatic adenocarcinoma and NEPC for a nuanced understanding of TF expression dynamics. Distinct TF profiles for adenocarcinoma and NEPC are unveiled, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs, validated across multiple cohorts. Gene Ontology is employed to validate their biological and functional roles in PCa progression. Implications are revealed in cell development, differentiation, and lineage determination. Knockdown experiments suggest that lineage-TFs are functionally important in maintaining lineage-specific cell proliferation. Additionally, a longitudinal study on NE transdifferentiation highlights dynamic TF expression shifts, proposing a three-phases hypothesis for PCa progression mechanisms. This study introduces a groundbreaking approach for deciphering the TF landscape in PCa, providing a molecular basis for adenocarcinoma to NEPC progression, and paving the way for innovative treatment strategies with potential impact on patient outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xiaohui Zhu
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Dong Lin
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Zheng Chen
- The First Affiliated Hospital of Jinan University, First Clinical Medical College, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Junru Chen
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mingchen Shi
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yuchao Ni
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
- Department of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jonathan Cao
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Connie Kang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Xinyao Pang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Yen-Yi Lin
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Colin C Collins
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Martin E Gleave
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Arul Chinnaiyan
- Michigan Center for Translational Pathology, Department of Urology, University of Michigan Medical School, Rogel Cancer Center, University of Michigan Hospital, Ann Arbor, 48109, USA
| | - Christopher J Ong
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
| | - Yuzhuo Wang
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, V6H 3Z6, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, V5Z 1L3, Canada
| |
Collapse
|
8
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Fanelli GN, Nuzzo PV, Pederzoli F, Loda M. Deciphering Complexity: The Molecular Landscape of Castration-Resistant Prostate Cancer. Surg Pathol Clin 2025; 18:25-39. [PMID: 39890307 PMCID: PMC11787547 DOI: 10.1016/j.path.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite improvements in diagnosis and treatment approaches, prostate cancer (PC) remains a leading cause of cancer-related death in men. PC progresses through various stages, mostly driven by androgen receptor signaling. However, after androgen deprivation therapies, in a significant portion of patients, several different molecular mechanisms contribute to the development of castration resistance. Delving deeply into the molecular landscape of castration-resistant PC, grasping the selective pressures exerted by therapies, and understanding the drivers of lineage plasticity is pivotal to prevent progression. Targeting genetic and epigenetic alterations that drive this transition will guide clinical management strategies and possibly prevent and/or treat lethal disease.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, Pisa 56125, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
10
|
Wang S, Xu Q, Liu W, Zhang N, Qi Y, Tang F, Ge R. Regulation of PHD2 by HIF-1α in Erythroid Cells: Insights into Erythropoiesis Under Hypoxia. Int J Mol Sci 2025; 26:762. [PMID: 39859474 PMCID: PMC11765976 DOI: 10.3390/ijms26020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated. A hemin-induced K562 erythroid differentiation model was used to explore the effects of PHD2 knockdown under hypoxia. Erythroid differentiation was assessed by flow cytometry and immunofluorescence. HIF-1α's regulation of PHD2 was examined using luciferase assays and ChIP-seq. CRISPR/Cas9 was applied to knock out EGLN1 and HIF1A, and a fluorescent reporter system was developed to track PHD2 expression. PHD2 knockdown enhanced erythroid differentiation, evident by increased CD71 and CD235a expression. Reporter assays and ChIP-seq identified an HIF-1α binding site in the EGLN1 5' UTR, confirming HIF-1α as a regulator of PHD2 expression. The fluorescent reporter system provided real-time monitoring of endogenous PHD2 expression, showing that HIF-1α significantly modulates PHD2 levels under hypoxic conditions. PHD2 influences erythropoiesis under hypoxia, with HIF-1α regulating its expression. This feedback loop between HIF-1α and PHD2 sheds light on mechanisms driving erythroid differentiation under low-oxygen conditions.
Collapse
Affiliation(s)
- Shunjuan Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Qiying Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Wenjing Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Na Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Yuelin Qi
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810016, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining 810016, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810016, China
| |
Collapse
|
11
|
Song X, Zhang Y, Li T, Wang W, Xie Z, Han B. Identification and Validation of Alkaliptosis Resistance-Associated Genes in Prostate Cancer Via Transcriptome Sequencing and Prediction of Biochemical Recurrence. Mol Biotechnol 2025:10.1007/s12033-024-01322-3. [PMID: 39760809 DOI: 10.1007/s12033-024-01322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025]
Abstract
Androgen deprivation therapy (ADT) is the primary treatment strategy for prostate cancer. However, despite an initially favorable response, tumors inevitably progress to castration-resistant prostate cancer (CRPC). Therefore, the exploration of new therapeutic approaches targeting CRPC has become imperative. Increasing evidence suggests that hypoxia plays a crucial role in the development of CRPC. In this study, we found that the emergence of alkaliptosis resistance and the expression of its marker, CA9, significantly contribute to the progression of castration resistance induced by hypoxia. This study utilized bioinformatics approaches to identify genetic determinants associated with alkaliptosis resistance and explored the clinical significance of these marker genes. Transcriptomic sequencing was performed on the DU145 prostate cancer cell line, which had been induced to acquire alkaliptosis resistance. Using least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic risk model consisting of 12 genes, including ADORA2A, KCNG4, SEC14L5, B3GAT2, SLFNL1, FAM72D, CBWD3, PPM1K, STARD4, DEPDC1B, MATN3, and DDIAS was developed. The risk model score demonstrated a strong correlation with key patient clinical characteristics, including Gleason score, PSA levels, T stage, and N stage, and was also associated with immune therapy response and biochemical recurrence-free survival (BCRFS). Furthermore, ADORA2A expression in cellular models was found to be a critical factor in promoting alkaliptosis resistance.
Collapse
Affiliation(s)
- Xiaodong Song
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhiwen Xie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
12
|
Wang LY, Hung CL, Wang TC, Hsu HC, Kung HJ, Lin KH. PROTACs as Therapeutic Modalities for Drug Discovery in Castration-Resistant Prostate Cancer. Annu Rev Pharmacol Toxicol 2025; 65:375-396. [PMID: 39116434 DOI: 10.1146/annurev-pharmtox-030624-110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Castration-resistant prostate cancer (CRPC) presents significant challenges in clinical management due to its resistance to conventional androgen receptor (AR)-targeting therapies. The advent of proteolysis targeting chimeras (PROTACs) has revolutionized cancer therapy by enabling the targeted degradation of key molecular players implicated in CRPC progression. In this review we discuss the developments of PROTACs for CRPC treatment, focusing on AR and other CRPC-associated regulators. We provide an overview of the strategic trends in AR PROTAC development from the aspect of targeting site selection and preclinical antitumor evaluation, as well as updates on AR degraders in clinical applications. Additionally, we briefly address the current status of selective AR degrader development. Furthermore, we review new developments in PROTACs as potential CRPC treatment paradigms, highlighting those targeting chromatin modulators BRD4, EZH2, and SWI/SNF; transcription regulator SMAD3; and kinases CDK9 and PIM1. Given the molecular targets shared between CRPC and neuroendocrine prostate cancer (NEPC), we also discuss the potential of PROTACs in addressing NEPC.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, Taiwan;
| | - Chiu-Lien Hung
- Department of Preclinical Drug Discovery Technology, Biomedical Technology and Devices Research Labs, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Tsan-Chun Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chih Hsu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine and PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kwang-Huei Lin
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Sachdeva A, Roy A, Mandal S. Protein kinase D2-Aurora kinase A-ERK1/2 signalling axis drives neuroendocrine differentiation of epithelial ovarian cancer. Mol Cell Biochem 2025; 480:535-547. [PMID: 38557789 DOI: 10.1007/s11010-024-04986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Epithelial ovarian cancer (EOC) is deadliest gynecological malignancy with poor prognosis and patient survival. Despite development of several therapeutic interventions such as poly-ADP ribose polymerase (PARP) inhibitors, EOC remains unmanageable and discovery of novel early detection biomarkers and treatment targets are highly warranted. Although neuroendocrine differentiation (NED) is implicated in different human cancers including prostate adenocarcinoma and lung cancer, mechanistic studies concerning NED of epithelial ovarian cancer are lacking. We report that Aurora kinase A drives NED of epithelial ovarian cancer in an ERK1/2-dependent manner and pharmacological and genetic inhibition of Aurora kinase A suppress NED of ovarian cancer. Moreover, we demonstrate that protein kinase D2 positively regulated Aurora kinase A to drive NED. Overexpression of catalytically active PKD2 drives NED and collectively, PKD2 cross talks with Aurora kinase A/ERK1/2 signalling axis to positively regulate NED of EOC. PKD2/Aurora kinase A/ERK1/2 signalling axis is a novel therapeutic target against neuroendocrine differentiated EOC.
Collapse
Affiliation(s)
- Abha Sachdeva
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
14
|
Williams EC, Shibata M. Prostate Luminal Cell Plasticity and Cancer. Cancer Lett 2024:217430. [PMID: 39730086 DOI: 10.1016/j.canlet.2024.217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Cellular plasticity in prostate cancer promotes treatment resistance. Several independent studies have used mouse models, single-cell RNA sequencing, and genetic lineage tracing approaches to characterize cellular differentiation and plasticity during prostate organogenesis, homeostasis and androgen-mediated tissue regeneration. We review these findings and recent work using immune-competent genetically-engineered mouse models to characterize cellular plasticity and clonal dynamic changes during prostate cancer progression. Collectively these studies highlight the influence of the tumor microenvironment and the function of epigenetic regulators in promoting cellular plasticity. How the epigenetic alternations that promote cell plasticity affect tumor immunogenicity remains an active area of research with implications for disease treatment.
Collapse
Affiliation(s)
- Emily C Williams
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Maho Shibata
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
15
|
Lu X, Keo V, Cheng I, Xie W, Gritsina G, Wang J, Jin Q, Jin P, Yue F, Sanda MG, Corces V, Altemose N, Zhao JC, Yu J. Epigenetic remodeling and 3D chromatin reorganization governed by NKX2-1 drive neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626816. [PMID: 39677680 PMCID: PMC11643106 DOI: 10.1101/2024.12.04.626816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
Collapse
|
16
|
Maylin ZR, Smith C, Classen A, Asim M, Pandha H, Wang Y. Therapeutic Exploitation of Neuroendocrine Transdifferentiation Drivers in Prostate Cancer. Cells 2024; 13:1999. [PMID: 39682746 PMCID: PMC11639977 DOI: 10.3390/cells13231999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive and lethal subtype of prostate cancer (PCa), often arises as a resistance mechanism in patients undergoing hormone therapy for prostate adenocarcinoma. NEPC is associated with a significantly poor prognosis and shorter overall survival compared to conventional prostate adenocarcinoma due to its aggressive nature and limited response to standard of care therapies. This transdifferentiation, or lineage reprogramming, to NEPC is characterised by the loss of androgen receptor (AR) and prostate-specific antigen (PSA) expression, and the upregulation of neuroendocrine (NE) biomarkers such as neuron-specific enolase (NSE), chromogranin-A (CHGA), synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1/CD56), which are critical for NEPC diagnosis. The loss of AR expression culminates in resistance to standard of care PCa therapies, such as androgen-deprivation therapy (ADT) which target the AR signalling axis. This review explores the drivers of NE transdifferentiation. Key genetic alterations, including those in the tumour suppressor genes RB1, TP53, and PTEN, and changes in epigenetic regulators, particularly involving EZH2 and cell-fate-determining transcription factors (TFs) such as SOX2, play significant roles in promoting NE transdifferentiation and facilitate the lineage switch from prostate adenocarcinoma to NEPC. The recent identification of several other key novel drivers of NE transdifferentiation, including MYCN, ASCL1, BRN2, ONECUT2, and FOXA2, further elucidates the complex regulatory networks and pathways involved in this process. We suggest that, given the multifactorial nature of NEPC, novel therapeutic strategies that combine multiple modalities are essential to overcome therapeutic resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Zoe R. Maylin
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Christopher Smith
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Adam Classen
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Mohammad Asim
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Hardev Pandha
- Targeted Cancer Therapy, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK; (M.A.); (H.P.)
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urological Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada; (A.C.); (Y.W.)
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
17
|
Sui X, Feng P, Guo J, Chen X, Chen R, Zhang Y, He F, Deng F. Novel targets and their functions in the prognosis of uterine corpus endometrial cancer patients. J Appl Genet 2024; 65:757-772. [PMID: 38639843 DOI: 10.1007/s13353-024-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
Aberrant mRNA expression is implicated in uterine corpus endometrial carcinoma (UCEC) oncogenesis and progression. However, effective prognostic biomarkers for UCEC remain limited. We aimed to construct a reliable multi-gene risk model using gene expression profiles. Utilizing TCGA data (543 UCEC samples, 35 controls), we identified 1517 differentially acting genes. Weighted gene co-expression complex analysis (WGCCA), hub gene screening, and risk regression analysis (RRA) were employed to determine prognosis-related genes and construct the risk model. Nomograms visualized risk scores and receiver operator characteristic (ROC) curves assessed model performance. Seven novel prognosis-related hub genes (ANGPT1, ASB2, GAL, GDF7, ONECUT2, SV2B, TRPC6) were identified. The model's concordance index (C index) by multivariate Cox regression analysis was 0.79. ROC curves yielded AUCs of 0.811 (3-year) and 0.79 (5-year), demonstrating the model's efficacy in predicting UCEC survival. Our study proposes a promising seven-biomarker risk model for predicting UCEC prognosis, offering potential clinical utility.
Collapse
Affiliation(s)
- Xin Sui
- Heilongjiang University of Chinese Medicine, Harbin, 150006, China
| | - Penghui Feng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jie Guo
- Harbin Medical University Daqing Campus, No. 39 Xinyang RoadHeilongjiang Province, Daqing City, China
| | - Xingtong Chen
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Yanmin Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, 100730, China.
| | - Feng Deng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
18
|
Li C, Xiao Y, Zhou J, Liu S, Zhang L, Song X, Guo X, Song Q, Zhao J, Deng N. Knockout of onecut2 inhibits proliferation and promotes apoptosis of tumor cells through SKP2-mediated p53 acetylation in hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:469. [PMID: 39609269 PMCID: PMC11604872 DOI: 10.1007/s00018-024-05518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Onecut2 (OC2) plays a vital regulatory role in tumor growth, metastasis and angiogenesis. In this study, we report the regulatory role and specific molecular mechanism of OC2 in the apoptosis of hepatocellular carcinoma (HCC) cells. We found that OC2 knockout via the CRISPR/CAS9 system not only significantly inhibited the proliferation and angiogenesis of HCC cells but also significantly promoted apoptosis. The apoptosis rate of the OC2 knockout HCC cell line reached 30.514%. In a mouse model, the proliferation inhibition rate of tumor cells reached 98.8%. To explore the mechanism of apoptosis, ChIP-Seq and dual-luciferase reporter assays were carried out. The results showed that OC2 could directly bind to the promotor of SKP2 and regulate its expression. Moreover, downregulating the expression of OC2 and SKP2 could release p300, promote the acetylation of p53, increase the expression of p21 and p27, and promote the apoptosis of HCC cells. Moreover, the overexpression of OC2 or SKP2 in the knockout HCC cell line clearly inhibited the acetylation level of p53 and reduced cell apoptosis. This study revealed that OC2 could regulate the apoptosis of HCC cells through the SKP2/p53/p21 axis, which may provide some therapeutic targets for HCC in the clinic.
Collapse
Affiliation(s)
- Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuxin Xiao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jieling Zhou
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Shifeng Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- School of Medicine, Foshan University, Foshan, 528225, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Xinhua Guo
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Zhou Q, Yang M, Fu J, Sun X, Wang J, Zhang H, Hu J, Han B. KIF1A promotes neuroendocrine differentiation in prostate cancer by regulating the OGT-mediated O-GlcNAcylation. Cell Death Dis 2024; 15:796. [PMID: 39505875 PMCID: PMC11542072 DOI: 10.1038/s41419-024-07142-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Neuroendocrine prostate cancer (NEPC) arises from prostate adenocarcinoma after endocrine treatment failure and implies lethality and limited therapeutic options. Deciphering the molecular mechanisms underlying transdifferentiation from adenocarcinoma to NEPC may provide valuable therapeutic strategies. We performed a pan-cancer differential mRNA abundance analysis and identified that Kinesin-like protein (KIF1A) was highly expressed in NEPC. KIF1A knockdown impaired neuroendocrine(NE) features, including NE marker gene expression, stemness, and epithelial-mesenchymal transition (EMT), whereas KIF1A overexpression promoted these processes. Targeting KIF1A inhibited the growth of NE differentiated prostate cancer (PCa) cells in vitro and in vivo. Mechanistically, KIF1A bound with O-linked N-acetylglucosamine transferase (OGT) and regulated its protein expression and activity. Nuclear accumulation of OGT induced by KIF1A overexpression promoted intranuclear O-GlcNAcylation of β-catenin and OCT4 in nucleus. More importantly, our data revealed that OGT was critical for KIF1A induced NE differentiation and aggressive tumor growth. An OGT inhibitor, OSMI-1, can significantly inhibited NE differentiated PCa cell proliferation in vitro and tumor growth in vivo. Our findings showed that KIF1A promotes NE differentiation to NEPC by regulating the OGT-mediated O-GlcNAcylation. Targeting O-GlcNAcylation may impede the development of NEPC for a group of PCa patients with elevated KIF1A expression.
Collapse
Affiliation(s)
- Qianqian Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, P R China
| | - Muyi Yang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jiawei Fu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, P R China
| | - Xinyu Sun
- Jinan Central Hospital, Shandong University, Jinan, Shandong, 250000, P R China
| | - Jiajia Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, P R China
| | - Hanwen Zhang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, P R China
| | - Jing Hu
- Department of Pathology, Shandong University Qilu Hospital, Jinan, Shandong, 250000, P R China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, P R China.
- Department of Pathology, Shandong University Qilu Hospital, Jinan, Shandong, 250000, P R China.
| |
Collapse
|
20
|
Rodarte KE, Heyman SN, Guo L, Flores L, Savage TK, Villarreal J, Deng S, Xu L, Shah RB, Oliver TG, Johnson JE. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res 2024; 84:3522-3537. [PMID: 39264686 PMCID: PMC11534540 DOI: 10.1158/0008-5472.can-24-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Most patients with prostate adenocarcinoma develop resistance to therapies targeting the androgen receptor (AR). Consequently, a portion of these patients develop AR-independent neuroendocrine (NE) prostate cancer (NEPC), a rapidly progressing cancer with limited therapies and poor survival outcomes. Current research to understand the progression to NEPC suggests a model of lineage plasticity whereby AR-dependent luminal-like tumors progress toward an AR-independent NEPC state. Genetic analysis of human NEPC identified frequent loss of RB1 and TP53, and the loss of both genes in experimental models mediates the transition to a NE lineage. Transcriptomics studies have shown that lineage transcription factors ASCL1 and NEUROD1 are present in NEPC. In this study, we modeled the progression of prostate adenocarcinoma to NEPC by establishing prostate organoids and subsequently generating subcutaneous allograft tumors from genetically engineered mouse models harboring Cre-induced loss of Rb1 and Trp53 with Myc overexpression (RPM). These tumors were heterogeneous and displayed adenocarcinoma, squamous, and NE features. ASCL1 and NEUROD1 were expressed within NE-defined regions, with ASCL1 being predominant. Genetic loss of Ascl1 in this model did not decrease tumor incidence, growth, or metastasis; however, there was a notable decrease in NE identity and an increase in basal-like identity. This study provides an in vivo model to study progression to NEPC and establishes the requirement for ASCL1 in driving NE differentiation in prostate cancer. Significance: Modeling lineage transitions in prostate cancer and testing dependencies of lineage transcription factors have therapeutic implications, given the emergence of treatment-resistant, aggressive forms of neuroendocrine prostate cancer. See related commentary by McQuillen and Brady, p. 3499.
Collapse
Affiliation(s)
- Kathia E. Rodarte
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shaked Nir Heyman
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lydia Flores
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trisha K. Savage
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Villarreal
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajal B. Shah
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, NC 27708, USA
| | - Jane E. Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H, Yoder S, Zhao H, Mao C, Kang W, Pulina MV, Lawrence KE, Gopalan A, Zaidi S, Yoo K, Choi J, Fan N, Gerstner O, Karthaus WR, DeStanchina E, Ruggles KV, Westcott PMK, Chaligné R, Pe'er D, Sawyers CL. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. NATURE CANCER 2024; 5:1641-1659. [PMID: 39394434 PMCID: PMC11584404 DOI: 10.1038/s43018-024-00838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/06/2024] [Indexed: 10/13/2024]
Abstract
Lineage plasticity is a hallmark of cancer progression that impacts therapy outcomes, yet the mechanisms mediating this process remain unclear. Here, we introduce a versatile in vivo platform to interrogate neuroendocrine lineage transformation throughout prostate cancer progression. Transplanted mouse prostate organoids with human-relevant driver mutations (Rb1-/-; Trp53-/-; cMyc+ or Pten-/-; Trp53-/-; cMyc+) develop adenocarcinomas, but only those with Rb1 deletion advance to aggressive, ASCL1+ neuroendocrine prostate cancer (NEPC) resistant to androgen receptor signaling inhibitors. Notably, this transition requires an in vivo microenvironment not replicated by conventional organoid culture. Using multiplexed immunofluorescence and spatial transcriptomics, we reveal that ASCL1+ cells arise from KRT8+ luminal cells, progressing into transcriptionally heterogeneous ASCL1+;KRT8- NEPC. Ascl1 loss in established NEPC causes transient regression followed by recurrence, but its deletion before transplantation abrogates lineage plasticity, resulting in castration-sensitive adenocarcinomas. This dynamic model highlights the importance of therapy timing and offers a platform to identify additional lineage plasticity drivers.
Collapse
Affiliation(s)
- Rodrigo Romero
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tinyi Chu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tania J González Robles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Perianne Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yubin Xie
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harmanpreet Kaur
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Yoder
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chenyi Mao
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria V Pulina
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kayla E Lawrence
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olivia Gerstner
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa DeStanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly V Ruggles
- Institute of Systems Genetics, Department of Precision Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
22
|
Perez LM, Venugopal SV, Martin AS, Freedland SJ, Di Vizio D, Freeman MR. Mechanisms governing lineage plasticity and metabolic reprogramming in cancer. Trends Cancer 2024; 10:1009-1022. [PMID: 39218770 DOI: 10.1016/j.trecan.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Dynamic alterations in cellular phenotypes during cancer progression are attributed to a phenomenon known as 'lineage plasticity'. This process is associated with therapeutic resistance and involves concurrent shifts in metabolic states that facilitate adaptation to various stressors inherent in malignant growth. Certain metabolites also serve as synthetic reservoirs for chromatin modification, thus linking metabolic states with epigenetic regulation. There remains a critical need to understand the mechanisms that converge on lineage plasticity and metabolic reprogramming to prevent the emergence of lethal disease. This review attempts to offer an overview of our current understanding of the interplay between metabolic reprogramming and lineage plasticity in the context of cancer, highlighting the intersecting drivers of cancer hallmarks, with an emphasis on solid tumors.
Collapse
Affiliation(s)
- Lillian M Perez
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Smrruthi V Venugopal
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna St Martin
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
23
|
Chatterjee A, Gallent B, Katiki M, Qian C, Harter MR, Silletti S, Komives EA, Freeman MR, Murali R. The homeodomain regulates stable DNA binding of prostate cancer target ONECUT2. Nat Commun 2024; 15:9037. [PMID: 39426953 PMCID: PMC11490551 DOI: 10.1038/s41467-024-53159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The CUT and homeodomain are ubiquitous DNA binding elements often tandemly arranged in multiple transcription factor families. However, how the CUT and homeodomain work concertedly to bind DNA remains unknown. Using ONECUT2, a driver and therapeutic target of advanced prostate cancer, we show that while the CUT initiates DNA binding, the homeodomain thermodynamically stabilizes the ONECUT2-DNA complex through allosteric modulation of CUT. We identify an arginine pair in the ONECUT family homeodomain that can adapt to DNA sequence variations. Base interactions by this ONECUT family-specific arginine pair as well as the evolutionarily conserved residues are critical for optimal DNA binding and ONECUT2 transcriptional activity in a prostate cancer model. The evolutionarily conserved base interactions additionally determine the ONECUT2-DNA binding energetics. These findings provide insights into the cooperative DNA binding by CUT-homeodomain proteins.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brad Gallent
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Madhusudhanarao Katiki
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chen Qian
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Matthew R Harter
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steve Silletti
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth A Komives
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michael R Freeman
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Heimdörfer D, Artamonova N, Culig Z, Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J Cancer Res Clin Oncol 2024; 150:462. [PMID: 39412660 PMCID: PMC11485041 DOI: 10.1007/s00432-024-05983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related deaths among men. While adenocarcinoma of the prostate (adeno-PCa) is well-characterized, neuroendocrine prostate cancer (NEPC) remains poorly understood. Generally, NEPC is a rare but highly aggressive histological variant, however its limited patho-physiological understanding leads to insufficient treatment options associated with low survival rates for NEPC patients. Current treatments for NEPC, including platinum-based therapies, offer some efficacy, but there is a significant need for more targeted approaches. This review summarizes the molecular characteristics of NEPC in contrast to adeno-PCa, providing a comprehensive comparison. A significant portion of the discussion is dedicated to the tumor microenvironment (TME), which has recently been identified as a key factor in tumor progression. The TME includes various cells, signaling molecules, and the extracellular matrix surrounding the tumor, all of which play critical roles in cancer development and response to treatment. Understanding the TME's influence on NEPC could uncover new avenues for innovative treatment strategies, potentially improving outcomes for patients with this challenging variant of PCa.
Collapse
Affiliation(s)
- David Heimdörfer
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Nastasiia Artamonova
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
25
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
26
|
Liu S, Nam HS, Zeng Z, Deng X, Pashaei E, Zang Y, Yang L, Li C, Huang J, Wendt MK, Lu X, Huang R, Wan J. CDHu40: a novel marker gene set of neuroendocrine prostate cancer. Brief Bioinform 2024; 25:bbae471. [PMID: 39318189 PMCID: PMC11422505 DOI: 10.1093/bib/bbae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named CDHu40, demonstrated superior performance in distinguishing NE PCa (NEPC) and non-NEPC samples based on gene expression profiles. CDHu40 outperformed most of the other published marker sets, excelling particularly at the prognostic level. Notably, some marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Hye Seung Nam
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Ziyu Zeng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
| | - Xuehong Deng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Elnaz Pashaei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Yong Zang
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Lei Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN 46202, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr Room P3-12, Gainesville, FL 32603, United States
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Davison Building, 40 Duke Medicine, Durham, NC 27710, United States
| | - Michael K Wendt
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, United States
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| |
Collapse
|
27
|
Sakurai K, Ando T, Sakai Y, Mori Y, Nakamura S, Kato T, Ito H. PROX1 is a regulator of neuroendocrine-related gene expression in lung carcinoid. Hum Cell 2024; 37:1559-1566. [PMID: 39066858 DOI: 10.1007/s13577-024-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Lung neuroendocrine neoplasms (NENs) are a diverse group of tumors characterized by neuroendocrine (NE) differentiation. Among lung NENs, lung carcinoid (LC) is a rare tumor with unique characteristics. Recent research has highlighted the importance of transcription factors (TFs) in establishing gene expression programs in lung NENs such as small cell lung carcinoma. However, the TFs that control the gene expression of LC are largely unknown. In this study, we report the expression and potential function of a TF called Prospero homeobox protein1 (PROX1) in LC. Publicly available transcriptome data suggested that PROX1 was highly expressed in LC tissues, which was confirmed by immunohistochemical analysis on a tissue microarray. Knockdown of PROX1 did not impact the cellular viability of an LC-derived cell line, NCI-H727. Meanwhile, transcriptome analysis revealed that PROX1 knockdown altered the expression of genes involved in NE differentiation. ASCL1, CHGA, CALCA, and LINC00261 were suggested as downstream genes of PROX1. These findings indicate that PROX1 may play an important role in the NE identity of LC by regulating the expression of key target genes.
Collapse
Affiliation(s)
- Kouhei Sakurai
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Tatsuya Ando
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuichiro Mori
- School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Satoru Nakamura
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Central Research Laboratory, Nitto Fuji Flour Milling Co., Ltd., Tokyo, 143-0001, Japan
| | - Taku Kato
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
28
|
de Almeida FN, Vasciaveo A, Antao AM, Zou M, Di Bernardo M, de Brot S, Rodriguez-Calero A, Chui A, Wang ALE, Floc'h N, Kim JY, Afari SN, Mukhammadov T, Arriaga JM, Lu J, Shen MM, Rubin MA, Califano A, Abate-Shen C. A forward genetic screen identifies Sirtuin1 as a driver of neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609538. [PMID: 39253480 PMCID: PMC11383054 DOI: 10.1101/2024.08.24.609538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although localized prostate cancer is relatively indolent, advanced prostate cancer manifests with aggressive and often lethal variants, including neuroendocrine prostate cancer (NEPC). To identify drivers of aggressive prostate cancer, we leveraged Sleeping Beauty (SB) transposon mutagenesis in a mouse model based on prostate-specific loss-of-function of Pten and Tp53 . Compared with control mice, SB mice developed more aggressive prostate tumors, with increased incidence of metastasis. Notably, a significant percentage of the SB prostate tumors display NEPC phenotypes, and the transcriptomic features of these SB mouse tumors recapitulated those of human NEPC. We identified common SB transposon insertion sites (CIS) and prioritized associated CIS-genes differentially expressed in NEPC versus non-NEPC SB tumors. Integrated analysis of CIS-genes encoding for proteins representing upstream, post-translational modulators of master regulators controlling the transcriptional state of SB -mouse and human NEPC tumors identified sirtuin 1 ( Sirt1 ) as a candidate mechanistic determinant of NEPC. Gain-of-function studies in human prostate cancer cell lines confirmed that SIRT1 promotes NEPC, while its loss-of-function or pharmacological inhibition abrogates NEPC. This integrative analysis is generalizable and can be used to identify novel cancer drivers for other malignancies. Summary Using an unbiased forward mutagenesis screen in an autochthonous mouse model, we have investigated mechanistic determinants of aggressive prostate cancer. SIRT1 emerged as a key regulator of neuroendocrine prostate cancer differentiation and a potential target for therapeutic intervention.
Collapse
|
29
|
Bonilla ME, Radyk MD, Perricone MD, Elhossiny AM, Harold AC, Medina-Cabrera PI, Kadiyala P, Shi J, Frankel TL, Carpenter ES, Green MD, Mitrea C, Lyssiotis CA, Pasca di Magliano M. Metabolic landscape of the healthy pancreas and pancreatic tumor microenvironment. JCI Insight 2024; 9:e180114. [PMID: 39315547 PMCID: PMC11457849 DOI: 10.1172/jci.insight.180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaqi Shi
- Rogel Cancer Center
- Department of Pathology
| | | | - Eileen S. Carpenter
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Michael D. Green
- Program in Cancer Biology
- Rogel Cancer Center
- Department of Radiation Oncology; and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Marina Pasca di Magliano
- Rogel Cancer Center
- Department of Surgery
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Liu C, Chen J, Cong Y, Chen K, Li H, He Q, Chen L, Song Y, Xing Y. PROX1 drives neuroendocrine plasticity and liver metastases in prostate cancer. Cancer Lett 2024; 597:217068. [PMID: 38901665 DOI: 10.1016/j.canlet.2024.217068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
With the widespread use of anti-androgen therapy, such as abiraterone and enzalutamide, the incidence of neuroendocrine prostate cancer (NEPC) is increasing. NEPC is a lethal form of prostate cancer (PCa), with a median overall survival of less than one year after diagnosis. In addition to the common bone metastases seen in PCa, NEPC exhibits characteristics of visceral metastases, notably liver metastasis, which serves as an indicator of a poor prognosis clinically. Key factors driving the neuroendocrine plasticity of PCa have been identified, yet the underlying mechanism behind liver metastasis remains unclear. In this study, we identified PROX1 as a driver of neuroendocrine plasticity in PCa, responsible for promoting liver metastases. Mechanistically, anti-androgen therapy alleviates transcriptional inhibition of PROX1. Subsequently, elevated PROX1 levels drive both neuroendocrine plasticity and liver-specific transcriptional reprogramming, promoting liver metastases. Moreover, liver metastases in PCa induced by PROX1 depend on reprogrammed lipid metabolism, a disruption that effectively reduces the formation of liver metastases.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiawei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yukun Cong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Kang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haoran Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Qingliu He
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
31
|
Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, Yan Y, Cadaneanu R, Zhang B, Kaochar S, Freedland S, Posadas E, Ellis L, Di Vizio D, Morrissey C, Nelson P, Brady L, Murali R, Campbell M, Yang W, Knudsen B, Mostaghel E, Ye H, Garraway I, You S, Freeman M. ONECUT2 acts as a lineage plasticity driver in adenocarcinoma as well as neuroendocrine variants of prostate cancer. Nucleic Acids Res 2024; 52:7740-7760. [PMID: 38932701 PMCID: PMC11260453 DOI: 10.1093/nar/gkae547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 gene targets include the glucocorticoid receptor (GR; NR3C1) and the NE splicing factor SRRM4, which are key drivers of lineage plasticity. Thus, OC2, despite its previously described NEPC driver function, can indirectly activate a portion of the AR cistrome through epigenetic activation of GR. Mechanisms by which OC2 regulates gene expression include promoter binding, enhancement of genome-wide chromatin accessibility, and super-enhancer reprogramming. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC and support enhanced efforts to therapeutically target OC2 as a means of suppressing treatment-resistant disease.
Collapse
Affiliation(s)
- Chen Qian
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Qian Yang
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mirja Rotinen
- Department of Health Sciences, Public University of Navarre, Pamplona, Navarra, Spain
| | - Rongrong Huang
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hyoyoung Kim
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brad Gallent
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yiwu Yan
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Radu M Cadaneanu
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Baohui Zhang
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Salma Kaochar
- Department of Medicine Section Hematology/Oncology Baylor College of Medicine, Houston, 77030 TX, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leigh Ellis
- Center for Prostate Disease Research, Mutha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20814, USA
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dolores Di Vizio
- Departments of Urology, Pathology and Laboratory Medicine, and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lauren Brady
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ramachandran Murali
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moray J Campbell
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Pathology and Cancer Center, Stony Brook University, NY 11794, USA
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84108, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA
| | - Elahe A Mostaghel
- Geriatric Research, Education and Clinical Center (GRECC), U.S. Department of Veterans Affairs Puget Sound Health Care System, Seattle, WA 98133, USA
| | - Huihui Ye
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Isla P Garraway
- Department of Surgical and Perioperative Care, VA Greater Los Angeles; Department of Urology and Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Urology and Computational Biomedicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
32
|
Ku SY, Wang Y, Garcia MM, Yamada Y, Mizuno K, Long MD, Rosario S, Chinnam M, Al Assaad M, Puca L, Kim MJ, Bakht MK, Venkadakrishnan VB, Robinson BD, Acosta AM, Wadosky KM, Mosquera JM, Goodrich DW, Beltran H. Notch signaling suppresses neuroendocrine differentiation and alters the immune microenvironment in advanced prostate cancer. J Clin Invest 2024; 134:e175217. [PMID: 39024561 PMCID: PMC11364388 DOI: 10.1172/jci175217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Notch signaling can have either an oncogenic or tumor-suppressive function in cancer depending on the cancer type and cellular context. While Notch can be oncogenic in early prostate cancer, we identified significant downregulation of the Notch pathway during prostate cancer progression from adenocarcinoma to neuroendocrine (NE) prostate cancer, where it functions as a tumor suppressor. Activation of Notch in NE and Rb1/Trp53-deficient prostate cancer models led to phenotypic conversion toward a more indolent, non-NE state with glandular features and expression of luminal lineage markers. This was accompanied by upregulation of MHC and type I IFN and immune cell infiltration. Overall, these data support Notch signaling as a suppressor of NE differentiation in advanced prostate cancer and provide insights into how Notch signaling influences lineage plasticity and the tumor microenvironment (TME).
Collapse
Affiliation(s)
- Sheng-Yu Ku
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Maria Mica Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kei Mizuno
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer Rosario
- Department of Pharmacology and Therapeutics and
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | - Loredana Puca
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Min Jin Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Martin K. Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | - Andrés M. Acosta
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | | | - David W. Goodrich
- Department of Pharmacology and Therapeutics and
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Lin M, Tu RH, Wu SZ, Zhong Q, Weng K, Wu YK, Lin GT, Wang JB, Zheng CH, Xie JW, Lin JX, Chen QY, Huang CM, Cao LL, Li P. Increased ONECUT2 induced by Helicobacter pylori promotes gastric cancer cell stemness via an AKT-related pathway. Cell Death Dis 2024; 15:497. [PMID: 38997271 PMCID: PMC11245518 DOI: 10.1038/s41419-024-06885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Helicobacter pylori (HP) infection initiates and promotes gastric carcinogenesis. ONECUT2 shows promise for tumor diagnosis, prognosis, and treatment. This study explored ONECUT2's role and the specific mechanism underlying HP infection-associated gastric carcinogenesis to suggest a basis for targeting ONECUT2 as a therapeutic strategy for gastric cancer (GC). Multidimensional data supported an association between ONECUT2, HP infection, and GC pathogenesis. HP infection upregulated ONECUT2 transcriptional activity via NFκB. In vitro and in vivo experiments demonstrated that ONECUT2 increased the stemness of GC cells. ONECUT2 was also shown to inhibit PPP2R4 transcription, resulting in reduced PP2A activity, which in turn increased AKT/β-catenin phosphorylation. AKT/β-catenin phosphorylation facilitates β-catenin translocation to the nucleus, initiating transcription of downstream stemness-associated genes in GC cells. HP infection upregulated the reduction of AKT and β-catenin phosphorylation triggered by ONECUT2 downregulation via ONECUT2 induction. Clinical survival analysis indicated that high ONECUT2 expression may indicate poor prognosis in GC. This study highlights a critical role played by ONECUT2 in promoting HP infection-associated GC by enhancing cell stemness through the PPP2R4/AKT/β-catenin signaling pathway. These findings suggest promising therapeutic strategies and potential targets for GC treatment.
Collapse
Affiliation(s)
- Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Sheng-Ze Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qing Zhong
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Kai Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Guang-Tan Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
34
|
Hiltunen J, Helminen L, Paakinaho V. Glucocorticoid receptor action in prostate cancer: the role of transcription factor crosstalk. Front Endocrinol (Lausanne) 2024; 15:1437179. [PMID: 39027480 PMCID: PMC11254642 DOI: 10.3389/fendo.2024.1437179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies and is primarily driven by aberrant androgen receptor (AR) signaling. While AR-targeted therapies form the cornerstone of prostate cancer treatment, they often inadvertently activate compensatory pathways, leading to therapy resistance. This resistance is frequently mediated through changes in transcription factor (TF) crosstalk, reshaping gene regulatory programs and ultimately weakening treatment efficacy. Consequently, investigating TF interactions has become crucial for understanding the mechanisms driving therapy-resistant cancers. Recent evidence has highlighted the crosstalk between the glucocorticoid receptor (GR) and AR, demonstrating that GR can induce prostate cancer therapy resistance by replacing the inactivated AR, thereby becoming a driver of the disease. In addition to this oncogenic role, GR has also been shown to act as a tumor suppressor in prostate cancer. Owing to this dual role and the widespread use of glucocorticoids as adjuvant therapy, it is essential to understand GR's actions across different stages of prostate cancer development. In this review, we explore the current knowledge of GR in prostate cancer, with a specific focus on its crosstalk with other TFs. GR can directly and indirectly interact with a variety of TFs, and these interactions vary significantly depending on the type of prostate cancer cells. By highlighting these crosstalk interactions, we aim to provide insights that can guide the research and development of new GR-targeted therapies to mitigate its harmful effects in prostate cancer.
Collapse
Affiliation(s)
| | | | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Zhang L, Li C, Song X, Guo R, Zhao W, Liu C, Chen X, Song Q, Wu B, Deng N. Targeting ONECUT2 inhibits tumor angiogenesis via down-regulating ZKSCAN3/VEGFA. Biochem Pharmacol 2024; 225:116315. [PMID: 38797268 DOI: 10.1016/j.bcp.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo. ChIP-Seq showed that 228 target genes of OC-2 were identified and they were associated with tumor growth, metastasis, angiogenesis and signal transduction; OC-2 bound to ZKSCAN3 at promoter region. Luciferase assays showed that ZKSCAN3 was identified as target gene of OC-2 and VEGFA was identified as target gene of ZKSCAN3; OC-2 promoted VEGFA expression via activating ZKSCAN3 transcriptional program. Importantly, OC-2 KD down-regulated VEGFA secretion to suppress tumor angiogenesis of HUVECs. Besides VEGFA, OC-2 was positively correlated with other angiogenic factors HIF-1α, FGF2, EGFL6 and HGF. Meanwhile, ERK1/2 and Smad1 signaling pathways might be related to function of OC-2 driving tumor aggressiveness. We revealed that OC-2 might regulate tumor growth, metastasis, angiogenesis via ERK1/2, Smad1 signaling pathways and regulate VEGFA expression for tumor angiogenesis via activating ZKSCAN3 transcriptional program, indicating that OC-2 was a convincing target to develop novel anti-tumor drugs based on angiogenesis.
Collapse
Affiliation(s)
- Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China; School of Medicine, Foshan University, Foshan 528225, China.
| | - Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Raoqing Guo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Wenli Zhao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xi Chen
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Liu YN, Chen WY, Yeh HL, Chen WH, Jiang KC, Li HR, Dung PVT, Chen ZQ, Lee WJ, Hsiao M, Huang J, Wen YC. MCTP1 increases the malignancy of androgen-deprived prostate cancer cells by inducing neuroendocrine differentiation and EMT. Sci Signal 2024; 17:eadc9142. [PMID: 38861615 DOI: 10.1126/scisignal.adc9142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Neuroendocrine prostate cancer (PCa) (NEPC), an aggressive subtype that is associated with poor prognosis, may arise after androgen deprivation therapy (ADT). We investigated the molecular mechanisms by which ADT induces neuroendocrine differentiation in advanced PCa. We found that transmembrane protein 1 (MCTP1), which has putative Ca2+ sensing function and multiple Ca2+-binding C2 domains, was abundant in samples from patients with advanced PCa. MCTP1 was associated with the expression of the EMT-associated transcription factors ZBTB46, FOXA2, and HIF1A. The increased abundance of MCTP1 promoted PC3 prostate cancer cell migration and neuroendocrine differentiation and was associated with SNAI1-dependent EMT in C4-2 PCa cells after ADT. ZBTB46 interacted with FOXA2 and HIF1A and increased the abundance of MCTP1 in a hypoxia-dependent manner. MCTP1 stimulated Ca2+ signaling and AKT activation to promote EMT and neuroendocrine differentiation by increasing the SNAI1-dependent expression of EMT and neuroendocrine markers, effects that were blocked by knockdown of MCTP1. These data suggest an oncogenic role for MCTP1 in the maintenance of a rare and aggressive prostate cancer subtype through its response to Ca2+ and suggest its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Lien Yeh
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Hao Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuo-Ching Jiang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Ru Li
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Phan Vu Thuy Dung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Zi-Qing Chen
- Division of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jiaoti Huang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yu-Ching Wen
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
37
|
Wang Z, Townley SL, Zhang S, Liu M, Li M, Labaf M, Patalano S, Venkataramani K, Siegfried KR, Macoska JA, Han D, Gao S, Risbridger GP, Taylor RA, Lawrence MG, He HH, Selth LA, Cai C. FOXA2 rewires AP-1 for transcriptional reprogramming and lineage plasticity in prostate cancer. Nat Commun 2024; 15:4914. [PMID: 38851846 PMCID: PMC11162502 DOI: 10.1038/s41467-024-49234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
FOXA family proteins act as pioneer factors by remodeling compact chromatin structures. FOXA1 is crucial for the chromatin binding of the androgen receptor (AR) in both normal prostate epithelial cells and the luminal subtype of prostate cancer (PCa). Recent studies have highlighted the emergence of FOXA2 as an adaptive response to AR signaling inhibition treatments. However, the role of the FOXA1 to FOXA2 transition in regulating cancer lineage plasticity remains unclear. Our study demonstrates that FOXA2 binds to distinct classes of developmental enhancers in multiple AR-independent PCa subtypes, with its binding depending on LSD1. Moreover, we reveal that FOXA2 collaborates with JUN at chromatin and promotes transcriptional reprogramming of AP-1 in lineage-plastic cancer cells, thereby facilitating cell state transitions to multiple lineages. Overall, our findings underscore the pivotal role of FOXA2 as a pan-plasticity driver that rewires AP-1 to induce the differential transcriptional reprogramming necessary for cancer cell lineage plasticity.
Collapse
Affiliation(s)
- Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
- Yale Stem Cell Center, Department of Cell Biology and Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Scott L Townley
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, 5042, Australia
| | - Songqi Zhang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Maryam Labaf
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Mathematics, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kavita Venkataramani
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Kellee R Siegfried
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Jill A Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Shuai Gao
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, 10595, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, 10595, USA
| | - Gail P Risbridger
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, 3800, Australia
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, 3144, Australia
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Bedford Park, SA, 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA, 5042, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA, 02125, USA.
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA.
| |
Collapse
|
38
|
Chaudary N, Wiljer E, Foltz W, Thapa P, Hill RP, Milosevic M. An orthotopic prostate cancer model for new treatment development using syngeneic or patient-derived tumors. Prostate 2024; 84:823-831. [PMID: 38606933 DOI: 10.1002/pros.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites. METHODS This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging. RESULTS The TRAMP-C2 tumors grew rapidly to a predetermined endpoint size of 10 mm within 3 weeks, whereas the NEPC tumors grew at a slower rate over 7 weeks. The tumors were readily detected by MR and confidently identified when they were approximately 2-3 mm in size. The tumors were less well-defined on CT. The TRAMP-C2 tumors were characterized by amorphous sheets of poorly differentiated cells similar to a high-grade prostatic adenocarcinoma and frequent macroscopic peritoneal and lymph node metastases. In contrast, the NEPC's displayed a neuroendocrine morphology with polygonal cells arranged in nests and solid sheets and high count. There was a local invasion of the bladder and other adjacent tissues but no identifiable metastases. The TRAMP-C2 tumors were more hypoxic than the NEPC tumors. CONCLUSIONS This novel preclinical orthotopic prostate cancer mouse model is suitable for either syngeneic or patient derived tumors and will be effective in developing and advancing the current selection of treatments for patients with prostate cancer.
Collapse
Affiliation(s)
- Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Canada
| | - E Wiljer
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Warren Foltz
- Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Richard P Hill
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
40
|
Sunita Prajapati K, Gupta S, Chaudhri S, Kumar S. Role of ONECUT family transcription factors in cancer and other diseases. Exp Cell Res 2024; 438:114035. [PMID: 38593917 DOI: 10.1016/j.yexcr.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Members of ONECUT transcription factor play an essential role in several developmental processes, however, the atypical expression of ONECUT proteins lead to numerous diseases, including cancer. ONECUT family proteins promote cell proliferation, progression, invasion, metastasis, angiogenesis, and stemness. This family of proteins interacts with other proteins such as KLF4, TGF-β, VEGFA, PRC2, SMAD3 and alters their expression involved in the regulation of various signaling pathways including Jak/Stat3, Akt/Erk, TGF-β, Smad2/3, and HIF-1α. Furthermore, ONECUT proteins are proposed as predictive biomarkers for pancreatic and gastric cancers. The present review summarizes the involvement of ONECUT family proteins in the development and progression of various human cancers and other diseases.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India.
| |
Collapse
|
41
|
Wang Y, Xue H, Zhu X, Lin D, Dong X, Chen Z, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang N, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Neuroendocrine Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591428. [PMID: 38746377 PMCID: PMC11092479 DOI: 10.1101/2024.04.27.591428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background and Objective Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.
Collapse
|
42
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
43
|
Liu S, Nam HS, Zeng Z, Deng X, Pashaei E, Zang Y, Yang L, Li C, Huang J, Wendt MK, Lu X, Huang R, Wan J. CDHu40: a novel marker gene set of neuroendocrine prostate cancer (NEPC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587205. [PMID: 38585861 PMCID: PMC10996696 DOI: 10.1101/2024.03.28.587205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen (PSA) levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor (AR) signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction (PPI) networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named as CDHu40, demonstrated superior performance in distinguishing NE prostate cancer (NEPC) and non-NEPC samples based on gene expression profiles compared to other published marker sets. Notably, some novel marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression. Significance our study integrates gene expression variances in multiple NEPC studies and protein-protein interaction network to pinpoint a specific set of NEPC maker genes namely CDHu40. These genes and scores based on their gene expression levels effectively distinguish NEPC samples and underscore the clinical prognostic significance and potential mechanism.
Collapse
|
44
|
Deng Y, Lin Y, Chen S, Xiang Y, Chen H, Qi S, Oh HS, Das B, Komazin-Meredith G, Pesola JM, Knipe DM, Coen DM, Pan D. Neuronal miR-9 promotes HSV-1 epigenetic silencing and latency by repressing Oct-1 and Onecut family genes. Nat Commun 2024; 15:1991. [PMID: 38443365 PMCID: PMC10914762 DOI: 10.1038/s41467-024-46057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) latent infection entails repression of viral lytic genes in neurons. By functional screening using luciferase-expressing HSV-1, we identify ten neuron-specific microRNAs potentially repressing HSV-1 neuronal replication. Transfection of miR-9, the most active candidate from the screen, decreases HSV-1 replication and gene expression in Neuro-2a cells. Ectopic expression of miR-9 from lentivirus or recombinant HSV-1 suppresses HSV-1 replication in male primary mouse neurons in culture and mouse trigeminal ganglia in vivo, and reactivation from latency in the primary neurons. Target prediction and validation identify transcription factors Oct-1, a known co-activator of HSV transcription, and all three Onecut family members as miR-9 targets. Knockdown of ONECUT2 decreases HSV-1 yields in Neuro-2a cells. Overexpression of each ONECUT protein increases HSV-1 replication in Neuro-2a cells, human induced pluripotent stem cell-derived neurons, and primary mouse neurons, and accelerates reactivation from latency in the mouse neurons. Mutagenesis, ChIP-seq, RNA-seq, ChIP-qPCR and ATAC-seq results suggest that ONECUT2 can nonspecifically bind to viral genes via its CUT domain, globally stimulate viral gene transcription, reduce viral heterochromatin and enhance the accessibility of viral chromatin. Thus, neuronal miR-9 promotes viral epigenetic silencing and latency by targeting multiple host transcription factors important for lytic gene activation.
Collapse
Affiliation(s)
- Yue Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Yuqi Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Siyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Yuhang Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Hongjia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Shuyuan Qi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Biswajit Das
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Yang Y, Fan S. Small cell lung cancer transformations from non-small cell lung cancer: Biological mechanism and clinical relevance. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:42-47. [PMID: 39170959 PMCID: PMC11332903 DOI: 10.1016/j.pccm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide, consisting of two major histological subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). In some cases, NSCLC patients may undergo a histological transformation to SCLC during clinical treatments, which is associated with resistance to targeted therapy, immunotherapy, or chemotherapy. The review provides a comprehensive analysis of SCLC transformation from NSCLC, including biological mechanism, clinical relevance, and potential treatment options after transformation, which may give a better understanding of SCLC transformation and provide support for further research to define better therapy options.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
46
|
Nagel S, Rand U, Pommerenke C, Meyer C. Transcriptional Landscape of CUT-Class Homeobox Genes in Blastic Plasmacytoid Dendritic Cell Neoplasm. Int J Mol Sci 2024; 25:2764. [PMID: 38474011 PMCID: PMC10932245 DOI: 10.3390/ijms25052764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
47
|
Luo Y, Feng X, Lang W, Xu W, Wang W, Mei C, Ye L, Zhu S, Wang L, Zhou X, Zeng H, Ma L, Ren Y, Jin J, Xu R, Huang G, Tong H. Ectopic expression of the transcription factor ONECUT3 drives a complex karyotype in myelodysplastic syndromes. J Clin Invest 2024; 134:e172468. [PMID: 38386414 PMCID: PMC11014670 DOI: 10.1172/jci172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Chromosomal instability is a prominent biological feature of myelodysplastic syndromes (MDS), with over 50% of patients with MDS harboring chromosomal abnormalities or a complex karyotype (CK). Despite this observation, the mechanisms underlying mitotic and chromosomal defects in MDS remain elusive. In this study, we identified ectopic expression of the transcription factor ONECUT3, which is associated with CKs and poorer survival outcomes in MDS. ONECUT3-overexpressing cell models exhibited enrichment of several notable pathways, including signatures of sister chromosome exchange separation and mitotic nuclear division with the upregulation of INCENP and CDCA8 genes. Notably, dysregulation of chromosome passenger complex (CPC) accumulation, besides the cell equator and midbody, during mitotic phases consequently caused cytokinesis failure and defective chromosome segregation. Mechanistically, the homeobox (HOX) domain of ONECUT3, serving as the DNA binding domain, occupied the unique genomic regions of INCENP and CDCA8 and transcriptionally activated these 2 genes. We identified a lead compound, C5484617, that functionally targeted the HOX domain of ONECUT3, inhibiting its transcriptional activity on downstream genes, and synergistically resensitized MDS cells to hypomethylating agents. This study revealed that ONECUT3 promoted chromosomal instability by transcriptional activation of INCENP and CDCA8, suggesting potential prognostic and therapeutic roles for targeting high-risk MDS patients with a CK.
Collapse
Affiliation(s)
- Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaomin Feng
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weihong Xu
- Stanford Genome Technology Center, Palo Alto, California, USA
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou, China
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Zeng
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
- Department of Pediatrics, Peking University People’s Hospital, Beijing, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rongzhen Xu
- Department of Hematology, The Second Affiliated Hospital, School of Medicine
| | - Gang Huang
- Department of Cell Systems and Anatomy, Department of Pathology and Laboratory Medicine, UT Health San Antonio, Joe R. and Teresa Lozano Long School of Medicine, Mays Cancer Center at UT Health San Antonio, San Antonio, Texas, USA
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, and
- Zhejiang Provincial Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Liu S, Chai T, Garcia-Marques F, Yin Q, Hsu EC, Shen M, Shaw Toland AM, Bermudez A, Hartono AB, Massey CF, Lee CS, Zheng L, Baron M, Denning CJ, Aslan M, Nguyen HM, Nolley R, Zoubeidi A, Das M, Kunder CA, Howitt BE, Soh HT, Weissman IL, Liss MA, Chin AI, Brooks JD, Corey E, Pitteri SJ, Huang J, Stoyanova T. UCHL1 is a potential molecular indicator and therapeutic target for neuroendocrine carcinomas. Cell Rep Med 2024; 5:101381. [PMID: 38244540 PMCID: PMC10897521 DOI: 10.1016/j.xcrm.2023.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
Neuroendocrine carcinomas, such as neuroendocrine prostate cancer and small-cell lung cancer, commonly have a poor prognosis and limited therapeutic options. We report that ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a deubiquitinating enzyme, is elevated in tissues and plasma from patients with neuroendocrine carcinomas. Loss of UCHL1 decreases tumor growth and inhibits metastasis of these malignancies. UCHL1 maintains neuroendocrine differentiation and promotes cancer progression by regulating nucleoporin, POM121, and p53. UCHL1 binds, deubiquitinates, and stabilizes POM121 to regulate POM121-associated nuclear transport of E2F1 and c-MYC. Treatment with the UCHL1 inhibitor LDN-57444 slows tumor growth and metastasis across neuroendocrine carcinomas. The combination of UCHL1 inhibitors with cisplatin, the standard of care used for neuroendocrine carcinomas, significantly delays tumor growth in pre-clinical settings. Our study reveals mechanisms of UCHL1 function in regulating the progression of neuroendocrine carcinomas and identifies UCHL1 as a therapeutic target and potential molecular indicator for diagnosing and monitoring treatment responses in these malignancies.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Timothy Chai
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | | | - Qingqing Yin
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Abel Bermudez
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Alifiani B Hartono
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher F Massey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chung S Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Maya Baron
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Caden J Denning
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Millie Das
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, USA; Department of Medicine, Division of Oncology, Stanford University, Stanford, CA, USA
| | | | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA, USA
| | - Michael A Liss
- Department of Urology, UT Health San Antonio, San Antonio, TX, USA
| | - Arnold I Chin
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - James D Brooks
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
50
|
Chen PC, Ning Y, Li H, Su JG, Shen JB, Feng QC, Jiang SH, Shi PD, Guo RS. Targeting ONECUT3 blocks glycolytic metabolism and potentiates anti-PD-1 therapy in pancreatic cancer. Cell Oncol (Dordr) 2024; 47:81-96. [PMID: 37606818 DOI: 10.1007/s13402-023-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Reprogramming glucose metabolism, also known as the Warburg effect (aerobic glycolysis), is a hallmark of cancers. Increased tumor glycolysis not only favors rapid cancer cell proliferation but reprograms the immune microenvironment to enable tumor progression. The transcriptional factor ONECUT3 plays key roles in the development of the liver and pancreas, however, limited is known about its oncogenic roles, particularly metabolic reprogramming. METHODS Immunohistochemistry and Western blotting are applied to determine the expression pattern of ONECUT3 and its clinical relevance in pancreatic ductal adenocarcinoma (PDAC). Knockdown and overexpression strategies are employed to determine the in vitro and in vivo functions of ONECUT3. Chromatin immunoprecipitation, luciferase reporter assay, and gene set enrichment analysis are used to decipher the molecular mechanisms. RESULTS The glycolytic metabolism is inversely associated with T-cell infiltration in PDAC. ONECUT3 is identified as a key regulator for PDAC glycolysis and CD8+ T-cell infiltration. Genetic silencing of ONECUT3 inhibits cell proliferation, promotes cell apoptosis, and reduces glycolytic metabolism as evidenced by glucose uptake, lactate production, and extracellular acidification rate. Opposite effects of ONECUT3 are observed in overexpression studies. ONECUT3 enhances aerobic glycolysis via transcriptional regulation of PDK1. Targeting ONECUT3 effectively suppresses tumor growth, increases CD8+ T-cell infiltration, and potentiates anti-PD-1 therapy in PDAC. Pharmacological inhibition of PDK1 also shows a synergistic effect with anti-PD-1 therapy. In clinical setting, ONECUT3 is closely associated with PDK1 expression and T-cell infiltration in PDAC and acts as an independent prognostic factor. CONCLUSIONS Our study reveals a previous unprecedented regulatory role of ONECUT3 in PDAC glycolysis and provides in vivo evidence that increased glycolysis is linked to an immunosuppressive microenvironment. Moreover, targeting ONECUT3-PDK1 axis may serve as a promising therapeutic approach for the treatment of PDAC.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Yong Ning
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jin-Gen Su
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Jiang-Bo Shen
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Qing-Chun Feng
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Pei-Dong Shi
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China.
| | - Run-Sheng Guo
- Department of General Surgery, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, P.R. China.
| |
Collapse
|