1
|
Yin Z, Zhang M, Jing C, Cai Y. Organic matter in geothermal springs and its association with the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176775. [PMID: 39378948 DOI: 10.1016/j.scitotenv.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Organic matter (OM) plays an important role in the biogeochemical cycles of carbon, nitrogen, and other elements, shaping the structure of the microbiome and vice versa. However, the molecular composition of OM and its impact on the microbial community in terrestrial geothermal environments remain unclear. In this study, we characterized the OM in water and sediment from a typical geothermal field using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. By combining high-throughput amplicon sequencing and multivariate analyses, we deciphered the association between OM components and microbial community. A surprisingly high chemodiversity of OM was observed in the waters (11,088 compounds) and sediments (7772 compounds) in geothermal springs. Sulfur-containing organic compounds, a characteristic molecular signature of geothermal springs, accounted for 21 % ± 5 % in waters and 33 % ± 4 % in sediments. Multivariate analyses revealed that both labile and recalcitrant fractions of OM (e.g., carbohydrates intensity and tannins chemodiversity) influenced the structure and function of the microbial community. Co-occurrence networks showed that Proteobacteria and Crenarchaeota accounted for most of the connections with OM in waters (33 % and 15 %, respectively) and sediments (15 % and 12 %, respectively), highlighting their key roles in carbon cycling. This study expands our understanding of the molecular compositions of OM in geothermal springs and highlights its potentially important role in global climate change through microbial carbon cycling.
Collapse
Affiliation(s)
- Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
2
|
Basili M, Rogers TJ, Nakagawa M, Yücel M, de Moor JM, Barry PH, Schrenk MO, Jessen GL, Sánchez-Murillo R, Zahirovic S, Bekaert DV, Ramirez CJ, Bastoni D, Cordone A, Lloyd KG, Giovannelli D. Subsurface microbial community structure shifts along the geological features of the Central American Volcanic Arc. PLoS One 2024; 19:e0308756. [PMID: 39536057 PMCID: PMC11560019 DOI: 10.1371/journal.pone.0308756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024] Open
Abstract
Subduction of the Cocos and Nazca oceanic plates beneath the Caribbean plate drives the upward movement of deep fluids enriched in carbon, nitrogen, sulfur, and iron along the Central American Volcanic Arc (CAVA). These compounds fuel diverse subsurface microbial communities that in turn alter the distribution, redox state, and isotopic composition of these compounds. Microbial community structure and functions vary according to deep fluid delivery across the arc, but less is known about how microbial communities differ along the axis of a convergent margin as geological features (e.g., extent of volcanism and subduction geometry) shift. Here, we investigate changes in bacterial 16S rRNA gene amplicons and geochemical analysis of deeply-sourced seeps along the southern CAVA, where subduction of the Cocos Ridge alters the geological setting. We find shifts in community composition along the convergent margin, with communities in similar geological settings clustering together independently of the proximity of sample sites. Microbial community composition correlates with geological variables such as host rock type, maturity of hydrothermal fluid and slab depth along different segments of the CAVA. This reveals tight coupling between deep Earth processes and subsurface microbial activity, controlling community distribution, structure and composition along a convergent margin.
Collapse
Affiliation(s)
- Marco Basili
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Timothy J. Rogers
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Mustafa Yücel
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - J. Maarten de Moor
- OVSICORI, Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Peter H. Barry
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, Lansing, MI, United States of America
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Ricardo Sánchez-Murillo
- Department of Earth and Environmental Sciences, Tracer Hydrology Group, University of Texas, Arlington, TX, United States of America
| | - Sabin Zahirovic
- School of Geosciences, The University of Sydney, Darlington, Australia
| | - David V. Bekaert
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- CRPG, Vandœuvre-lès-Nancy, France
| | | | - Deborah Bastoni
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Angelina Cordone
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- Earth Science Department, University of Southern California, Los Angeles, CA, United States of America
| | - Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States of America
| |
Collapse
|
3
|
Mondal N, Dutta S, Chatterjee S, Sarkar J, Mondal M, Roy C, Chakraborty R, Ghosh W. Aquificae overcomes competition by archaeal thermophiles, and crowding by bacterial mesophiles, to dominate the boiling vent-water of a Trans-Himalayan sulfur-borax spring. PLoS One 2024; 19:e0310595. [PMID: 39453910 PMCID: PMC11508158 DOI: 10.1371/journal.pone.0310595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 09/02/2024] [Indexed: 10/27/2024] Open
Abstract
Trans-Himalayan hot spring waters rich in boron, chlorine, sodium and sulfur (but poor in calcium and silicon) are known based on PCR-amplified 16S rRNA gene sequence data to harbor high diversities of infiltrating bacterial mesophiles. Yet, little is known about the community structure and functions, primary productivity, mutual interactions, and thermal adaptations of the microorganisms present in the steaming waters discharged by these geochemically peculiar spring systems. We revealed these aspects of a bacteria-dominated microbiome (microbial cell density ~8.5 × 104 mL-1; live:dead cell ratio 1.7) thriving in the boiling (85°C) fluid vented by a sulfur-borax spring called Lotus Pond, situated at 4436 m above the mean sea-level, in the Puga valley of eastern Ladakh, on the Changthang plateau. Assembly, annotation, and population-binning of >15-GB metagenomic sequence illuminated the numeral predominance of Aquificae. While members of this phylum accounted for 80% of all 16S rRNA-encoding reads within the metagenomic dataset, 14% of such reads were attributed to Proteobacteria. Post assembly, only 25% of all protein-coding genes identified were attributable to Aquificae, whereas 41% was ascribed to Proteobacteria. Annotation of metagenomic reads encoding 16S rRNAs, and/or PCR-amplified 16S rRNA genes, identified 163 bacterial genera, out of which 66 had been detected in past investigations of Lotus Pond's vent-water via 16S amplicon sequencing. Among these 66, Fervidobacterium, Halomonas, Hydrogenobacter, Paracoccus, Sulfurihydrogenibium, Tepidimonas, Thermus and Thiofaba (or their close phylogenomic relatives) were presently detected as metagenome-assembled genomes (MAGs). Remarkably, the Hydrogenobacter related MAG alone accounted for ~56% of the entire metagenome, even though only 15 out of the 66 genera consistently present in Lotus Pond's vent-water have strains growing in the laboratory at >45°C, reflecting the continued existence of the mesophiles in the ecosystem. Furthermore, the metagenome was replete with genes crucial for thermal adaptation in the context of Lotus Pond's geochemistry and topography. In terms of sequence similarity, a majority of those genes were attributable to phylogenetic relatives of mesophilic bacteria, while functionally they rendered functions such as encoding heat shock proteins, molecular chaperones, and chaperonin complexes; proteins controlling/modulating/inhibiting DNA gyrase; universal stress proteins; methionine sulfoxide reductases; fatty acid desaturases; different toxin-antitoxin systems; enzymes protecting against oxidative damage; proteins conferring flagellar structure/function, chemotaxis, cell adhesion/aggregation, biofilm formation, and quorum sensing. The Lotus Pond Aquificae not only dominated the microbiome numerically but also acted potentially as the main primary producers of the ecosystem, with chemolithotrophic sulfur oxidation (Sox) being the fundamental bioenergetic mechanism, and reductive tricarboxylic acid (rTCA) cycle the predominant carbon fixation pathway. The Lotus Pond metagenome contained several genes directly or indirectly related to virulence functions, biosynthesis of secondary metabolites including antibiotics, antibiotic resistance, and multi-drug efflux pumping. A large proportion of these genes being attributable to Aquificae, and Proteobacteria (very few were ascribed to Archaea), it could be worth exploring in the future whether antibiosis helped the Aquificae overcome niche overlap with other thermophiles (especially those belonging to Archaea), besides exacerbating the bioenergetic costs of thermal endurance for the mesophilic intruders of the ecosystem.
Collapse
Affiliation(s)
- Nibendu Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Subhajit Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagannath Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Mahamadul Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Wriddhiman Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
Colman DR, Keller LM, Arteaga-Pozo E, Andrade-Barahona E, St Clair B, Shoemaker A, Cox A, Boyd ES. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat Commun 2024; 15:7506. [PMID: 39209850 PMCID: PMC11362583 DOI: 10.1038/s41467-024-51841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The geosphere and the microbial biosphere have co-evolved for ~3.8 Ga, with many lines of evidence suggesting a hydrothermal habitat for life's origin. However, the extent that contemporary thermophiles and their hydrothermal habitats reflect those that likely existed on early Earth remains unknown. To address this knowledge gap, 64 geochemical analytes were measured and 1022 metagenome-assembled-genomes (MAGs) were generated from 34 chemosynthetic high-temperature springs in Yellowstone National Park and analysed alongside 444 MAGs from 35 published metagenomes. We used these data to evaluate co-variation in MAG taxonomy, metabolism, and phylogeny as a function of hot spring geochemistry. We found that cohorts of MAGs and their functions are discretely distributed across pH gradients that reflect different geochemical provinces. Acidic or circumneutral/alkaline springs harbor MAGs that branched later and are enriched in sulfur- and arsenic-based O2-dependent metabolic pathways that are inconsistent with early Earth conditions. In contrast, moderately acidic springs sourced by volcanic gas harbor earlier-branching MAGs that are enriched in anaerobic, gas-dependent metabolisms (e.g. H2, CO2, CH4 metabolism) that have been hypothesized to support early microbial life. Our results provide insight into the influence of redox state in the eco-evolutionary feedbacks between thermophiles and their habitats and suggest moderately acidic springs as early Earth analogs.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emilia Arteaga-Pozo
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eva Andrade-Barahona
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Anna Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Alysia Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
5
|
Benito Merino D, Lipp JS, Borrel G, Boetius A, Wegener G. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin. THE ISME JOURNAL 2024; 18:wrad004. [PMID: 38365230 PMCID: PMC10811742 DOI: 10.1093/ismejo/wrad004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
Hadarchaeota inhabit subsurface and hydrothermally heated environments, but previous to this study, they had not been cultured. Based on metagenome-assembled genomes, most Hadarchaeota are heterotrophs that grow on sugars and amino acids, or oxidize carbon monoxide or reduce nitrite to ammonium. A few other metagenome-assembled genomes encode alkyl-coenzyme M reductases (Acrs), β-oxidation, and Wood-Ljungdahl pathways, pointing toward multicarbon alkane metabolism. To identify the organisms involved in thermophilic oil degradation, we established anaerobic sulfate-reducing hexadecane-degrading cultures from hydrothermally heated sediments of the Guaymas Basin. Cultures at 70°C were enriched in one Hadarchaeon that we propose as Candidatus Cerberiarchaeum oleivorans. Genomic and chemical analyses indicate that Ca. C. oleivorans uses an Acr to activate hexadecane to hexadecyl-coenzyme M. A β-oxidation pathway and a tetrahydromethanopterin methyl branch Wood-Ljungdahl (mWL) pathway allow the complete oxidation of hexadecane to CO2. Our results suggest a syntrophic lifestyle with sulfate reducers, as Ca. C. oleivorans lacks a sulfate respiration pathway. Comparative genomics show that Acr, mWL, and β-oxidation are restricted to one family of Hadarchaeota, which we propose as Ca. Cerberiarchaeaceae. Phylogenetic analyses further indicate that the mWL pathway is basal to all Hadarchaeota. By contrast, the carbon monoxide dehydrogenase/acetyl-coenzyme A synthase complex in Ca. Cerberiarchaeaceae was horizontally acquired from Bathyarchaeia. The Acr and β-oxidation genes of Ca. Cerberiarchaeaceae are highly similar to those of other alkane-oxidizing archaea such as Ca. Methanoliparia and Ca. Helarchaeales. Our results support the use of Acrs in the degradation of petroleum alkanes and suggest a role of Hadarchaeota in oil-rich environments.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Klagenfurter Straße 2, 428359, Bremen, Germany
| | - Julius S Lipp
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| | - Guillaume Borrel
- Department of Microbiology, Unit Evolutionary Biology of the Microbial Cell, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Leobener Straße 8, 28359, Bremen, Germany
| |
Collapse
|
6
|
Garvin ZK, Abades SR, Trefault N, Alfaro FD, Sipes K, Lloyd KG, Onstott TC. Prevalence of trace gas-oxidizing soil bacteria increases with radial distance from Polloquere hot spring within a high-elevation Andean cold desert. THE ISME JOURNAL 2024; 18:wrae062. [PMID: 38625060 PMCID: PMC11094475 DOI: 10.1093/ismejo/wrae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.
Collapse
Affiliation(s)
- Zachary K Garvin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Sebastián R Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
7
|
Power JF, Carere CR, Welford HE, Hudson DT, Lee KC, Moreau JW, Ettema TJG, Reysenbach AL, Lee CK, Colman DR, Boyd ES, Morgan XC, McDonald IR, Craig Cary S, Stott MB. A genus in the bacterial phylum Aquificota appears to be endemic to Aotearoa-New Zealand. Nat Commun 2024; 15:179. [PMID: 38167814 PMCID: PMC10762115 DOI: 10.1038/s41467-023-43960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupō Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.
Collapse
Affiliation(s)
- Jean F Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Carlo R Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Holly E Welford
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand
| | - Daniel T Hudson
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
| | - Kevin C Lee
- Te Kura Pūtaiao | School of Science, Te Wānanga Aronui o Tāmaki Makau Rau | Auckland University of Technology, Auckland, 1010, Aotearoa New Zealand
| | - John W Moreau
- School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University & Research, 6708, WE, Wageningen, the Netherlands
| | | | - Charles K Lee
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Xochitl C Morgan
- Te Tari Moromoroiti me te Ārai Mate | Department of Microbiology and Immunology, Te Whare Wānanga o Ōtākou | University of Otago, Dunedin, 9054, Aotearoa New Zealand
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ian R McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand
| | - S Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, 3240, Aotearoa New Zealand.
| | - Matthew B Stott
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, 8140, Aotearoa New Zealand.
| |
Collapse
|
8
|
Colman DR, Veach A, Stefánsson A, Wurch L, Belisle BS, Podar PT, Yang Z, Klingeman D, Senba K, Murakami KS, Kristjánsson JK, Björnsdóttir SH, Boyd ES, Podar M. Tectonic and geological setting influence hot spring microbiology. Environ Microbiol 2023; 25:2481-2497. [PMID: 37553090 DOI: 10.1111/1462-2920.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Hydrothermal systems form at divergent and convergent boundaries of lithospheric plates and within plates due to weakened crust and mantle plumes, playing host to diverse microbial ecosystems. Little is known of how differences in tectonic setting influence the geochemical and microbial compositions of these hydrothermal ecosystems. Here, coordinated geochemical and microbial community analyses were conducted on 87 high-temperature (>65°C) water and sediment samples from hot springs in Yellowstone National Park, Wyoming, USA (n = 41; mantle plume setting), Iceland (n = 41, divergent boundary), and Japan (n = 5; convergent boundary). Region-specific variation in geochemistry and sediment-associated 16S rRNA gene amplicon sequence variant (ASV) composition was observed, with 16S rRNA gene assemblages being nearly completely distinguished by region and pH being the most explanatory parameter within regions. Several low abundance ASVs exhibited cosmopolitan distributions across regions, while most high-abundance ASVs were only identified in specific regions. The presence of some cosmopolitan ASVs across regions argues against dispersal limitation primarily shaping the distribution of taxa among regions. Rather, the results point to local tectonic and geologic characteristics shaping the geochemistry of continental hydrothermal systems that then select for distinct microbial assemblages. These results provide new insights into the co-evolution of hydrothermal systems and their microbial communities.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Allison Veach
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Andri Stefánsson
- Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland
| | - Louie Wurch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - B Shafer Belisle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter T Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kazuyo Senba
- Department of Microbiology, Beppu University, Beppu, Oita, Japan
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | | | | | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
9
|
Barbosa C, Tamayo-Leiva J, Alcorta J, Salgado O, Daniele L, Morata D, Díez B. Effects of hydrogeochemistry on the microbial ecology of terrestrial hot springs. Microbiol Spectr 2023; 11:e0024923. [PMID: 37754764 PMCID: PMC10581198 DOI: 10.1128/spectrum.00249-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 09/28/2023] Open
Abstract
Temperature, pH, and hydrochemistry of terrestrial hot springs play a critical role in shaping thermal microbial communities. However, the interactions of biotic and abiotic factors at this terrestrial-aquatic interface are still not well understood on a global scale, and the question of how underground events influence microbial communities remains open. To answer this, 11 new samples obtained from the El Tatio geothermal field were analyzed by 16S rRNA amplicon sequencing (V4 region), along with 191 samples from previous publications obtained from the Taupo Volcanic Zone, the Yellowstone Plateau Volcanic Field, and the Eastern Tibetan Plateau, with their temperature, pH, and major ion concentration. Microbial alpha diversity was lower in acid-sulfate waters, and no significant correlations were found with temperature. However, moderate correlations were observed between chemical parameters such as pH (mostly constrained to temperatures below 70°C), SO4 2- and abundances of members of the phyla Armatimonadota, Deinococcota, Chloroflexota, Campilobacterota, and Thermoplasmatota. pH and SO4 2- gradients were explained by phase separation of sulfur-rich hydrothermal fluids and oxidation of reduced sulfur in the steam phase, which were identified as key processes shaping these communities. Ordination and permutational analysis of variance showed that temperature, pH, and major element hydrochemistry explain only 24% of the microbial community structure. Therefore, most of the variance remained unexplained, suggesting that other environmental or biotic factors are also involved and highlighting the environmental complexity of the ecosystem and its great potential to test niche theory ecological associated questions. IMPORTANCE This is the first approach to investigate whether geothermal processes could have an influence on the ecology of thermal microbial communities on a global scale. In addition to temperature and pH, microbial communities are structured by sulfate concentrations, which depends on the tectono-magmatic settings (such as the depth of magmatic chambers) and the local settings (such as the availability of a confining layer separating NaCl waters from steam after phase separation) and the possibility of mixing with more diluted fluids. Comparison of microbial communities from different geothermal areas by homogeneous sequence processing showed that no significant geographic distance decay was detected on the microbial communities according to Bray-Curtis, Jaccard, unweighted, and weighted Unifrac similarity/dissimilarity indices. Instead, an ancient potential divergence in the same taxonomic groups is suggested between globally distant thermal zones.
Collapse
Affiliation(s)
- Carla Barbosa
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Javier Tamayo-Leiva
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Bioinformática, Facultad de Educación, Universidad Adventista de Chile, Chillán, Chile
| | - Linda Daniele
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Diego Morata
- Department of Geology, University of Chile, Santiago, Chile
- Andean Geothermal Center of Excellence (CEGA-Fondap), University of Chile, Santiago, Chile
| | - Beatríz Díez
- Department of Molecular Genetics and Microbiology, Pontifical Catholic University of Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, University of Chile, Santiago, Chile
- Millennium Institute Center of Genome Regulation (CGR), Santiago, Chile
| |
Collapse
|
10
|
Blum LN, Colman DR, Eloe-Fadrosh EA, Kellom M, Boyd ES, Zhaxybayeva O, Leavitt WD. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH. Environ Microbiol 2023; 25:1644-1658. [PMID: 37032561 DOI: 10.1111/1462-2920.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.
Collapse
Affiliation(s)
- Laura N Blum
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | | | - Matthew Kellom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
11
|
Upin HE, Newell DL, Colman DR, Boyd ES. Tectonic settings influence the geochemical and microbial diversity of Peru hot springs. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:112. [PMID: 38665187 PMCID: PMC11041657 DOI: 10.1038/s43247-023-00787-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2024]
Abstract
Tectonic processes control hot spring temperature and geochemistry, yet how this in turn shapes microbial community composition is poorly understood. Here, we present geochemical and 16 S rRNA gene sequencing data from 14 hot springs from contrasting styles of subduction along a convergent margin in the Peruvian Andes. We find that tectonic influence on hot spring temperature and geochemistry shapes microbial community composition. Hot springs in the flat-slab and back-arc regions of the subduction system had similar pH but differed in geochemistry and microbiology, with significant relationships between microbial community composition, geochemistry, and geologic setting. Flat-slab hot springs were chemically heterogeneous, had modest surface temperatures (up to 45 °C), and were dominated by members of the metabolically diverse phylum Proteobacteria. Whereas, back-arc hot springs were geochemically more homogenous, exhibited high concentrations of dissolved metals and gases, had higher surface temperatures (up to 81 °C), and host thermophilic archaeal and bacterial lineages.
Collapse
Affiliation(s)
- Heather E. Upin
- Department of Geosciences, Utah State University, Logan, UT USA
| | | | - Daniel R. Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT USA
| |
Collapse
|
12
|
Lynes MM, Krukenberg V, Jay ZJ, Kohtz AJ, Gobrogge CA, Spietz RL, Hatzenpichler R. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME COMMUNICATIONS 2023; 3:22. [PMID: 36949220 PMCID: PMC10033731 DOI: 10.1038/s43705-023-00225-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Metagenomic studies on geothermal environments have been central in recent discoveries on the diversity of archaeal methane and alkane metabolism. Here, we investigated methanogenic populations inhabiting terrestrial geothermal features in Yellowstone National Park (YNP) by combining amplicon sequencing with metagenomics and mesocosm experiments. Detection of methyl-coenzyme M reductase subunit A (mcrA) gene amplicons demonstrated a wide diversity of Mcr-encoding archaea inhabit geothermal features with differing physicochemical regimes across YNP. From three selected hot springs we recovered twelve Mcr-encoding metagenome assembled genomes (MAGs) affiliated with lineages of cultured methanogens as well as Candidatus (Ca.) Methanomethylicia, Ca. Hadesarchaeia, and Archaeoglobi. These MAGs encoded the potential for hydrogenotrophic, aceticlastic, hydrogen-dependent methylotrophic methanogenesis, or anaerobic short-chain alkane oxidation. While Mcr-encoding archaea represent minor fractions of the microbial community of hot springs, mesocosm experiments with methanogenic precursors resulted in the stimulation of methanogenic activity and the enrichment of lineages affiliated with Methanosaeta and Methanothermobacter as well as with uncultured Mcr-encoding archaea including Ca. Korarchaeia, Ca. Nezhaarchaeia, and Archaeoglobi. We revealed that diverse Mcr-encoding archaea with the metabolic potential to produce methane from different precursors persist in the geothermal environments of YNP and can be enriched under methanogenic conditions. This study highlights the importance of combining environmental metagenomics with laboratory-based experiments to expand our understanding of uncultured Mcr-encoding archaea and their potential impact on microbial carbon transformations in geothermal environments and beyond.
Collapse
Affiliation(s)
- Mackenzie M Lynes
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | | | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
13
|
Power JF, Lowe CL, Carere CR, McDonald IR, Cary SC, Stott MB. Temporal dynamics of geothermal microbial communities in Aotearoa-New Zealand. Front Microbiol 2023; 14:1094311. [PMID: 37020721 PMCID: PMC10068964 DOI: 10.3389/fmicb.2023.1094311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Microbial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60–70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.
Collapse
Affiliation(s)
- Jean F. Power
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Caitlin L. Lowe
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, Aotearoa-New Zealand
| | - Ian R. McDonald
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - S. Craig Cary
- Thermophile Research Unit, Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
- S. Craig Cary,
| | - Matthew B. Stott
- Biomolecular Interaction Centre, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, Aotearoa-New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
- *Correspondence: Matthew B. Stott,
| |
Collapse
|
14
|
Ugwuanyi IR, Fogel ML, Bowden R, Steele A, De Natale G, Troise C, Somma R, Piochi M, Mormone A, Glamoclija M. Comparative metagenomics at Solfatara and Pisciarelli hydrothermal systems in Italy reveal that ecological differences across substrates are not ubiquitous. Front Microbiol 2023; 14:1066406. [PMID: 36819055 PMCID: PMC9930910 DOI: 10.3389/fmicb.2023.1066406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Continental hydrothermal systems (CHSs) are geochemically complex, and they support microbial communities that vary across substrates. However, our understanding of these variations across the complete range of substrates in CHS is limited because many previous studies have focused predominantly on aqueous settings. Methods Here we used metagenomes in the context of their environmental geochemistry to investigate the ecology of different substrates (i.e., water, mud and fumarolic deposits) from Solfatara and Pisciarelli. Results and Discussion Results indicate that both locations are lithologically similar with distinct fluid geochemistry. In particular, all substrates from Solfatara have similar chemistry whereas Pisciarelli substrates have varying chemistry; with water and mud from bubbling pools exhibiting high SO4 2- and NH4 + concentrations. Species alpha diversity was found to be different between locations but not across substrates, and pH was shown to be the most important driver of both diversity and microbial community composition. Based on cluster analysis, microbial community structure differed significantly between Pisciarelli substrates but not between Solfatara substrates. Pisciarelli mud pools, were dominated by (hyper)thermophilic archaea, and on average, bacteria dominated Pisciarelli fumarolic deposits and all investigated Solfatara environments. Carbon fixation and sulfur oxidation were the most important metabolic pathways fueled by volcanic outgassing at both locations. Together, results demonstrate that ecological differences across substrates are not a widespread phenomenon but specific to the system. Therefore, this study demonstrates the importance of analyzing different substrates of a CHS to understand the full range of microbial ecology to avoid biased ecological assessments.
Collapse
Affiliation(s)
- Ifeoma R. Ugwuanyi
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,Ifeoma R. Ugwuanyi, ✉
| | - Marilyn L. Fogel
- EDGE Institute, University of California, Riverside, Riverside, CA, United States
| | - Roxane Bowden
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Giuseppe De Natale
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Claudia Troise
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche IRISS, Naples, Italy
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,*Correspondence: Mihaela Glamoclija, ✉
| |
Collapse
|
15
|
Fernandes-Martins MC, Colman DR, Boyd ES. Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environ Microbiol 2023; 25:1022-1040. [PMID: 36651919 DOI: 10.1111/1462-2920.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Rogers TJ, Buongiorno J, Jessen GL, Schrenk MO, Fordyce JA, de Moor JM, Ramírez CJ, Barry PH, Yücel M, Selci M, Cordone A, Giovannelli D, Lloyd KG. Chemolithoautotroph distributions across the subsurface of a convergent margin. THE ISME JOURNAL 2023; 17:140-150. [PMID: 36257972 PMCID: PMC9751116 DOI: 10.1038/s41396-022-01331-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/15/2022]
Abstract
Subducting oceanic crusts release fluids rich in biologically relevant compounds into the overriding plate, fueling subsurface chemolithoautotrophic ecosystems. To understand the impact of subsurface geochemistry on microbial communities, we collected fluid and sediments from 14 natural springs across a ~200 km transect across the Costa Rican convergent margin and performed shotgun metagenomics. The resulting 404 metagenome-assembled genomes (MAGs) cluster into geologically distinct regions based on MAG abundance patterns: outer forearc-only (25% of total relative abundance), forearc/arc-only (38% of total relative abundance), and delocalized (37% of total relative abundance) clusters. In the outer forearc, Thermodesulfovibrionia, Candidatus Bipolaricaulia, and Firmicutes have hydrogenotrophic sulfate reduction and Wood-Ljungdahl (WL) carbon fixation pathways. In the forearc/arc, Anaerolineae, Ca. Bipolaricaulia, and Thermodesulfovibrionia have sulfur oxidation, nitrogen cycling, microaerophilic respiration, and WL, while Aquificae have aerobic sulfur oxidation and reverse tricarboxylic acid carbon fixation pathway. Transformation-based canonical correspondence analysis shows that MAG distribution corresponds to concentrations of aluminum, iron, nickel, dissolved inorganic carbon, and phosphate. While delocalized MAGs appear surface-derived, the subsurface chemolithoautotrophic, metabolic, and taxonomic landscape varies by the availability of minerals/metals and volcanically derived inorganic carbon. However, the WL pathway persists across all samples, suggesting that this versatile, energy-efficient carbon fixation pathway helps shape convergent margin subsurface ecosystems.
Collapse
Affiliation(s)
| | - Joy Buongiorno
- Division of Natural Sciences, Maryville College, Maryville, TN, USA
| | - Gerdhard L Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Valdivia, Chile
| | | | | | - J Maarten de Moor
- National University of Costa Rica, Heredia, Costa Rica
- University of New Mexico, Albuquerque, NM, USA
| | | | - Peter H Barry
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mustafa Yücel
- Institute of Marine Sciences, Middle East Technical University, Erdemli, Turkey
| | - Matteo Selci
- Department of Biology, University of Naples -Federico II, Naples, Italy
| | - Angela Cordone
- Department of Biology, University of Naples -Federico II, Naples, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples -Federico II, Naples, Italy
- Department of Marine and Coastal Science, Rutgers University, Rutgers, NJ, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- National Research Council - Institute of Marine Biological Resources and Biotechnologies - CNR-IRBIM, Ancona, Italy
| | | |
Collapse
|
17
|
Boyd ES, Spietz RL, Kour M, Colman DR. A naturalist perspective of microbiology: Examples from methanogenic archaea. Environ Microbiol 2023; 25:184-198. [PMID: 36367391 DOI: 10.1111/1462-2920.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Storytelling has been the primary means of knowledge transfer over human history. The effectiveness and reach of stories are improved when the message is appropriate for the target audience. Oftentimes, the stories that are most well received and recounted are those that have a clear purpose and that are told from a variety of perspectives that touch on the varied interests of the target audience. Whether scientists realize or not, they are accustomed to telling stories of their own scientific discoveries through the preparation of manuscripts, presentations, and lectures. Perhaps less frequently, scientists prepare review articles or book chapters that summarize a body of knowledge on a given subject matter, meant to be more holistic recounts of a body of literature. Yet, by necessity, such summaries are often still narrow in their scope and are told from the perspective of a particular discipline. In other words, interdisciplinary reviews or book chapters tend to be the rarity rather than the norm. Here, we advocate for and highlight the benefits of interdisciplinary perspectives on microbiological subjects.
Collapse
Affiliation(s)
- Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Rachel L Spietz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Manjinder Kour
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
18
|
Mondal N, Roy C, Chatterjee S, Sarkar J, Dutta S, Bhattacharya S, Chakraborty R, Ghosh W. Thermal Endurance by a Hot-Spring-Dwelling Phylogenetic Relative of the Mesophilic Paracoccus. Microbiol Spectr 2022; 10:e0160622. [PMID: 36287077 PMCID: PMC9769624 DOI: 10.1128/spectrum.01606-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/24/2022] [Indexed: 01/05/2023] Open
Abstract
High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic Paracoccus isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator Paracoccus had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other Paracoccus, contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. IMPORTANCE For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, in vitro endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.
Collapse
Affiliation(s)
- Nibendu Mondal
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Chayan Roy
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | | | - Subhajit Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
19
|
Giovannelli D, Barry PH, de Moor JM, Jessen GL, Schrenk MO, Lloyd KG. Sampling across large-scale geological gradients to study geosphere-biosphere interactions. Front Microbiol 2022; 13:998133. [PMID: 36386678 PMCID: PMC9659755 DOI: 10.3389/fmicb.2022.998133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Despite being one of the largest microbial ecosystems on Earth, many basic open questions remain about how life exists and thrives in the deep subsurface biosphere. Much of this ambiguity is due to the fact that it is exceedingly difficult and often prohibitively expensive to directly sample the deep subsurface, requiring elaborate drilling programs or access to deep mines. We propose a sampling approach which involves collection of a large suite of geological, geochemical, and biological data from numerous deeply-sourced seeps-including lower temperature sites-over large spatial scales. This enables research into interactions between the geosphere and the biosphere, expanding the classical local approach to regional or even planetary scales. Understanding the interplay between geology, geochemistry and biology on such scales is essential for building subsurface ecosystem models and extrapolating the ecological and biogeochemical roles of subsurface microbes beyond single site interpretations. This approach has been used successfully across the Central and South American Convergent Margins, and can be applied more broadly to other types of geological regions (i.e., rifting, intraplate volcanic, and hydrothermal settings). Working across geological spatial scales inherently encompasses broad temporal scales (e.g., millions of years of volatile cycling across a convergent margin), providing access to a framework for interpreting evolution and ecosystem functions through deep time and space. We propose that tectonic interactions are fundamental to maintaining planetary habitability through feedbacks that stabilize the ecosphere, and deep biosphere studies are fundamental to understanding geo-bio feedbacks on these processes on a global scale.
Collapse
Affiliation(s)
- Donato Giovannelli
- Department of Biology, University of Naples “Federico II”, Naples, Italy
- Institute of Marine Biological Resources and Biotechnologies, National Research Council, CNR-IRBIM, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, United States
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Peter H. Barry
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, MA, United States
| | - J. Maarten de Moor
- Observatorio Volcanológico y Sismológico de Costa Rica (OVSICORI), Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Gerdhard L. Jessen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción, Chile
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
20
|
Abstract
Little is known of acetogens in contemporary serpentinizing systems, despite widely supported theories that serpentinite-hosted environments supported the first life on Earth via acetogenesis. To address this knowledge gap, genome-resolved metagenomics was applied to subsurface fracture water communities from an area of active serpentinization in the Samail Ophiolite, Sultanate of Oman. Two deeply branching putative bacterial acetogen types were identified in the communities belonging to the Acetothermia (hereafter, types I and II) that exhibited distinct distributions among waters with lower and higher water-rock reaction (i.e., serpentinization influence), respectively. Metabolic reconstructions revealed contrasting core metabolic pathways of type I and II Acetothermia, including in acetogenic pathway components (e.g., bacterial- vs. archaeal-like carbon monoxide dehydrogenases [CODH], respectively), hydrogen use to drive acetogenesis, and chemiosmotic potential generation via respiratory (type I) or canonical acetogen ferredoxin-based complexes (type II). Notably, type II Acetothermia metabolic pathways allow for use of serpentinization-derived substrates and implicate them as key primary producers in contemporary hyperalkaline serpentinite environments. Phylogenomic analyses indicate that 1) archaeal-like CODH of the type II genomes and those of other serpentinite-associated Bacteria derive from a deeply rooted horizontal transfer or origin among archaeal methanogens and 2) Acetothermia are among the earliest evolving bacterial lineages. The discovery of dominant and early-branching acetogens in subsurface waters of the largest near-surface serpentinite formation provides insight into the physiological traits that likely facilitated rock-supported life to flourish on a primitive Earth and possibly on other rocky planets undergoing serpentinization.
Collapse
|
21
|
Bazzicalupo AL, Erlandson S, Branine M, Ratz M, Ruffing L, Nguyen NH, Branco S. Fungal Community Shift Along Steep Environmental Gradients from Geothermal Soils in Yellowstone National Park. MICROBIAL ECOLOGY 2022; 84:33-43. [PMID: 34468785 DOI: 10.1007/s00248-021-01848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.
Collapse
Affiliation(s)
- Anna L Bazzicalupo
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Sonya Erlandson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Margaret Branine
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, USA
| | - Megan Ratz
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Lauren Ruffing
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Nhu H Nguyen
- Department of Tropical Plant and Soil Sciences, University of Hawaii At Manoa, Honolulu, HI, USA
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| |
Collapse
|
22
|
Garcia PS, Gribaldo S, Borrel G. Diversity and Evolution of Methane-Related Pathways in Archaea. Annu Rev Microbiol 2022; 76:727-755. [PMID: 35759872 DOI: 10.1146/annurev-micro-041020-024935] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methane is one of the most important greenhouse gases on Earth and holds an important place in the global carbon cycle. Archaea are the only organisms that use methanogenesis to produce energy and rely on the methyl-coenzyme M reductase (Mcr) complex. Over the last decade, new results have significantly reshaped our view of the diversity of methane-related pathways in the Archaea. Many new lineages that synthesize or use methane have been identified across the whole archaeal tree, leading to a greatly expanded diversity of substrates and mechanisms. In this review, we present the state of the art of these advances and how they challenge established scenarios of the origin and evolution of methanogenesis, and we discuss the potential trajectories that may have led to this strikingly wide range of metabolisms.Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pierre Simon Garcia
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Simonetta Gribaldo
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| | - Guillaume Borrel
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Evolutionary Biology of the Microbial Cell, Paris, France; ,
| |
Collapse
|
23
|
Moreras-Marti A, Fox-Powell M, Zerkle AL, Stueeken E, Gazquez F, Brand HEA, Galloway T, Purkamo L, Cousins CR. Volcanic controls on the microbial habitability of Mars-analogue hydrothermal environments. GEOBIOLOGY 2021; 19:489-509. [PMID: 34143931 DOI: 10.1111/gbi.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Due to their potential to support chemolithotrophic life, relic hydrothermal systems on Mars are a key target for astrobiological exploration. We analysed water and sediments at six geothermal pools from the rhyolitic Kerlingarfjöll and basaltic Kverkfjöll volcanoes in Iceland, to investigate the localised controls on the habitability of these systems in terms of microbial community function. Our results show that host lithology plays a minor role in pool geochemistry and authigenic mineralogy, with the system geochemistry primarily controlled by deep volcanic processes. We find that by dictating pool water pH and redox conditions, deep volcanic processes are the primary control on microbial community structure and function, with water input from the proximal glacier acting as a secondary control by regulating pool temperatures. Kerlingarfjöll pools have reduced, circum-neutral CO2 -rich waters with authigenic calcite-, pyrite- and kaolinite-bearing sediments. The dominant metabolisms inferred from community profiles obtained by 16S rRNA gene sequencing are methanogenesis, respiration of sulphate and sulphur (S0 ) oxidation. In contrast, Kverkfjöll pools have oxidised, acidic (pH < 3) waters with high concentrations of SO42- and high argillic alteration, resulting in Al-phyllosilicate-rich sediments. The prevailing metabolisms here are iron oxidation, sulphur oxidation and nitrification. Where analogous ice-fed hydrothermal systems existed on early Mars, similar volcanic processes would likely have controlled localised metabolic potential and thus habitability. Moreover, such systems offer several habitability advantages, including a localised source of metabolic redox pairs for chemolithotrophic microorganisms and accessible trace metals. Similar pools could have provided transient environments for life on Mars; when paired with surface or near-surface ice, these habitability niches could have persisted into the Amazonian. Additionally, they offer a confined site for biosignature formation and deposition that lends itself well to in situ robotic exploration.
Collapse
Affiliation(s)
- Arola Moreras-Marti
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
- AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Aubrey L Zerkle
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Eva Stueeken
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | - Fernando Gazquez
- Water Resources and Environmental Geology Research Group, Department of Biology and Geology, University of Almería, Almería, Spain
| | | | - Toni Galloway
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| | | | - Claire R Cousins
- School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
24
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
25
|
Prokaryotic and eukaryotic diversity in hydrothermal continental systems. Arch Microbiol 2021; 203:3751-3766. [PMID: 34143270 DOI: 10.1007/s00203-021-02416-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The term extremophile was suggested more than 30 years ago and represents microorganisms that are capable of developing and living under extreme conditions, these conditions being particularly hostile to other types of microorganisms and to humankind. In terrestrial hydrothermal sites, like hot springs, "mud pools", solfataras, and geysers, the dominant extreme conditions are high temperature, low or high pH, and high levels of salinity. The diversity of microorganisms inhabiting these sites is determined by the conditions of the environment. Organisms belonging to the domains Archaea and Bacteria are more represented than the one belonging to Eukarya. Eukarya members tend to be less present because of their lower tolerance to higher temperatures, however, they perform important ecosystem processes when present. Both prokaryotes and eukaryotes have morphological and physical adaptations that allow them to colonize extreme environments. Microbial mats are complex associations of microorganisms that help the colonization of more extreme systems. In this review, a characterization of prokaryotic and eukaryotic organisms that populate terrestrial hydrothermal systems are made.
Collapse
|
26
|
Colman DR, Lindsay MR, Harnish A, Bilbrey EM, Amenabar MJ, Selensky MJ, Fecteau KM, Debes RV, Stott MB, Shock EL, Boyd ES. Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial biodiversity. Environ Microbiol 2021; 23:4034-4053. [PMID: 34111905 DOI: 10.1111/1462-2920.15617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/10/2021] [Accepted: 05/29/2021] [Indexed: 01/31/2023]
Abstract
Hot springs integrate hydrologic and geologic processes that vary over short- and long-term time scales. However, the influence of temporal hydrologic and geologic change on hot spring biodiversity is unknown. Here, we coordinated near-weekly, cross-seasonal (~140 days) geochemical and microbial community analyses of three widely studied hot springs with local precipitation data in Yellowstone National Park. One spring ('HFS') exhibited statistically significant, coupled microbial and geochemical variation across seasons that was associated with recent precipitation patterns. Two other spring communities, 'CP' and 'DS', exhibited minimal to no variation across seasons. Variability in the seasonal response of springs is attributed to differences in the timing and extent of aquifer recharge with oxidized near-surface water from precipitation. This influx of oxidized water is associated with changes in community composition, and in particular, the abundances of aerobic sulfide-/sulfur-oxidizers that can acidify waters. During sampling, a new spring formed after a period of heavy precipitation and its successional dynamics were also influenced by surface water recharge. Collectively, these results indicate that changes in short-term hydrology associated with precipitation can impact hot spring geochemistry and microbial biodiversity. These results point to potential susceptibility of certain hot springs and their biodiversity to sustained, longer-term hydrologic changes.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Annette Harnish
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Evan M Bilbrey
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Maximiliano J Amenabar
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Matthew J Selensky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Randall V Debes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
27
|
Minerals Determined a Special Ecological Niche and Selectively Enriched Microbial Species from Bulk Water Communities in Hot Springs. Microorganisms 2021; 9:microorganisms9051020. [PMID: 34068582 PMCID: PMC8151621 DOI: 10.3390/microorganisms9051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Minerals provide physical niches and supply nutrients or serve as electron donors/acceptors for microorganism survival and growth, and thus minerals and microbes co-evolved. Yet, little is known about how sediment minerals impact microbial community assembly in hot springs and to what extent mineralogical composition influences microbial community composition and diversity. Here the influences of minerals on thermophiles in Tengchong hot springs were revealed by network analysis of field samples, as well as in-situ microcosm experiments with minerals. A molecular ecological network was constructed based on high throughput sequencing data of 16S rRNA gene, with a combination of water geochemistry and sedimentary mineralogical compositions. Six modules were identified and this highly modular network structure represents the microbial preference to different abiotic factors, consequently resulting in niche partitioning in sedimentary communities in hot springs. Diverse mineralogical compositions generated special niches for microbial species. Subsequently, the in-situ microcosm experiments with four minerals (aragonite, albite, K-feldspar, and quartz) and spring water were conducted in a silicate-hosted alkaline spring (i.e., Gmq) and a carbonate-hosted neutral hot spring (i.e., Gxs) for 70 days. Different microbial preferences were observed among different mineral types (carbonate versus silicate). Aragonite microcosms in Gmq spring enriched archaeal genera Sulfophobococcus and Aeropyrum within the order Desulfurococcales by comparison with both in-situ water and silicate microcosms. Sulfophobococcus was also accumulated in Gxs aragonite microcosms, but the contribution to overall dissimilarity is much lower than that in Gmq spring. Besides, Caldimicrobium was a bacterial genus enriched in Gxs aragonite microcosms, in contrast to in-situ water and silicate microcosms, whereas Candidatus Kryptobacter and Thermus were more abundant in silicate microcosms. The differences in microbial accumulations among different mineral types in the same spring implied that mineral chemistry may exert extra deterministic selective pressure in drawing certain species from the bulk water communities, in addition to stochastic absorption on mineral surface. Taken together, our results highlight the special niche partitioning determined by mineralogical compositions and further confirm that minerals could be used as “fishing bait” to enrich certain rare microbial species.
Collapse
|
28
|
De Anda V, Chen LX, Dombrowski N, Hua ZS, Jiang HC, Banfield JF, Li WJ, Baker BJ. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun 2021; 12:2404. [PMID: 33893309 PMCID: PMC8065059 DOI: 10.1038/s41467-021-22736-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
Collapse
Affiliation(s)
- Valerie De Anda
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Den Burg, Netherlands
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China.
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA.
| |
Collapse
|
29
|
Reichart NJ, Bowers RM, Woyke T, Hatzenpichler R. High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics. Front Microbiol 2021; 12:668238. [PMID: 33968004 PMCID: PMC8098120 DOI: 10.3389/fmicb.2021.668238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermo-stable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.
Collapse
Affiliation(s)
- Nicholas J Reichart
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Robert M Bowers
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
30
|
Fones EM, Colman DR, Kraus EA, Stepanauskas R, Templeton AS, Spear JR, Boyd ES. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. THE ISME JOURNAL 2021; 15:1121-1135. [PMID: 33257813 PMCID: PMC8115248 DOI: 10.1038/s41396-020-00838-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Metagenome assembled genomes (MAGs) and single amplified genomes (SAGs) affiliated with two distinct Methanobacterium lineages were recovered from subsurface fracture waters of the Samail Ophiolite, Sultanate of Oman. Lineage Type I was abundant in waters with circumneutral pH, whereas lineage Type II was abundant in hydrogen rich, hyperalkaline waters. Type I encoded proteins to couple hydrogen oxidation to CO2 reduction, typical of hydrogenotrophic methanogens. Surprisingly, Type II, which branched from the Type I lineage, lacked homologs of two key oxidative [NiFe]-hydrogenases. These functions were presumably replaced by formate dehydrogenases that oxidize formate to yield reductant and cytoplasmic CO2 via a pathway that was unique among characterized Methanobacteria, allowing cells to overcome CO2/oxidant limitation in high pH waters. This prediction was supported by microcosm-based radiotracer experiments that showed significant biological methane generation from formate, but not bicarbonate, in waters where the Type II lineage was detected in highest relative abundance. Phylogenetic analyses and variability in gene content suggested that recent and ongoing diversification of the Type II lineage was enabled by gene transfer, loss, and transposition. These data indicate that selection imposed by CO2/oxidant availability drove recent methanogen diversification into hyperalkaline waters that are heavily impacted by serpentinization.
Collapse
Affiliation(s)
- Elizabeth M. Fones
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| | - Daniel R. Colman
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| | - Emily A. Kraus
- grid.254549.b0000 0004 1936 8155Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Ramunas Stepanauskas
- grid.296275.d0000 0000 9516 4913Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544 USA
| | - Alexis S. Templeton
- grid.266190.a0000000096214564Department of Geological Sciences, University of Colorado, Boulder, CO 80309 USA
| | - John R. Spear
- grid.254549.b0000 0004 1936 8155Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401 USA
| | - Eric S. Boyd
- grid.41891.350000 0001 2156 6108Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
31
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
32
|
Napieralski SA, Roden EE. The Weathering Microbiome of an Outcropping Granodiorite. Front Microbiol 2021; 11:601907. [PMID: 33381096 PMCID: PMC7767972 DOI: 10.3389/fmicb.2020.601907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have long been recognized for their capacity to catalyze the weathering of silicate minerals. While the vast majority of studies on microbially mediated silicate weathering focus on organotrophic metabolism linked to nutrient acquisition, it has been recently demonstrated that chemolithotrophic ferrous iron [Fe(II)] oxidizing bacteria (FeOB) are capable of coupling the oxidation of silicate mineral Fe(II) to metabolic energy generation and cellular growth. In natural systems, complex microbial consortia with diverse metabolic capabilities can exist and interact to influence the biogeochemical cycling of essential elements, including iron. Here we combine microbiological and metagenomic analyses to investigate the potential interactions among metabolically diverse microorganisms in the near surface weathering of an outcrop of the Rio Blanco Quartz Diorite (DIO) in the Luquillo Mountains of Puerto Rico. Laboratory based incubations utilizing ground DIO as metabolic energy source for chemolithotrophic FeOB confirmed the ability of FeOB to grow via the oxidation of silicate-bound Fe(II). Dramatically accelerated rates of Fe(II)-oxidation were associated with an enrichment in microorganisms with the genetic capacity for iron oxidizing extracellular electron transfer (EET) pathways. Microbially oxidized DIO displayed an enhanced susceptibility to the weathering activity of organotrophic microorganisms compared to unoxidized mineral suspensions. Our results suggest that chemolithotrophic and organotrophic microorganisms are likely to coexist and contribute synergistically to the overall weathering of the in situ bedrock outcrop.
Collapse
Affiliation(s)
| | - Eric E Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
33
|
Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proc Natl Acad Sci U S A 2020; 117:32627-32638. [PMID: 33277434 PMCID: PMC7768687 DOI: 10.1073/pnas.2019021117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum "DPANN," two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
Collapse
|
34
|
Abstract
Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
Collapse
|
35
|
Hogendoorn C, Pol A, Picone N, Cremers G, van Alen TA, Gagliano AL, Jetten MSM, D'Alessandro W, Quatrini P, Op den Camp HJM. Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy. Front Microbiol 2020; 11:951. [PMID: 32508778 PMCID: PMC7248562 DOI: 10.3389/fmicb.2020.00951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/21/2020] [Indexed: 02/04/2023] Open
Abstract
Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55°C and pH 5.0. The highest growth rate is obtained using H2 as energy source (μmax 0.19 ± 0.02 h–1, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 ± 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Theo A van Alen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
36
|
Wang Y, Wegener G, Ruff SE, Wang F. Methyl/alkyl-coenzyme M reductase-based anaerobic alkane oxidation in archaea. Environ Microbiol 2020; 23:530-541. [PMID: 32367670 DOI: 10.1111/1462-2920.15057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/04/2023]
Abstract
Methyl-coenzyme M reductase (MCR) has been originally identified to catalyse the final step of the methanogenesis pathway. About 20 years ago anaerobic methane-oxidizing archaea (ANME) were discovered that use MCR enzymes to activate methane. ANME thrive at the thermodynamic limit of life, are slow-growing, and in most cases form syntrophic consortia with sulfate-reducing bacteria. Recently, archaea that have the ability to anaerobically oxidize non-methane multi-carbon alkanes such as ethane and n-butane were described in both enrichment cultures and environmental samples. These anaerobic multi-carbon alkane-oxidizing archaea (ANKA) use enzymes homologous to MCR named alkyl-coenzyme M reductase (ACR). Here we review the recent progresses on the diversity, distribution and functioning of both ANME and ANKA by presenting a detailed MCR/ACR-based phylogeny, compare their metabolic pathways and discuss the gaps in our knowledge of physiology of these organisms. To improve our understanding of alkane oxidation in archaea, we identified three directions for future research: (i) expanding cultivation attempts to validate omics-based metabolic models of yet-uncultured organisms, (ii) performing biochemical and structural analyses of key enzymes to understand thermodynamic and steric constraints and (iii) investigating the evolution of anaerobic alkane metabolisms and their impact on biogeochemical cycles.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany.,MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - S Emil Ruff
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.,J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
37
|
Colman DR, Lindsay MR, Amenabar MJ, Fernandes-Martins MC, Roden ER, Boyd ES. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. THE ISME JOURNAL 2020; 14:1316-1331. [PMID: 32066874 PMCID: PMC7174415 DOI: 10.1038/s41396-020-0611-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
The origin(s) of dissimilatory sulfate and/or (bi)sulfite reducing organisms (SRO) remains enigmatic despite their importance in global carbon and sulfur cycling since at least 3.4 Ga. Here, we describe novel, deep-branching archaeal SRO populations distantly related to other Diaforarchaea from two moderately acidic thermal springs. Dissimilatory (bi)sulfite reductase homologs, DsrABC, encoded in metagenome assembled genomes (MAGs) from spring sediments comprise one of the earliest evolving Dsr lineages. DsrA homologs were expressed in situ under moderately acidic conditions. MAGs lacked genes encoding proteins that activate sulfate prior to (bi)sulfite reduction. This is consistent with sulfide production in enrichment cultures provided sulfite but not sulfate. We suggest input of volcanic sulfur dioxide to anoxic spring-water yields (bi)sulfite and moderately acidic conditions that favor its stability and bioavailability. The presence of similar volcanic springs at the time SRO are thought to have originated (>3.4 Ga) may have supplied (bi)sulfite that supported ancestral SRO. These observations coincide with the lack of inferred SO42- reduction capacity in nearly all organisms with early-branching DsrAB and which are near universally found in hydrothermal environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Maximiliano J Amenabar
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Eric R Roden
- Department of Geoscience, University of Wisconsin, Madison, WI, USA
- NASA Astrobiology Institute, Mountain View, CA, USA
| | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA.
- NASA Astrobiology Institute, Mountain View, CA, USA.
| |
Collapse
|
38
|
Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems. ASTROBIOLOGY 2019; 19:1505-1522. [PMID: 31592688 DOI: 10.1089/ast.2018.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | | | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
39
|
Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs. mSystems 2019; 4:4/6/e00498-19. [PMID: 31690593 PMCID: PMC6832021 DOI: 10.1128/msystems.00498-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extant anoxygenic phototrophs are taxonomically, physiologically, and metabolically diverse and include examples from all seven bacterial phyla with characterized phototrophic members. pH, temperature, and sulfide are known to constrain phototrophs, but how these factors dictate the distribution and activity of specific taxa of anoxygenic phototrophs has not been reported. Here, we hypothesized that within the known limits of pH, temperature, and sulfide, the distribution, abundance, and activity of specific anoxygenic phototrophic taxa would vary due to key differences in the physiology of these organisms. To test this hypothesis, we examined the distribution, abundance, and potential activity of anoxygenic phototrophs in filaments, microbial mats, and sediments across geochemical gradients in geothermal features of Yellowstone National Park, which ranged in pH from 2.2 to 9.4 and in temperature from 31.5°C to 71.0°C. Indeed, our data indicate putative aerobic anoxygenic phototrophs within the Proteobacteria are more abundant at lower pH and lower temperature, while phototrophic Chloroflexi are prevalent in circumneutral to alkaline springs. In contrast to previous studies, our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa. Finally, our data underscore a role for photoheterotrophy (or photomixotrophy) across geochemical gradients in terrestrial geothermal ecosystems.IMPORTANCE There is a long and rich history of literature on phototrophs in terrestrial geothermal springs. These studies have revealed sulfide, pH, and temperature are the main constraints on phototrophy. However, the taxonomic and physiological diversity of anoxygenic phototrophs suggests that, within these constraints, specific geochemical parameters determine the distribution and activity of individual anoxygenic phototrophic taxa. Here, we report the recovery of sequences affiliated with characterized anoxygenic phototrophs in sites that range in pH from 2 to 9 and in temperature from 31°C to 71°C. Transcript abundance indicates anoxygenic phototrophs are active across this temperature and pH range. Our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa and underscore a role for photoheterotrophy in terrestrial geothermal ecosystems. These data provide the framework for high-resolution sequencing and in situ activity approaches to characterize the physiology of specific anoxygenic phototrophic taxa across a broad range of temperatures and pH.
Collapse
|
40
|
Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 2019; 3:1552-1561. [PMID: 31666740 PMCID: PMC6837875 DOI: 10.1038/s41559-019-1005-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022]
Abstract
Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S rRNA-gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area (Ethiopia). We identify two physicochemical barriers to life in the presence of surface liquid water defined by: i) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and ii) hyperacidity-salt combinations (pH~0/NaCl-dominated salt-saturation). When detected, life was dominated by highly diverse ultrasmall archaea widely distributed across phyla with and without previously known halophilic members. We hypothesize that high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during multiple transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ludwig Jardillier
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France.
| |
Collapse
|
41
|
Payne D, Dunham EC, Mohr E, Miller I, Arnold A, Erickson R, Fones EM, Lindsay MR, Colman DR, Boyd ES. Geologic legacy spanning >90 years explains unique Yellowstone hot spring geochemistry and biodiversity. Environ Microbiol 2019; 21:4180-4195. [PMID: 31397054 DOI: 10.1111/1462-2920.14775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
Abstract
Little is known about how the geological history of an environment shapes its physical and chemical properties and how these, in turn, influence the assembly of communities. Evening primrose (EP), a moderately acidic hot spring (pH 5.6, 77.4°C) in Yellowstone National Park (YNP), has undergone dramatic physicochemical change linked to seismic activity. Here, we show that this legacy of geologic change led to the development of an unusual sulphur-rich, anoxic chemical environment that supports a unique archaeal-dominated and anaerobic microbial community. Metagenomic sequencing and informatics analyses reveal that >96% of this community is supported by dissimilatory reduction or disproportionation of inorganic sulphur compounds, including a novel, deeply diverging sulphate-reducing thaumarchaeote. When compared to other YNP metagenomes, the inferred functions of EP populations were like those from sulphur-rich acidic springs, suggesting that sulphur may overprint the predominant influence of pH on the composition of hydrothermal communities. Together, these observations indicate that the dynamic geological history of EP underpins its unique geochemistry and biodiversity, emphasizing the need to consider the legacy of geologic change when describing processes that shape the assembly of communities.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric C Dunham
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth Mohr
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, 59717
| | - Isaac Miller
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Adrienne Arnold
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Reece Erickson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Elizabeth M Fones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, 59717
| |
Collapse
|
42
|
Lindsay MR, Colman DR, Amenabar MJ, Fristad KE, Fecteau KM, Debes RV, Spear JR, Shock EL, Hoehler TM, Boyd ES. Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environ Microbiol 2019; 21:3816-3830. [PMID: 31276280 DOI: 10.1111/1462-2920.14730] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022]
Abstract
Hydrogen (H2 ) is enriched in hot springs and can support microbial primary production. Using a series of geochemical proxies, a model to describe variable H2 concentrations in Yellowstone National Park (YNP) hot springs is presented. Interaction between water and crustal iron minerals yields H2 that partition into the vapour phase during decompressional boiling of ascending hydrothermal fluids. Variable vapour input leads to differences in H2 concentration among springs. Analysis of 50 metagenomes from a variety of YNP springs reveals that genes encoding oxidative hydrogenases are enriched in communities inhabiting springs sourced with vapour-phase gas. Three springs in the Smokejumper (SJ) area of YNP that are sourced with vapour-phase gas and with the most H2 in YNP were examined to determine the fate of H2 . SJ3 had the most H2 , the most 16S rRNA gene templates and the greatest abundance of culturable hydrogenotrophic and autotrophic cells of the three springs. Metagenomics and transcriptomics of SJ3 reveal a diverse community comprised of abundant populations expressing genes involved in H2 oxidation and carbon dioxide fixation. These observations suggest a link between geologic processes that generate and source H2 to hot springs and the distribution of organisms that use H2 to generate energy.
Collapse
Affiliation(s)
- Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | | | | | | | - Randall V Debes
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CZ, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
43
|
Liang L, Wang Y, Sivan O, Wang F. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1287-1295. [PMID: 31209798 DOI: 10.1007/s11427-018-9554-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022]
Abstract
Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.
Collapse
Affiliation(s)
- Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Orit Sivan
- Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
44
|
Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME JOURNAL 2019; 13:1750-1762. [PMID: 30872803 PMCID: PMC6588467 DOI: 10.1038/s41396-019-0391-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
Hydration of ultramafic rock during the geologic process of serpentinization can generate reduced substrates that microorganisms may use to fuel their carbon and energy metabolisms. However, serpentinizing environments also place multiple constraints on microbial life by generating highly reduced hyperalkaline waters that are limited in dissolved inorganic carbon. To better understand how microbial life persists under these conditions, we performed geochemical measurements on waters from a serpentinizing environment and subjected planktonic microbial cells to metagenomic and physiological analyses. Metabolic potential inferred from metagenomes correlated with fluid type, and genes involved in anaerobic metabolisms were enriched in hyperalkaline waters. The abundance of planktonic cells and their rates of utilization of select single-carbon compounds were lower in hyperalkaline waters than alkaline waters. However, the ratios of substrate assimilation to dissimilation were higher in hyperalkaline waters than alkaline waters, which may represent adaptation to minimize energetic and physiologic stress imposed by highly reducing, carbon-limited conditions. Consistent with this hypothesis, estimated genome sizes and average oxidation states of carbon in inferred proteomes were lower in hyperalkaline waters than in alkaline waters. These data suggest that microorganisms inhabiting serpentinized waters exhibit a unique suite of physiological adaptations that allow for their persistence under these polyextremophilic conditions.
Collapse
|