1
|
Gutierrez-Guerrero A, Périan S, Leray A, Martinello C, Abrey Recalde MJ, Costa C, Herrero CI, Bouzelha M, Alvarez-Dorta D, Gouin SG, Ayuso E, Adjali O, Büning H, Deniaud D, Mével M, Verhoeyen E. Ligand-modified rAAV6 vectors with nanoblades allow high-level gene knockin in HSPCs without compromising cell survival. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102495. [PMID: 40125271 PMCID: PMC11930132 DOI: 10.1016/j.omtn.2025.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/19/2025] [Indexed: 03/25/2025]
Abstract
Nanoblades are viral particles loaded with the Cas9 protein complexed with gRNA, which allowed efficient gene editing in hematopoietic stem and progenitor cells (HSPCs). Combined with recombinant adeno-associated vector (rAAV) 6 containing two homologous arms to a gene locus resulted in 50% of expression cassette knockin into HSPCs. However, high effective doses of rAAV6 induced HSPC cell death. Here, we demonstrated that, at high doses, rAAV2 was much less toxic for template DNA delivery and allowed transduction levels in HSPCs equivalent to rAAV6. To improve donor template delivery, rAAV2 and rAAV6 were chemically bio-conjugated with a mannose ligand, via the lysine or tyrosine amino acid residues exposed at the adeno-associated vector (AAV) capsid surface. High-level transduction of HSPCs with mannose-coupled rAAV6 vectors accompanied by a remarkable lower toxicity was achieved as compared to control rAAV6 in correlation with highly reduced p53 pathway activation. Mannose-conjugated rAAV6 combined with nanoblades allowed efficient gene knockin and increased survival of HSPCs from 10% to 80% as compared to the unmodified rAAV6 even in the most immature CD34+CD38lowCD90+ hematopoietic stem cell (HSC) population. Summarizing, mannose-conjugated rAAV6 maintained high-level donor mediated gene knockin when combined with nanoblades without inducing significant toxicity for the HSPCs, an important feature for clinical translation of HSPC gene-editing strategies.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Séverine Périan
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Aurélien Leray
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | | | - Maria Jimena Abrey Recalde
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Caroline Costa
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
| | - Cecilia Iglesias Herrero
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, 3000 Leuven, Belgium
| | | | | | | | - Eduard Ayuso
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Oumeya Adjali
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - David Deniaud
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Mathieu Mével
- Nantes Université, TaRGeT, Translational Research for gene Therapies, CHU de Nantes, INSERM UMR 1089, 44200 Nantes, France
| | - Els Verhoeyen
- CIRI – International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, 69007 Lyon, France
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France
| |
Collapse
|
2
|
Williams DA, Kohn DB, Thrasher AJ. Ex vivo modification of hematopoietic stem and progenitor cells for gene therapy. Mol Ther 2025; 33:2141-2153. [PMID: 40176348 DOI: 10.1016/j.ymthe.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025] Open
Abstract
The development of viral vectors has been particularly critical for genetic therapies of hematological diseases. Before the development of retrovirus vectors (RVVs), gene transfer into mammalian cells was accomplished by transduction of DNA plasmids by chemical means and later by electroporation. The main limitation of these methods is the inefficiency of transfer of intact sequences, and particularly with electroporation significant cell death of the manipulated cells. The earliest successful human gene therapy trials utilized γ-RVVs and many of the techniques developed in the 1980s. A breakthrough for the field was the exploitation and development of HIV for transfer vectors, termed lentivirus vectors. In this review, we highlight uses of retro- and lentivirus vectors in monogenic diseases in which hematopoietic stem cells are used in the autologous setting to treat immunodeficiencies, hemoglobinopathies and metabolic diseases. The three authors' perspective represent experiences in the field over four decades that encompasses both basic translational research and development and oversight of early and ongoing gene therapy trials utilizing viral vectors.
Collapse
Affiliation(s)
- David A Williams
- Boston Children's Hospital, Dana-Farber & Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115 USA.
| | - Donald B Kohn
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
3
|
Li YR, Zhou K, Lee D, Zhu Y, Halladay T, Yu J, Zhou Y, Lyu Z, Fang Y, Chen Y, Semaan S, Yang L. Generating allogeneic CAR-NKT cells for off-the-shelf cancer immunotherapy with genetically engineered HSP cells and feeder-free differentiation culture. Nat Protoc 2025; 20:1352-1388. [PMID: 39825143 DOI: 10.1038/s41596-024-01077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 01/20/2025]
Abstract
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (AlloNKT) cells and their CAR-armed derivatives (AlloCAR-NKT cells). We include detailed information on lentivirus generation and titration, as well as the five stages of ex vivo culture required to generate AlloCAR-NKT cells, including HSP cell engineering, HSP cell expansion, NKT cell differentiation, NKT cell deep differentiation and NKT cell expansion. In addition, we describe procedures for evaluating the pharmacology, antitumor efficacy and mechanism of action of AlloCAR-NKT cells. It takes ~2 weeks to generate and titrate lentiviruses and ~6 weeks to generate mature AlloCAR-NKT cells. Competence with human stem cell and T cell culture, gene engineering and flow cytometry is required for optimal results.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sasha Semaan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bolideei M, Barzigar R, Gahrouei RB, Mohebbi E, Haider KH, Paul S, Paul MK, Mehran MJ. Applications of Gene Editing and Nanotechnology in Stem Cell-Based Therapies for Human Diseases. Stem Cell Rev Rep 2025; 21:905-934. [PMID: 40014250 DOI: 10.1007/s12015-025-10857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Stem cell research is a dynamic and fast-advancing discipline with great promise for the treatment of diverse human disorders. The incorporation of gene editing technologies, including ZFNs, TALENs, and the CRISPR/Cas system, in conjunction with progress in nanotechnology, is fundamentally transforming stem cell therapy and research. These innovations not only provide a glimmer of optimism for patients and healthcare practitioners but also possess the capacity to radically reshape medical treatment paradigms. Gene editing and nanotechnology synergistically enhance stem cell-based therapies' precision, efficiency, and applicability, offering transformative potential for treating complex diseases and advancing regenerative medicine. Nevertheless, it is important to acknowledge that these technologies also give rise to ethical considerations and possible hazards, such as inadvertent genetic modifications and the development of genetically modified organisms, therefore creating a new age of designer infants. This review emphasizes the crucial significance of gene editing technologies and nanotechnology in the progress of stem cell treatments, particularly for degenerative pathologies and injuries. It emphasizes their capacity to restructure and comprehensively revolutionize medical treatment paradigms, providing fresh hope and optimism for patients and healthcare practitioners.
Collapse
Affiliation(s)
- Mansoor Bolideei
- Department of Respiratory and Critical Care Medicine, the Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Rambod Barzigar
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India
| | - Razieh Bahrami Gahrouei
- Department of Pharmacy PES College, Rajiv Gandhi University of Health Sciences, Bangalore, Karnataka, India
| | - Elham Mohebbi
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| | - Khawaja Husnain Haider
- Sulaiman AlRajhi Medical School, Al Bukayriyah, AlQaseem, 52726, Kingdom of Saudi Arabia
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA.
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mohammad Javad Mehran
- Department of Biotechnology, SJCE Technical Campus, JSS Research Foundation, University of Mysore, Mysore, 570006, Karnataka, India.
| |
Collapse
|
5
|
Li YR, Fang Y, Niu S, Zhu Y, Chen Y, Lyu Z, Zhu E, Tian Y, Huang J, Rezek V, Kitchen S, Hsiai T, Zhou JJ, Wang P, Chai-Ho W, Park S, Seet CS, Oliai C, Yang L. Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies. Nat Commun 2025; 16:1248. [PMID: 39893165 PMCID: PMC11787387 DOI: 10.1038/s41467-025-56270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy holds promise for treating myeloid malignancies, but challenges remain in bone marrow (BM) infiltration and targeting BM-resident malignant cells. Current autologous CAR-T therapies also face manufacturing and patient selection issues, underscoring the need for off-the-shelf products. In this study, we characterize primary patient samples and identify a unique therapeutic opportunity for CAR-engineered invariant natural killer T (CAR-NKT) cells. Using stem cell gene engineering and a clinically guided culture method, we generate allogeneic CD33-directed CAR-NKT cells with high yield, purity, and robustness. In preclinical mouse models, CAR-NKT cells exhibit strong BM homing and effectively target BM-resident malignant blast cells, including CD33-low/negative leukemia stem and progenitor cells. Furthermore, CAR-NKT cells synergize with hypomethylating agents, enhancing tumor-killing efficacy. These cells also show minimal off-tumor toxicity, reduced graft-versus-host disease and cytokine release syndrome risks, and resistance to allorejection, highlighting their substantial therapeutic potential for treating myeloid malignancies.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Valerie Rezek
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott Kitchen
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wanxing Chai-Ho
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sunmin Park
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Caspian Oliai
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Liu Q, Li X, Xu H, Luo Y, Cheng L, Liang J, He Y, Liu H, Fang J, Huang J. Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells. ADVANCED BIOTECHNOLOGY 2025; 3:2. [PMID: 39883359 PMCID: PMC11740860 DOI: 10.1007/s44307-024-00053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025]
Abstract
Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation. In this study, we directly applied the CRISPR/Cas9-based gene editing therapy to correct the HBB CD41-42 (-TCTT) mutation in patient-derived HSPCs. The effective editing induced by Cas9:sgRNA ribonucleoprotein and single-stranded oligodeoxynucleotides (ssODNs) was confirmed in HUDEP-2 cell lines harboring the HBB CD41-42 (-TCTT) mutation. Further correction of heterozygote and homozygote HBB CD41-42 (-TCTT) mutations in patient-derived HSPCs resulted in a 13.4-40.8% increase in the proportion of HBB-expressing (HBB +) cells following erythroid differentiation in vitro. At 16 weeks post-xenotransplantation of the edited HSPCs into coisogenic immunodeficient mice, the reparation efficiency in engrafted bone marrow was 17.21% ± 3.66%. Multiparameter flow cytometric analysis of the engrafted bone marrow showed an increase in the percentage of HBB + cells without impairing the ability of engraftment, self-renewal, and multilineage hematopoietic repopulation of HSPCs. For the safety evaluation, 103 potential off-target sites were predicted by SITE-seq and CRISPOR, with one site displaying significant off-target editing. Since this off-target site is located in the intergenic region, it is presumed to pose minimal risk. Taken together, our study provides critical preclinical data supporting the safety and efficacy of the gene therapy approach for HBB CD41-42 (-TCTT) mutation.
Collapse
Affiliation(s)
- Qianyi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Xinyu Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107, West Yan Jiang Road, Guangzhou, 510120, Guangdong, China
| | - Hui Xu
- Reforgene Medicine, Guangzhou, 510535, Guangdong, China
| | - Ying Luo
- Reforgene Medicine, Guangzhou, 510535, Guangdong, China
| | - Lin Cheng
- Reforgene Medicine, Guangzhou, 510535, Guangdong, China
| | - Junbin Liang
- Reforgene Medicine, Guangzhou, 510535, Guangdong, China
| | - Yuelin He
- Dongguan Taixin Hospital, Dongguan, 523170, Guangdong, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No.107, West Yan Jiang Road, Guangzhou, 510120, Guangdong, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
- Key Laboratory of Reproductive Medicine of Guangdong Province, the, First Affiliated Hospital and School of Life Sciences , Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
7
|
Beeraka NM, Basappa B, Nikolenko VN, Mahesh PA. Role of Neurotransmitters in Steady State Hematopoiesis, Aging, and Leukemia. Stem Cell Rev Rep 2025; 21:2-27. [PMID: 38976142 DOI: 10.1007/s12015-024-10761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN, 46202, USA.
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia.
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India.
| | - Basappa Basappa
- Department of Studies in Organic Chemistry, Laboratory of Chemical Biology, University of Mysore, Mysore, Karnataka, 570006, India
| | - Vladimir N Nikolenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russia
| | - P A Mahesh
- Department of Pulmonary Medicine, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
8
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
9
|
Gupta AO, Azul M, Bhoopalan SV, Abraham A, Bertaina A, Bidgoli A, Bonfim C, DeZern A, Li J, Louis CU, Purtill D, Ruggeri A, Boelens JJ, Prockop S, Sharma A. International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the current state of hematopoietic stem and progenitor cell-based genomic therapies and the challenges faced. Cytotherapy 2024; 26:1411-1420. [PMID: 38970612 PMCID: PMC11471386 DOI: 10.1016/j.jcyt.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
Genetic manipulation of hematopoietic stem cells (HSCs) is being developed as a therapeutic strategy for several inherited disorders. This field is rapidly evolving with several novel tools and techniques being employed to achieve desired genetic changes. While commercial products are now available for sickle cell disease, transfusion-dependent β-thalassemia, metachromatic leukodystrophy and adrenoleukodystrophy, several challenges remain in patient selection, HSC mobilization and collection, genetic manipulation of stem cells, conditioning, hematologic recovery and post-transplant complications, financial issues, equity of access and institutional and global preparedness. In this report, we explore the current state of development of these therapies and provide a comprehensive assessment of the challenges these therapies face as well as potential solutions.
Collapse
Affiliation(s)
- Ashish O Gupta
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Azul
- Division of Hematology and Oncology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Senthil Velan Bhoopalan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allistair Abraham
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Alan Bidgoli
- Division of Blood and Marrow Transplantation, Children's Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, Georgia, USA
| | - Carmem Bonfim
- Pediatric Blood and Marrow Transplantation Division and Pelé Pequeno Príncipe Research Institute, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Amy DeZern
- Bone Marrow Failure and MDS Program, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | | | - Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
10
|
Li X, Chu VT, Kocks C, Rajewsky K. Expansion and Precise CRISPR-Cas9 Gene Repair of Autologous T-Memory Stem Cells from Patients with T-Cell Immunodeficiencies. Bio Protoc 2024; 14:e5085. [PMID: 39512884 PMCID: PMC11540044 DOI: 10.21769/bioprotoc.5085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024] Open
Abstract
The adoptive transfer of autologous, long-lived, gene-repaired T cells is a promising way to treat inherited T-cell immunodeficiencies. However, adoptive T-cell therapies require a large number of T cells to be manipulated and infused back into the patient. This poses a challenge in primary immunodeficiencies that manifest early in childhood and where only small volumes of blood samples may be available. Our protocol describes the ex vivo expansion of potentially long-lived human T memory stem cells (TSCM), starting from a limited number of peripheral blood mononuclear cells (PBMCs). Using the perforin gene as an example, we provide detailed instructions for precise gene repair of human T cells and the expansion of TSCM. The efficiency of precise gene repair can be increased by suppressing unintended non-homologous end-joining (NHEJ) events. Our protocol yields edited T-cell populations that are ready for phenotyping, genome-wide off-target analysis, and functional characterization. Key features • Expansion and enrichment of TSCM from PBMCs using IL-7 and IL-15. • Phenotyping of TSCM. • Design of "off-the-shelf" gene-repair strategies based on knock-in of a single exon or complete cDNA and design of effective guide RNAs and DNA donor templates. • High-efficiency gene targeting using CRISPR-Cas9, recombinant adeno-associated virus serotype 6 (rAAV6), and a selective small molecule inhibitor of DNA-dependent protein kinase (DNA-PK).
Collapse
Affiliation(s)
- Xun Li
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Van Trung Chu
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Genome Engineering and Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Genome Engineering and Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
11
|
Yaish O, Orenstein Y. Generating, modeling and evaluating a large-scale set of CRISPR/Cas9 off-target sites with bulges. Nucleic Acids Res 2024; 52:6777-6790. [PMID: 38813823 PMCID: PMC11229338 DOI: 10.1093/nar/gkae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
The CRISPR/Cas9 system is a highly accurate gene-editing technique, but it can also lead to unintended off-target sites (OTS). Consequently, many high-throughput assays have been developed to measure OTS in a genome-wide manner, and their data was used to train machine-learning models to predict OTS. However, these models are inaccurate when considering OTS with bulges due to limited data compared to OTS without bulges. Recently, CHANGE-seq, a new in vitro technique to detect OTS, was used to produce a dataset of unprecedented scale and quality. In addition, the same study produced in cellula GUIDE-seq experiments, but none of these GUIDE-seq experiments included bulges. Here, we generated the most comprehensive GUIDE-seq dataset with bulges, and trained and evaluated state-of-the-art machine-learning models that consider OTS with bulges. We first reprocessed the publicly available experimental raw data of the CHANGE-seq study to generate 20 new GUIDE-seq experiments, and hundreds of OTS with bulges among the original and new GUIDE-seq experiments. We then trained multiple machine-learning models, and demonstrated their state-of-the-art performance both in vitro and in cellula over all OTS and when focusing on OTS with bulges. Last, we visualized the key features learned by our models on OTS with bulges in a unique representation.
Collapse
Affiliation(s)
- Ofir Yaish
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Yaron Orenstein
- Department of Computer Science, Bar-Ilan University, Ramat Gan 5290002, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
12
|
Somekh I, Hendel A, Somech R. Evolution of Gene Therapy for Inborn Errors of Immunity. JAMA Pediatr 2024; 178:645-646. [PMID: 38767875 DOI: 10.1001/jamapediatrics.2024.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This Viewpoint reviews the history and current state of gene therapy for inborn errors of immunity.
Collapse
Affiliation(s)
- Ido Somekh
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Tel-Aviv, Israel
- Faculty of Medicine, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv University, Tel-Aviv, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Tel-Aviv, Israel
- Faculty of Medicine, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
13
|
Zhang L, Li K, Liu Z, An L, Wei H, Pang S, Cao Z, Huang X, Jin X, Ma X. Restoring T and B cell generation in X-linked severe combined immunodeficiency mice through hematopoietic stem cells adenine base editing. Mol Ther 2024; 32:1658-1671. [PMID: 38532630 PMCID: PMC11184316 DOI: 10.1016/j.ymthe.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
Base editing of hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematologic diseases. However, the feasibility of using adenine-base-edited HSPCs for treating X-linked severe combined immunodeficiency (SCID-X1), the influence of dose-response relationships on immune cell generation, and the potential risks have not been demonstrated in vivo. Here, a humanized SCID-X1 mouse model was established, and 86.67% ± 2.52% (n = 3) of mouse hematopoietic stem cell (HSC) pathogenic mutations were corrected, with no single-guide-RNA (sgRNA)-dependent off-target effects detected. Analysis of peripheral blood over 16 weeks post-transplantation in mice with different immunodeficiency backgrounds revealed efficient immune cell generation following transplantation of different amounts of modified HSCs. Therefore, a large-scale infusion of gene-corrected HSCs within a safe range can achieve rapid, stable, and durable immune cell regeneration. Tissue-section staining further demonstrated the restoration of immune organ tissue structures, with no tumor formation in multiple organs. Collectively, these data suggest that base-edited HSCs are a potential therapeutic approach for SCID-X1 and that a threshold infusion dose of gene-corrected cells is required for immune cell regeneration. This study lays a theoretical foundation for the clinical application of base-edited HSCs in treating SCID-X1.
Collapse
Affiliation(s)
- Lu Zhang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Kai Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Haikun Wei
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Shanshan Pang
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Zongfu Cao
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing 100081, China; National Human Genetic Resources Center, Beijing 102206, China.
| |
Collapse
|
14
|
Mudde ACA, Kuo CY, Kohn DB, Booth C. What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1139-1149. [PMID: 38246560 DOI: 10.1016/j.jaip.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
During the past 20 years, gene editing has emerged as a novel form of gene therapy. Since the publication of the first potentially therapeutic gene editing platform for genetic disorders, increasingly sophisticated editing technologies have been developed. As with viral vector-mediated gene addition, inborn errors of immunity are excellent candidate diseases for a corrective autologous hematopoietic stem cell gene editing strategy. Research on gene editing for inborn errors of immunity is still entirely preclinical, with no trials yet underway. However, with editing techniques maturing, scientists are investigating this novel form of gene therapy in context of an increasing number of inborn errors of immunity. Here, we present an overview of these studies and the recent progress moving these technologies closer to clinical benefit.
Collapse
Affiliation(s)
- Anne C A Mudde
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Caroline Y Kuo
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Donald B Kohn
- Department of Pediatrics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology & Molecular Genetics, UCLA David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, Calif
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
15
|
Selvaraj S, Feist WN, Viel S, Vaidyanathan S, Dudek AM, Gastou M, Rockwood SJ, Ekman FK, Oseghale AR, Xu L, Pavel-Dinu M, Luna SE, Cromer MK, Sayana R, Gomez-Ospina N, Porteus MH. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat Biotechnol 2024; 42:731-744. [PMID: 37537500 DOI: 10.1038/s41587-023-01888-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/28/2023] [Indexed: 08/05/2023]
Abstract
Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.
Collapse
Affiliation(s)
- Sridhar Selvaraj
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - William N Feist
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sebastien Viel
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Immunology Department, Lyon Sud University Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France
| | - Sriram Vaidyanathan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sarah J Rockwood
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Freja K Ekman
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Aluya R Oseghale
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Liwen Xu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Mara Pavel-Dinu
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
17
|
Hicks ED, Keller MD. Mending RAG2: gene editing for treatment of RAG2 deficiency. Blood Adv 2024; 8:1817-1819. [PMID: 38592712 PMCID: PMC11006806 DOI: 10.1182/bloodadvances.2023012079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Affiliation(s)
- Elizabeth D Hicks
- Division of Allergy & Immunology, Children's National Hospital, Washington, DC
| | - Michael D Keller
- Division of Allergy & Immunology, Children's National Hospital, Washington, DC
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC
- GW Cancer Center, George Washington University School of Medicine, Washington, DC
| |
Collapse
|
18
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, DeRavin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024; 31:455-466.e4. [PMID: 38508195 PMCID: PMC10997443 DOI: 10.1016/j.stem.2024.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea; Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea.
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Max Grice
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland Mortlock
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diana Abraham
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Aisha AlJanahi
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Sogun Hong
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Perez-Bermejo JA, Efagene O, Matern WM, Holden JK, Kabir S, Chew GM, Andreoletti G, Catton E, Ennis CL, Garcia A, Gerstenberg TL, Hill KA, Jain A, Krassovsky K, Lalisan CD, Lord D, Quejarro BJ, Sales-Lee J, Shah M, Silva BJ, Skowronski J, Strukov YG, Thomas J, Veraz M, Vijay T, Wallace KA, Yuan Y, Grogan JL, Wienert B, Lahiri P, Treusch S, Dever DP, Soros VB, Partridge JR, Seim KL. Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair. Nat Commun 2024; 15:2625. [PMID: 38521763 PMCID: PMC10960832 DOI: 10.1038/s41467-024-46816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
Homology Directed Repair (HDR) enables precise genome editing, but the implementation of HDR-based therapies is hindered by limited efficiency in comparison to methods that exploit alternative DNA repair routes, such as Non-Homologous End Joining (NHEJ). In this study, we develop a functional, pooled screening platform to identify protein-based reagents that improve HDR in human hematopoietic stem and progenitor cells (HSPCs). We leverage this screening platform to explore sequence diversity at the binding interface of the NHEJ inhibitor i53 and its target, 53BP1, identifying optimized variants that enable new intermolecular bonds and robustly increase HDR. We show that these variants specifically reduce insertion-deletion outcomes without increasing off-target editing, synergize with a DNAPK inhibitor molecule, and can be applied at manufacturing scale to increase the fraction of cells bearing repaired alleles. This screening platform can enable the discovery of future gene editing reagents that improve HDR outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meet Shah
- Graphite Bio, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Yue Yuan
- Graphite Bio, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ghanim HY, Porteus MH. Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunol Rev 2024; 322:157-177. [PMID: 38233996 DOI: 10.1111/imr.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.
Collapse
Affiliation(s)
- Hana Y Ghanim
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew H Porteus
- Division of Pediatrics, Division of Oncology, Hematology, Stem Cell Transplantation, Stanford University, Stanford, California, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
21
|
Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 2024; 9:47. [PMID: 38409199 PMCID: PMC10897424 DOI: 10.1038/s41392-024-01750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Precise genome-editing platforms are versatile tools for generating specific, site-directed DNA insertions, deletions, and substitutions. The continuous enhancement of these tools has led to a revolution in the life sciences, which promises to deliver novel therapies for genetic disease. Precise genome-editing can be traced back to the 1950s with the discovery of DNA's double-helix and, after 70 years of development, has evolved from crude in vitro applications to a wide range of sophisticated capabilities, including in vivo applications. Nonetheless, precise genome-editing faces constraints such as modest efficiency, delivery challenges, and off-target effects. In this review, we explore precise genome-editing, with a focus on introduction of the landmark events in its history, various platforms, delivery systems, and applications. First, we discuss the landmark events in the history of precise genome-editing. Second, we describe the current state of precise genome-editing strategies and explain how these techniques offer unprecedented precision and versatility for modifying the human genome. Third, we introduce the current delivery systems used to deploy precise genome-editing components through DNA, RNA, and RNPs. Finally, we summarize the current applications of precise genome-editing in labeling endogenous genes, screening genetic variants, molecular recording, generating disease models, and gene therapy, including ex vivo therapy and in vivo therapy, and discuss potential future advances.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tiange Li
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Nathan J VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
22
|
Li X, Wirtz T, Weber T, Lebedin M, Lowenstein ED, Sommermann T, Zach A, Yasuda T, de la Rosa K, Chu VT, Schulte JH, Müller I, Kocks C, Rajewsky K. Precise CRISPR-Cas9 gene repair in autologous memory T cells to treat familial hemophagocytic lymphohistiocytosis. Sci Immunol 2024; 9:eadi0042. [PMID: 38306418 DOI: 10.1126/sciimmunol.adi0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Familial hemophagocytic lymphohistiocytosis (FHL) is an inherited, often fatal immune deficiency characterized by severe systemic hyperinflammation. Although allogeneic bone marrow transplantation can be curative, more effective therapies are urgently needed. FHL is caused by inactivating mutations in proteins that regulate cellular immunity. Here, we used an adeno-associated virus-based CRISPR-Cas9 system with an inhibitor of nonhomologous end joining to repair such mutations in potentially long-lived T cells ex vivo. Repaired CD8 memory T cells efficiently cured lethal hyperinflammation in a mouse model of Epstein-Barr virus-triggered FHL2, a subtype caused by perforin-1 (Prf1) deficiency. Furthermore, repair of PRF1 and Munc13-4 (UNC13D)-whose deficiency causes the FHL subtype FHL3-in mutant memory T cells from two critically ill patients with FHL restored T cell cytotoxicity. These results provide a starting point for the treatment of genetic T cell immune dysregulation syndromes with repaired autologous T cells.
Collapse
Affiliation(s)
- Xun Li
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Tristan Wirtz
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Timm Weber
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Mikhail Lebedin
- Immune Mechanisms and Human Antibodies, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Elijah D Lowenstein
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Andreas Zach
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Tomoharu Yasuda
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Kathrin de la Rosa
- Immune Mechanisms and Human Antibodies, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Center of Biological Design, Berlin Institute of Health (BIH) at Charité, 13125 Berlin, Germany
| | - Van Trung Chu
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), 10117 Berlin, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Developmental Biology/Signal Transduction, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| |
Collapse
|
23
|
Baik R, Cromer MK, Glenn SE, Vakulskas CA, Chmielewski KO, Dudek AM, Feist WN, Klermund J, Shipp S, Cathomen T, Dever DP, Porteus MH. Transient inhibition of 53BP1 increases the frequency of targeted integration in human hematopoietic stem and progenitor cells. Nat Commun 2024; 15:111. [PMID: 38169468 PMCID: PMC10762240 DOI: 10.1038/s41467-023-43413-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024] Open
Abstract
Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.
Collapse
Affiliation(s)
- Ron Baik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kyle Cromer
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steve E Glenn
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | | | - Kay O Chmielewski
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Amanda M Dudek
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - William N Feist
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Suzette Shipp
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106, Freiburg, Germany
- Center for Chronic Immunodeficiency, University of Freiburg, 79106, Freiburg, Germany
| | - Daniel P Dever
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew H Porteus
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, de Ravin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR-editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571396. [PMID: 38168153 PMCID: PMC10760194 DOI: 10.1101/2023.12.13.571396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) requires both sufficient HDR efficiency and protection of LT-HSC function and number. The impact of HDR on true LT-HSCs clonal dynamics in a relevant large animal model has not previously been studied. To track the HDR-edited cells, autologous rhesus macaque (RM) CD34 + cells were electroporated with the gRNA/Cas9 ribonucleoprotein (RNP) and HDR cassette barcode library structure and reinfused into RMs following myeloablation. For competitive model animals, fractionated CD34 + cells were transduced with a barcoded GFP-expressing lentiviral vector (LV) and electroporated via HDR machinery, respectively. CD33 knockout (KO) neutrophils were prevalent early following engraftment and then rapidly decreased, resulting in less than 1% total editing efficiency. Interestingly, in competitive animals, a higher concentration of i53 mRNA result in a less steep reduction in CD33 KO cells, presented a modest decrease in HDR rate (0.1-0.2%) and total indels (1.5-6.5%). In contrast, the drop off of LV-transduced GFP + cells stabilized at 20% after 2 months. We next retrieved embedded barcodes and revealed that various clones contributed to early hematopoietic reconstitution, then after dominant clones appeared at steady state throughout the animals. In conclusion, CRISPR/HDR edited cells disappeared rapidly after the autologous transplantation in RM despite substantial gene editing outcome, whereas LV-transduced cells were relatively well maintained. Clonality of HDR-edited cells drastically shrank at early stage and then relied on several dominant clones, which can be mildly mitigated by the introduction of i53 mRNA.
Collapse
|
25
|
Amin R, Darwin R, Chakraborty S, Dey BK, Dhama K, Emran TB. Novel gene therapy advances for treating primary immunodeficiency disorders - an update. Ann Med Surg (Lond) 2023; 85:5859-5862. [PMID: 38098588 PMCID: PMC10718386 DOI: 10.1097/ms9.0000000000001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam, India
| | - Ronald Darwin
- School of Pharmaceutical Sciences, Vels Institute of Science Technology & Advanced Studies, Chennai
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura
| | - Biplab K. Dey
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, India
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Provide an overview of the landmark accomplishments and state of the art of gene therapy for inborn errors of immunity (IEI). RECENT FINDINGS Three decades after the first clinical application of gene therapy for IEI, there is one market authorized product available, while for several others efficacy has been demonstrated or is currently being tested in ongoing clinical trials. Gene editing approaches using programmable nucleases are being explored preclinically and could be beneficial for genes requiring tightly regulated expression, gain-of-function mutations and dominant-negative mutations. SUMMARY Gene therapy by modifying autologous hematopoietic stem cells (HSCs) offers an attractive alternative to allogeneic hematopoietic stem cell transplantation (HSCT), the current standard of care to treat severe IEI. This approach does not require availability of a suitable allogeneic donor and eliminates the risk of graft versus host disease (GvHD). Gene therapy can be attempted by using a viral vector to add a copy of the therapeutic gene (viral gene addition) or by using programmable nucleases (gene editing) to precisely correct mutations, disrupt a gene or introduce an entire copy of a gene at a specific locus. However, gene therapy comes with its own challenges such as safety, therapeutic effectiveness and access. For viral gene addition, a major safety concern is vector-related insertional mutagenesis, although this has been greatly reduced with the introduction of safer vectors. For gene editing, the risk of off-site mutagenesis is a main driver behind the ongoing search for modified nucleases. For both approaches, HSCs have to be manipulated ex vivo, and doing this efficiently without losing stemness remains a challenge, especially for gene editing.
Collapse
Affiliation(s)
- Lisa M. Ott de Bruin
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
| | - Frank J.T. Staal
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
28
|
Murugesan R, Karuppusamy KV, Marepally S, Thangavel S. Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Front Genome Ed 2023; 5:1148693. [PMID: 37780116 PMCID: PMC10540692 DOI: 10.3389/fgeed.2023.1148693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Advancements in gene delivery and editing have expanded the applications of autologous hematopoietic stem and progenitor cells (HSPCs) for the treatment of monogenic and acquired diseases. The gene editing toolbox is growing, and the ability to achieve gene editing with mRNA or protein delivered intracellularly by vehicles, such as electroporation and nanoparticles, has highlighted the potential of gene editing in HSPCs. Ongoing phase I/II clinical trials with gene-edited HSPCs for β-hemoglobinopathies provide hope for treating monogenic diseases. The development of safe and efficient gene editing reagents and their delivery into hard-to-transfect HSPCs have been critical drivers in the rapid translation of HSPC gene editing into clinical studies. This review article summarizes the available payloads and delivery vehicles for gene editing HSPCs and their potential impact on therapeutic applications.
Collapse
Affiliation(s)
- Ramya Murugesan
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik V. Karuppusamy
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR), A Unit of InStem Bengaluru, Christian Medical College Campus, Vellore, Tamil Nadu, India
| |
Collapse
|
29
|
Vavassori V, Ferrari S, Beretta S, Asperti C, Albano L, Annoni A, Gaddoni C, Varesi A, Soldi M, Cuomo A, Bonaldi T, Radrizzani M, Merelli I, Naldini L. Lipid nanoparticles allow efficient and harmless ex vivo gene editing of human hematopoietic cells. Blood 2023; 142:812-826. [PMID: 37294917 PMCID: PMC10644071 DOI: 10.1182/blood.2022019333] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Ex vivo gene editing in T cells and hematopoietic stem/progenitor cells (HSPCs) holds promise for treating diseases. Gene editing encompasses the delivery of a programmable editor RNA or ribonucleoprotein, often achieved ex vivo via electroporation, and when aiming for homology-driven correction of a DNA template, often provided by viral vectors together with a nuclease editor. Although HSPCs activate a robust p53-dependent DNA damage response upon nuclease-based editing, the responses triggered in T cells remain poorly characterized. Here, we performed comprehensive multiomics analyses and found that electroporation is the main culprit of cytotoxicity in T cells, causing death and cell cycle delay, perturbing metabolism, and inducing an inflammatory response. Nuclease RNA delivery using lipid nanoparticles (LNPs) nearly abolished cell death and ameliorated cell growth, improving tolerance to the procedure and yielding a higher number of edited cells compared with using electroporation. Transient transcriptomic changes upon LNP treatment were mostly caused by cellular loading with exogenous cholesterol, whose potentially detrimental impact could be overcome by limiting exposure. Notably, LNP-based HSPC editing dampened p53 pathway induction and supported higher clonogenic activity and similar or higher reconstitution by long-term repopulating HSPCs compared with electroporation, reaching comparable editing efficiencies. Overall, LNPs may allow efficient and harmless ex vivo gene editing in hematopoietic cells for the treatment of human diseases.
Collapse
Affiliation(s)
- Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Asperti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Soldi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Cuomo
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Molecular Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haematology-Oncology, University of Milan, Milan, Italy
| | - Marina Radrizzani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
30
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
31
|
Rai R, Naseem A, Vetharoy W, Steinberg Z, Thrasher AJ, Santilli G, Cavazza A. An improved medium formulation for efficient ex vivo gene editing, expansion and engraftment of hematopoietic stem and progenitor cells. Mol Ther Methods Clin Dev 2023; 29:58-69. [PMID: 36950452 PMCID: PMC10025975 DOI: 10.1016/j.omtm.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Gene editing has emerged as a powerful tool for the therapeutic correction of monogenic diseases. CRISPR-Cas9 applied to hematopoietic stem and progenitor cells (HSPCs) has shown great promise in proof-of-principle preclinical studies to treat hematological disorders, and clinical trials using these tools are now under way. Nonetheless, there remain important challenges that need to be addressed, such as the efficiency of targeting primitive, long-term repopulating HSPCs and their in vitro expansion for clinical application. In this study, we assessed the effect of different culture medium compositions on the ability of HSPCs to proliferate and undergo homology-directed repair-mediated knock-in of a reporter gene, while preserving their stemness features during ex vivo culture. We demonstrated that by supplementing the culture medium with stem cell agonists and by fine-tuning its cytokine composition it is possible to achieve high levels of gene targeting in long-term repopulating HSPCs both in vitro and in vivo, with a beneficial balance between preservation of stemness and cell expansion. Overall, the implementation of this optimized ex vivo HSPC culture protocol can improve the efficacy, feasibility, and applicability of gene editing as a key step to unlocking the full therapeutic potential of this powerful technology.
Collapse
Affiliation(s)
- Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Zohar Steinberg
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Adrian J. Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
32
|
Arlabosse T, Booth C, Candotti F. Gene Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1592-1601. [PMID: 37084938 DOI: 10.1016/j.jaip.2023.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
In the early 1990s, gene therapy (GT) entered the clinical arena as an alternative to hematopoietic stem cell transplantation for forms of inborn errors of immunity (IEIs) that are not medically manageable because of their severity. In principle, the use of gene-corrected autologous hematopoietic stem cells presents several advantages over hematopoietic stem cell transplantation, including making donor searches unnecessary and avoiding the risks for graft-versus-host disease. In the past 30 years or more of clinical experience, the field has witnessed multiple examples of successful applications of GT to a number of IEIs, as well as some serious drawbacks, which have highlighted the potential genotoxicity of integrating viral vectors and stimulated important progress in the development of safer gene transfer tools. The advent of gene editing technologies promises to expand the spectrum of IEIs amenable to GT to conditions caused by mutated genes that require the precise regulation of expression or by dominant-negative variants. Here, we review the main concepts of GT as it applies to IEIs and the clinical results obtained to date. We also describe the challenges faced by this branch of medicine, which operates in the unprofitable sector of human rare diseases.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Division of Pediatrics, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Chavez M, Rane DA, Chen X, Qi LS. Stable expression of large transgenes via the knock-in of an integrase-deficient lentivirus. Nat Biomed Eng 2023; 7:661-671. [PMID: 37127707 DOI: 10.1038/s41551-023-01037-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The targeted insertion and stable expression of a large genetic payload in primary human cells demands methods that are robust, efficient and easy to implement. Large payload insertion via retroviruses is typically semi-random and hindered by transgene silencing. Leveraging homology-directed repair to place payloads under the control of endogenous essential genes can overcome silencing but often results in low knock-in efficiencies and cytotoxicity. Here we report a method for the knock-in and stable expression of a large payload and for the simultaneous knock-in of two genes at two endogenous loci. The method, which we named CLIP (for 'CRISPR for long-fragment integration via pseudovirus'), leverages an integrase-deficient lentivirus encoding a payload flanked by homology arms and 'cut sites' to insert the payload upstream and in-frame of an endogenous essential gene, followed by the delivery of a CRISPR-associated ribonucleoprotein complex via electroporation. We show that CLIP enables the efficient insertion and stable expression of large payloads and of two difficult-to-express viral antigens in primary T cells at low cytotoxicity. CLIP offers a scalable and efficient method for manufacturing engineered primary cells.
Collapse
Affiliation(s)
- Michael Chavez
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Draven A Rane
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Fañanas-Baquero S, Morín M, Fernández S, Ojeda-Perez I, Dessy-Rodriguez M, Giurgiu M, Bueren JA, Moreno-Pelayo MA, Segovia JC, Quintana-Bustamante O. Specific correction of pyruvate kinase deficiency-causing point mutations by CRISPR/Cas9 and single-stranded oligodeoxynucleotides. Front Genome Ed 2023; 5:1104666. [PMID: 37188156 PMCID: PMC10175809 DOI: 10.3389/fgeed.2023.1104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Pyruvate kinase deficiency (PKD) is an autosomal recessive disorder caused by mutations in the PKLR gene. PKD-erythroid cells suffer from an energy imbalance caused by a reduction of erythroid pyruvate kinase (RPK) enzyme activity. PKD is associated with reticulocytosis, splenomegaly and iron overload, and may be life-threatening in severely affected patients. More than 300 disease-causing mutations have been identified as causing PKD. Most mutations are missense mutations, commonly present as compound heterozygous. Therefore, specific correction of these point mutations might be a promising therapy for the treatment of PKD patients. We have explored the potential of precise gene editing for the correction of different PKD-causing mutations, using a combination of single-stranded oligodeoxynucleotides (ssODN) with the CRISPR/Cas9 system. We have designed guide RNAs (gRNAs) and single-strand donor templates to target four different PKD-causing mutations in immortalized patient-derived lymphoblastic cell lines, and we have detected the precise correction in three of these mutations. The frequency of the precise gene editing is variable, while the presence of additional insertions/deletions (InDels) has also been detected. Significantly, we have identified high mutation-specificity for two of the PKD-causing mutations. Our results demonstrate the feasibility of a highly personalized gene-editing therapy to treat point mutations in cells derived from PKD patients.
Collapse
Affiliation(s)
- Sara Fañanas-Baquero
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Matías Morín
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sergio Fernández
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Isabel Ojeda-Perez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Mercedes Dessy-Rodriguez
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miruna Giurgiu
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Juan A. Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Miguel Angel Moreno-Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jose Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
35
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
36
|
Allen D, Kalter N, Rosenberg M, Hendel A. Homology-Directed-Repair-Based Genome Editing in HSPCs for the Treatment of Inborn Errors of Immunity and Blood Disorders. Pharmaceutics 2023; 15:1329. [PMID: 37242571 PMCID: PMC10220672 DOI: 10.3390/pharmaceutics15051329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Genome engineering via targeted nucleases, specifically CRISPR-Cas9, has revolutionized the field of gene therapy research, providing a potential treatment for diseases of the blood and immune system. While numerous genome editing techniques have been used, CRISPR-Cas9 homology-directed repair (HDR)-mediated editing represents a promising method for the site-specific insertion of large transgenes for gene knock-in or gene correction. Alternative methods, such as lentiviral/gammaretroviral gene addition, gene knock-out via non-homologous end joining (NHEJ)-mediated editing, and base or prime editing, have shown great promise for clinical applications, yet all possess significant drawbacks when applied in the treatment of patients suffering from inborn errors of immunity or blood system disorders. This review aims to highlight the transformational benefits of HDR-mediated gene therapy and possible solutions for the existing problems holding the methodology back. Together, we aim to help bring HDR-based gene therapy in CD34+ hematopoietic stem progenitor cells (HSPCs) from the lab bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; (D.A.); (N.K.); (M.R.)
| |
Collapse
|
37
|
Wolff JH, Mikkelsen JG. Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Front Genome Ed 2023; 5:1148650. [PMID: 36969373 PMCID: PMC10036844 DOI: 10.3389/fgeed.2023.1148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Prime editing of human hematopoietic stem cells has the potential to become a safe and efficient way of treating diseases of the blood directly in patients. By allowing site-targeted gene intervention without homology-directed repair donor templates and DNA double-stranded breaks, the invention of prime editing fuels the exploration of alternatives to conventional recombination-based ex vivo genome editing of hematopoietic stem cells. Prime editing is as close as we get today to a true genome editing drug that does not require a separate DNA donor. However, to adapt the technology to perform in vivo gene correction, key challenges remain to be solved, such as identifying effective prime editing guide RNAs for clinical targets as well as developing efficient vehicles to deliver prime editors to stem cells in vivo. In this review, we summarize the current progress in delivery of prime editors both in vitro and in vivo and discuss future challenges that need to be adressed to allow in vivo prime editing as a cure for blood disorders.
Collapse
|
38
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
39
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
40
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
41
|
Crippa S, Conti A, Vavassori V, Ferrari S, Beretta S, Rivis S, Bosotti R, Scala S, Pirroni S, Jofra-Hernandez R, Santi L, Basso-Ricci L, Merelli I, Genovese P, Aiuti A, Naldini L, Di Micco R, Bernardo ME. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs. Mol Ther 2023; 31:230-248. [PMID: 35982622 PMCID: PMC9840125 DOI: 10.1016/j.ymthe.2022.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Rivis
- Laboratory of Tumor Inflammation and Angiogenesis, VIB-KULeuven, 3000 Leuven, Belgium
| | - Roberto Bosotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Raisa Jofra-Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20132 Milan, Italy
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; (")Vita Salute" San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
42
|
Gene Editing in Human Haematopoietic Stem Cells for the Treatment of Primary Immunodeficiencies. Mol Diagn Ther 2023; 27:15-28. [PMID: 36239917 DOI: 10.1007/s40291-022-00618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 02/04/2023]
Abstract
In recent years, gene-editing technologies have revolutionised precision medicine, and human trials of this technology have been reported in cell-based cancer therapies and other genetic disorders. The same techniques have the potential to reverse mutations in monogenic primary immunodeficiencies (PIDs), and transplantation of edited haematopoietic stem cells may provide a functional cure for these diseases. In this review, we discuss the methods of gene editing being explored and describe progress made so far with several PIDs. We also detail the remaining challenges, how to confidently detect off-target effects and chromosomal abnormalities in a timely manner, how to obtain long-term benefits, and how to achieve physiological levels of expression of the therapeutic gene. With advances in gene editing, we envisage a robust clinical translation of this technology in the coming decade.
Collapse
|
43
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
44
|
Shiroshita K, Kobayashi H, Watanuki S, Karigane D, Sorimachi Y, Fujita S, Tamaki S, Haraguchi M, Itokawa N, Aoyoama K, Koide S, Masamoto Y, Kobayashi K, Nakamura-Ishizu A, Kurokawa M, Iwama A, Okamoto S, Kataoka K, Takubo K. A culture platform to study quiescent hematopoietic stem cells following genome editing. CELL REPORTS METHODS 2022; 2:100354. [PMID: 36590688 PMCID: PMC9795334 DOI: 10.1016/j.crmeth.2022.100354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
Other than genetically engineered mice, few reliable platforms are available for the study of hematopoietic stem cell (HSC) quiescence. Here we present a platform to analyze HSC cell cycle quiescence by combining culture conditions that maintain quiescence with a CRISPR-Cas9 genome editing system optimized for HSCs. We demonstrate that preculture of HSCs enhances editing efficiency by facilitating nuclear transport of ribonucleoprotein complexes. For post-editing culture, mouse and human HSCs edited based on non-homologous end joining and cultured under low-cytokine, low-oxygen, and high-albumin conditions retain their phenotypes and quiescence better than those cultured under the proliferative conditions. Using this approach, HSCs regain quiescence even after editing by homology-directed repair. Our results show that low-cytokine culture conditions for gene-edited HSCs are a useful approach for investigating HSC quiescence ex vivo.
Collapse
Affiliation(s)
- Kohei Shiroshita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Kobayashi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shintaro Watanuki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daiki Karigane
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuriko Sorimachi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Miho Haraguchi
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoki Itokawa
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazumasa Aoyoama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shuhei Koide
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Ayako Nakamura-Ishizu
- Department of Microscopic and Developmental Anatomy, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinichiro Okamoto
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
45
|
Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022; 13:genes13122348. [PMID: 36553615 PMCID: PMC9777626 DOI: 10.3390/genes13122348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.
Collapse
|
46
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
47
|
In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes (Basel) 2022; 13:genes13122222. [PMID: 36553489 PMCID: PMC9778055 DOI: 10.3390/genes13122222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The tremendous evolution of genome-editing tools in the last two decades has provided innovative and effective approaches for gene therapy of congenital and acquired diseases. Zinc-finger nucleases (ZFNs), transcription activator- like effector nucleases (TALENs) and CRISPR-Cas9 have been already applied by ex vivo hematopoietic stem cell (HSC) gene therapy in genetic diseases (i.e., Hemoglobinopathies, Fanconi anemia and hereditary Immunodeficiencies) as well as infectious diseases (i.e., HIV), and the recent development of CRISPR-Cas9-based systems using base and prime editors as well as epigenome editors has provided safer tools for gene therapy. The ex vivo approach for gene addition or editing of HSCs, however, is complex, invasive, technically challenging, costly and not free of toxicity. In vivo gene addition or editing promise to transform gene therapy from a highly sophisticated strategy to a "user-friendly' approach to eventually become a broadly available, highly accessible and potentially affordable treatment modality. In the present review article, based on the lessons gained by more than 3 decades of ex vivo HSC gene therapy, we discuss the concept, the tools, the progress made and the challenges to clinical translation of in vivo HSC gene editing.
Collapse
|
48
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
49
|
Jones M, Cunningham A, Frank N, Sethi D. The monoculture of cord-blood-derived CD34 + cells by an automated, membrane-based dynamic perfusion system with a novel cytokine cocktail. Stem Cell Reports 2022; 17:2585-2594. [PMID: 36332632 PMCID: PMC9768577 DOI: 10.1016/j.stemcr.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Human leukocyte antigen (HLA)-matched cord blood (CB) transplantation is a procedure for the treatment of certain hematological malignancies, hemoglobinopathies, and autoimmune disorders. However, one of the challenges is to provide a sufficient number of T cell-depleted hematopoietic stem and progenitor cells. Currently, only 4%-5% of the CB units stored in CB banks contain enough CD34+ cells for engrafting 70-kg patients. To support this clinical need, we have developed an automated expansion protocol for CB-derived CD34+ cells in the Quantum system's dynamic perfusion bioreactor using a novel cytokine cocktail comprised of stem cell factor (SCF), thrombopoietin (TPO), fms-like tyrosine kinase 3 ligand (Flt-3L), interleukin-3 (IL-3), IL-6, glial cell line-derived neurotrophic factor (GDNF), StemRegenin 1 (SR-1), and a fibronectin-stromal-cell-derived factor-1 (SDF-1)-coated membrane. In an 8-day expansion of a 2 × 106 positively selected CD34+ cell inoculum from 3 donor lineages, the mean cell harvest and cell viability were 1.02 × 108 cells and 95.5%, respectively, and the mean frequency of the CD45+CD34+ immunophenotype was 54.3%. The mean differentiated cell frequencies were 0.5% for lymphocytes, 15.8% for neutrophils, and 15.4% for platelets. These results demonstrate that the automated monoculture protocol can support the expansion of CD34+ cells with minimal lymphocyte residual.
Collapse
Affiliation(s)
- Mark Jones
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA,Corresponding author
| | - Annie Cunningham
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| | - Nathan Frank
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| | - Dalip Sethi
- Research and Development, Terumo Blood and Cell Technologies, Lakewood, CO 80215, USA
| |
Collapse
|
50
|
Li R, Wang Q, She K, Lu F, Yang Y. CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. MOLECULAR BIOMEDICINE 2022; 3:31. [PMID: 36239875 PMCID: PMC9560888 DOI: 10.1186/s43556-022-00095-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of the CRISPR/Cas system is a milestone in precise medicine. CRISPR/Cas nucleases, base-editing (BE) and prime-editing (PE) are three genome editing technologies derived from CRISPR/Cas. In recent years, CRISPR-based genome editing technologies have created immense therapeutic potential with safe and efficient viral or non-viral delivery systems. Significant progress has been made in applying genome editing strategies to modify T cells and hematopoietic stem cells (HSCs) ex vivo and to treat a wide variety of diseases and disorders in vivo. Nevertheless, the clinical translation of this unique technology still faces many challenges, especially targeting, safety and delivery issues, which require further improvement and optimization. In addition, with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), CRISPR-based molecular diagnosis has attracted extensive attention. Growing from the specific set of molecular biological discoveries to several active clinical trials, CRISPR/Cas systems offer the opportunity to create a cost-effective, portable and point-of-care diagnosis through nucleic acid screening of diseases. In this review, we describe the development, mechanisms and delivery systems of CRISPR-based genome editing and focus on clinical and preclinical studies of therapeutic CRISPR genome editing in disease treatment as well as its application prospects in therapeutics and molecular detection.
Collapse
Affiliation(s)
- Ruiting Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
| | - Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, 610225, Sichuan, China
| | - Kaiqin She
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Ke-yuan Road 4, No. 1, Gao-peng Street, Chengdu, 610041, Sichuan, China.
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|