1
|
Huang D, Zhang M, Yan H, Mei L, Yang A, He Y, Tam KY, Zhang SL. Unexpected Discovery of a Novel Triphenylphosphonium Alkylalcohol That Triggers Cancer Cell Death via Mitophagy and Ferroptosis. J Med Chem 2025. [PMID: 40393945 DOI: 10.1021/acs.jmedchem.5c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Mitochondria-targeted delivery is a promising strategy in anticancer drug development. Triphenylphosphine cation (TPP+) is the most widely used mitochondrial-targeting carrier due to the elevated mitochondrial membrane potential (MMP) in cancer cells. Here, we report the serendipitous discovery of a mitochondrial-targeting carrier, compound 23, which exhibited potent anticancer activity (IC50 = 70 nM, HCC827) with minimal toxicity to normal cells. Compound 23 selectively accumulates in cancer cell mitochondria, induces MMP depolarization, and activates mitophagy via PINK1-Parkin pathway. It also disruptes mitochondrial functions, elevates ROS levels, and inhibits the xCT-GSH-GPX4 axis, leading to lipid peroxidation and ferroptotic cell death. In vivo, 23 significantly suppressed the growth of HCC827 xenograft tumors at 10 mg/kg. These findings support compound 23 as a highly selective and effective mitochondrial-targeting anticancer agent for further investigation.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, PR China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Haibo Yan
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China
| | - Aiming Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
- Therapeutic Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
2
|
Lu S, Li A, Huang H, Ni C, Cao X, Shi X, Guo R. Dendrimer-Entrapped CuPt Bimetallic Nanozymes for Tumor Microenvironment-Regulated Photothermal/Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40386978 DOI: 10.1021/acsami.5c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Noble metal nanozymes have attracted extensive attention in tumor therapy due to their multiple enzyme-like activities for catalytic therapy and unique optical properties for photothermal therapy (PTT). However, their therapeutic efficiency may be compromised by the intricate tumor microenvironment (TME). Herein, copper-platinum (CuPt) bimetallic nanozymes were synthesized and entrapped by poly(amidoamine) dendrimers, with p-carboxybenzenesulfonamide (BS, a carbonic anhydrase IX (CA IX) inhibitor) modified on the surface and lonidamine (Lon) loaded inside to regulate TME for enhanced catalytic therapy and PTT. The formed CPL@G5-BS nanozymes could specifically target CA IX-overexpressed tumor cells and activate the cascade catalytic reaction with continuous •OH generation by the peroxidase-like property, O2 supply by the catalase-like property, and H2O2 replenishing by the superoxide dismutase-like property, thereby alleviating hypoxia and achieving chemodynamic therapy (CDT). In the TME, BS-mediated CA IX inhibition would normalize the extracellular pH to suppress metastasis while reducing the intracellular pH to boost the catalytic efficiency, and Lon-mediated mitochondrial respiration inhibition and energy metabolic disruption would elevate intracellular oxygen accumulation and downregulate heat shock protein (HSP) expression, further enhancing the PTT efficacy. Meanwhile, the excellent photothermal performance of CPL@G5-BS could amplify the multienzyme activities, and Cu2+-mediated glutathione depletion further improved the CDT efficiency. Overall, the CPL@G5-BS nanozymes can efficiently inhibit tumor growth and suppress metastasis by TME-regulated catalytic therapy and PTT.
Collapse
Affiliation(s)
- Shizhuan Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Aiyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haoyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Lu XY, Zhu LY, Zhu H, Huang SJ, Yang YS, Jiang CR, Ye RR. Cyclometalated iridium(III)-lonidamine conjugates: Mitochondrial targeting and pyroptosis induction. J Inorg Biochem 2025; 266:112852. [PMID: 39938148 DOI: 10.1016/j.jinorgbio.2025.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
A series of cyclometalated Ir(III)-lonidamine (LND) complexes (Ir-LND-1-6) with the formula [Ir(C^N)2bpy(4-CH3-4'-CH2OLND)](PF6) (Ir-LND-1-3) and [Ir(C^N)2bpy(4-CH2OLND-4'-CH2OLND)](PF6) (Ir-LND-4-6) (C^N = 2-phenylpyridine (ppy, in Ir-LND-1 and Ir-LND-4), 2-(2-thienyl) pyridine (thpy, in Ir-LND-2 and Ir-LND-5) and 2-(2,4-difluorophenyl) pyridine (dfppy, in Ir-LND-3 and Ir-LND-6)), were designed and synthesized. 3-(4,5-dimethylthiazol-2-yl)-2,5-biphenyltetrazolium bromide (MTT) assay data showed that the cytotoxicity of Ir-LND-1-3 carry one LND moiety was superior to that of Ir-LND-4-6 with two LND moieties. Therefore, we selected Ir-LND-1-3 as model compounds to investigate the anti-tumor mechanism of the Ir(III)-LND system. The results showed that Ir-LND-1-3 could inhibit cancer cell migration and colony formation. In addition, Ir-LND-1-3 could penetrate into HeLa cells and localized to mitochondria, further disrupting mitochondrial membrane potential (MMP), increasing intracellular reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP). Further exploration of anti-tumor mechanisms showed that pyroptosis was the main mode of Ir-LND-1-3 induced cell death, manifested as membrane perforation and swelling, activation of caspase-3 and cleavage of Gasdermin E (GSDME), as well as release of lactic dehydrogenase (LDH) and ATP. The pyroptosis induced by Ir-LND-1-3 also initiated immunogenic cell death (ICD) by triggering the release of calreticulin (CRT) and high mobility group protein b1 (HMGB1) on the cell surface.
Collapse
Affiliation(s)
- Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shao-Jun Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yong-Sheng Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chun-Rong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
4
|
Wang J, Gao X, Ren J, Song B, Zhang W, Yuan J. A novel ratiometric luminescent probe based on a ruthenium(II) complex-rhodamine scaffold for ATP detection in cancer cells. Talanta 2025; 286:127538. [PMID: 39778491 DOI: 10.1016/j.talanta.2025.127538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Adenosine 5'-triphosphate (ATP) plays a pivotal role as an essential intermediate in energy metabolism, influencing nearly all biological metabolic processes. Cancer cells predominantly rely on glycolysis for ATP production, differing significantly from normal cells. Real-time in situ monitoring and rapid response to intracellular ATP levels offers more valuable insights into cancer cell physiology. Herein, we report a novel ratiometric luminescent probe, Ru-Rho, comprised of a ruthenium(II)-based complex and rhodamine 6G (Rho 6G) with excellent water solubility and photostability. Notably, Ru-Rho selectively responds to ATP at acidic conditions, matching the need of monitoring ATP under the acidic intracellular environment of cancer cells. Moreover, the fast ratiometric detection and imaging of ATP under single wavelength excitation improve the detection accuracy. Ru-Rho has been effectively utilized not only for ratio imaging ATP in cells and zebrafish, but also for assessing the efficacy of glycolysis-inhibiting anticancer drugs in intracellular levels, which accelerates the screening process for anticancer drugs and supports the development of new therapeutic agents. The design strategy based on transition metal ruthenium(II) complexes opens a new pathway for constructing ATP luminescent probes, allowing for better adaptation to complex detection requirements.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Junyu Ren
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
5
|
Wang L, Kong L, Zhang DQ, Ye L, Nao SC, Chan DSH, Li X, Peng Y, Yang L, Wong CY, Wong VKW, Wang W, Chao H, Leung CH. Inhibiting Glycolysis and Disrupting the Mitochondrial HK2-VDAC1 Protein-Protein Interaction Using a Bifunctional Lonidamine-Conjugated Metal Probe for Combating Triple-Negative Breast Cancer. J Am Chem Soc 2025; 147:14824-14836. [PMID: 40251733 DOI: 10.1021/jacs.5c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Triple-negative breast cancer (TNBC) relies primarily on aerobic glycolysis for energy and rapid cancer cell proliferation. Hexokinase 2 (HK2), a key enzyme regulating glycolysis, is overexpressed in TNBC, promoting tumor cell proliferation and apoptosis resistance by interacting with the mitochondrial membrane's voltage-dependent anion channel 1 (VDAC1). However, the development of bioactive molecules for effectively disrupting the HK2-VDAC1 interaction remains challenging. Herein, we have modified londamine (LND) with an iridium(III) complex to create bifunctional far-red probe 1. This complex not only has the ability to distinguish TNBC cells from normal cells by probing HK2 in mitochondria, but also significantly enhances antitumor activity by inhibiting mitochondrial glycolysis and effectively disrupting the HK2-VDAC1 interaction. This led to increased Bax-VDAC1 interaction, opening of the mitochondrial permeability transition pores (MPTPs), and generation of ROS, ultimately leading to mitochondrial dysfunction and enhanced cancer cell apoptosis. Probe 1 also demonstrated stronger antiproliferative activity than LND alone in a TNBC mouse model by targeting the HK2-VDAC1 interaction without causing overt toxicity. This work showcases the potential of probe 1 as an effective therapeutic agent for TNBC by inhibiting the mitochondrial HK2-VDAC1 interaction.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Lingtan Kong
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Ding-Qi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Liuqi Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | | | - Xueying Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yutong Peng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
6
|
Chen X, Kadier M, Shi M, Li K, Chen H, Xia Y, Wang Q, Li R, Long Y, Qin J, Wang H, Jiang G. Targeting Melatonin to Mitochondria Mitigates Castration-Resistant Prostate Cancer by Inducing Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408996. [PMID: 40285589 DOI: 10.1002/smll.202408996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Prostate cancer frequently progresses to castration-resistant prostate cancer (CRPC) following androgen deprivation therapy, presenting a significant clinical challenge. Targeting tumor metabolism, particularly mitochondrial pathways, offers a promising strategy for overcoming CRPC. The modification of melatonin (Mel) to a triphenylphosphonium (TPP) cation-targeted mitochondria-melatonin (Mito-Mel) significantly increases its potency by over 1000-fold. Mito-Mel selectively targets mitochondria, enhancing reactive oxygen species (ROS) generation and causing mitochondrial membrane potential disruption. This leads to the inhibition of mitochondrial respiration including the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), which, in turn, suppresses CRPC survival metabolic adaptations, such as glycolysis. In vitro and in vivo experiments reveal for the first time that natural small molecule compound with mitochondrial targeting via TPP exhibits excellent anticancer efficacy by inducing tumor cellular pyroptosis and facilitating the immune response, underlining the encouraging promise of this strategy for the effective treatment of CRPC.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Mairehaba Kadier
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Mengting Shi
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Kefeng Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau SAR, 999078, China
| | - Hongtao Chen
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Yongzhen Xia
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Qiaohua Wang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Rongna Li
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Yili Long
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Jingbo Qin
- Guangdong Provincial Engineering Research Center of Molecular Imaging and Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine Foundation of Guangdong Province, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Hao Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guanmin Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| |
Collapse
|
7
|
Neto JC, Lucantoni F, González LV, Falomir E, Miravet JF, Galindo F. Introducing TAPY as a Versatile Alternative to TPP for Selective Mitochondrial Targeting in Cancer Cells. Bioconjug Chem 2025; 36:697-706. [PMID: 40162705 DOI: 10.1021/acs.bioconjchem.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The understanding of diseases such as cancer and Alzheimer's, along with natural aging processes, heavily relies on the study of mitochondrial function. Optical techniques like fluorescence imaging microscopy are pivotal for this purpose, enabling precise mapping of subcellular structures, including mitochondria. In this study, we explored TAPY (triarylpyridinium) cations, a novel family of mitochondrial carriers resembling the well-known triphenylphosphonium cation (TPP). Six TAPY-bodipy (BDP) dyads were prepared and chemically characterized. Confocal Laser Scanning Microscopy (CLSM) studies demonstrated that the systems were delivered selectively to the mitochondria of cancer cells (MCF-7, A549, HT-29). Remarkably, these dyads did not target the mitochondria of normal cells (HEK-293, HMEC-1), suggesting their potential use in distinguishing cancerous cells from healthy ones. A model compound comprised of the same bodipy cargo but attached to TPP was also synthesized and tested. Notably, in preliminary comparative assays with MCF-7 cells, the dyad TAPY(OMe)-BDP outperformed the TPP derivative in mitochondrial imaging, achieving twice the final fluorescence intensity. The potential chemical diversity achievable with TAPY cations is considerable, with many derivatives being accessible starting from readily available commercial products. This implies that, based on the strategy outlined in this study, carefully optimized TAPY derivatives for targeted mitochondrial delivery could potentially be developed in the future as alternatives or complements to TPP, with the present work acting as a proof of concept.
Collapse
Affiliation(s)
- Jean C Neto
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Federico Lucantoni
- Laboratory of Cellular Stress and Cell Death Pathways, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Leydy V González
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Eva Falomir
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Juan F Miravet
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Francisco Galindo
- Universitat Jaume I de Castellón, Departamento de Química Inorgánica y Orgánica, Avda. Vicente Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| |
Collapse
|
8
|
Pan J, Li J, Zhang Q, Huang M, Wang Y, You M. Bezafibrate-driven mitochondrial targeting enhances antitumor immunity and prevents lung cancer via CD8+ T cell infiltration and MDSC reduction. Front Immunol 2025; 16:1539808. [PMID: 40303399 PMCID: PMC12037589 DOI: 10.3389/fimmu.2025.1539808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Bezafibrate (BEZ) is a drug used to treat hypertriglyceridemia and its long-term use has been associated with reduced risk of cancer in patients with coronary artery disease. Recent studies uncovered that BEZ is a potent modulator of mitochondrial biogenesis through activation of PGC-1α/PPAR complexes, resulting in modulation of lipid metabolism and fatty acid oxidation. Mitochondria impact virtually all processes linked to oncogenesis, and disruption of normal mitochondrial bioenergetics and oxidative phosphorylation (OXPHOS) occurs early during oncogenesis to change the energy metabolism of cancer cells as well as various cells in the tumor microenvironment (TME). Therefore, we synthesized a BEZ analog (Mito-BEZ) that preferentially localizes to mitochondria, thereby enabling lower doses of Mito-BEZ than BEZ to achieve greater efficacy. Our studies demonstrate that Mito-BEZ is significantly more potent than BEZ at inhibiting LUAD cell growth in vitro and inhibiting lung tumorigenesis in preclinical mouse models. Mito-BEZ was also >200-fold more potent than BEZ at inhibiting both complex I and III in LUAD cells. Furthermore, Mito-BEZ suppresses oxidative metabolism in cancer cells while markedly upregulating mitochondrial function in effector CD8+ T cells, resulting in activation of a potent T cell immune response in the TME. Our results show that Mito-BEZ, with its favorable toxicity profile, exhibited a striking inhibitory effect on lung cancer progression and metastasis by targeting a fundamental difference in metabolic plasticity between cancer cells and effector T cells in the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming You
- Center for Cancer Prevention, Dr. Mary and Ron Neal Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
9
|
Yan Y, Zhang Y, Liu J, Chen B, Wang Y. Emerging magic bullet: subcellular organelle-targeted cancer therapy. MEDICAL REVIEW (2021) 2025; 5:117-138. [PMID: 40224364 PMCID: PMC11987508 DOI: 10.1515/mr-2024-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 04/15/2025]
Abstract
The therapeutic efficacy of anticancer drugs heavily relies on their concentration and retention at the corresponding target site. Hence, merely increasing the cellular concentration of drugs is insufficient to achieve satisfactory therapeutic outcomes, especially for the drugs that target specific intracellular sites. This necessitates the implementation of more precise targeting strategies to overcome the limitations posed by diffusion distribution and nonspecific interactions within cells. Consequently, subcellular organelle-targeted cancer therapy, characterized by its exceptional precision, have emerged as a promising approach to eradicate cancer cells through the specific disruption of subcellular organelles. Owing to several advantages including minimized dosage and side effect, optimized efficacy, and reversal of multidrug resistance, subcellular organelle-targeted therapies have garnered significant research interest in recent years. In this review, we comprehensively summarize the distribution of drug targets, targeted delivery strategies at various levels, and sophisticated strategies for targeting specific subcellular organelles. Additionally, we highlight the significance of subcellular targeting in cancer therapy and present essential considerations for its clinical translation.
Collapse
Affiliation(s)
- Yue Yan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yimeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
| |
Collapse
|
10
|
Gao Y, Bai Q, Ren Y, Shao X, Zhang M, Wu L, Lewis SE, James TD, Chen X, Chen Q. A Small-Molecule Drug for the Self-Checking of Mitophagy. Angew Chem Int Ed Engl 2025; 64:e202421269. [PMID: 39800659 PMCID: PMC11894447 DOI: 10.1002/anie.202421269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Indexed: 01/23/2025]
Abstract
Mitophagy, particularly in the context of drugs that disrupt mitochondrial membrane potential (MMP), represents a critical focus in pharmacology. However, the discovery and evaluation of MMP-disrupting drugs are often hampered using commercially available marker molecules that target similar or identical zones. These markers can significantly interfere with, obscure, or amplify the functional effects of MMP-targeting drugs, frequently leading to clinical failures. In response to this challenge, we propose a "one-two punch" drug design strategy that integrates both target-zone drug functionality and non-target zone biological reporting within a single small-molecule drug. We have developed a novel proof-of-concept mitophagy self-check drug (MitoSC) that exhibits dual-color and dual-localization properties. The functional component of this system is a variable MitoSC that disrupts mitochondrial membrane potential (MMP) homeostasis, thereby inducing mitophagy. Upon activation, this component transforms into a blue-fluorescent monomer (MitoSC-fun) specifically within the mitochondrial target zone. Concurrently, the biological reporting component is represented by a red-fluorescent monomer (MitoSC-rep) that localizes to lysosomes, the non-target zone. As mitophagy progresses, the fluorescent signals from MitoSC-rep (lysosomes) and MitoSC-fun (mitochondria) converge, enabling real-time monitoring of the mitophagic process. This strategy combines potent drug functionality with robust biological reporting, thereby minimizing interference and eliminating the complexities associated with external detection. Our findings underscore the potential of a single-molecule drug to exert target-zone specific actions while simultaneously providing non-target zone self-checking, offering a new perspective for drug design.
Collapse
Affiliation(s)
- Yanan Gao
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
| | - Qingjie Bai
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
| | - Youxiao Ren
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
| | - Xintian Shao
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
| | - Mengrui Zhang
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
| | - Luling Wu
- Department of ChemistryUniversity of BathBathBA2 7AYU.K.
| | - Simon E. Lewis
- Department of ChemistryUniversity of BathBathBA2 7AYU.K.
| | - Tony D. James
- Department of ChemistryUniversity of BathBathBA2 7AYU.K.
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007People's Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667
- Institute of Molecular and Cell BiologyAgency for ScienceTechnologyand Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
- Department of Pharmacy and Pharmaceutical SciencesNational University of SingaporeLower Kent Ridge Road, 4 Science Drive 2117544Singapore
| | - Qixin Chen
- State Key Laboratory of Advanced Drug Delivery and Release SystemsSchool of Pharmaceutical SciencesNeck-Shoulder and Lumbocrural Pain HospitalMedical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117PR China
- Departments of Diagnostic RadiologyChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667
| |
Collapse
|
11
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
12
|
Lu Y, Huang Y, Zhu C, Li Z, Zhang B, Sheng H, Li H, Liu X, Xu Z, Wen Y, Zhang J, Zhang L. Cancer brain metastasis: molecular mechanisms and therapeutic strategies. MOLECULAR BIOMEDICINE 2025; 6:12. [PMID: 39998776 PMCID: PMC11861501 DOI: 10.1186/s43556-025-00251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and the major cause of cancer-related morbidity and mortality. The occurrence of BMs varies according to the type of primary tumors with most frequence in lung cancer, melanoma and breast cancer. Among of them, lung cancer has been reported to have a higher risk of BMs than other types of cancers with 40 ~ 50% of such patients will develop BMs during the course of disease. BMs lead to many neurological complications and result in a poor quality of life and short life span. Although the treatment strategies were improved for brain tumors in the past decades, the prognosis of BMs patients is grim. Poorly understanding of the molecular and cellular characteristics of BMs and the complicated interaction with brain microenvironment are the major reasons for the dismal prognosis of BM patients. Recent studies have enhanced understanding of the mechanisms of BMs. The newly identified potential therapeutic targets and the advanced therapeutic strategies have brought light for a better cure of BMs. In this review, we summarized the mechanisms of BMs during the metastatic course, the molecular and cellular landscapes of BMs, and the advances of novel drug delivery systems for overcoming the obstruction of blood-brain barrier (BBB). We further discussed the challenges of the emerging therapeutic strategies, such as synergistic approach of combining targeted therapy with immunotherapy, which will provide vital clues for realizing the precise and personalized medicine for BM patients in the future.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhang Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenyan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Ma M, Wang J, Guo K, Zhong W, Cheng Y, Lin L, Zhao Y. A Self-Reinforced "Microglia Energy Modulator" for Synergistic Amyloid-β Clearance in Alzheimer's Disease Model. Angew Chem Int Ed Engl 2025; 64:e202420547. [PMID: 39714451 DOI: 10.1002/anie.202420547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microglial phagocytosis is a highly energy-consuming process that plays critical roles in clearing neurotoxic amyloid-β (Aβ) in Alzheimer's disease (AD). However, microglial metabolism is defective overall in AD, thereby undermining microglial phagocytic functions. Herein, we repurpose the existing antineoplastic drug lonidamine (LND) conjugated with hollow mesoporous Prussian blue (HMPB) as a "microglial energy modulator" (termed LND@HMPB-T7) for safe and synergistic Aβ clearance. The modified blood-brain barrier penetrating heptapeptide (T7) enables efficient transport of LND@HMPB-T7 to the AD brain. LND in LND@HMPB-T7 could fuel Aβ phagocytosis by stimulating microglial adenosine triphosphate (ATP) production, whereas HMPB with catalase and superoxide dismutase-mimicking activities substantially alleviates the mitochondrial side effects commonly associated with LND and thus further enhances ATP production. The synergism of LND and nanozyme affords a high microglial Aβ clearance efficacy without triggering mitochondrial dysfunction. In vivo experiments ascertain that LND@HMPB-T7 could synergistically promote phagocytic clearance of Aβ, relieve neuroinflammation and ameliorate cognitive function in AD mice. These findings indicate that LND@HMPB-T7 holds tremendous clinical potential as a repurposed drug for AD treatment.
Collapse
Affiliation(s)
- Mengmeng Ma
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang, Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiming Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang, Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yu Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang, Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang, Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
14
|
Yang S, Liu Y, Wu T, Zhang X, Xu S, Pan Q, Zhu L, Zheng P, Qiao D, Zhu W. Synthesis and Application of a Novel Multifunctional Nanoprodrug for Synergistic Chemotherapy and Phototherapy with Hydrogen Sulfide Gas. J Med Chem 2025; 68:3197-3211. [PMID: 39786725 DOI: 10.1021/acs.jmedchem.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
With the dilemma of limited efficacy of individual therapies, it is crucial to develop innovative combination therapy systems to target the complex pathogenesis of cancer. In this study, we designed a nanoprodrug ISL@MIL-101-ADT to facilitate synergistic delivery of hydrogen sulfide (H2S) and prodrug ISL for specific eradication of tumor cells with minimal toxicity and maximal efficacy. The nanoprodrug passively targeted tumors through enhanced permeation and retention effects, followed by disintegration and release of IR780, lonidamine (LND), and H2S. IR780 localizes LND to mitochondria to enhance therapeutic effects and turn on the phototherapy and chemotherapy when exposed to a laser; H2S inhibits procancer signaling pathways and mitochondrial function. In vivo experiments have demonstrated that ISL@MIL-101-ADT exhibits excellent pharmacokinetic properties and significant tumor inhibitory effects. Additionally, this nanoprodrug possesses outstanding photothermal and fluorescence imaging capabilities. Therefore, we strongly believe that the nanoprodrug present herein holds great potential for application in cancer therapy.
Collapse
Affiliation(s)
- Silan Yang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Yijun Liu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Tianyu Wu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Lianghui Zhu
- Jiang Xi Institute for Drug Control, Jiangxi Provincial Drug Administration, 1566 Beijing East Road, Nanchang, Jiangxi 330029, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Rd., Nanchang, Jiangxi 330013, China
| |
Collapse
|
15
|
Shi T, Wu Q, Ruan Z, Luo Z, Wang W, Guo Z, Ma Y, Wang X, Chu G, Lin H, Ge M, Chen Y. Resensitizing β-Lactams by Reprogramming Purine Metabolism in Small Colony Variant for Osteomyelitis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410781. [PMID: 39656854 PMCID: PMC11791937 DOI: 10.1002/advs.202410781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Small colony variant (SCV) is strongly linked to antibiotic resistance and the persistence of osteomyelitis. However, the intrinsic phenotypic instability of SCV has hindered a thorough investigation of its pathogenic mechanisms. In this study, phenotypically stable SCV strains are successfully recovered from clinical specimens, characterized by elevated drug resistance and reduced immunogenicity. Multi-omics analysis revealed that the acquired high drug resistance is associated with altered flux in the purine metabolism pathway, attributable to mutations in the hypoxanthine phosphoribosyltransferase (hpt) gene. Furthermore, this study innovatively discovered that lonidamine, an inhibitor of cellular energy metabolism, can effectively mitigate SCV resistance to β-lactam antibiotics, thereby facilitating its eradication. The underlying mechanism involves the reprogramming of purine metabolism. Therefore, a co-delivery system for lonidamine and oxacillin is constructed with amino-modified dendritic mesoporous silica as a carrier, which showed high efficacy and safety in combating SCV both in vitro and in vivo experiments. Overall, this study elucidated the pathogenic mechanisms of a class of clinically isolated SCV isolates with hpt mutations and provided a paradigm for treating SCV-associated osteomyelitis by reprogramming purine metabolism.
Collapse
Affiliation(s)
- Tingwang Shi
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Qiong Wu
- Department of Laboratory MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Zesong Ruan
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Zhiyuan Luo
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Wenbo Wang
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Zhao Guo
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Yihong Ma
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Guangyu Chu
- Department of Orthopedic SurgerySpine LabThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Joslin‐Beth Israel Deaconess Foot Center and The Rongxiang XuMDCenter for Regenerative TherapeuticsBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Han Lin
- Shanghai Institute of Ceramics Chinese Academy of SciencesResearch Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical SciencesShanghai200050China
| | - Min Ge
- Department of Electrical and Electronic EngineeringThe University of Hong KongPokfulam RoadHong Kong999077China
| | - Yunfeng Chen
- Department of Orthopedic SurgeryShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| |
Collapse
|
16
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
17
|
Orlovskiy S, Gupta PK, Arias-Mendoza F, Singh DK, Nova S, Nelson DS, Narayan V, Koch CJ, Hardy M, You M, Kalyanaraman B, Nath K. Enhancing Radiation Therapy Response in Prostate Cancer Through Metabolic Modulation by Mito-Lonidamine: A 1H and 31P Magnetic Resonance Spectroscopy Study. Int J Mol Sci 2025; 26:509. [PMID: 39859224 PMCID: PMC11765175 DOI: 10.3390/ijms26020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Radiation therapy (RT) is the cornerstone treatment for prostate cancer; however, it frequently induces gastrointestinal and genitourinary toxicities that substantially diminish the patients' quality of life. While many individuals experience transient side effects, a subset endures persistent, long-term complications. A promising strategy to mitigate these toxicities involves enhancing tumor radiosensitivity, potentially allowing for lower radiation doses. In this context, mito-lonidamine (Mito-LND), an antineoplastic agent targeting the mitochondrial electron transport chain's complexes I and II, emerges as a potential radiosensitizer. This study investigated Mito-LND's capacity to augment RT efficacy and reduce adverse effects through comprehensive in vitro and in vivo assessments using hormone-sensitive and hormone-refractory prostate cancer models. Employing a Seahorse analysis and 1H/31P magnetic resonance spectroscopy (MRS), we observed that Mito-LND selectively suppressed lactate production, decreased intracellular pH, and reduced bioenergetics and oxygen consumption levels within tumor cells. These findings suggest that Mito-LND remodels the tumor microenvironment by inducing acidification, metabolic de-energization, and enhanced oxygenation, thereby sensitizing tumors to RT. Our results underscore the potential of Mito-LND as a therapeutic adjunct in RT to improve patient outcomes and reduce radiation-associated toxicities in early-stage prostate cancer.
Collapse
Affiliation(s)
- Stepan Orlovskiy
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| | - Pradeep Kumar Gupta
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| | - Fernando Arias-Mendoza
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
- Advanced Imaging Research Inc., Cleveland, OH 44114, USA
| | - Dinesh Kumar Singh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| | - Skyler Nova
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| | - David S. Nelson
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| | - Vivek Narayan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Cameron J. Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Micael Hardy
- Département de Chimie, Aix-Marseille University, CNRS, ICR, UMR 7273, 13013 Marseille, France;
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | | | - Kavindra Nath
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (F.A.-M.); (D.K.S.); (S.N.); (D.S.N.)
| |
Collapse
|
18
|
Wang X, Liu J, Durga L, Beeraka NM, Zhou R, Lu P, Song R, Sinelnikov MY, Chen K, Fan R, Zhao D. Recent Updates on the Efficacy of Mitocans in Photo/Radio-therapy for Targeting Metabolism in Chemo/Radio-resistant Cancers: Nanotherapeutics. Curr Med Chem 2025; 32:2156-2182. [PMID: 38018190 DOI: 10.2174/0109298673259347231019121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 11/30/2023]
Abstract
Conventional therapeutic modalities against the cancers such as surgery, chemotherapy (CT) and radiotherapy (RT) have limited efficacy due to drug resistance, and adverse effects. Recent developments in nanoscience emphasized novel approaches to overcome the aforementioned limitations and subsequently improve overall clinical outcomes in cancer patients. Photodynamic therapy (PDT), photothermal therapy (PTT), and radiodynamic therapy (RDT) can be used as cancer treatments due to their high selectivity, low drug resistance, and low toxicity. Mitocans are the therapeutic molecules that can produce anti-cancer effects by modulating mitochondria functions and they have significant implications in cancer therapy. Mitochondria- targeted therapy is a promising strategy in cancer treatment as these organelles play a crucial function in the regulation of apoptosis and metabolism in tumor cells and are more vulnerable to hyperthermia and oxidative damage. The aim of this review is used to explore the targeting efficacy of mitocans in the nanotherapeutic formulation when combined with therapies like PDT, PTT, RDT. We searched several databases include Pubmed, relemed, scopus, google scholar, Embase and collected the related information to the efficacy of mitocans in nanotherapeutics when combined with photo-radiotherapy to target chemo/radio-resisant tumor cells. In this review, we vividly described research reports pertinent to the selective delivery of chemotherapy molecules into specific sub-organelles which can significantly improve the efficiency of cancer treatment by targeting tumor cell metabolism. Furthermore, the rational design, functionalization and application of various mitochondrial targeting units, including organic phosphine/sulfur salts, quaternary ammonium salts, transition metal complexes, and mitochondria-targeted cancer therapy such as PDT, PTT, RDT, and others were summarized. Mainly, the efficacy of these modalities against mtDNA and additional nanotherapeutic strategies with photosensitizers, or radiotherapy to target mitochondrial metabolism in tumor cells with chemo/radio-resistance were delineated. This review can benefit nanotechnologists, oncologists, and radiation oncologists to develop rational designs and application of novel mitochondrial targeting drugs mainly to target metabolism in chemo/radio-resistant cancer cells in cancer therapy.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lakshmi Durga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha M Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, 515721, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian, Federation (Sechenov University), Moscow, Russia
| | - Runze Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Song
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mikhail Y Sinelnikov
- Sinelab Biomedical Research Centre, Minnesota, 55905, USA
- Department of General Medicine, University of Rome, Tor Vergata, Via Cracovia, 50, 00133, Rome, Italy
- Research Institute of Human Morphology, Russian Scientific Center of Surgery, Moscow, 119991, Russia
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Li W, Chen J, Guo Z. Targeting metabolic pathway enhance CAR-T potency for solid tumor. Int Immunopharmacol 2024; 143:113412. [PMID: 39454410 DOI: 10.1016/j.intimp.2024.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have great potential in cancer therapy, particularly in treating hematologic malignancies. However, their efficacy in solid tumors remains limited, with a significant proportion of patients failing to achieve long-term complete remission. One major challenge is the premature exhaustion of CAR-T cells, often due to insufficient metabolic energy. The survival, function and metabolic adaptation of CAR-T cells are key determinants of their therapeutic efficacy. We explore how targeting metabolic pathways in the tumor microenvironment can enhance CAR-T cell therapy by addressing metabolic competition and immunosuppression that impair CAR-T cell function. Tumors undergo metabolically reprogrammed to meet their rapid proliferation, thereby modulating metabolic pathways in immune cells to promote immunosuppression. The distinct metabolic requirements of tumors and T cells create a competitive environment, affecting the efficacy of CAR-T cell therapy. Recent research on glucose, lipid and amino acid metabolism, along with the interactions between tumor and immune cell metabolism, has revealed that targeting these metabolic processes can enhance antitumor immune responses. Combining metabolic interventions with existing antitumor therapies can fulfill the metabolic demands of immune cells, providing new ideas for tumor immunometabolic therapies. This review discusses the latest advances in the immunometabolic mechanisms underlying tumor immunosuppression, their implications for immunotherapy, and summarizes potential metabolic targets to improve the efficacy of CAR-T therapy.
Collapse
Affiliation(s)
- Wenying Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
20
|
Gao L, Gao B, Ge W, Li S, Wang F. Stimulated Emission Depletion Imaging Reveals Mitochondrial Phenotypic Heterogeneity under Apoptosis Stimuli across Living Glioma Models. NANO LETTERS 2024; 24:15904-15911. [PMID: 39587402 DOI: 10.1021/acs.nanolett.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The mitochondrial phenotypes contribute to the understanding of disease mechanisms and treatments, which are typically characterized through the omics methods. However, the high dynamics and phenotypic heterogeneity of mitochondria require high-resolution characterization within individual living cells. Therefore, we introduce a fluorescence analysis method, based on two-color and fluorescence lifetime stimulated emission depletion (STED) super-resolution imaging, to explore mitochondrial phenotypic heterogeneity in human (U87) and mouse (GL261) glioma models. Furthermore, we used rotenone and etoposide to simulate the effects of antitumor drugs, inducing apoptosis through mitochondrial dysfunction, respectively. The two-color labeling introduces intracellular parameters to qualitatively visualize changes in mitochondrial morphology, while fluorescence lifetime reflects the status of mitochondria and their microenvironment from the perspective of probe characteristics. This method reveals mitochondria phenotypic heterogeneity induced by the apoptotic stimuli in human and mouse glioma models from a morphological perspective.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ge
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxian Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Zhang Y, Xiang S, Wu Y, Yang C, Tang D, Chen Z, Huang Z. Novel co-delivery nanomedicine for photodynamic enlarged immunotherapy by cascade immune activation and efficient Immunosuppression reversion. Bioorg Chem 2024; 153:107978. [PMID: 39577155 DOI: 10.1016/j.bioorg.2024.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Photodynamic therapy (PDT) combined with immunotherapy has become a promising antitumor strategy. However, precise regulation of the activation of antitumor immunity and effective reversion of immunosuppressive tumor microenvironment (TME) remains challenging. In this paper, a novel co-delivery nanomedicine is developed to solve these issues for photodynamic amplified immunotherapy. Specifically, the glycolysis inhibitor (Lon) is coupled with PD1/PDL1 blocker (BMS-1) by thioketal linkage to form smartly responsive prodrug LTB, which could further encapsulate photosensitizer chlorine e6 (Ce6) to construct a co-delivery nanoplatform (LTB-6 NPs) by self-assembly. Of note, LTB-6 NPs possess favorable stability, uniform morphology and improved cellular uptake. More importantly, LTB-6 NPs are capable of inhibiting glycolysis and blocking PD1/PDL1, which could greatly improve the immunosuppressive TME to promote immune activation. LTB-6 NPs-mediated PDT not only inhibits tumor proliferation but also induces ICD response to activate immunological cascade. In vivo experiments indicate that intravenously injected LTB-6 NPs remarkably suppresses the tumor growth while leads to a minimized side effect. This research provides a multi-synergized strategy for developing effective photodynamic nanoplatforms in tumor treatment.
Collapse
Affiliation(s)
- Yimei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Shiyi Xiang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yayi Wu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Can Yang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhongzhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zheng Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| |
Collapse
|
22
|
Grzelakowska A, Kalyanaraman B, Zielonka J. Small molecule probes for peroxynitrite detection. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100034. [PMID: 39781368 PMCID: PMC11709760 DOI: 10.1016/j.rbc.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Peroxynitrite (ONOO‒/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO- to determine its role in biological processes. In this review, we discuss various approaches used to detect ONOO‒ in cell-free and cellular systems with the major emphasis on small-molecule chemical probes. We review the chemical principles and mechanisms responsible for the formation of the detectable products, and plausible limitations of the probes. We recommend the use of boronate-based chemical probes for ONOO‒, as they react directly and rapidly with ONOO-, they produce minor but ONOO‒‒specific products, and the reaction kinetics and mechanism have been rigorously characterized. Specific experimental approaches and protocols for the detection of ONOO- in cell-free, cellular, and in vivo systems using boronate-based molecular probes are provided (as shown in Boxes 1-6).
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
- Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | | | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
23
|
Wang L, Tian S, Deng S, Wu J, Wang H, Guo X, Han C, Ren W, Han Y, Zhou J, Lin Y, Bu M. Design and synthesis of novel mitochondria-targeted ergosterol peroxide derivatives as potential anti-cancer agents. Bioorg Chem 2024; 153:107862. [PMID: 39362080 DOI: 10.1016/j.bioorg.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Ergosterol peroxide (EP) is a natural steroid compound that has been reported to have significant antitumor activity. However, its poor water solubility and cellular uptake mean that it has weak efficacy against tumor cells. Herein, we designed and synthesized a series of EP derivatives with mitochondrial targeting properties. Of these, compound 15a showed an IC50 value of 0.32 μM against MCF-7 cells, which was 67-fold higher than that of the parental EP (IC50 = 21.46 μM), and was better than cisplatin (IC50 = 4.23 μM), had a selectivity index of 25.28 (IC50MCF-10A/IC50MCF-7). Additionally, compound 15a promoted an increase in intracellular reactive oxygen species levels and a decrease in mitochondrial membrane potential, and blocked the cell cycle in the G0/G1 phase. In a mouse model of breast cancer, 15a showed 89.85 % tumor inhibition at a dose of 20 mg/kg, which is similar to the therapeutic effect of the cisplatin. On the basis of these results, 15a could be considered for further preclinical evaluation for cancer therapy.
Collapse
Affiliation(s)
- Lu Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Shuang Tian
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Siqi Deng
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jiale Wu
- College of Pharmacy, Hainan University, Haikou 570228, Hainan, PR China
| | - Haijun Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoshan Guo
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Cuicui Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenkang Ren
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
24
|
Li M, Cui H, Deng H, Deng Y, Yin S, Li T, Yuan T. Urolithin A promotes the degradation of TMSB10 to deformation F-actin in non-small-cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156109. [PMID: 39368341 DOI: 10.1016/j.phymed.2024.156109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Lung cancer is one of the most frequently diagnosed cancers and non-small-cell lung cancer (NSCLC) poses major diagnoses. Urolithin A (UA) is a natural compound produced by the gut microbiota through the metabolism of polyphenol ellagitannins (ETs) and ellagic acid (EA), which has been found to inhibit epithelial-mesenchymal transition (EMT) in lung cancer cell lines. However, the mechanism of UA function in NSCLC remains elusive. PROPOSE This study aimed to investigate the potential effectiveness of UA in NSCLC therapeutic and uncovering its underlying mechanisms. METHODS Effects of UA treatment, TMSB10 gene knockdown or overexpression on NSCLC cell phenotype were evaluated by availability, transwell assays. The downstream factors and pathways of UA were investigated by proteomics. TMSB10 expression in NSCLC tissues was detected by bioinformatics analysis as well as immunohistochemistry. Confocal imaging, GST pull-down and western blotting investigated the mechanism of UA induced TMSB10 degradation. RESULTS In the present study, we demonstrated that UA shows an inhibitory role in NSCLC cell proliferation, migration, and invasion. This inhibition is attributed to the accelerated degradation of TMSB10, a biomarker among various cancers, via the autophagy-lysosome pathway. Additionally, knocked down of TMSB10 showed a similar phenotype with UA treatment. The reduction of TMSB10 protein level following decreased ATP level inhibits the F-actin formation for cell migration, thereby disrupting the equilibrium between G-actin-TMSB10 and G-actin-ATP interactions in A549 cells. CONCLUSION Our results reveal that UA is potential for NSCLC therapeutics through reducing the protein level of TMSB10 to deformation the F-actin.
Collapse
Affiliation(s)
- Miaomiao Li
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China; College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Hao Cui
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Huan Deng
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Tumor Immunology Institute, Nanchang University, 330006, Nanchang, Jiangxi, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, 330031, Nanchang, Jiangxi, China
| | - Yanjuan Deng
- Rehabiliation Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China; Tumor Immunology Institute, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Tianzhi Li
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China.
| | - Tao Yuan
- School of Health, Jiangxi Normal University, Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, Nanchang, 330022, China; College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
25
|
Zhang C, Su Y, Wang H, Dang D, Huang X, Shi S, Shi Y, Zhang P, Yang M. Characterization of a ferroptosis-related gene signature predicting survival and immunotherapeutic response in lung adenocarcinoma. Aging (Albany NY) 2024; 16:12608-12622. [PMID: 39311766 PMCID: PMC11466487 DOI: 10.18632/aging.206110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2024] [Indexed: 10/08/2024]
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide, and drug resistance represents the main obstacle responsible for the poor mortality and prognosis. Here, to identify a novel gene signature for predicting survival and drug response, we jointly investigated RNA sequencing data of lung adenocarcinoma patients from TCGA and GEO databases, and identified a ferroptosis-related gene signature. The signature was validated in the validation set and two external cohorts. The high-risk group had a reduced survival than the low-risk group (P < 0.05). Moreover, the established gene signature was associated with tumor mutation burden, microsatellite instability, and response to immune checkpoint blockade. In addition, four candidate oncogenes (RRM2, SLC2A1, DDIT4, and VDAC2) were identified to be candidate oncogenes using in silico and wet experiments, which could serve as potential therapeutic targets. Collectively, this study developed a novel ferroptosis-related gene signature for predicting prognosis and drug response, and identified four candidate oncogenes for lung adenocarcinoma.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yingying Su
- Department of Anatomy, College of Basic Medical Sciences, Jilin University, Jilin, China
| | - Hongrui Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan Dang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Xin Huang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shuyou Shi
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Liao S, Wang Q, Chen S, Huang Q, Zhou L, Liu H, He S, Zhou Z. Mito-LND and (E)-Akt inhibitor-IV: novel compounds inducing endoplasmic reticulum stress and ROS accumulation against hepatocellular carcinoma. J Transl Med 2024; 22:792. [PMID: 39198815 PMCID: PMC11351498 DOI: 10.1186/s12967-024-05545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality. Although multi-kinase inhibitors can prolong the overall survival of late-stage HCC patients, the emergence of drug resistance diminishes these benefits, ultimately resulting in treatment failure. Therefore, there is an urgent need for novel and effective drugs to impede the progression of liver cancer. METHODS This study employed a concentration gradient increment method to establish acquired sorafenib or regorafenib-resistant SNU-449 cells. Cell viability was assessed using the cell counting kit-8 assay. A library of 793 bioactive small molecules related to metabolism screened compounds targeting both parental and drug-resistant cells. The screened compounds will be added to both the HCC parental cells and the drug-resistant cells, followed by a comprehensive assessment. Intracellular adenosine triphosphate (ATP) levels were quantified using kits. Flow cytometry was applied to assess cell apoptosis and reactive oxygen species (ROS). Real-time quantitative PCR studied relative gene expression, and western blot analysis assessed protein expression changes in HCC parental and drug-resistant cells. A xenograft model in vivo evaluated Mito-LND and (E)-Akt inhibitor-IV effects on liver tumors, with hematoxylin and eosin staining for tissue structure and immunohistochemistry staining for endoplasmic reticulum stress protein expression. RESULTS From the compound library, we screened out two novel compounds, Mito-LND and (E)-Akt inhibitor-IV, which could potently kill both parental cells and drug-resistant cells. Mito-LND could significantly suppress proliferation and induce apoptosis in HCC parental and drug-resistant cells by upregulating glycolytic intermediates and downregulating those of the tricarboxylic acid (TCA) cycle, thereby decreasing ATP production and increasing ROS. (E)-Akt inhibitor-IV achieved comparable results by reducing glycolytic intermediates, increasing TCA cycle intermediates, and decreasing ATP synthesis and ROS levels. Both compounds trigger apoptosis in HCC cells through the interplay of the AMPK/MAPK pathway and the endoplasmic reticulum stress response. In vivo assays also showed that these two compounds could significantly inhibit the growth of HCC cells and induce endoplasmic reticulum stress. CONCLUSION Through high throughput screening, we identified that Mito-LND and (E)-Akt inhibitor-IV are two novel compounds against both parental and drug-resistant HCC cells, which could offer new strategies for HCC patients.
Collapse
Affiliation(s)
- Siqi Liao
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingliang Wang
- The Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyuan Chen
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qixuan Huang
- The Department of Endocrinology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongtao Liu
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhihang Zhou
- The Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Fan T, Shen L, Huang Y, Wang X, Zhao L, Zhong R, Wang P, Sun G. Lonidamine Increases the Cytotoxic Effect of 1-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea via Energy Inhibition, Disrupting Redox Homeostasis, and Downregulating MGMT Expression in Human Lung Cancer Cell Line. ACS OMEGA 2024; 9:36134-36147. [PMID: 39220482 PMCID: PMC11360010 DOI: 10.1021/acsomega.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Lung cancer ranks as the second most diagnosed cancer and the leading cause of cancer-related deaths worldwide. Novel chemotherapeutic strategies are crucial to efficiently target tumor cells while minimizing toxicity to normal cells. In this study, we proposed a combination strategy using energy blocker lonidamine (LND) and cytotoxic drug nimustine (ACNU, 1-[(4-amino-2-methyl-5-pyrimidinyl)methyl]-3-(2-chloroethyl)-3-nitrosourea) to enhance the killing of a human lung cancer cell line and investigated the potential chemo-sensitizing mechanism of LND. LND was found to remarkably increase the cytotoxicity of ACNU to A549 and H1299 cells without significantly affecting normal lung BEAS2B cells. The combination of LND and ACNU also produced significant effects on cell apoptosis, colony formation, cell migration, and invasion assays compared to single drug treatment. Mechanistically, LND decreased intracellular ATP levels by inhibiting glycolysis and inducing mitochondrial dysfunction. Furthermore, the combination of LND and ACNU could intensify cellular oxidative stress, decrease cellular GSH contents, and increase reactive oxygen species (ROS) production. Notably, LND alone dramatically downregulated the expression of DNA repair protein MGMT (O6-methylguanine-DNA methyltransferase), enhancing DNA interstrand cross-link formation induced by ACNU. Overall, LND represents a potential chemo-sensitizer to enhance ACNU therapy through energy inhibition, disrupting redox homeostasis and downregulating MGMT expression in human lung cancer cell line under preclinical and clinical background.
Collapse
Affiliation(s)
- Tengjiao Fan
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, P. R. China
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Lin Shen
- Department
of Dermatology, the First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Yaxin Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Xin Wang
- Department
of Clinical Trials Center, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P. R. China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| | - Peng Wang
- Department
of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, P. R. China
| |
Collapse
|
28
|
Ingle J, Mishra T, Sahu A, Tirkey A, Basu S. Detouring Self-Assembled 3-Methoxy-pyrrole-Based Nanoparticles into Mitochondria to Induce Apoptosis in Lung Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:5076-5081. [PMID: 39047234 DOI: 10.1021/acsabm.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Lung cancer remains a lethal disease globally. Recently, the development and progression of lung cancer were strongly linked with mitochondrial dysfunction. Hence, targeting mitochondria in lung cancer can be an interesting alternative strategy for therapeutic applications. To address this, we have designed and synthesized a 3-methoxy-pyrrole-enamine-triphenylphosphonium cation-based library through a concise chemical strategy. Upon screening this library in cervical (HeLa), colon (HCT-116), breast (MCF7), and lung (A549) cancer cells, we identified a small molecule that self-assembled into nanoscale spherical particles with a positive surface charge. This nanoparticle was confined to the mitochondria to induce mitochondrial damage and produced reactive superoxide in A549 cells. This small molecule self-assembled nanoparticle-mediated mitochondrial damage triggered apoptosis leading to the remarkable killing of A549 cells. These 3-methoxy-pyrrole-enamine-triphenylphosphonium nanoparticles can be used as a tool to understand the chemical biology of mitochondria in lung cancer for chemotherapeutic applications.
Collapse
Affiliation(s)
- Jaypalsing Ingle
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, Gujarat, India
| | - Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, Gujarat, India
| | - Asima Sahu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, Gujarat, India
| | - Anjana Tirkey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, Gujarat, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, 382355 Gandhinagar, Gujarat, India
| |
Collapse
|
29
|
Lu H, Tong W, Jiang M, Liu H, Meng C, Wang K, Mu X. Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer. ACS NANO 2024; 18:21156-21170. [PMID: 39088743 DOI: 10.1021/acsnano.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. β-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP+). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.
Collapse
Affiliation(s)
- Haibin Lu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meixu Jiang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Huimin Liu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Chen Meng
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Kai Wang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
30
|
Song W, Yang H, Wang Y, Chen S, Zhong W, Wang Q, Ding W, Xu G, Meng C, Liang Y, Chen Z, Cao S, Wei L, Li F. Glutathione-Sensitive Photosensitizer-Drug Conjugates Target the Mitochondria to Overcome Multi-Drug Resistance in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307765. [PMID: 38898730 PMCID: PMC11321625 DOI: 10.1002/advs.202307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/11/2024] [Indexed: 06/21/2024]
Abstract
Multi-drug resistance (MDR) is a major cause of cancer therapy failure. Photodynamic therapy (PDT) is a promising modality that can circumvent MDR and synergize with chemotherapies, based on the generation of reactive oxygen species (ROS) by photosensitizers. However, overproduction of glutathione (GSH) by cancer cells scavenges ROS and restricts the efficacy of PDT. Additionally, side effects on normal tissues are unavoidable after PDT treatment. Here, to develop organic systems that deliver effective anticancer PDT and chemotherapy simultaneously with very little side effects, three GSH-sensitive photosensitizer-drug conjugates (CyR-SS-L) are designed and synthesized. CyR-SS-L localized in the mitochondria then is cleaved into CyR-SG and SG-L parts by reacting with and consuming high levels of intracellular GSH. Notably, CyR-SG generates high levels of ROS in tumor cells instead of normal cells and be exploited for PDT and the SG-L part is used for chemotherapy. CyR-SS-L inhibits better MDR cancer tumor inhibitory activity than indocyanine green, a photosensitizer (PS) used for PDT in clinical applications. The results appear to be the first to show that CyR-SS-L may be used as an alternative PDT agent to be more effective against MDR cancers without obvious damaging normal cells by the combination of PDT, GSH depletion, and chemotherapy.
Collapse
Affiliation(s)
- Weiguo Song
- Department of Medicinal ChemistrySchool of PharmacyShandong UniversityJinan250012China
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Hekai Yang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Shuzhen Chen
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenda Zhong
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Qian Wang
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Wenshuo Ding
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Guangzhao Xu
- Weifang Synovtech New Material Technology CO., LTD.Weifang262700China
- Harway Pharma Co., Ltd.Dongying254753China
| | - Chen Meng
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Ying Liang
- Department of General PracticeThe First Affiliated Hospital of Shandong First Medical UniversityJinan250013China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Shuhua Cao
- College of ChemistryChemical and Environmental EngineeringWeifang UniversityWeifang261061China
| | - Liuya Wei
- School of PharmacyWeifang Medical UniversityWeifang261053China
| | - Fahui Li
- School of PharmacyWeifang Medical UniversityWeifang261053China
| |
Collapse
|
31
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
32
|
Yan Y, Li S, Su L, Tang X, Chen X, Gu X, Yang G, Chi H, Huang S. Mitochondrial inhibitors: a new horizon in breast cancer therapy. Front Pharmacol 2024; 15:1421905. [PMID: 39027328 PMCID: PMC11254633 DOI: 10.3389/fphar.2024.1421905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Breast cancer, due to resistance to standard therapies such as endocrine therapy, anti-HER2 therapy and chemotherapy, continues to pose a major health challenge. A growing body of research emphasizes the heterogeneity and plasticity of metabolism in breast cancer. Because differences in subtypes exhibit a bias toward metabolic pathways, targeting mitochondrial inhibitors shows great potential as stand-alone or adjuvant cancer therapies. Multiple therapeutic candidates are currently in various stages of preclinical studies and clinical openings. However, specific inhibitors have been shown to face multiple challenges (e.g., single metabolic therapies, mitochondrial structure and enzymes, etc.), and combining with standard therapies or targeting multiple metabolic pathways may be necessary. In this paper, we review the critical role of mitochondrial metabolic functions, including oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle, and fatty acid and amino acid metabolism, in metabolic reprogramming of breast cancer cells. In addition, we outline the impact of mitochondrial dysfunction on metabolic pathways in different subtypes of breast cancer and mitochondrial inhibitors targeting different metabolic pathways, aiming to provide additional ideas for the development of mitochondrial inhibitors and to improve the efficacy of existing therapies for breast cancer.
Collapse
Affiliation(s)
- Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Sijie Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Tang
- Paediatrics Department, Southwest Medical University, Luzhou, China
| | - Xiaoyan Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Gu
- Biology Department, Southern Methodist University, Dallas, TX, United States
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
33
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
34
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
35
|
Hou Y, Wang H, Wu J, Guo H, Chen X. Dissecting the pleiotropic roles of reactive oxygen species (ROS) in lung cancer: From carcinogenesis toward therapy. Med Res Rev 2024; 44:1566-1595. [PMID: 38284170 DOI: 10.1002/med.22018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Lung cancer is a major cause of morbidity and mortality. The specific pulmonary structure to directly connect with ambient air makes it more susceptible to damage from airborne toxins. External oxidative stimuli and endogenous reactive oxygen species (ROS) play a crucial role in promoting lung carcinogenesis and development. The biological properties of higher ROS levels in tumor cells than in normal cells make them more sensitive and vulnerable to ROS injury. Therefore, the strategy of targeting ROS has been proposed for cancer therapy for decades. However, it is embarrassing that countless attempts at ROS-based therapies have had very limited success, and no FDA approval in the anticancer list was mechanistically based on ROS manipulation. Even compared with the untargetable proteins, such as transcription factors, ROS are more difficult to be targeted due to their chemical properties. Thus, the pleiotropic roles of ROS provide therapeutic potential for anticancer drug discovery, while a better dissection of the mechanistic action and signaling pathways is a prerequisite for future breakthroughs. This review discusses the critical roles of ROS in cancer carcinogenesis, ROS-inspired signaling pathways, and ROS-based treatment, exemplified by lung cancer. In particular, an eight considerations rule is proposed for ROS-targeting strategies and drug design and development.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules & College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
- Department of Pharmaceutical Sciences, University of Macau, Taipa, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China
| |
Collapse
|
36
|
Reed EK, Smith KA. Using our understanding of interactions between helminth metabolism and host immunity to target worm survival. Trends Parasitol 2024; 40:549-561. [PMID: 38853079 DOI: 10.1016/j.pt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Helminths can adapt to environmental conditions in the host, utilising anaerobic processes like fermentation and malate dismutation to produce energy from carbohydrate. Although targeting carbohydrate metabolism is an established therapeutic strategy to combat helminth infection, questions remain over the metabolic pathways they employ as adults to survive and evade host immunity. Helminths also use amino acid, polyunsaturated fatty acid (PUFA), and cholesterol metabolism, a possible strategy favouring the production of immunomodulatory compounds that may influence survival in the host. Here, we discuss the significance of these differing metabolic pathways and whether targeting of helminth metabolic pathways may allow for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Ella K Reed
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
37
|
Jin X, Jin W, Tong L, Zhao J, Zhang L, Lin N. Therapeutic strategies of targeting non-apoptotic regulated cell death (RCD) with small-molecule compounds in cancer. Acta Pharm Sin B 2024; 14:2815-2853. [PMID: 39027232 PMCID: PMC11252466 DOI: 10.1016/j.apsb.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 07/20/2024] Open
Abstract
Regulated cell death (RCD) is a controlled form of cell death orchestrated by one or more cascading signaling pathways, making it amenable to pharmacological intervention. RCD subroutines can be categorized as apoptotic or non-apoptotic and play essential roles in maintaining homeostasis, facilitating development, and modulating immunity. Accumulating evidence has recently revealed that RCD evasion is frequently the primary cause of tumor survival. Several non-apoptotic RCD subroutines have garnered attention as promising cancer therapies due to their ability to induce tumor regression and prevent relapse, comparable to apoptosis. Moreover, they offer potential solutions for overcoming the acquired resistance of tumors toward apoptotic drugs. With an increasing understanding of the underlying mechanisms governing these non-apoptotic RCD subroutines, a growing number of small-molecule compounds targeting single or multiple pathways have been discovered, providing novel strategies for current cancer therapy. In this review, we comprehensively summarized the current regulatory mechanisms of the emerging non-apoptotic RCD subroutines, mainly including autophagy-dependent cell death, ferroptosis, cuproptosis, disulfidptosis, necroptosis, pyroptosis, alkaliptosis, oxeiptosis, parthanatos, mitochondrial permeability transition (MPT)-driven necrosis, entotic cell death, NETotic cell death, lysosome-dependent cell death, and immunogenic cell death (ICD). Furthermore, we focused on discussing the pharmacological regulatory mechanisms of related small-molecule compounds. In brief, these insightful findings may provide valuable guidance for investigating individual or collaborative targeting approaches towards different RCD subroutines, ultimately driving the discovery of novel small-molecule compounds that target RCD and significantly enhance future cancer therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Linlin Tong
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Jia Zhao
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Na Lin
- Department of Ultrasound, Department of Medical Oncology and Department of Hematology, the First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| |
Collapse
|
38
|
Cheng G, Hardy M, Hillard CJ, Feix JB, Kalyanaraman B. Mitigating gut microbial degradation of levodopa and enhancing brain dopamine: Implications in Parkinson's disease. Commun Biol 2024; 7:668. [PMID: 38816577 PMCID: PMC11139878 DOI: 10.1038/s42003-024-06330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Parkinson's disease is managed using levodopa; however, as Parkinson's disease progresses, patients require increased doses of levodopa, which can cause undesirable side effects. Additionally, the oral bioavailability of levodopa decreases in Parkinson's disease patients due to the increased metabolism of levodopa to dopamine by gut bacteria, Enterococcus faecalis, resulting in decreased neuronal uptake and dopamine formation. Parkinson's disease patients have varying levels of these bacteria. Thus, decreasing bacterial metabolism is a promising therapeutic approach to enhance the bioavailability of levodopa in the brain. In this work, we show that Mito-ortho-HNK, formed by modification of a naturally occurring molecule, honokiol, conjugated to a triphenylphosphonium moiety, mitigates the metabolism of levodopa-alone or combined with carbidopa-to dopamine. Mito-ortho-HNK suppresses the growth of E. faecalis, decreases dopamine levels in the gut, and increases dopamine levels in the brain. Mitigating the gut bacterial metabolism of levodopa as shown here could enhance its efficacy.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix-Marseille Univ, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
39
|
Huang Y, Wang P, Fan T, Zhang N, Zhao L, Zhong R, Sun G. Energy Blocker Lonidamine Reverses Nimustine Resistance in Human Glioblastoma Cells through Energy Blockade, Redox Homeostasis Disruption, and O6-Methylguanine-DNA Methyltransferase Downregulation: In Vitro and In Vivo Validation. ACS Pharmacol Transl Sci 2024; 7:1518-1532. [PMID: 38751635 PMCID: PMC11092191 DOI: 10.1021/acsptsci.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Tumor resistance seriously hinders the clinical application of chloroethylnitrosoureas (CENUs), such as O6-methylguanine-DNA methylguanine (MGMT), which can repair O6-alkyl lesions, thereby inhibiting the formation of cytotoxic DNA interstrand cross-links (ICLs). Metabolic differences between tumor and normal cells provide a biochemical basis for novel therapeutic strategies aimed at selectively inhibiting tumor energy metabolism. In this study, the energy blocker lonidamine (LND) was selected as a chemo-sensitizer of nimustine (ACNU) to explore its potential effects and underlying mechanisms in human glioblastoma in vitro and in vivo. A series of cell-level studies showed that LND significantly increased the cytotoxic effects of ACNU on glioblastoma cells. Furthermore, LND plus ACNU enhanced the energy deficiency by inhibiting glycolysis and mitochondrial function. Notably, LND almost completely downregulated MGMT expression by inducing intracellular acidification. The number of lethal DNA ICLs produced by ACNU increased after the LND pretreatment. The combination of LND and ACNU aggravated cellular oxidative stress. In resistant SF763 mouse tumor xenografts, LND plus ACNU significantly inhibited tumor growth with fewer side effects than ACNU alone. Finally, we proposed a new "HMAGOMR" chemo-sensitizing mechanism through which LND may act as a potential chemo-sensitizer to reverse ACNU resistance in glioblastoma: moderate inhibition of hexokinase (HK) activity (H); mitochondrial dysfunction (M); suppressing adenosine triphosphate (ATP)-dependent drug efflux (A); changing redox homeostasis to inhibit GSH-mediated drug inactivation (G) and increasing intracellular oxidative stress (O); downregulating MGMT expression through intracellular acidification (M); and partial inhibition of energy-dependent DNA repair (R).
Collapse
Affiliation(s)
- Yaxing Huang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Peng Wang
- Department
of Neurosurgery, The First Medical Center
of Chinese PLA General Hospital, Beijing 100853, China
| | - Tengjiao Fan
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
- Department
of Medical Technology, Beijing Pharmaceutical
University of Staff and Workers, Beijing 100079, China
| | - Na Zhang
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing
Key Laboratory of Environment & Viral Oncology, College of Chemistry
and Life Science, Beijing University of
Technology, Beijing 100124, China
| |
Collapse
|
40
|
Feng T, Tang Z, Karges J, Shu J, Xiong K, Jin C, Chen Y, Gasser G, Ji L, Chao H. An iridium(iii)-based photosensitizer disrupting the mitochondrial respiratory chain induces ferritinophagy-mediated immunogenic cell death. Chem Sci 2024; 15:6752-6762. [PMID: 38725496 PMCID: PMC11077511 DOI: 10.1039/d4sc01214c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Cancer cells have a strategically optimized metabolism and tumor microenvironment for rapid proliferation and growth. Increasing research efforts have been focused on developing therapeutic agents that specifically target the metabolism of cancer cells. In this work, we prepared 1-methyl-4-phenylpyridinium-functionalized Ir(iii) complexes that selectively localize in the mitochondria and generate singlet oxygen and superoxide anion radicals upon two-photon irradiation. The generation of this oxidative stress leads to the disruption of the mitochondrial respiratory chain and therefore the disturbance of mitochondrial oxidative phosphorylation and glycolysis metabolisms, triggering cell death by combining immunogenic cell death and ferritinophagy. To the best of our knowledge, this latter is reported for the first time in the context of photodynamic therapy (PDT). To provide cancer selectivity, the best compound of this work was encapsulated within exosomes to form tumor-targeted nanoparticles. Treatment of the primary tumor of mice with two-photon irradiation (720 nm) 24 h after injection of the nanoparticles in the tail vein stops the primary tumor progression and almost completely inhibits the growth of distant tumors that were not irradiated. Our compound is a promising photosensitizer that efficiently disrupts the mitochondrial respiratory chain and induces ferritinophagy-mediated long-term immunotherapy.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum Universitätsstrasse 150 44780 Bochum Germany
| | - Jun Shu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
41
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024; 29:2110. [PMID: 38731601 PMCID: PMC11085455 DOI: 10.3390/molecules29092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
42
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
43
|
Liao Z, Wen E, Feng Y. GSH-responsive degradable nanodrug for glucose metabolism intervention and induction of ferroptosis to enhance magnetothermal anti-tumor therapy. J Nanobiotechnology 2024; 22:147. [PMID: 38570829 PMCID: PMC11321096 DOI: 10.1186/s12951-024-02425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
The challenges associated with activating ferroptosis for cancer therapy primarily arise from obstacles related to redox and iron homeostasis, which hinder the susceptibility of tumor cells to ferroptosis. However, the specific mechanisms of ferroptosis resistance, especially those intertwined with abnormal metabolic processes within tumor cells, have been consistently underestimated. In response, we present an innovative glutathione-responsive magnetocaloric therapy nanodrug termed LFMP. LFMP consists of lonidamine (LND) loaded into PEG-modified magnetic nanoparticles with a Fe3O4 core and coated with disulfide bonds-bridged mesoporous silica shells. This nanodrug is designed to induce an accelerated ferroptosis-activating state in tumor cells by disrupting homeostasis. Under the dual effects of alternating magnetic fields and high concentrations of glutathione in the tumor microenvironment, LFMP undergoes disintegration, releasing drugs. LND intervenes in cell metabolism by inhibiting glycolysis, ultimately enhancing iron death and leading to synthetic glutathione consumption. The disulfide bonds play a pivotal role in disrupting intracellular redox homeostasis by depleting glutathione and inactivating glutathione peroxidase 4 (GPX4), synergizing with LND to enhance the sensitivity of tumor cells to ferroptosis. This process intensifies oxidative stress, further impairing redox homeostasis. Furthermore, LFMP exacerbates mitochondrial dysfunction, triggering ROS formation and lactate buildup in cancer cells, resulting in increased acidity and subsequent tumor cell death. Importantly, LFMP significantly suppresses tumor cell proliferation with minimal side effects both in vitro and in vivo, exhibiting satisfactory T2-weighted MR imaging properties. In conclusion, this magnetic hyperthermia-based nanomedicine strategy presents a promising and innovative approach for antitumor therapy.
Collapse
Affiliation(s)
- Zhen Liao
- Department of Biomedical Engineering, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 61173, Sichuan, People's Republic of China
| | - E Wen
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yi Feng
- Institute of Burn Research Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
44
|
Liu S, Wang X, Sun X, Wei B, Jiang Z, Ouyang Y, Ozaki T, Yu M, Liu Y, Zhang R, Zhu Y. Oridonin inhibits bladder cancer survival and immune escape by covalently targeting HK1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155426. [PMID: 38367425 DOI: 10.1016/j.phymed.2024.155426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Hexokinase I (HK1) is highly expressed in a variety of malignancies, regulates glycolytic pathway in cancer cells, and thus considered to be one of the promising molecular targets for cancer therapy. Nonetheless, the development of a specific inhibitor against HK1 remains elusive. PURPOSE This study aims to elucidate the mechanism by which oridonin inhibits the proliferation and immune evasion of bladder cancer cells, specifically through the suppression of HK1. METHODS To examine the mechanisms by which oridonin directly binds to cysteines of HK1 and inhibits bladder cancer growth, this study utilized a variety of methods. These included the Human Proteome Microarray, Streptavidin-agarose affinity assay, Biolayer Interferometry (BLI) ainding analysis, Mass Spectrometry, Cellular Thermal Shift Assay, Extracellular Acidification Rate measurement, and Xenotransplant mouse models. RESULTS As indicated by our current findings, oridonin forms a covalent bond with Cys-813, located adjacently to glucose-binding domain of HK1. This suppresses the enzymatic activity of HK1, leading to an effective reduction of glycolysis, which triggers cell death via apoptosis in cells derived from human bladder cancer. Significantly, oridonin also inhibits lactate-induced PD-L1 expression in bladder cancer. Furthermore, pairing oridonin with a PD-L1 inhibitor amplifies the cytotoxicity of CD8+ T cells against bladder cancer. CONCLUSION This research strongly suggests that oridonin serves as a covalent inhibitor of HK1. Moreover, it indicates that functional cysteine residue of HK1 could operate as viable targets for selective inhibition. Consequently, oridonin exhibits substantial potential for the evolution of anti-cancer agents targeting the potential therapeutic target HK1 via metabolism immunomodulation.
Collapse
Affiliation(s)
- Shuangjie Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China; Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China; Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Sun
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Baojun Wei
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhaowei Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yongze Ouyang
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University. Key Laboratory of Transgenetic Animal Research. No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, China
| | - Yongxiang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
45
|
Wang Z, Wang Q, Cao H, Wang Z, Wang D, Liu J, Gao T, Ren C, Liu J. Mitochondrial Localized In Situ Self-Assembly Reprogramming Tumor Immune and Metabolic Microenvironment for Enhanced Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311043. [PMID: 38190762 DOI: 10.1002/adma.202311043] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Indexed: 01/10/2024]
Abstract
The inherent immune and metabolic tumor microenvironment (TME) of most solid tumors adversely affect the antitumor efficacy of various treatments, which is an urgent issue to be solved in clinical cancer therapy. In this study, a mitochondrial localized in situ self-assembly system is constructed to remodel the TME by improving immunogenicity and disrupting the metabolic plasticity of cancer cells. The peptide-based drug delivery system can be pre-assembled into nanomicelles in vitro and form functional nanofibers on mitochondria through a cascade-responsive process involving reductive release, targeted enrichment, and in situ self-assembly. The organelle-specific in situ self-assemblyeffectively switches the role of mitophagy from pro-survival to pro-death, which finally induces intense endoplasmic reticulum stress and atypical type II immunogenic cell death. Disintegration of the mitochondrial ultrastructure also impedes the metabolic plasticity of tumor cells, which greatly promotes the immunosuppresive TME remodeling into an immunostimulatory TME. Ultimately, the mitochondrial localized in situ self-assembly system effectively suppresses tumor metastases, and converts cold tumors into hot tumors with enhanced sensitivity to radiotherapy and immune checkpoint blockade therapy. This study offers a universal strategy for spatiotemporally controlling supramolecular self-assembly on sub-organelles to determine cancer cell fate and enhance cancer therapy.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Qian Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Hongmei Cao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Tongxin Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
46
|
Yi L, Jiang X, Zhou Z, Xiong W, Xue F, Liu Y, Xu H, Fan B, Li Y, Shen J. A Hybrid Nanoadjuvant Simultaneously Depresses PD-L1/TGF-β1 and Activates cGAS-STING Pathway to Overcome Radio-Immunotherapy Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304328. [PMID: 38229577 DOI: 10.1002/adma.202304328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/10/2023] [Indexed: 01/18/2024]
Abstract
Currently, certain cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and acquired immune tolerance triggered by transforming growth factor-β1 (TGF-β1) and membrane-localized programmed death ligand-1 (PD-L1). Meanwhile, cytoplasm-distributed PD-L1 induces radiotherapy resistance through accelerating DNA damage repair (DDR). However, the disability of clinically used PD-L1 antibodies in inhibiting cytoplasm-distributed PD-L1 limits their effectiveness. Therefore, a nanoadjuvant is developed to sensitize cancer to radiotherapy via multi-level immunity activation through depressing PD-L1 and TGF-β1 by triphenylphosphine-derived metformin, and activating the cGAS-STING pathway by generating Mn2+ from MnO2 and producing more dsDNA via reversing tumor hypoxia and impairing DDR. Thus, Tpp-Met@MnO2@Alb effectively enhances the efficiency of radiotherapy to inhibit the progression of irradiated local and abscopal tumors and tumor lung metastases, offering a long-term memory of antitumor immunity without discernible side effects. Overall, Tpp-Met@MnO2@Alb has the potential to be clinically applied for overcoming radio-immunotherapy resistance.
Collapse
Affiliation(s)
- Lei Yi
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fei Xue
- Department of Radiotherapy, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Haozhe Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuan Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| |
Collapse
|
47
|
Orlovskiy S, Gupta PK, Roman J, Arias-Mendoza F, Nelson DS, Koch CJ, Narayan V, Putt ME, Nath K. Lonidamine Induced Selective Acidification and De-Energization of Prostate Cancer Xenografts: Enhanced Tumor Response to Radiation Therapy. Cancers (Basel) 2024; 16:1384. [PMID: 38611062 PMCID: PMC11010960 DOI: 10.3390/cancers16071384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Prostate cancer is a multi-focal disease that can be treated using surgery, radiation, androgen deprivation, and chemotherapy, depending on its presentation. Standard dose-escalated radiation therapy (RT) in the range of 70-80 Gray (GY) is a standard treatment option for prostate cancer. It could be used at different phases of the disease (e.g., as the only primary treatment when the cancer is confined to the prostate gland, combined with other therapies, or as an adjuvant treatment after surgery). Unfortunately, RT for prostate cancer is associated with gastro-intestinal and genitourinary toxicity. We have previously reported that the metabolic modulator lonidamine (LND) produces cancer sensitization through tumor acidification and de-energization in diverse neoplasms. We hypothesized that LND could allow lower RT doses by producing the same effect in prostate cancer, thus reducing the detrimental side effects associated with RT. Using the Seahorse XFe96 and YSI 2300 Stat Plus analyzers, we corroborated the expected LND-induced intracellular acidification and de-energization of isolated human prostate cancer cells using the PC3 cell line. These results were substantiated by non-invasive 31P magnetic resonance spectroscopy (MRS), studying PC3 prostate cancer xenografts treated with LND (100 mg/kg, i.p.). In addition, we found that LND significantly increased tumor lactate levels in the xenografts using 1H MRS non-invasively. Subsequently, LND was combined with radiation therapy in a growth delay experiment, where we found that 150 µM LND followed by 4 GY RT produced a significant growth delay in PC3 prostate cancer xenografts, compared to either control, LND, or RT alone. We conclude that the metabolic modulator LND radio-sensitizes experimental prostate cancer models, allowing the use of lower radiation doses and diminishing the potential side effects of RT. These results suggest the possible clinical translation of LND as a radio-sensitizer in patients with prostate cancer.
Collapse
Affiliation(s)
- Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
| | - Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
| | - Jeffrey Roman
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
| | - Cameron J. Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Vivek Narayan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Mary E. Putt
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (P.K.G.); (J.R.); (F.A.-M.); (D.S.N.)
| |
Collapse
|
48
|
Amorim R, Magalhães CC, Benfeito S, Cagide F, Tavares LC, Santos K, Sardão VA, Datta S, Cortopassi GA, Baldeiras I, Jones JG, Borges F, Oliveira PJ, Teixeira J. Mitochondria dysfunction induced by decyl-TPP mitochondriotropic antioxidant based on caffeic acid AntiOxCIN 6 sensitizes cisplatin lung anticancer therapy due to a remodeling of energy metabolism. Biochem Pharmacol 2024; 219:115953. [PMID: 38036191 DOI: 10.1016/j.bcp.2023.115953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The pharmacological interest in mitochondria is very relevant since these crucial organelles are involved in the pathogenesis of multiple diseases, such as cancer. In order to modulate cellular redox/oxidative balance and enhance mitochondrial function, numerous polyphenolic derivatives targeting mitochondria have been developed. Still, due to the drug resistance emergence in several cancer therapies, significant efforts are being made to develop drugs that combine the induction of mitochondrial metabolic reprogramming with the ability to generate reactive oxygen species, taking into consideration the varying metabolic profiles of different cell types. We previously developed a mitochondria-targeted antioxidant (AntiOxCIN6) by linking caffeic acid to lipophilic triphenylphosphonium cation through a 10-carbon aliphatic chain. The antioxidant activity of AntiOxCIN6 has been documented but how the mitochondriotropic compound impact energy metabolism of both normal and cancer cells remains unknown. We demonstrated that AntiOxCIN6 increased antioxidant defense system in HepG2 cells, although ROS clearance was ineffective. Consequently, AntiOxCIN6 significantly decreased mitochondrial function and morphology, culminating in a decreased capacity in complex I-driven ATP production without affecting cell viability. These alterations were accompanied by an increase in glycolytic fluxes. Additionally, we demonstrate that AntiOxCIN6 sensitized A549 adenocarcinoma cells for CIS-induced apoptotic cell death, while AntiOxCIN6 appears to cause metabolic changes or a redox pre-conditioning on lung MRC-5 fibroblasts, conferring protection against cisplatin. We propose that length and hydrophobicity of the C10-TPP+ alkyl linker play a significant role in inducing mitochondrial and cellular toxicity, while the presence of the antioxidant caffeic acid appears to be responsible for activating cytoprotective pathways.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Carina C Magalhães
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ludgero C Tavares
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - Katia Santos
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Vilma A Sardão
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Sandipan Datta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Gino A Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Inês Baldeiras
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo J Oliveira
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC/UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotecnhology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
49
|
Palma FR, Gantner BN, Sakiyama MJ, Kayzuka C, Shukla S, Lacchini R, Cunniff B, Bonini MG. ROS production by mitochondria: function or dysfunction? Oncogene 2024; 43:295-303. [PMID: 38081963 DOI: 10.1038/s41388-023-02907-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 01/31/2024]
Abstract
In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.
Collapse
Affiliation(s)
- Flavio R Palma
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Benjamin N Gantner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcelo J Sakiyama
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA
| | - Cezar Kayzuka
- Department of Pharmacology, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Sao Paulo, Brazil
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Larner School of Medicine, University of Vermont, Burlington, VT, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine and the Robert H. Lurie Comprehensive Cancer Center of Chicago, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
50
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|