1
|
Price EK, Bejar G, Kwag J, Brown N, He L, Tisdale WA. Ligand Shell Thickness of Colloidal Nanocrystals: A Comparison of Small-Angle Neutron and X-ray Scattering. J Am Chem Soc 2025; 147:13859-13870. [PMID: 40210597 DOI: 10.1021/jacs.5c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Colloidal nanocrystals (NCs) are coated by an organic ligand shell that imparts colloidal stability, mediates self-assembly, and impacts functional properties. Despite the variety of methods to chemically characterize ligands, common structural characterization techniques like small-angle X-ray scattering (SAXS) and electron microscopy selectively resolve the NC core and can only indirectly infer the structure of ligands. Small-angle neutron scattering (SANS) can directly characterize the ligand shell structure of colloidal NCs, enabled by the unique sensitivity of SANS to organic molecules. In this work, we compare and contrast the information about the NC ligand shell gained directly through SANS and indirectly through SAXS. Monodisperse oleyl-capped PbS NCs were synthesized with varying core sizes (4.8 - 7.4 nm diameter) and solvents (toluene, n-hexane, cyclohexane). We then performed SANS to extract the ligand shell thickness and composition, SAXS to infer the ligand structure from NC interactions, and grazing-incidence SAXS to compare interparticle distances in self-assembled PbS NC superlattices. We observe with SANS that ligands extend up to 15% farther away from the NC surface with increasing core size over the size range studied, attributed to curvature effects that are not captured by the inferred structure from SAXS. We also see that the ligand shell thickness varies with solvent identity due to differences in how solvent molecules penetrate the ligand shell. In a detailed comparison, we demonstrate that SANS, SAXS, and GISAXS reveal distinct but complementary information about the ligand shell, enabling the holistic characterization of the structure-property relationships of NCs from colloid to self-assembled superlattice.
Collapse
Affiliation(s)
- Eliza K Price
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Guilherme Bejar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jimin Kwag
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Niamh Brown
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Deng M, Zhang Z, Liu L, Yang H, Li C, Fan Z. Ligand-Solvent Library Design for Tailoring Interparticle Interactions in Colloidal Nanocrystals. ACS NANO 2025; 19:14299-14308. [PMID: 40064551 DOI: 10.1021/acsnano.5c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study explores the critical role of nonpolar ligand-solvent systems in modulating interparticle interactions in colloidal nanocrystals, profoundly affecting colloidal stability and enabling precision self-assembly. A library of 28 ligands with diverse molecular fragments─double bonds, branched chains, benzene rings, and naphthalene rings─and four solvents was developed to investigate how fragment types and positions affect ligand ordering and interparticle attraction. Explicit solvent simulations with enhanced sampling techniques reveal that fragments near the headgroup or midsection disrupt ligand ordering and weaken interparticle attraction, whereas terminal placement fosters ordered ligand packing and enhances attraction. Simulation predictions on the relationship between ligand structures and interparticle interactions were validated through self-assembly experiments using colloidal nanocrystals passivated by six representative ligands. Furthermore, the potential to control ligand ordering and interparticle interactions was demonstrated by tuning fragment types, positions, combinations, and solvent sizes. This work deepens the understanding of ligand-solvent dynamics and provides a theoretical framework for the molecular-level design of nanocrystal self-assembly.
Collapse
Affiliation(s)
- Meng Deng
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Ziyan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongchao Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Chuncheng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhaochuan Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Liu Z, Hou X, You H, Wang Z, Zhu K, Hu X, Li P, Lu X, Wang Q, Liu Z, Hu D, Su J, Dai N, Li Y. Surface Copassivation Strategy for Developing Water-Soluble InP Colloidal Quantum Dots with High Luminescence and Suppressed Blinking. J Am Chem Soc 2025; 147:4778-4789. [PMID: 39880802 DOI: 10.1021/jacs.4c10731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection. Here, we present an efficient copassivation strategy via dual hydrophilic ligands to achieve water-soluble InP-based QDs with ideal optical properties. A record photoluminescence quantum yield of near-unity and monoexponential decay dynamics for water-soluble InP-based QDs are achieved. For the first time, we realize a single water-soluble InP-based QD with significantly suppressed blinking. Furthermore, the novel QDs exhibit superior cellular imaging capabilities and high resistance to photobleaching compared with commonly used organic dyes. The results presented here will inspire the development of environmentally friendly water-soluble QDs as a promising class of fluorescence labels for biological applications.
Collapse
Affiliation(s)
- Zhe Liu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Hou
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huangpeng You
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaijie Zhu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Hu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Peixian Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xingchang Lu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qingyu Wang
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zifeng Liu
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dongliang Hu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangtong Su
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ning Dai
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yang Li
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Fu H, Zhong Z, Liang Z, Jiang Y, Qiu D, Zhang M, Jin M, Zeng Z, Yin L, Du Y. Local Environment-Modulated f-f Transition in Unit-Cell-Sized Lanthanide Ultrathin Nanostructures. ACS NANO 2025; 19:2213-2227. [PMID: 39787034 DOI: 10.1021/acsnano.4c11368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The regulation of the f-f transition is the basis of utilizing the abundant optical properties of lanthanide (Ln), of which the key is to modulate the local environment of Ln ions. Here, we constructed Eu(III)-based unit-cell-sized ultrathin nanowires (UCNWs) with red luminescence and polymer-like behavior, which appears as an ideal carrier for regulating f-f transition. The f-f transition of Eu(III) in UCNWs could be precisely regulated through various ligands. It is the unusual surface states that make the UCNWs exhibit greater electric dipole strength and better sensitivity to various ligands compared with the carefully constructed ultrathin nanosheets. In addition, the possibility of regulating f-f transition in UCNWs through energy transfer and a high entropy strategy was also revealed. Finally, a temperature-dependent universal fluorescent ink was prepared based on UCNWs, which provides ideas for intelligent flexible fluorescent materials.
Collapse
Affiliation(s)
- Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Ziyun Zhong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Di Qiu
- Tianjin Normal University, Tianjin 300387, P. R. China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Zhichao Zeng
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Diao N, Liu Y, Wang W, Cao M, Liu X, Yang W, Cao Y, Sun T, Pei H, Guo C, Chen D. Resveratrol nanocrystals based dissolving microneedles with highly efficient for rheumatoid arthritis. Drug Deliv Transl Res 2025; 15:203-215. [PMID: 38556538 DOI: 10.1007/s13346-024-01581-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Rheumatoid arthritis (RA) is a common immune disease characterized mainly by erosive arthritis with extensive clinical sequelae. Resveratrol (Res) has pharmacological effects in the treatment of RA, but it has not been widely used in the clinic due to its poor water solubility and low bioavailability. In this study, a drug delivery system (Res-NC MNs) of dissolved microneedles (MNs) loaded with Res nanocrystals (NC) was designed for the treatment of RA. Res-NC MNs can improve the drawbacks of long-term oral drug delivery with toxic side effects and low compliance associated with intra-articular drug delivery. In this study, Res-NC was prepared by media milling and loaded into soluble microneedles prepared from hyaluronic acid (HA) by vacuum casting for the treatment of RA. HA has high mechanical strength and can penetrate the cuticle layer of the skin for effective drug delivery. In in vivo pharmacodynamic experiments, Res-NC MNs achieved better therapeutic efficacy in the treatment of RA compared with oral Res. These findings suggest that Res-NC MNs may be an effective and promising drug delivery strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yan Liu
- Yantai Food and Drug Inspection and Testing Center, Yantai, 264035, PR China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Tianying Sun
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Huijie Pei
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, Yushan 10 Road, Qingdao, 266003, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
6
|
Lhaglham P, Jiramonai L, Jia Y, Huang B, Huang Y, Gao X, Zhang J, Liang XJ, Zhu M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024; 27:111185. [PMID: 39555405 PMCID: PMC11564948 DOI: 10.1016/j.isci.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Drug nanocrystals have received significant attention in drug development due to their enhanced dissolution rate and improved water solubility, making them effective in overcoming issues related to drug hydrophobicity, thereby improving drug bioavailability and treatment effectiveness. Recent advances in preparation techniques have facilitated research on drug surface properties, leading to valuable surface engineering strategies. Surface modification can stabilize drug nanocrystals, making them suitable for versatile drug delivery platforms. Functionalized ligands further enhance the potential for targeted delivery, enabling precision medicine. This review focuses on the surface engineering of drug nanocrystals, discussing various preparation methods, surface ligand design strategies, and their applications in targeted drug delivery, especially for cancer treatments. Finally, challenges and future directions are also discussed to promote the development of drug nanocrystals. The surface engineering of drug nanocrystals promises new opportunities for treating complex and chronic diseases while broadening the application of drug delivery systems.
Collapse
Affiliation(s)
- Phattalapol Lhaglham
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Sri-ayudhya Road, Bangkok 10400, Thailand
| | - Luksika Jiramonai
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Jia
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Baoying Huang
- MHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xueyun Gao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengliang Zhu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Badoni S, Terlecki M, Carret S, Poisson JF, Charpentier T, Okuno H, Wolska-Pietkiewicz M, Lee D, Lewiński J, De Paëpe G. Atomic-Level Structure of the Organic-Inorganic Interface of Colloidal ZnO Nanoplatelets from Dynamic Nuclear Polarization-Enhanced NMR. J Am Chem Soc 2024; 146:27655-27667. [PMID: 39321384 DOI: 10.1021/jacs.4c09113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) have emerged as a new class of nanomaterials that can exhibit substantially distinct optical properties compared to those of isotropic quantum dots, which makes them prime candidates for new-generation optoelectronic devices. Insights into the structure and anisotropic growth of NPLs can offer a blueprint for their controlled fabrication. Here, we present an atomic-level investigation of the organic-inorganic interface structure in ultrathin and stable benzamidine (bza)-supported ZnO NPLs prepared by the modified one-pot self-supporting organometallic approach. High-resolution transmission electron microscopy analysis showed a well-faceted hexagonal shape of ZnO NPLs with lateral surfaces terminated by nonpolar (101̅0) facets. The basal surfaces are flat and well-formed on one side and corrugated on the other side, which indicates that the layer-by-layer growth in the thickness of the NPLs likely occurs only in one direction via the expansion of 2D islands on the surface. The ligand coordination modes were elucidated using state-of-the-art dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy supported by density functional theory chemical shift calculations. Specifically, it was found that (101̅0) nonpolar facets are stabilized by neutral L-type bza-H ligands with hydrogen bond-supported η1-coordination mode, while polar (0001) and (0001̅) facets are covered by μ2-coordinated X-type anionic bza ligands with different conformations of aromatic rings. Moreover, the ligand packing on (101̅0) lateral facets was determined using 13C natural abundance (∼1.1%) homonuclear dipolar correlation experiments. Overall, an in-depth understanding of the growth mechanism and the unique bimodal X-type/L-type ligand coordination shell of ZnO NPLs is provided, which will facilitate further design of anisotropic nano-objects.
Collapse
Affiliation(s)
- Saumya Badoni
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | - Michał Terlecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | | - Thibault Charpentier
- CEA, CNRS, NIMBE, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette 91191 Cedex, France
| | - Hanako Okuno
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | | | - Daniel Lee
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| | - Janusz Lewiński
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Gaël De Paëpe
- CEA, IRIG-MEM, Universite Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
8
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
9
|
Li J, Jiang J, Zhang Y, Lin Z, Pang Z, Guan J, Liu Z, Ren Y, Li S, Lin R, Wu J, Wang J, Zhang Z, Dong H, Chen Z, Wang Y, Yang Y, Tan H, Zhu J, Lu Z, Deng Y. Freeze Metal Halide Perovskite for Dramatic Laser Tuning: Direct Observation via In Situ Cryo-Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402338. [PMID: 38924259 DOI: 10.1002/smll.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.
Collapse
Affiliation(s)
- Jiayi Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jing Jiang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenhui Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhentao Pang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Guan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyu Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yifeng Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shiheng Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Jian Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ziyou Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zhiqiang Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Calvin JJ, Sedlak AB, Brewer AS, Kaufman TM, Alivisatos AP. Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots. ACS NANO 2024; 18:25257-25270. [PMID: 39186512 DOI: 10.1021/acsnano.4c08439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
As synthesized, nanocrystal surfaces are typically covered in coordinating organic ligands, and the degree of packing and order of these ligands are ongoing questions in the field of colloidal nanocrystals, particularly in the solution state. Recently, isothermal titration calorimetry coupled with 1H NMR has been used to probe ligand exchanges on colloidal quantum dots, revealing the importance of the composition of the ligand shell on exchange thermodynamics. Previous work has shown that the geometry and length of a ligand's aliphatic chain can influence the thermodynamics of exchange. This has been attributed to interligand interactions, and the use of a modified Ising model simulation to account for these collective effects has been critical in describing these reactions. In this report, we explore the reaction between indium phosphide quantum dots and zinc chloride on a size series of nanocrystals capped with two different lengths of aliphatic, straight-chain carboxylate ligands to investigate the effect that nanocrystal size has on these interligand interactions. We demonstrate that interligand interactions increase as the nanocrystal size increases, changing the thermodynamics of the ligand exchange reaction. Critically, we show that a self-consistent model of these ligand exchanges does not fit the data without the use of a phase transition term in the model and that the strength of this phase transition depends on the nanocrystal size. Combined with solution state X-ray diffraction, these results provide indirect evidence that ligands are ordered on nanocrystals in the solution state.
Collapse
Affiliation(s)
- Jason J Calvin
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Amanda S Brewer
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - A Paul Alivisatos
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Jiang M, Wang D, Kim YH, Duan C, Talapin DV, Zhou C. Evolution of Surface Chemistry in Two-Dimensional MXenes: From Mixed to Tunable Uniform Terminations. Angew Chem Int Ed Engl 2024; 63:e202409480. [PMID: 39031873 DOI: 10.1002/anie.202409480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Surface chemistry of MXenes is of great interest as the terminations can define the intrinsic properties of this family of materials. The diverse and tunable terminations also distinguish MXenes from many other 2D materials. Conventional fluoride-containing reagents etching approaches resulted in MXenes with mixed fluoro-, oxo-, and hydroxyl surface groups. The relatively strong chemical bonding of MXenes' surface metal atoms with oxygen and fluorine makes post-synthetic covalent surface modifications of such MXenes unfavorable. In this minireview, we focus on the recent advances in MXenes with uniform surface terminations. Unconventional methods, including Lewis acidic molten salt etching (LAMS) and bottom-up direct synthesis, have been proven successful in producing halide-terminated MXenes. These synthetic strategies have opened new possibilities for MXenes because weaker surface chemical bonds in halide-terminated MXenes facilitate post-synthetic covalent surface modifications. Both computational and experimental results on surface termination-dependent properties are summarized and discussed. Finally, we offer our perspective on the opportunities and challenges in this exciting research field.
Collapse
Affiliation(s)
- Mengni Jiang
- School of Chemistry and Material Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
| | - Di Wang
- Department of Chemistry, University of Chicago, 60637, Chicago, Illinois, United States
| | - Young-Hwan Kim
- Pritzker School of Molecular Engineering, University of Chicago, 60637, Chicago, Illinois, United States
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Dmitri V Talapin
- Department of Chemistry, University of Chicago, 60637, Chicago, Illinois, United States
- Pritzker School of Molecular Engineering, University of Chicago, 60637, Chicago, Illinois, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 60439, Argonne, Illinois, United States
| | - Chenkun Zhou
- School of Chemistry and Material Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, 210023, Nanjing, Jiangsu, China
- Department of Chemistry, University of Chicago, 60637, Chicago, Illinois, United States
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Lin L, Liu AA, Zhao W, Yang Y, Zhu DL, Dong BR, Ding F, Ning D, Zhu X, Liu D, Pang DW. Multihierarchical Regulation To Achieve Quantum Dot Nanospheres with a Photoluminescence Quantum Yield Close to 100. J Am Chem Soc 2024; 146:21348-21356. [PMID: 38905206 DOI: 10.1021/jacs.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Quantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity. However, the photoluminescence quantum yield (PLQY) of FNs is significantly lower compared with that of original QDs. It is urgent to develop a strategy to solve the issue, aiming to further enhance detection sensitivity. In this study, we found that the decrease of PLQY of FNs prepared by free radical polymerization was attributed to two factors: (1) generation of defects that can cause nonradiative transitions resulting from QD-ligands desorption and QD-shell oxidation induced by free radicals; (2) self-absorption resulting from aggregation caused by incompatibility of QDs with polymers. Based on these, we proposed a multihierarchical regulation strategy that includes: (1) regulating QD-ligands; (2) precisely controlling free radical concentration; and (3) constructing cross-linked structures of polymer to improve compatibility and to reduce the formation of surface defects. It is crucial to emphasize that the simultaneous coordination of multiple factors is essential. Consequently, a world-record PLQY of 97.6% for FNs was achieved, breaking through the current bottleneck at 65%. The flexible application of this regulatory concept paves the way for the large-scale production of high-brightness QD-polymer complexes, enhancing their potential applications in sensitive biomedical detection.
Collapse
Affiliation(s)
- Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Yin Yang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Dong-Liang Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Bo-Ran Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fei Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Di Ning
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Xiaobo Zhu
- Cannano Jiayuan (Guangzhou) Science & Technology Co., Ltd, Guangzhou 510700, P. R. China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Tianjin 300071, P. R. China
| |
Collapse
|
13
|
Chwojnowska E, Kowalska AA, Kamińska A, Lewiński J. Direct Readout of Homo- vs Heterochiral Ligand Shell of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37308-37317. [PMID: 38973569 PMCID: PMC11261568 DOI: 10.1021/acsami.4c07648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The chiroptical activity of various semiconductor inorganic nanocrystalline materials has typically been tested using circular dichroism or circularly polarized luminescence. Herein, we report on a high-throughput screening method for identifying and differentiating chiroptically active quantum-sized ZnO crystals using Raman spectroscopy combined with principal component analysis. ZnO quantum dots (QDs) coated by structurally diverse homo- and heterochiral aminoalcoholate ligands (cis- and trans-1-amino-2-indanolate, 2-amino-1-phenylethanolate, and diphenyl-2-pyrrolidinemethanolate) were prepared using the one-pot self-supporting organometallic procedure and then extensively studied toward the identification of specific Raman fingerprints and spectral variations. The direct comparison between the spectra demonstrates that it is very difficult to make definite recognition and identification between QDs coated with enantiomers based only on the differences in the respective Raman bands' position shifts and their intensities. However, the applied approach involving the principal component analysis performed on the Raman spectra allows the simultaneous differentiation and identification of the studied QDs. The first and second principal components explain 98, 97, 97, and 87% of the variability among the studied families of QDs and demonstrate the possibility of using the presented method as a qualitative assay. Thus, the reported multivariate approach paves the way for simultaneous differentiation and identification of chirotopically active semiconductor nanocrystals.
Collapse
Affiliation(s)
- Elżbieta Chwojnowska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Aneta A. Kowalska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Agnieszka Kamińska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3 , Warsaw 00-664, Poland
| |
Collapse
|
14
|
Sudo T, Sagawa M, Adachi S, Kato Y, Nakanishi Y, Nakamura T, Yamashita S, Kamiya H, Okada Y. Understanding Flexdispersion: Structure-Function Relationship Studies of Organic Amphiphilic Ligands. Chemistry 2024; 30:e202304324. [PMID: 38654689 DOI: 10.1002/chem.202304324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Since inorganic nanoparticles have unique properties that differ from those of bulk materials, their material applications have attracted attention in various fields. In order to utilize inorganic nanoparticles for functional materials, they must be dispersed without agglomeration. Therefore, the surfaces of inorganic nanoparticles are typically modified with organic ligands to improve their dispersibility. Nevertheless, the relationship between the tail group structure in organic ligands and the dispersibility of inorganic nanoparticles in organic solvents remains poorly understood. We previously developed amphiphilic ligands that consist of ethylene glycol chains and alkyl chains to disperse inorganic nanoparticles in a variety of organic solvents. However, the structural requirements for amphiphilic ligands to "flexibly" disperse nanoparticles in less polar to polar solvents are still unclear. Here, we designed and synthesized several phosphonic acid ligands for structure-function relationship studies of flexdispersion. Dynamic light scattering analysis and visible light transmittance measurements revealed that the ratio of alkyl/ethylene glycol chains in organic ligands alone does not determine the dispersibility of the nanoparticles in organic solvents, but the arrangement of the individual chains also has an effect. From a practical application standpoint, it is preferable to design ligands with ethylene glycol chains on the outside relative to the particle surface.
Collapse
Affiliation(s)
- Tatsuya Sudo
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masahiko Sagawa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Sota Adachi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yusuke Kato
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuki Nakanishi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tatsuya Nakamura
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Shohei Yamashita
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yohei Okada
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
15
|
Luo X, He S, Chen D, Sun G, Zeng J, Zhu X, Jin W, Lu X, Hao Y, Jin Y. Shelf-Stable Green and Blue Quantum Dot Light-Emitting Diodes with High Efficiencies. J Phys Chem Lett 2024; 15:6722-6727. [PMID: 38900937 DOI: 10.1021/acs.jpclett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Quantum dot light-emitting diodes (QLEDs) are promising electroluminescent devices for next-generation display and solid-state lighting technologies. Achieving shelf-stable and high-performance QLEDs is crucial for their practical applications. However, the successful demonstration of shelf-stable QLEDs with high efficiencies is limited to red devices. Here, we developed a solution-based amine ligand exchange strategy to passivate the surfaces of optical ZnO (O-ZnO) nanocrystals, leading to suppressed exciton quenching at the green and blue QD/oxide interface. Furthermore, we designed new bilayered oxide electron-transporting layers consisting of amine-modified O-ZnO/conductive ZnO. This design simultaneously offers suppressed interfacial exciton quenching and sufficient electron transport in the green and blue QLEDs, resulting in shelf-stable green and blue devices with high efficiencies. Our devices exhibit neglectable changes in external quantum efficiencies (maximum external quantum efficiencies of 22.4% for green and 14.3% for blue) after storage for 270 days. Our work represents a step forward in the practical applications of QLED technology.
Collapse
Affiliation(s)
- Xiao Luo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Siyu He
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Desui Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Guolong Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jiejun Zeng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Material Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xitong Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Wangxiao Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xiuyuan Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yanlei Hao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yizheng Jin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
16
|
Knapp TV, Hasan MR, Niebuur BJ, Widmer-Cooper A, Kraus T. Stabilization of Apolar Nanoparticle Dispersions by Molecular Additives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13527-13537. [PMID: 38889250 DOI: 10.1021/acs.langmuir.4c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We study the effect of additives on the colloidal stability of alkanethiol-coated gold nanoparticles. Cyclic amines and sulfides of different sizes were added to dispersions in decane at additive concentrations below 128 mM. Small-angle X-ray scattering (SAXS) indicated that tetrahydrothiophene reduced the agglomeration temperature, Tagglo, by up to 29 °C, a considerable increase in colloidal stability. Amines had a much weaker stabilizing effect of up to 2.5 °C. We found an unexpected maximum of stabilization for low additive concentrations, where Tagglo increased at concentrations above 64 mM. Molecular dynamics simulations were used to correlate these observations with the ligand shell structure. They excluded the physisorption of additives as a stabilization mechanism and suggested that sulfides replace hexadecanethiol on the AuNP surfaces by chemisorption. This hinders ligand ordering, thereby reducing Tagglo, which explains the stabilizing effect. Clustering of chemisorbed additive molecules at high concentration restabilized the ligand ordered state, explaining the detrimental effect of higher additive concentrations. The predictions of the simulations were confirmed by using thermogravimetric analyses and SAXS measurements of washed samples that indicated that the structure of the ligand shell itself, not the presence of physisorbed additives, changes Tagglo. Finally, we calculated potentials of mean force, which show that larger sulfide-based additives have a weaker affinity for the gold surface than smaller ones due to stronger steric hindrance. This explains why smaller cyclic sulfides were the most efficient stabilizers.
Collapse
Affiliation(s)
| | - Mohammad Rashedul Hasan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Bart-Jan Niebuur
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Curti L, Landaburu G, Abécassis B, Fleury B. Chiroptical Properties of Semiconducting Nanoplatelets Functionalized by Tartrate Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11481-11490. [PMID: 38663023 DOI: 10.1021/acs.langmuir.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Inducing chirality in semiconductor nanoparticles is a recent trend motivated by the possible applications in circularly polarized light emission, spintronics, or stereoselective synthesis. However, the previous reports on CdSe nanoplatelets (NPLs) exclusively rely on cysteine or its derivatives as chiral ligands to induce optical activity. Here, we show a strong induction of chirality with derivatives of tartaric acid obtained by a single-step synthesis. The ligand exchange procedure in organic solvent was optimized for five-monolayer (5 ML) NPLs but can also be performed on 4, 3, and 2 ML. We show that the features of the CD spectra change with structural modification of the ligands and that these chiral ligands interact mainly with the first light-hole (lh1) band rather than the first heavy-hole (hh1) band, contrary to cysteine. This result suggests that chiroptical properties could be used to probe CdSe nanoplatelets' surface ligands.
Collapse
Affiliation(s)
- Leonardo Curti
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Guillaume Landaburu
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon France
| | - Benjamin Abécassis
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon France
| | - Benoit Fleury
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
18
|
Calvin JJ, Brewer AS, Crook MF, Kaufman TM, Alivisatos AP. Observation of negative surface and interface energies of quantum dots. Proc Natl Acad Sci U S A 2024; 121:e2307633121. [PMID: 38648471 PMCID: PMC11067453 DOI: 10.1073/pnas.2307633121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Surface energy is a fundamental property of materials and is particularly important in describing nanomaterials where atoms or molecules at the surface constitute a large fraction of the material. Traditionally, surface energy is considered to be a positive quantity, where atoms or molecules at the surface are less thermodynamically stable than their counterparts in the interior of the material because they have fewer bonds or interactions at the surface. Using calorimetric methods, we show that the surface energy is negative in some prototypical colloidal semiconductor nanocrystals, or quantum dots with organic ligand coatings. This implies that the surface atoms are more thermodynamically stable than those on the interior due to the strong bonds between these atoms and surfactant molecules, or ligands, that coat their surface. In addition, we extend this work to core/shell indium phosphide/zinc sulfide nanocrystals and show that the interfacial energy between these materials is highly thermodynamically favorable in spite of their large lattice mismatch. This work challenges many of the assumptions that have guided thinking about colloidal nanomaterial thermodynamics, investigates the fundamental stability of many technologically relevant colloidal nanomaterials, and paves the way for future experimental and theoretical work on nanocrystal thermodynamics.
Collapse
Affiliation(s)
- Jason J. Calvin
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Amanda S. Brewer
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Michelle F. Crook
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Tierni M. Kaufman
- Department of Chemistry, University of California, Berkeley, CA94720
| | - A. Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, CA94720
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA94720
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
19
|
Liu M, Tang G, Liu Y, Jiang FL. Ligand Exchange of Quantum Dots: A Thermodynamic Perspective. J Phys Chem Lett 2024; 15:1975-1984. [PMID: 38346356 DOI: 10.1021/acs.jpclett.3c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Colloidal quantum dots (QDs) consist of an inorganic core and organic surface ligands. Surface ligands play a dominant role in maintaining the colloidal stability of QDs and passivating the surface defects of QDs. However, the original ligands introduced in the synthetic process of QDs cannot meet the requirements for diverse applications; therefore, ligand exchanges with functional ligands are mandatory. Understanding the ligand exchange process requires a comprehensive combination of the concepts and techniques of surface chemistry. In this Perspective, the ligand exchange process is discussed in detail. Specifically, we elaborate on the thermodynamics that can reveal the feasibility and mechanism of ligand exchange. It depicts a critical physical picture of the surface of QDs along with the following ligand exchange.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ge Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
20
|
Chen J, Gu P, Ran G, Zhang Y, Li M, Chen B, Lu H, Han YZ, Zhang W, Tang Z, Yan Q, Sun R, Fu X, Chen G, Shi Z, Wang S, Liu X, Li J, Wang L, Zhu Y, Shen J, Tang BZ, Fan C. Atomically precise photothermal nanomachines. NATURE MATERIALS 2024; 23:271-280. [PMID: 37957270 DOI: 10.1038/s41563-023-01721-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Peilin Gu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Yu Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Chen
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hui Lu
- Zhangjiang Laboratory, Shanghai, China
| | - Ying-Zi Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Zichao Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Rui Sun
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Xiangfu Laboratory, Jiashan, China
| | - Xiaobin Fu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Guorui Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwen Shi
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China
- Zhangjiang Laboratory, Shanghai, China
| | - Ying Zhu
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, China.
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Cao W, Yakimov A, Qian X, Li J, Peng X, Kong X, Copéret C. Surface Sites and Ligation in Amine-capped CdSe Nanocrystals. Angew Chem Int Ed Engl 2023; 62:e202312713. [PMID: 37869935 DOI: 10.1002/anie.202312713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Converting colloidal nanocrystals (NCs) into devices for various applications is facilitated by designing and controlling their surface properties. One key strategy for tailoring surface properties is thus to choose tailored surface ligands. In that context, amines have been universally used, with the goal to improve NCs synthesis, processing and performances. However, understanding the nature of surface sites in amine-capped NCs remains challenging, due to the complex surface compositions as well as surface ligands dynamic. Here, we investigate both surface sites and amine ligation in CdSe NCs by combining advanced NMR spectroscopy and computational modelling. Notably, dynamic nuclear polarization (DNP) enhanced 113 Cd and 77 Se 1D NMR helps to identify both bulk and surface sites of NCs, while 113 Cd 2D NMR spectroscopy enables to resolve amines terminated sites on both Se-rich and nonpolar surfaces. In addition to directly bonding to surface sites, amines are shown to also interact through hydrogen-bonding with absorbed water as revealed by 15 N NMR, augmented with computations. The characterization methodology developed for this work provides unique molecular-level insight into the surface sites of a range of amine-capped CdSe NCs, and paves the way to identify structure-function relationships and rational approaches towards colloidal NCs with tailored properties.
Collapse
Affiliation(s)
- Weicheng Cao
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Xudong Qian
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Chemistry, Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
22
|
Zhou C, Wang D, Lagunas F, Atterberry B, Lei M, Hu H, Zhou Z, Filatov AS, Jiang DE, Rossini AJ, Klie RF, Talapin DV. Hybrid organic-inorganic two-dimensional metal carbide MXenes with amido- and imido-terminated surfaces. Nat Chem 2023; 15:1722-1729. [PMID: 37537297 DOI: 10.1038/s41557-023-01288-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) combine the electronic and mechanical properties of 2D inorganic crystals with chemically modifiable surfaces, which provides an ideal platform for both fundamental and applied studies of interfaces. Good progress has been achieved in the functionalization of MXenes with small inorganic ligands, but relatively little work has been reported on the covalent bonding of various organic groups to MXene surfaces. Here we synthesize a family of hybrid MXenes (h-MXenes) that incorporate amido- and imido-bonding between organic and inorganic parts by reacting halogen-terminated MXenes with deprotonated organic amines. The resulting hybrid structures unite tailorability of organic molecules with electronic connectivity and other properties of inorganic 2D materials. Describing the structure of h-MXene necessitates the integration of concepts from coordination chemistry, self-assembled monolayers and surface science. The optical properties of h-MXenes reveal coherent coupling between the organic and inorganic constituents. h-MXenes also exhibit superior stability against hydrolysis.
Collapse
Affiliation(s)
- Chenkun Zhou
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Di Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Francisco Lagunas
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Benjamin Atterberry
- US Department of Energy, Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Ming Lei
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Huicheng Hu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Zirui Zhou
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, IA, USA
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Robert F Klie
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Dmitri V Talapin
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- James Franck Institute, University of Chicago, Chicago, IL, USA.
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
23
|
Jiang M, Men Y, Zhang Y, Cheng L, Wang Y, Jia T, Sun Z, Feng D. Anomalous Laser-Fluence Dependence of Electron Spin Excitation in CdS Colloidal Quantum Dots: Surface Effects. J Phys Chem Lett 2023; 14:9069-9074. [PMID: 37787500 DOI: 10.1021/acs.jpclett.3c02285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Electron spin dynamics in CdS quantum dots (QDs) with hole acceptor 1-octanethiol organic molecules are investigated by time-resolved ellipticity spectroscopy. An anomalous dependence of laser fluences on electron spin excitation for the first time is reported. Increasing the laser fluence, the electron spin is switched from one direction to an antiparallel direction (spin direction switching, SDS) when adding enough 1-octanethiol hole acceptors in an air atmosphere. The analysis shows that the electron spin direction changes from heavy hole excitation defined to spin-orbit split hole excitation defined. In as-grown CdS QDs with native ligands, laser-fluence-dependent SDS phenomena are absent. Electron wave function spread into 1-octanethiol molecules is demonstrated to be important for the presence of SDS phenomena. The finding here thus reveals the importance of surface conditions on electron spin excitation processes in semiconductor QDs and that the surface can be used as an important factor to manipulate the spin.
Collapse
Affiliation(s)
- Meizhen Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yumeng Men
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuanyuan Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lin Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yang Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Tianqing Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Donghai Feng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
24
|
Li C, Liu L, Zhang Z, Zhang D, Yi S, Yang H, Fan Z. Anisotropy in Near-Spherical Colloidal Nanoparticles. ACS NANO 2023; 17:17873-17883. [PMID: 37682625 DOI: 10.1021/acsnano.3c03466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Two major aspects of functional colloidal nanoparticles are their colloidal stability (dispersion) and controlled assembly of nanoparticles into ordered structures. Simplifying colloidal nanoparticles as isotropically interacting spheres is unsuitable for small nanoparticles capped with hydrocarbon chain ligands in which the ligand-ligand interaction plays a prominent role in the assembly processes. However, experimentally characterizing the ligand shell structure in solution presents significant challenges, and computer simulations yield divergent results without effective validation. Moreover, the connection between detailed information regarding ligand shell structures and interparticle interactions, in relation to the diverse dynamical behaviors of colloidal nanoparticles, remains poorly understood. In this study, we reveal the relationship between the ligand shell structures, interparticle interactions, and dynamical behaviors of few-nm-sized near-spherical nanoparticles capped with hydrocarbon chain ligands immersed in nonpolar solvents. Our study shows a transformation of the interparticle interactions from anisotropic attractions to isotropic repulsions as a result of the change in the ligand shell structures from order to disorder caused by varying temperature and other factors. The interplay between anisotropic attractions from ligand bundles and isotropic repulsions from disordered ligands dictates the nanoparticle dynamical behaviors of dispersion, uncontrolled aggregation, and controlled assembly.
Collapse
Affiliation(s)
- Chuncheng Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Lei Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ziyan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dan Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- Department of Chemistry, Shanghai University, Shanghai 200444, P. R. China
| | - Shangzhao Yi
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hongchao Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhaochuan Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
25
|
Lei H, Li J, Kong X, Wang L, Peng X. Toward Surface Chemistry of Semiconductor Nanocrystals at an Atomic-Molecular Level. Acc Chem Res 2023. [PMID: 37413974 DOI: 10.1021/acs.accounts.3c00185] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
ConspectusProperties of colloidal semiconductor nanocrystals with a single-crystalline structure are largely dominated by their surface structure at an atomic-molecular level, which is not well understood and controlled, due to a lack of experimental tools. However, if viewing the nanocrystal surface as three relatively independent spatial zones (i.e., crystal facets, inorganic-ligands interface, and ligands monolayer), we may approach an atomic-molecular level by coupling advanced experimental techniques and theoretical calculations.Semiconductor nanocrystals of interest are mainly based on compound semiconductors and mostly in two (or related) crystal structures, namely zinc-blende and wurtzite, which results in a small group of common low-index crystal facets. These low-index facets, from a surface-chemistry perspective, can be further classified into polar and nonpolar ones. Albeit far from being successful, the controlled formation of either polar or nonpolar facets is available for cadmium chalcogenide nanocrystals. Such facet-controlled systems offer a reliable basis for studying the inorganic-ligands interface. For convenience, here facet-controlled nanocrystals refer to a special class of shape-controlled ones, in which shape control is at an atomic level, instead of those with poorly defined facets (e.g., typical spheroids, nanorods, etc).Experimental and theoretical results reveal that type and bonding mode of surface ligands on nanocrystals is facet-specific and often beyond Green's classification (X-type, Z-type, and L-type). For instance, alkylamines bond strongly to the anion-terminated (0001) wurtzite facet in the form of ammonium ions, with three hydrogens of an ammonium ion bonding to three adjacent surface anion sites. With theoretically assessable experimental data, facet-ligands pairing can be identified using density functional theory (DFT) calculations. To make the pairing meaningful, possible forms of all potential ligands in the system need to be examined systematically, revealing the advantage of simple solution systems.Unlike the other two spatial zones, the ligands monolayer is disordered and dynamic at an atomic level. Thus, an understanding of the ligands monolayer on a molecular scale is sufficient for many cases. For colloidal nanocrystals stably coordinated with surface ligands, their solution properties are dictated by the ligands monolayer. Experimental and theoretical results reveal that solubility of a nanocrystal-ligands complex is an interplay between the intramolecular entropy of the ligands monolayer and intermolecular interactions of the ligands/nanocrystals. By introducing entropic ligands, solubility of nanocrystal-ligands complexes can be universally boosted by several orders of magnitude, i.e., up to >1 g/mL in typical organic solvents. Molecular environment in the pseudophase surrounding each nanocrystal plays a critical role in its chemical, photochemical, and photophysical properties.For some cases, such as the synthesis of high-quality nanocrystals, all three spatial zones of the nanocrystal surface must be taken into account. By optimizing nanocrystal surface at an atomic-molecular level, semiconductor nanocrystals with monodisperse size and facet structure become available recently through either direct synthesis or afterward facet reconstruction, implying full realization of their size-dependent properties.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xueqian Kong
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linjun Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
26
|
Fu Y, Yao Y, Forse AC, Li J, Mochizuki K, Long JR, Reimer JA, De Paëpe G, Kong X. Solvent-derived defects suppress adsorption in MOF-74. Nat Commun 2023; 14:2386. [PMID: 37185270 PMCID: PMC10130178 DOI: 10.1038/s41467-023-38155-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Defects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.
Collapse
Affiliation(s)
- Yao Fu
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
- Univ. Grenoble Alpes, CEA, IRIG-MEM, Grenoble, France
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yifeng Yao
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Alexander C Forse
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Jianhua Li
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China
| | - Kenji Mochizuki
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, IRIG-MEM, Grenoble, France
| | - Xueqian Kong
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310027, PR China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, PR China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
27
|
Elimelech O, Oded M, Harries D, Banin U. Spontaneous Patterning of Binary Ligand Mixtures on CdSe Nanocrystals: From Random to Janus Packing. ACS NANO 2023; 17:5852-5860. [PMID: 36893308 PMCID: PMC10061916 DOI: 10.1021/acsnano.2c12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Binary compositions of surface ligands are known to improve the colloidal stability and fluorescence quantum yield of nanocrystals (NCs), due to ligand-ligand interactions and surface organization. Herein, we follow the thermodynamics of a ligand exchange reaction of CdSe NCs with alkylthiol mixtures. The effects of ligand polarity and length difference on ligand packing were investigated using isothermal titration calorimetry (ITC). The thermodynamic signature of the formation of mixed ligand shells was observed. Correlating the experimental results with thermodynamic mixing models has allowed us to calculate the interchain interactions and to infer the final ligand shell configuration. Our findings demonstrate that, in contrast to macroscopic surfaces, the small dimensions of the NCs and the subsequent increased interfacial region between dissimilar ligands allow the formation of a myriad of clustering patterns, controlled by the interligand interactions. This work provides a fundamental understanding of the parameters determining the ligand shell structure and should help guide smart surface design toward NC-based applications.
Collapse
Affiliation(s)
- Orian Elimelech
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Harries
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
28
|
Facile Synthesis of Ag NP Films via Evaporation-Induced Self-Assembly and the BA-Sensing Properties. Foods 2023; 12:foods12061285. [PMID: 36981211 PMCID: PMC10048188 DOI: 10.3390/foods12061285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Herein, we design and prepare large-area silver nanoparticle (Ag NP) films based on evaporation-induced self-assembly, which offers the visual and real-time detection of chilled broiler meat freshness. The color change is based on the fact that an increase in the biogenic amine (BA) concentration causes a change in the absorption wavelength of Ag NPs caused by aggregation and etch of the Ag NPs, resulting in a yellow to brown color change, thus enabling a naked-eye readout of the BA exposure. The Ag NP films exhibit a rapid, sensitive, and linear response to BAs in a wide detection range of 2 µM to 100 µM. The Ag NP films are successfully applied as a quick-response, online, high-contrasting colorimetric sensor for visual detection of the freshness of chilled broiler meat.
Collapse
|
29
|
Sun W, Yun R, Liu Y, Zhang X, Yuan M, Zhang L, Li X. Ligands in Lead Halide Perovskite Nanocrystals: From Synthesis to Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205950. [PMID: 36515335 DOI: 10.1002/smll.202205950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Ligands are indispensable for perovskite nanocrystals (NCs) throughout the whole lifetime, as they not only play key roles in the controllable synthesis of NCs with different sizes and shapes, but also act as capping shell that affects optical properties and electrical coupling of NCs. Establishing a systematic understanding of the relationship between ligands and perovskite NCs is significant to enable many potential applications of NCs. This review mainly focuses on the influence of ligands on perovskite NCs. First of all, the ligands-dominated size and shape control of NCs is discussed. Whereafter, the surface defects of NCs and the bonding between ligands and perovskite NCs are classified, and corresponding post-treatment of surface defects via ligands is also summarized. Furthermore, advances in engineering the ligands towards the high performance of optoelectronic devices based on perovskite NCs, including photodetector, solar cell, light emitting diode (LED), and laser, and finally to potential challenges are also discussed.
Collapse
Affiliation(s)
- Wenda Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Rui Yun
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Yuling Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Nankai University, Tianjin, 300350, China
- Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin, 300350, China
- Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, China
| |
Collapse
|
30
|
Fu Y, Forse AC, Kang Z, Cliffe MJ, Cao W, Yin J, Gao L, Pang Z, He T, Chen Q, Wang Q, Long JR, Reimer JA, Kong X. One-dimensional alignment of defects in a flexible metal-organic framework. SCIENCE ADVANCES 2023; 9:eade6975. [PMID: 36763650 PMCID: PMC9916987 DOI: 10.1126/sciadv.ade6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Crystalline materials are often considered to have rigid periodic lattices, while soft materials are associated with flexibility and nonperiodicity. The continuous evolution of metal-organic frameworks (MOFs) has erased the boundaries between these two distinct conceptions. Flexibility, disorder, and defects have been found to be abundant in MOF materials with imperfect crystallinity, and their intricate interplay is poorly understood because of the limited strategies for characterizing disordered structures. Here, we apply advanced nuclear magnetic resonance spectroscopy to elucidate the mesoscale structures in a defective MOF with a semicrystalline lattice. We show that engineered defects can tune the degree of lattice flexibility by combining both ordered and disordered compartments. The one-dimensional alignment of correlated defects is the key for the reversible topological transition. The unique matrix is featured with both rigid framework of nanoporosity and flexible linkage of high swellability.
Collapse
Affiliation(s)
- Yao Fu
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Alexander C. Forse
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Zhengzhong Kang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Matthew J. Cliffe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jinglin Yin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Lina Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhenfeng Pang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tian He
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jeffrey R. Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey A. Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - Xueqian Kong
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310027, P. R. China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
31
|
Chen D, Ma L, Chen Y, Zhou X, Xing S, Deng Y, Hao Y, Pu C, Kong X, Jin Y. Electrochemically Stable Ligands of ZnO Electron-Transporting Layers for Quantum-Dot Light-Emitting Diodes. NANO LETTERS 2023; 23:1061-1067. [PMID: 36662173 DOI: 10.1021/acs.nanolett.2c04670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thin films of ZnO nanocrystals are actively pursued as electron-transporting layers (ETLs) in quantum-dot light-emitting diodes (QLEDs). However, the developments of ZnO-based ETLs are highly engineering oriented and the design of ZnO-based ETLs remains empirical. Here, we identified a previously overlooked efficiency-loss channel associated with the ZnO-based ETLs: i.e., interfacial exciton quenching induced by surface-bound ethanol. Accordingly, we developed a general surface-treatment procedure to replace the redox-active surface-bound ethanol with electrochemically inert alkali carboxylates. Characterization results show that the surface treatment procedure does not change other key properties of the ETLs, such as the conductance and work function. Our single-variable experimental design unambiguously demonstrates that improving the electrochemical stabilities of the ZnO ETLs leads to QLEDs with a higher efficiency and longer operational lifetime. Our work provides a crucial guideline to design ZnO-based ETLs for optoelectronic devices.
Collapse
Affiliation(s)
- Desui Chen
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Luying Ma
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yunhua Chen
- Zhejiang Key Laboratory for Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Xiaoqi Zhou
- Zhejiang Key Laboratory for Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shiyu Xing
- Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yunzhou Deng
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yanlei Hao
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Chaodan Pu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Xueqian Kong
- Zhejiang Key Laboratory for Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yizheng Jin
- Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
32
|
Zhou X, Pang Z, Cao W, Cao Z, Zhu J, Qi Y, Peng X, Kong X. Diffusion NMR for Measuring Dynamic Ligand Exchange on Colloidal Nanocrystals. Anal Chem 2023; 95:792-801. [PMID: 36520837 DOI: 10.1021/acs.analchem.2c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligand exchange is fundamentally related to the surface chemistry of nanoparticles in solution and is also an essential procedure for their synthesis and solution processing. The solution of ligand-bearing nanoparticles can be regarded as a dynamic equilibrium of bound and free ligands depending on the concentration and temperature. The direct experimental calibration of the ligand exchange dynamics relies on the in situ and real-time quantification of bound and free ligands. However, existing analytical strategies are often with limited applicability considering the requirement of special functional groups or the indirect detection of photoluminescence or reaction heat. In this work, we explore diffusion-based methods of solution-state nuclear magnetic resonance (NMR) as a general strategy to probe ligand exchange. Using comprehensive numerical simulations, we show that diffusion NMR with designable time sequences can effectively distinguish bound and free ligands and measure the exchange rate constants from 0.5 to 200 s-1 under typical instrumental settings. These methods are demonstrated experimentally on colloidal CdSe nanocrystal systems with carboxylate or amine ligands whose exchange rates were previously undetectable. The kinetic rate constants, activation energies, and thermodynamic parameters of ligand exchange have been obtained under variable temperature conditions. We expect the diffusion NMR strategies to be generally applicable for calibrating the exchange of organic ligands on various nanoparticle systems.
Collapse
Affiliation(s)
- Xiaoqi Zhou
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Zhenfeng Pang
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Weicheng Cao
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Zhenming Cao
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Jie Zhu
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Yixin Qi
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Xiaogang Peng
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou310027, China.,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
33
|
Guzman-Juarez B, Abdelaal AB, Reven L. NMR Characterization of Nanoscale Surface Patterning in Mixed Ligand Nanoparticles. ACS NANO 2022; 16:20116-20128. [PMID: 36411252 DOI: 10.1021/acsnano.2c03707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spontaneous phase separation in binary mixed ligand shells is a proposed strategy to create patchy nanoparticles. The surface anisotropy, providing directionality along with interfacial properties emerging from both ligands, is highly desirable for targeted drug delivery, catalysis, and other applications. However, characterization of phase separation on the nanoscale remains quite challenging. Here we have adapted solid-state 1H spin diffusion NMR experiments designed to detect and quantify spatial heterogeneity in polymeric materials to nanoparticles (NPs) functionalized with mixed short ligands. Janus NPs and physical mixtures of homoligand 3.5 nm diameter ZrO2 NPs, with aromatic (phenylphosphonic acid, PPA) and aliphatic (oleic acid, OA) ligands, were used to calibrate the 1H spin diffusion experiments. The Janus NPs, prepared by a facile wax/water Pickering emulsion method, and mixed ligand NPs, produced by ligand exchange, both with 1:1 PPA:OA ligand compositions, display strikingly different solvent and particle-particle interactions. 1H spin diffusion NMR experiments are most consistent with a lamellar surface pattern for the mixed ligand ZrO2 NPs. Solid-state 1H spin diffusion NMR is shown to be a valuable additional characterization tool for mixed ligand NPs, as it not only detects the presence of nanoscale phase separation but also allows measurement of the domain sizes and geometries of the surface phase separation.
Collapse
Affiliation(s)
- Brenda Guzman-Juarez
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Ahmed Bahaeldin Abdelaal
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| | - Linda Reven
- Centre Québécois sur les Matériaux Fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Department of Chemistry, McGill University, 801 Sherbrooke Street W., MontrealQuebec, CanadaH3A 0B8
| |
Collapse
|
34
|
Ofosu CK, Kang J, Truskett TM, Milliron DJ. Effective Hard-Sphere Repulsions between Oleate-Capped Colloidal Metal Oxide Nanocrystals. J Phys Chem Lett 2022; 13:11323-11329. [PMID: 36453921 DOI: 10.1021/acs.jpclett.2c02627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanocrystal interactions in solvent influence colloidal stability and dictate self-assembly outcomes. Small-angle X-ray scattering is used to study how dilute oleate-capped In2O3 nanocrystals with 7-19 nm core diameters interact when dispersed in a series of nonpolar solvents. Osmotic second virial coefficient analysis finds toluene-dispersed nanocrystals in this size range interact like effective hard spheres with diameters comprising the inorganic core and a ligand-solvent corona with a core-size independent thickness. Hard-sphere-like structure factors are similarly observed for nanocrystals with a 9.7 nm core diameter dispersed in all the solvents investigated. Nanocrystal hydrodynamic diameters from dynamic light scattering measurements correlate with thermodynamic diameters obtained from the osmotic second virial coefficient analysis for all samples. The ability to prepare nanoscale building blocks of different sizes, and dispersed in a variety of solvents, with effective hard-sphere repulsions provides a foundation for assembly, where secondary linking or depletant molecules can be deliberately added to customize interactions to form superstructures such as gel networks or superlattices.
Collapse
Affiliation(s)
- Charles K Ofosu
- Department of Chemistry, University of Texas at Austin, Austin, Texas78712, United States
| | - Jiho Kang
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
- Department of Physics, University of Texas at Austin, Austin, Texas78712, United States
| | - Delia J Milliron
- Department of Chemistry, University of Texas at Austin, Austin, Texas78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas78712, United States
| |
Collapse
|
35
|
Kowalska N, Bandalewicz F, Kowalski J, Gómez-Graña S, Bagiński M, Pastoriza-Santos I, Grzelczak M, Matraszek J, Pérez-Juste J, Lewandowski W. Hydrophobic Gold Nanoparticles with Intrinsic Chirality for the Efficient Fabrication of Chiral Plasmonic Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50013-50023. [PMID: 36305423 PMCID: PMC9650650 DOI: 10.1021/acsami.2c11925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 05/27/2023]
Abstract
The development of plasmonic nanomaterials with chiral geometry has drawn extensive attention owing to their practical implications in chiral catalysis, chiral metamaterials, or enantioselective biosensing and medicine. However, due to the lack of effective synthesis methods of hydrophobic nanoparticles (NPs) showing intrinsic, plasmonic chirality, their applications are currently limited to aqueous systems. In this work, we resolve the problem of achieving hydrophobic Au NPs with intrinsic chirality by efficient phase transfer of water-soluble NPs using low molecular weight, liquid crystal-like ligands. We confirmed that, after the phase transfer, Au NPs preserve strong, far-field circular dichroism (CD) signals, attesting their chiral geometry. The universality of the method is exemplified by using different types of NPs and ligands. We further highlight the potential of the proposed approach to realize chiral plasmonic, inorganic/organic nanocomposites with block copolymers, liquid crystals, and compounds forming physical gels. All soft matter composites sustain plasmonic CD signals with electron microscopies confirming well-dispersed nanoinclusions. The developed methodology allows us to expand the portfolio of plasmonic NPs with intrinsic structural chirality, thereby broadening the scope of their applications toward soft-matter based systems.
Collapse
Affiliation(s)
- Natalia Kowalska
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Filip Bandalewicz
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jakub Kowalski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Sergio Gómez-Graña
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Maciej Bagiński
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Isabel Pastoriza-Santos
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Marek Grzelczak
- Centro
de Física de Materiales (CSIC-UPV/EHU) and Donostia International
Physics Center, 20018 Donostia − San Sebastián, Spain
| | - Joanna Matraszek
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| | - Jorge Pérez-Juste
- Departamento
de Química Física, CINBIO,
Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
- Instituto
de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Wiktor Lewandowski
- Laboratory
of Organic Nanomaterials and Biomolecules, Faculty of Chemistry University of Warsaw, Pasteura 1 Street, 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Bai P, Hu A, Deng Y, Tang Z, Yu W, Hao Y, Yang S, Zhu Y, Xiao L, Jin Y, Gao Y. CdSe/CdSeS Nanoplatelet Light-Emitting Diodes with Ultrapure Green Color and High External Quantum Efficiency. J Phys Chem Lett 2022; 13:9051-9057. [PMID: 36153736 DOI: 10.1021/acs.jpclett.2c02633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal II-VI group nanoplatelets (NPLs) possess ultranarrow emission line widths, for which they have great promise in achieving the purest display color in solution-processed light-emitting diodes (LEDs). Red NPL-LEDs have shown extremely saturated red color with high efficiency, while the green and blue ones lag far behind. Herein, we report green NPL-LEDs with the purest color in accordance with the Rec. 2020 standard and the peak external quantum efficiency (EQE) of 9.78%. By carefully controlling the aspect ratio, capping ligands, and purifications of CdSe/CdSeS core/alloyed-crown NPLs, NPL films with excellent flatness and unity photoluminescence quantum yields (PLQYs) are realized, laying a solid foundation for improving LED performance. Furthermore, via tuning the carrier injection balance, the record-high EQE for green NPL-LEDs is achieved. The electroluminescence (EL) exhibits an extremely saturated green color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.163 0.786), which demonstrates their great potential in applications of ultrahigh-definition display technology. Our findings would help to further improve the performance of all NPL-LEDs.
Collapse
Affiliation(s)
- Peng Bai
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - An Hu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yunzhou Deng
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhenyu Tang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Wenjin Yu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yanlei Hao
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shuang Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yunke Zhu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Lixin Xiao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yizheng Jin
- Key Laboratory of Excited-State Materials of Zhejiang Province, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yunan Gao
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Kim J, Kim Y, Park K, Boeffel C, Choi HS, Taubert A, Wedel A. Ligand Effect in 1-Octanethiol Passivation of InP/ZnSe/ZnS Quantum Dots-Evidence of Incomplete Surface Passivation during Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203093. [PMID: 36069261 DOI: 10.1002/smll.202203093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol, is demonstrated. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanethiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bind on the incomplete QD surface. These systematic chemical analyses, such as thermogravimetric analysis-mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD-LEDs). It is believed that this better understanding can lead to industrially feasible QD-LEDs.
Collapse
Affiliation(s)
- Jiyong Kim
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Yohan Kim
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Kyoungwon Park
- Display Research Center, Korea Electronics Technology Institute, Seongnam-si, Gyeonggi-do, 05658, Korea
| | - Christine Boeffel
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Hyung-Seok Choi
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Armin Wedel
- Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, 14476, Potsdam, Germany
| |
Collapse
|
38
|
Poryvai A, Šmahel M, Švecová M, Nemati A, Shadpour S, Ulbrich P, Ogolla T, Liu J, Novotná V, Veverka M, Vejpravová J, Hegmann T, Kohout M. Chiral, Magnetic, and Photosensitive Liquid Crystalline Nanocomposites Based on Multifunctional Nanoparticles and Achiral Liquid Crystals. ACS NANO 2022; 16:11833-11841. [PMID: 35867644 DOI: 10.1021/acsnano.1c10594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles serving as a multifunctional and multiaddressable dopant to modify the properties of liquid crystalline matrices are developed by combining cobalt ferrite nanocrystals with organic ligands featuring a robust photosensitive unit and a source of chirality from the natural pool. These nanoparticles provide a stable nanocomposite when dispersed in achiral liquid crystals, giving rise to chiral supramolecular structures that can respond to UV-light illumination, and, at the same time, the formed nanocomposite possesses strong magnetic response. We report on a nanocomposite that shows three additional functionalities (chirality and responsiveness to UV light and magnetic field) upon the introduction of a single dopant into achiral liquid crystals.
Collapse
Affiliation(s)
- Anna Poryvai
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Michal Šmahel
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Marie Švecová
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Ahlam Nemati
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Sasan Shadpour
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague 6, Czech Republic
| | - Timothy Ogolla
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Jiao Liu
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Vladimíra Novotná
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Miroslav Veverka
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Jana Vejpravová
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Torsten Hegmann
- Materials Science Graduate Program, Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
| | - Michal Kohout
- Department of Organic Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
39
|
Gao YL, Bi S, Wang Y, Li J, Su T, Gao X. Co-ligand triphenylphosphine/alkynyl-stabilized undecagold nanocluster with a capped crown structure. RSC Adv 2022; 12:11047-11051. [PMID: 35425070 PMCID: PMC8989085 DOI: 10.1039/d2ra01080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis and crystal structure of novel co-ligand phosphine/alkynyl protected Au nanoclusters, with composition [Au11(PPh3)8(C[triple bond, length as m-dash]CPh-CF3)2](SbF6) (1). The gold atoms in the cluster as a capped crown structure subtend C 3v symmetry with one deriving from a central icosahedron and 10 peripheral Au atoms, and all alkynides are exclusively σ coordination bonding. The mean core diameter is about 5.1 Å and the overall van der Waals diameter can be estimated to be 20.5 Å. The optical absorbance of 1 in solution reveals characteristic peaks at 384 and 426 nm and a shoulder between 450 and 550 nm.
Collapse
Affiliation(s)
- Yan-Li Gao
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| | - Shiqing Bi
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| | - Yufei Wang
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| | - Jian Li
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| | - Ting Su
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| | - Xuchun Gao
- School of Chemistry and Chemical Engineering, Yulin University Yulin 719000 China
| |
Collapse
|
40
|
Elimelech O, Aviv O, Oded M, Peng X, Harries D, Banin U. Entropy of Branching Out: Linear versus Branched Alkylthiols Ligands on CdSe Nanocrystals. ACS NANO 2022; 16:4308-4321. [PMID: 35157440 PMCID: PMC8945696 DOI: 10.1021/acsnano.1c10430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Surface ligands of semiconductor nanocrystals (NCs) play key roles in determining their colloidal stability and physicochemical properties and are thus enablers also for the NCs flexible manipulation toward numerous applications. Attention is usually paid to the ligand binding group, while the impact of the ligand chain backbone structure is less discussed. Using isothermal titration calorimetry (ITC), we studied the effect of structural changes in the ligand chain on the thermodynamics of the exchange reaction for oleate coated CdSe NCs, comparing linear and branched alkylthiols. The investigated alkylthiol ligands differed in their backbone length, branching position, and branching group length. Compared to linear ligands, lower exothermicity and entropy loss were observed for an exchange with branched ligands, due to steric hindrance in ligand packing, thereby justifying their previous classification as "entropic ligands". Mean-field calculations for ligand binding demonstrate the contribution to the overall entropy originating from ligand conformational entropy, which is diminished upon binding mainly by packing of NC-bound ligands. Model calculations and the experimental ITC data both point to an interplay between the branching position and the backbone length in determining the entropic nature of the branched ligand. Our findings suggest that the most entropic ligand should be a short, branched ligand with short branching group located toward the middle of the ligand chain. The insights provided by this work also contribute to a future smarter NC surface design, which is an essential tool for their implementation in diverse applications.
Collapse
Affiliation(s)
- Orian Elimelech
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Omer Aviv
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Meirav Oded
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Xiaogang Peng
- Department
of Chemistry, Zhejiang University, Hangzhou 310027 P. R. China
| | - Daniel Harries
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Fritz Haber Center, The Hebrew University
of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Banin
- The
Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
41
|
Kim E, Hong J, Seok H, Kim T. Photo-oxidative degradation of polyacids derived ceria nanoparticle modulation for chemical mechanical polishing. Sci Rep 2022; 12:1613. [PMID: 35102147 PMCID: PMC8803865 DOI: 10.1038/s41598-021-03866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of photo-oxidative degradation of polyacids at various concentrations and with different durations of ultraviolet (UV) irradiation on the photo-reduction of ceria nanoparticles were investigated. The effect of UV-treated ceria on the performance of chemical mechanical polishing (CMP) for the dielectric layer was also evaluated. When the polyacids were exposed to UV light, they underwent photo-oxidation with consumption of the dissolved oxygen in slurry. UV-treated ceria particles formed oxygen vacancies by absorbing photon energy, resulting in increased Ce3+ ions concentration on the surface, and when the oxygen level of the solution was lowered by the photo-oxidation of polymers, the formation of Ce3+ ions was promoted from 14.2 to 36.5%. Furthermore, chain scissions of polymers occurred during the oxidation process, and polyacids with lower molecular weights were found to be effective in ceria particle dispersion in terms of the decrease in the mean diameter and size distribution maintaining under 0.1 of polydispersity index. With increasing polyacid concentration and UV irradiation time, the Ce3+ concentration and the dispersity of ceria both increased due to the photo-oxidative degradation of the polymer; this enhanced the CMP performance in terms of 87% improved material removal rate and 48% lowered wafer surface roughness.
Collapse
Affiliation(s)
- Eungchul Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jiah Hong
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taesung Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea. .,SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
42
|
Jansen M, Juranyi F, Yarema O, Seydel T, Wood V. Ligand Dynamics in Nanocrystal Solids Studied with Quasi-Elastic Neutron Scattering. ACS NANO 2021; 15:20517-20526. [PMID: 34878757 DOI: 10.1021/acsnano.1c09073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanocrystal surfaces are commonly populated by organic ligands, which play a determining role in the optical, electronic, thermal, and catalytic properties of the individual nanocrystals and their assemblies. Understanding the bonding of ligands to nanocrystal surfaces and their dynamics is therefore important for the optimization of nanocrystals for different applications. In this study, we use temperature-dependent, quasi-elastic neutron scattering (QENS) to investigate the dynamics of different surface bound alkanethiols in lead sulfide nanocrystal solids. We select alkanethiols with mono- and dithiol terminations, as well as different backbone types and lengths. QENS spectra are collected both on a time-of-flight spectrometer and on a backscattering spectrometer, allowing us to investigate ligand dynamics in a time range from a few picoseconds to nanoseconds. Through model-based analysis of the QENS data, we find that ligands can either (1) precess around a central axis, while simultaneously rotating around their own molecular axis, or (2) only undergo uniaxial rotation with no precession. We establish the percentage of ligands undergoing each type of motion, the average relaxation times, and activation energies for these motions. We determine, for example, that dithiols which link facets of neighboring nanocrystals only exhibit uniaxial rotation and that longer ligands have higher activation energies and show smaller opening angles of precession due to stronger ligand-ligand interactions. Generally, this work provides insight into the arrangement and dynamics of ligands in nanocrystal solids, which is key to understanding their mechanical and thermal properties, and, more generally, highlights the potential of QENS for studying ligand behavior.
Collapse
Affiliation(s)
- Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Fanni Juranyi
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Olesya Yarema
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Tilo Seydel
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| |
Collapse
|
43
|
Kang S, Kim JH, Lee M, Yu JW, Kim J, Kang D, Baek H, Bae Y, Kim BH, Kang S, Shim S, Park SJ, Lee WB, Hyeon T, Sung J, Park J. Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. SCIENCE ADVANCES 2021; 7:eabi5419. [PMID: 34860549 PMCID: PMC8641935 DOI: 10.1126/sciadv.abi5419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/14/2021] [Indexed: 05/21/2023]
Abstract
Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Woong Yu
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayeon Baek
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeyoung Sung
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| |
Collapse
|
44
|
Xie D, Luo Q, Zhou S, Zu M, Cheng H. One-step preparation of Cr 2O 3-based inks with long-term dispersion stability for inkjet applications. NANOSCALE ADVANCES 2021; 3:6048-6055. [PMID: 36133952 PMCID: PMC9417424 DOI: 10.1039/d1na00244a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Inkjet printing of functional materials has shown a wide range of applications in advertising, OLED display, printed electronics and other specialized utilities that require high-precision, mask-free, direct-writing deposition techniques. Nevertheless, the sedimentation risk of the refractory functional materials dispensed in inks hinders their further implementation. Herein, we present a bottom-up ink preparation strategy based on Cr2O3 by a one-step solvothermal method. The obtained ink remained stable under an equivalent natural sediment test for 2.5 years. The chemical composition of the solvothermal product was characterized, and the mechanism of the superior dispersion stability of Cr2O3 particles was analysed. These amorphous Cr2O3 particles were capped by ligands generated via low-temperature solvothermal reactions. Ethanol and acetylacetone covering the particle surfaces play an essential role in enhancing the solubility of Cr2O3 particles in the solvent forming the ultrastable colloidal ink. Moreover, this ink was successfully printed using a direct-write inkjet system JetLab®II on nylon fabrics, and the printed area of the fabrics shows a spectral correlation coefficient of 0.9043 to green leaves. Finally, we believe that the one-step bottom-up fabrication method of Cr2O3-based pigment inks may provide a general approach for preparing metal oxide-based pigment inks with long-term dispersion stability.
Collapse
Affiliation(s)
- Dongjin Xie
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology Changsha 410073 China
| | - Qiuyi Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology Changsha 410073 China
- People's Liberation Army of China Unit 95538 Chengdu 611430 China
| | - Shen Zhou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology Changsha 410073 China
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Mei Zu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology Changsha 410073 China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology Changsha 410073 China
| |
Collapse
|
45
|
Loiudice A, Segura Lecina O, Bornet A, Luther JM, Buonsanti R. Ligand Locking on Quantum Dot Surfaces via a Mild Reactive Surface Treatment. J Am Chem Soc 2021; 143:13418-13427. [PMID: 34375098 DOI: 10.1021/jacs.1c06777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
At the outermost surface of colloidal QDs are organic surface ligands which dynamically bind and release in solution to control the growth kinetics, control the size/shape of the crystals, passivate surface states, and provide colloidal stability through favorable interactions with the solvent. However, the dynamicity comes at the expense of the stability of the QD suspension. Here, we show that ligands can be permanently locked on the QD surface by a thin layer of an inert metal oxide which forms within the ligand shell, over the headgroup. By interrogating the surface chemistry with different spectroscopic methods, we prove the ligand locking on the QD surface. As a result, an exceptional stability of the coated QD inks is achieved in a wide concentration range, even in the presence of chemically competing surface ligands in solution. We anticipate that this critical breakthrough will benefit different areas related to colloidal QDs, spanning from single-particle studies to displays and solar cells and biological applications. Furthermore, the same chemistry could be easily translated to surface treatments of bulk materials and thin films.
Collapse
Affiliation(s)
- Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Ona Segura Lecina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Joseph M Luther
- National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
46
|
Li J, Cao W, Shu Y, Zhang H, Qian X, Kong X, Wang L, Peng X. Water molecules bonded to the carboxylate groups at the inorganic-organic interface of an inorganic nanocrystal coated with alkanoate ligands. Natl Sci Rev 2021; 9:nwab138. [PMID: 35233287 PMCID: PMC8882163 DOI: 10.1093/nsr/nwab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
High-quality colloidal nanocrystals are commonly synthesized in hydrocarbon solvents with alkanoates as the most common organic ligand. Water molecules with an approximately equal number of surface alkanoate ligands are identified at the inorganic–organic interface for all types of colloidal nanocrystals studied, and investigated quantitatively using CdSe nanocrystals as the model system. Carboxylate ligands are coordinated to the surface metal ions and the first monolayer of water molecules is found to bond to the carboxylate groups of alkanoate ligands through hydrogen bonds. Additional monolayer(s) of water molecules can further be adsorbed through hydrogen bonds to the first monolayer of water molecules. The nearly ideal environment for hydrogen bonding at the inorganic–organic interface of alkanoate-coated nanocrystals helps to rapidly and stably enrich the interface-bonded water molecules, most of which are difficult to remove through vacuum treatment, thermal annealing and chemical drying. The water-enriched structure of the inorganic–organic interface of high-quality colloidal nanocrystals must be taken into account in order to understand the synthesis, processing and properties of these novel materials.
Collapse
Affiliation(s)
- Jiongzhao Li
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Weicheng Cao
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yufei Shu
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haibing Zhang
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xudong Qian
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xueqian Kong
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Zhejiang Key Laboratory of Excited-State Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
47
|
Abstract
![]()
Next-generation colloidal semiconductor nanocrystals featuring
enhanced optoelectronic properties and processability are expected
to arise from complete mastering of the nanocrystals’ surface
characteristics, attained by a rational engineering of the passivating
ligands. This aspect is highly challenging, as it underlies a detailed
understanding of the critical chemical processes that occur at the
nanocrystal–ligand–solvent interface, a task that is
prohibitive because of the limited number of nanocrystal syntheses
that could be tried in the lab, where only a few dozen of the commercially
available starting ligands can actually be explored. However, this
challenging goal can be addressed nowadays by combining experiments
with atomistic calculations and machine learning algorithms. In the
last decades we indeed witnessed major advances in the development
and application of computational software dedicated to the solution
of the electronic structure problem as well as the expansion of tools
to improve the sampling and analysis in classical molecular dynamics
simulations. More recently, this progress has also embraced the integration
of machine learning in computational chemistry and in the discovery
of new drugs. We expect that soon this plethora of computational tools
will have a formidable impact also in the field of colloidal semiconductor
nanocrystals. In this Account, we present some of the most recent developments
in the atomistic description of colloidal nanocrystals. In particular,
we show how our group has been developing a set of programs interfaced
with available computational chemistry software packages that allow
the thermodynamic controlling factors in the nanocrystal surface chemistry
to be captured atomistically by including explicit solvent molecules,
ligands, and nanocrystal sizes that match the experiments. At the
same time, we are also setting up an infrastructure to automate the
efficient execution of thousands of calculations that will enable
the collection of sufficient data to be processed by machine learning. To fully capture the power of these computational tools in the
chemistry of colloidal nanocrystals, we decided to embed the thermodynamics
behind the dissolution/precipitation of nanocrystal–ligand
complexes in organic solvents and the crucial process of binding/detachment
of ligands at the nanocrystal surface into a unique chemical framework.
We show that formalizing this mechanism with a computational bird’s
eye view helps in deducing the critical factors that govern the stabilization
of colloidal dispersions of nanocrystals in an organic solvent as
well as the definition of those key parameters that need to be calculated
to manipulate surface ligands. This approach has the ultimate goal
of engineering surface ligands in silico, anticipating and driving
the experiments in the lab.
Collapse
Affiliation(s)
- Juliette Zito
- Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Ivan Infante
- Department of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
48
|
Lim Y, Han JH, Cheon J. Chemical Transformations of Anisotropic Platelets and Spherical Nanocrystals. Acc Chem Res 2021; 54:1565-1574. [PMID: 33650849 DOI: 10.1021/acs.accounts.0c00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ConspectusInorganic nanocrystal design has been continuously evolving with a better understanding of the chemical reaction mechanisms between chemical stimuli and nanocrystals. Under certain conditions, molecular compounds can be effective as chemical stimuli to induce transformative reactions of nanocrystals toward new materials that would differ in geometric shape, composition, and crystallographic structure. To explore such evolutionary processes, two-dimensional (2D) layered transition-metal chalcogenide (TMC) nanostructures are an interesting structural platform because they not only exhibit unique transformation pathways due to their structural anisotropy but also present new opportunities for improved material properties for potential applications such as catalysis and energy conversion and storage. The high surface area/volume ratio, interlayer van der Waals (vdW) spacing, and different coordination states between the unsaturated edges and the fully saturated basal planes of the chalcogens are characteristic of 2D layered TMC nanostructures, which subsequently lead to anisotropic chemical processes during chemical transformations, such as regioselective reactions at the interfacial boundaries in the pathways for either porous or solid heteronanostructures. In this Account, we first discuss the chemical reactivity of 2D layered TMC nanostructures. By categorizing the external stimuli in terms of chemical principles, such as Lewis acid-base chemistry, a desirable regioselective chemical reaction can occur with controlled reactivity. In association with the knowledge obtained from the nanoscale chemical reactivity of 2D layered nanocrystals, similar efforts in other important morphologies such as 1D and isotropic 0D nanocrystals are introduced. For instance, for 1D and 0D metal oxide nanocrystals, the effects of molecular stimuli on the atomic-level changes in the crystal lattice are demonstrated, eventually leading to a variety of shape transformations.
Collapse
Affiliation(s)
- Yongjun Lim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jae Hyo Han
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| |
Collapse
|
49
|
Yamashita S, Sudo T, Kamiya H, Okada Y. Ligand Exchange Reactions between Phosphonic Acids at TiO
2
Nanoparticle Surfaces. ChemistrySelect 2021. [DOI: 10.1002/slct.202100541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shohei Yamashita
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Tatsuya Sudo
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Hidehiro Kamiya
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Yohei Okada
- Department of Chemical Engineering Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
50
|
Chang H, Zhong Y, Dong H, Wang Z, Xie W, Pan A, Zhang L. Ultrastable low-cost colloidal quantum dot microlasers of operative temperature up to 450 K. LIGHT, SCIENCE & APPLICATIONS 2021; 10:60. [PMID: 33731676 PMCID: PMC7969957 DOI: 10.1038/s41377-021-00508-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/11/2023]
Abstract
Quantum dot microlasers, as multifunctional optical source components, are of great importance for full-color high-pixel display, miniaturized coherent lighting, and on-chip integrated photonic and electronic circuits. Since the first synthesis of colloidal quantum dots (CQD) in the 1990s, motivation to realize high-performance low-cost CQD micro-/nanolasers has been a driving force for more than three decades. However, the low packing density, inefficient coupling of CQDs with optical cavities, and the poor thermal stability of miniaturized complex systems make it challenging to achieve practical CQD micro-/nanolasers, especially to combine the continuous working ability at high temperatures and the low-cost potential with mass-produced synthesis technologies. Herein, we developed close-packed CQD-assembled microspheres and embedded them in a silica matrix through the rapid self-aggregation and solidification of CdSe/ZnS CQD. This technology addresses the core issues of photoluminescence (PL) quenching effect and low optical gain in traditional CQD laser research. High-efficiency low-threshold CQD microlasers are demonstrated together with long-playing (40 min) working stability even at 450 K under pulsed laser excitation, which is the highest operational temperature for CQD lasers. Moreover, single-mode CQD microlasers are obtained with tunable wavelengths across the entire visible spectral range. The chemosynthesis process supports the mass-produced potential of high-density integrated CQD microlasers, promoting CQD-based low-cost high-temperature microdevices.
Collapse
Affiliation(s)
- Hao Chang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yichi Zhong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| | - Hongxing Dong
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zhenyu Wang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China
| | - Wei Xie
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 200241, Shanghai, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, 410082, Changsha, China
| | - Long Zhang
- Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|