1
|
Velasco-Sidro M, Arroyo-Ródenas J, Díez-Alonso L, Ramírez-Fernández Á, Álvarez-Vallina L. Dual-targeted STAb-T cells secreting BCMA and CD19 T cell engagers for improved control of haematological cancers. Oncoimmunology 2025; 14:2444701. [PMID: 39723764 DOI: 10.1080/2162402x.2024.2444701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Despite recent advances in immunotherapy against B cell malignancies such as BCMA (B cell maturation antigen) and CD19-targeted treatments using soluble T cell-engaging (TCE) antibodies or chimeric antigen receptor T cells (CAR-T), there is still an important number of patients experiencing refractory/relapsed (R/R) disease. Approaches to avoid tumor-intrinsic mechanisms of resistance such as immune pressure-mediated antigen downmodulation, are being broadly investigated. These strategies include BCMA/CD19 dual-targeting therapies, which may be of particular interest to patients with B cell lymphoma and multiple myeloma, where a specific double-positive immature subpopulation is commonly associated with poor prognosis and poor response to current treatments. In fact, several clinical trials targeting both antigens through different strategies are currently underway. Here, based on the previously validated STAb (in situ secretion of T cell-redirecting bispecific antibodies) concept, we used two different engineering strategies (pool and co-transduction) to generate dual-targeted STAb-T cells simultaneously secreting BCMA TCE and CD19 TCE that outperformed single-targeted STAb-T cells in different in vitro models. These promising results encourage further preclinical clinical testing of dual STAb-T cells in R/R B-cell malignancies.
Collapse
Affiliation(s)
- Miriam Velasco-Sidro
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Arroyo-Ródenas
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Dubovik S, Dormeshkin D, Migas A. Modular cell line for scalable and rapid in vitro evaluation of chimeric antigen receptors. Protein Expr Purif 2025; 233:106738. [PMID: 40374131 DOI: 10.1016/j.pep.2025.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
The development of novel Chimeric Antigen Receptor T-cell (CAR-T-cell) products relies on continuous in vitro testing of new antigen/antibody pairs, as well as the modification of the CAR structure and composition. Once Tumor-Associated Antigens (TAA) have been chosen and proven to be specific, and before the first in vivo studies, these CAR compositions must be extensively validated in vitro. Conventional in vitro tests rely on TAA-expressing immortalized cell lines or immortalized cell lines derivatives engineered to stably express the antigen of interest, making this type of model not fully scalable when it comes to multiple TAA/antibody pairs. Therefore, there is a need for a representative, scalable model for preclinical assessment. Here, we introduce a novel model cell line-based approach that can be easily adapted for different experiments by anchoring ALFA-tagged proteins on the cell surface using an anti-ALFA-tag membrane single-domain antibody. This modular multi-component system has the potential to reduce the novel CAR in vitro evaluation procedures from months to weeks.
Collapse
Affiliation(s)
- Simon Dubovik
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Dmitri Dormeshkin
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | | |
Collapse
|
3
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
4
|
Lepik KV, Markelov VV. The Role of the Tumor Microenvironment in T-Cell Redirecting Therapies of Large B-Cell Lymphoma: Lessons Learned from CAR-T to Bispecific Antibodies. Cancers (Basel) 2025; 17:317. [PMID: 39858099 PMCID: PMC11763497 DOI: 10.3390/cancers17020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
T-cell redirecting therapies, which include chimeric antigen receptor T-cells (CAR-Ts) and bispecific antibodies (BSAs), have revolutionized the treatment of relapsed\refractory large B-cell lymphoma (LBCL). Expanding clinical experience with these advanced therapies shows the potential for the optimization of their use with combination or consolidation strategies, which necessitates the prognostic stratification of patients. While traditional clinical prognostic factors identified in the era of chemotherapy are characterized by limited value, the tumor microenvironment (TME) is becoming a new prognostic cluster. We examine how the heterogeneity of LBCL, characterized by variations in tumor parameters and differences in TME immune cell composition, immune checkpoint expression, and cytokine milieu, correlates with both positive responses and resistance to treatment. While classical parameters such as histological subtype, cell of origin, and target antigen expression lack proven prognostic value for T-cell redirecting therapies, the density and functional state of tumor-infiltrating lymphocytes, tumor-associated macrophages, and immune checkpoint molecules are shown to be critical determinants of therapeutic success, particularly in CAR-T therapy. We identify several gaps in the current knowledge and suggest that the insights gained from CAR-T experience could be instrumental in refining BSA applications. This report also highlights limitations in the current knowledge, as TME data derive from a limited number of registrational trials with varying methodologies, complicating cross-study comparisons and often focusing on immediate response metrics rather than long-term outcomes. By dissecting the complex interactions within the TME, this review aims to identify new prognostic factors and targets, ultimately fostering more effective and tailored treatment strategies for LBCL patients.
Collapse
Affiliation(s)
- Kirill V. Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 191144 St. Petersburg, Russia
| | | |
Collapse
|
5
|
Harrop R, Blount DG, Khan N, Soyombo M, Moyce L, Drayson MT, Down J, Lawson MA, O'Connor D, Nimmo R, Lad Y, Souberbielle B, Mitrophanous K, Ettorre A. Targeting Tumor Antigen 5T4 Using CAR T Cells for the Treatment of Acute Myeloid Leukemia. Mol Cancer Ther 2025; 24:93-104. [PMID: 39387839 DOI: 10.1158/1535-7163.mct-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome deficits in the ability of the host immune system to detect and subsequently eradicate tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step for a targeted therapy that selectively targets cancer cells without affecting normal tissues. 5T4 is a tumor-associated antigen expressed on the cell surface of most solid tumors. However, very little is known about its expression in hematologic malignancies. In this study, we assess the expression of 5T4 in different types of leukemias, specifically acute myeloid leukemia (AML), and normal hematopoietic stem cells (HSC). We also provide an in vitro assessment of safety and efficacy of 5T4-targeting CAR T cells against HSCs and AML tumor cell lines. 5T4 expression was seen in about 50% of AML cases; AML with mutated nucleophosmin 1, AML-myelodysplasia-related, and AML not otherwise specified showed the highest percentage of 5T4+ cases. 5T4 CAR T cells efficiently and specifically killed AML tumor cell lines, including leukemic stem cells. Coculture of 5T4 CAR T cells with HSCs from healthy donors showed no impact on subsequent colony formation, thus confirming the safety profile of 5T4. A proof-of-concept study using a murine model for AML demonstrated that CAR T cells recognize 5T4 expressed on cells and can kill tumor cells both in vitro and in vivo. These results highlight 5T4 as a promising target for immune intervention in AML and that CAR T cells can be considered a powerful personalized therapeutic approach to treat AML.
Collapse
Affiliation(s)
| | | | - Naeem Khan
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | | | - Laura Moyce
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Mark T Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | - Jenny Down
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Michelle A Lawson
- Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | | | - Rachael Nimmo
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | - Yatish Lad
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| | | | | | - Anna Ettorre
- Oxford Biomedica (UK) Limited, Oxford, United Kingdom
| |
Collapse
|
6
|
Steinhardt MJ, Einsele H, Waldschmidt JM. Advances in CD19-targeting CAR-T cell therapies for multiple myeloma. Expert Opin Biol Ther 2025; 25:21-25. [PMID: 39670821 DOI: 10.1080/14712598.2024.2443093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Emerging evidence suggests that, while CD19 is primarily expressed on immature B-cell precursors, it is also present on drug-resistant plasma cells that have been postulated to function as multiple myeloma (MM) stem cells, driving the progression of relapsing disease. Targeting CD19 with chimeric antigen receptor (CAR) T cells offers a promising strategy for addressing this residual disease burden, potentially leading to more durable treatments and enhanced relapse prevention. AREAS COVERED This review examines the molecular basis of CD19-targeted CAR-T therapy in MM, highlighting its potential, key challenges, and efficacy and safety in early clinical trials for relapsed/refractory and newly diagnosed MM. EXPERT OPINION CD19 expression in MM correlates with poor prognosis and may be significantly underestimated, particularly following debulking therapy, as demonstrated by advanced visualization technologies like single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM). Early-phase trials using CD19-directed CAR-T as post-transplant consolidation show promise in prolonging progression-free survival. Multi-target approaches, e.g. the bispecific BCMA×CD19 CAR-T product GC012F, are advancing through clinical development with encouraging safety and efficacy data. However, randomized controlled trials will be necessary to confirm the role and positioning of CD19-directed CAR-T cells within the current MM treatment landscape.
Collapse
Affiliation(s)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
7
|
Sima H, Shao W. Advancements in the design and function of bispecific CAR-T cells targeting B Cell-Associated tumor antigens. Int Immunopharmacol 2024; 142:113166. [PMID: 39298818 DOI: 10.1016/j.intimp.2024.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Single-targeted CAR-T has exhibited notable success in treating B-cell tumors, effectively improving patient outcomes. However, the recurrence rate among patients remains above fifty percent, primarily attributed to antigen escape and the diminished immune persistence of CAR-T cells. Over recent years, there has been a surge of interest in bispecific CAR-T cell therapies, marked by an increasing number of research articles and clinical applications annually. This paper undertakes a comprehensive review of influential studies on the design of bispecific CAR-T in recent years, examining their impact on bispecific CAR-T efficacy concerning disease classification, targeted antigens, and CAR design. Notable distinctions in antigen targeting within B-ALL, NHL, and MM are explored, along with an analysis of how CAR scFv, transmembrane region, hinge region, and co-stimulatory region design influence Bi-CAR-T efficacy across different tumors. The summary provided aims to serve as a reference for designing novel and improved CAR-Ts, facilitating more efficient treatment for B-cell malignant tumors.
Collapse
Affiliation(s)
- Helin Sima
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Medical School of Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, Tianjin, China.
| |
Collapse
|
8
|
Bao R, Hutson A, Madabhushi A, Jonsson VD, Rosario SR, Barnholtz-Sloan JS, Fertig EJ, Marathe H, Harris L, Altreuter J, Chen Q, Dignam J, Gentles AJ, Gonzalez-Kozlova E, Gnjatic S, Kim E, Long M, Morgan M, Ruppin E, Valen DV, Zhang H, Vokes N, Meerzaman D, Liu S, Van Allen EM, Xing Y. Ten challenges and opportunities in computational immuno-oncology. J Immunother Cancer 2024; 12:e009721. [PMID: 39461879 PMCID: PMC11529678 DOI: 10.1136/jitc-2024-009721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Immuno-oncology has transformed the treatment of cancer, with several immunotherapies becoming the standard treatment across histologies. Despite these advancements, the majority of patients do not experience durable clinical benefits, highlighting the imperative for ongoing advancement in immuno-oncology. Computational immuno-oncology emerges as a forefront discipline that draws on biomedical data science and intersects with oncology, immunology, and clinical research, with the overarching goal to accelerate the development of effective and safe immuno-oncology treatments from the laboratory to the clinic. In this review, we outline 10 critical challenges and opportunities in computational immuno-oncology, emphasizing the importance of robust computational strategies and interdisciplinary collaborations amid the constantly evolving interplay between clinical needs and technological innovation.
Collapse
Affiliation(s)
- Riyue Bao
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anant Madabhushi
- Emory University, Atlanta, Georgia, USA
- Georgia Institute of Technology, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Vanessa D Jonsson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, USA
| | - Spencer R Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jill S Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
- Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Elana J Fertig
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lyndsay Harris
- Cancer Diagnosis Program, National Cancer Institute Division of Cancer Treatment and Diagnosis, Bethesda, Maryland, USA
| | | | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - James Dignam
- Department of Public Health Sciences, University of Chicago Division of the Biological Sciences, Chicago, Illinois, USA
| | - Andrew J Gentles
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Edgar Gonzalez-Kozlova
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erika Kim
- Informatics and Data Science Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Martin Morgan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, Maryland, USA
| | - David Van Valen
- Division of Computing and Mathematical Science, Caltech, Pasadena, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Hong Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Natalie Vokes
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Rockville, Maryland, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eliezer M Van Allen
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Fu B, Liu R, Gao G, Lin Z, He A. Mechanisms and salvage treatments in patients with multiple myeloma relapsed post-BCMA CAR-T cell therapy. Front Immunol 2024; 15:1433774. [PMID: 39502704 PMCID: PMC11534873 DOI: 10.3389/fimmu.2024.1433774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has ushered in a new era for the treatment of multiple myeloma (MM). Numerous clinical studies, especially those involving B-cell maturation antigen (BCMA)-directed CAR-T, have shown remarkable efficacy in patients with relapsed or refractory multiple myeloma (R/R MM). However, a considerable number of patients still experience disease recurrence or progression after BCMA CAR-T treatment, which is attributed to various factors, including antigen escape, CAR-T manufacturing factors, T cell exhaustion, inhibitory effects of tumor microenvironment and impact of prior treatments. The scarcity of effective treatment options following post-CAR-T disease recurrence, coupled with the lack of well-established salvage regimens, leaves patients who do relapse facing a bleak prognosis. In recent years, some academic institutions have achieved certain results in salvage treatments of patients with relapse after BCMA CAR-T treatment through secondary infusion of BCMA CAR-T, changing to non-BCMA-directed CAR-T, double-target CAR-T, bispecific antibodies or other novel therapies. This review summarizes the mechanisms of resistance or relapse after BCMA CAR-T administration and the available data on current salvage treatments, hoping to provide ideas for optimizing clinical salvage therapies.
Collapse
Affiliation(s)
- Bingjie Fu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gongzhizi Gao
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zujie Lin
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, China
| |
Collapse
|
10
|
Lai M, Pichardo-Almarza C, Verma M, Shahinuzzaman M, Zhu X, Kimko H. T-cell engagers: model interrogation as a tool to quantify the interplay of relative affinity and target expression on trimer formation. Front Pharmacol 2024; 15:1470595. [PMID: 39439898 PMCID: PMC11493665 DOI: 10.3389/fphar.2024.1470595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
T-cell engagers (TCEs) represent a promising therapeutic strategy for various cancers and autoimmune disorders. These bispecific antibodies act as bridges, connecting T-cell receptors (TCRs) to target cells (either malignant or autoreactive) via interactions with specific tumour-associated antigens (TAAs) or autoantigens to form trimeric synapses, or trimers, that co-localise T-cells with target cells and stimulate their cytotoxic function. Bispecific TCEs are expected to exhibit a bell-shaped dose-response curve, with a defined optimal TCE exposure for maximizing trimer formation. The shape of the dose-response is determined by a non-trivial interplay of binding affinities, exposure and antigens expression levels. Furthermore, excessively low binding to the TCR may reduce efficacy, but mitigate risk of over-stimulating cytokine secretion or induce effector cell exhaustion. These inevitable trade-off highlights the importance of quantitatively understanding the relationship between TCE concentration, target expression, binding affinities, and trimer formation. We utilized a mechanistic target engagement model to show that, if the TCE design parameters are close to the recommended ranges found in the literature, relative affinities for TCR, TAA and target expression levels have qualitatively different, but predictable, effects on the resulting dose-response curve: higher expression levels shift the curve upwards, higher antigen affinity shifts the curve to the left, and higher TCR affinity shifts the curve upwards and to the left.
Collapse
Affiliation(s)
- Massimo Lai
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Cesar Pichardo-Almarza
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca plc, Cambridge, United Kingdom
| | - Meghna Verma
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Md Shahinuzzaman
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| | - Xu Zhu
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Waltham, MA, United States
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, R&D Biopharmaceuticals, AstraZeneca Plc, Gaithersburg, MD, United States
| |
Collapse
|
11
|
De Munter S, Buhl JL, De Cock L, Van Parys A, Daneels W, Pascal E, Deseins L, Ingels J, Goetgeluk G, Jansen H, Billiet L, Pille M, Van Duyse J, Bonte S, Vandamme N, Van Dorpe J, Offner F, Leclercq G, Taghon T, Depla E, Tavernier J, Kerre T, Drost J, Vandekerckhove B. Knocking Out CD70 Rescues CD70-Specific NanoCAR T Cells from Antigen-Induced Exhaustion. Cancer Immunol Res 2024; 12:1236-1251. [PMID: 38874582 DOI: 10.1158/2326-6066.cir-23-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
CD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR). We evaluated the nanoCARs in clinically relevant models in vitro, using co-cultures of CD70-specific nanoCAR T cells with malignant rhabdoid tumor organoids, and in vivo, using a diffuse large B-cell lymphoma patient-derived xenograft (PDX) model. Although the nanoCAR T cells were highly efficient in organoid co-cultures, they showed only modest efficacy in the PDX model. We determined that fratricide was not causing this loss in efficacy but rather CD70 interaction in cis with the nanoCAR-induced exhaustion. Knocking out CD70 in nanoCAR T cells using CRISPR/Cas9 resulted in dramatically enhanced functionality in the diffuse large B-cell lymphoma PDX model. Through single-cell transcriptomics, we obtained evidence that CD70 knockout CD70-specific nanoCAR T cells were protected from antigen-induced exhaustion. In addition, we demonstrated that wild-type CD70-specific nanoCAR T cells already exhibited signs of exhaustion shortly after production. Their gene signature strongly overlapped with gene signatures of exhausted CAR T cells. Conversely, the gene signature of knockout CD70-specific nanoCAR T cells overlapped with the gene signature of CAR T-cell infusion products leading to complete responses in chronic lymphatic leukemia patients. Our data show that CARs targeting endogenous T-cell antigens negatively affect CAR T-cell functionality by inducing an exhausted state, which can be overcome by knocking out the specific target.
Collapse
MESH Headings
- Humans
- CD27 Ligand
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Gene Knockout Techniques
- Cell Line, Tumor
- CRISPR-Cas Systems
Collapse
Affiliation(s)
- Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Juliane L Buhl
- Princess Máxima Center and Oncode Institute, Utrecht, the Netherlands
| | - Laurenz De Cock
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Willem Daneels
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Lucas Deseins
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | | | | | - Tessa Kerre
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Jarno Drost
- Princess Máxima Center and Oncode Institute, Utrecht, the Netherlands
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- GMP Unit cell Therapy, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
12
|
Shao S, Cao Z, Xiao Z, Yu B, Hu L, Du XJ, Yang X. Programming of in Situ Tumor Vaccines via Supramolecular Nanodrug/Hydrogel Composite and Deformable Nanoadjuvant for Cancer Immunotherapy. NANO LETTERS 2024; 24:9017-9026. [PMID: 39007530 DOI: 10.1021/acs.nanolett.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANPMTO/ALCD) and a deformable nanoadjuvant (PPER848). The ANPMTO/ALCD composite consisted of β-cyclodextrin-decorated alginate (Alg-g-CD) and MTO-encapsulated adamantane-decorated nanoparticles (ANPMTO) through supramolecular interaction, facilitating the long-term and sustained production of plenary autologous antigens, particularly under a 660 nm laser. Simultaneously, the produced autologous antigens were effectively captured by nanoadjuvant PPER848 and subsequently transported to lymph nodes and DC cells, benefiting from its optimized size and deformability. This in situ tumor vaccine can trigger a robust antitumor immune response and demonstrate significant therapeutic efficacy in inhibiting tumor growth, suppressing tumor metastasis, and preventing postoperative recurrence, offering a straightforward approach to programming in situ tumor vaccines.
Collapse
Affiliation(s)
- Shuaiqi Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, People's Republic of China
| | - Ziyang Cao
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital, South China University of Technology, Guangzhou, Guangdong 510180, People's Republic of China
| | - Zekai Xiao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, People's Republic of China
| | - Boya Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, People's Republic of China
| | - Lingwei Hu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, People's Republic of China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
13
|
Mog BJ, Marcou N, DiNapoli SR, Pearlman AH, Nichakawade TD, Hwang MS, Douglass J, Hsiue EHC, Glavaris S, Wright KM, Konig MF, Paul S, Wyhs N, Ge J, Miller MS, Azurmendi P, Watson E, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Preclinical studies show that Co-STARs combine the advantages of chimeric antigen and T cell receptors for the treatment of tumors with low antigen densities. Sci Transl Med 2024; 16:eadg7123. [PMID: 38985855 DOI: 10.1126/scitranslmed.adg7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Two types of engineered T cells have been successfully used to treat patients with cancer, one with an antigen recognition domain derived from antibodies [chimeric antigen receptors (CARs)] and the other derived from T cell receptors (TCRs). CARs use high-affinity antigen-binding domains and costimulatory domains to induce T cell activation but can only react against target cells with relatively high amounts of antigen. TCRs have a much lower affinity for their antigens but can react against target cells displaying only a few antigen molecules. Here, we describe a new type of receptor, called a Co-STAR (for costimulatory synthetic TCR and antigen receptor), that combines aspects of both CARs and TCRs. In Co-STARs, the antigen-recognizing components of TCRs are replaced by high-affinity antibody fragments, and costimulation is provided by two modules that drive NF-κB signaling (MyD88 and CD40). Using a TCR-mimic antibody fragment that targets a recurrent p53 neoantigen presented in a common human leukocyte antigen (HLA) allele, we demonstrate that T cells equipped with Co-STARs can kill cancer cells bearing low densities of antigen better than T cells engineered with conventional CARs and patient-derived TCRs in vitro. In mouse models, we show that Co-STARs mediate more robust T cell expansion and more durable tumor regressions than TCRs similarly modified with MyD88 and CD40 costimulation. Our data suggest that Co-STARs may have utility for other peptide-HLA antigens in cancer and other targets where antigen density may limit the efficacy of engineered T cells.
Collapse
Affiliation(s)
- Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikita Marcou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tushar D Nichakawade
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Stephanie Glavaris
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Katharine M Wright
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicolas Wyhs
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jiaxin Ge
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michelle S Miller
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - P Azurmendi
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Evangeline Watson
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Liu J, Tan YY, Zheng W, Wang Y, Ju LA, Su QP. Nanoscale insights into hematology: super-resolved imaging on blood cell structure, function, and pathology. J Nanobiotechnology 2024; 22:363. [PMID: 38910248 PMCID: PMC11194919 DOI: 10.1186/s12951-024-02605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.
Collapse
Affiliation(s)
- Jinghan Liu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yuping Yolanda Tan
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Wen Zheng
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yao Wang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Newtown, NSW, 2042, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Heart Research Institute, Newtown, NSW, 2042, Australia.
| |
Collapse
|
15
|
Shi M, Wang J, Huang H, Liu D, Cheng H, Wang X, Chen W, Yan Z, Sang W, Qi K, Li D, Zhu F, Li Z, Qiao J, Wu Q, Zeng L, Fei X, Gu W, Miao Y, Xu K, Zheng J, Cao J. Bispecific CAR T cell therapy targeting BCMA and CD19 in relapsed/refractory multiple myeloma: a phase I/II trial. Nat Commun 2024; 15:3371. [PMID: 38643278 PMCID: PMC11032309 DOI: 10.1038/s41467-024-47801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024] Open
Abstract
Despite the high therapeutic response achieved with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapy in relapsed and refractory multiple myeloma (R/R MM), primary resistance and relapse exist with single-target immunotherapy. Here, we design bispecific BC19 CAR T cells targeting BCMA/CD19 and evaluate antimyeloma activity in vitro and in vivo. Preclinical results indicate that BC19 CAR specifically recognize target antigens, and BC19 CAR T cells mediate selective killing of BCMA or CD19-positive cancer cells. BC19 CAR T cells also exhibit potent antigen-specific anti-tumor activity in xenograft mouse models. We conduct an open-label, single-arm, phase I/II study of BC19 CAR T cells in 50 patients with R/R MM (ChiCTR2000033567). The primary endpoint was safety. BC19 CAR T cells are well tolerated with grade 3 or higher cytokine release syndrome in 8% of patients and grade 1 neurotoxic events in 4% of patients, which meet the pre-specified primary endpoint. Secondary endpoints include overall response rate (92%), median progression-free survival (19.7 months), median overall survival (19.7 months) and median duration of response (not reached). Our study demonstrates that bispecific BC19 CAR T cells are feasible, safe and effective in treating patients with R/R MM.
Collapse
Affiliation(s)
- Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiaojiao Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China
| | - Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Xiaoming Fei
- Department of Hematology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Yuqing Miao
- Department of Hematology, Yancheng No. People's Hospital, Yancheng, 224006, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
16
|
Xu H, Guan C, Xu P, Zhou D, Xu Y, Chen B, Bai H. Clinical efficacy and safety of combined anti-BCMA and anti-CD19 CAR-T cell therapy for relapsed/refractory multiple myeloma: a systematic review and meta-analysis. Front Oncol 2024; 14:1355643. [PMID: 38651157 PMCID: PMC11033299 DOI: 10.3389/fonc.2024.1355643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Background The low rates of durable response against relapsed/refractory multiple myeloma (RRMM) in recent studies prompt that chimeric antigen receptor (CAR)-T cell therapies are yet to be optimized. The combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high clinical efficacy in several clinical trials for RRMM. We here conducted a meta-analysis to confirm its efficacy and safety. Methods We collected data from Embase, Web of Science, PubMed, CNKI, Wanfang and Cochrane databases up to April 2023. We extracted and evaluated data related to the efficacy and safety of combined anti-BCMA and anti-CD19 CAR-T cell therapies in RRMM patients. The data was then analyzed using RevMan5.4 and StataSE-64 software. PROSPERO number was CRD42023455002. Results Our meta-analysis included 12 relevant clinical trials involving 347 RRMM patients who were treated with combined anti-BCMA and anti-CD19 CAR-T cell therapies. For efficacy assessment, the pooled overall response rate (ORR) was 94% (95% CI: 91%-98%), the complete response rate (CRR) was 50% (95% CI: 29%-71%), and the minimal residual disease (MRD) negativity rate within responders was 73% (95% CI: 66%-80%). In terms of safety, the pooled all-grade cytokine release syndrome (CRS) rate was 98% (95% CI: 97%-100%), grade≥3 CRS rate was 9% (95% CI: 4%-14%), and the incidence of neurotoxicity was 8% (95% CI: 4%-11%). Of hematologic toxicity, neutropenia was 82% (95% CI: 75%-89%), anemia was 71% (95% CI: 53%-90%), thrombocytopenia was 67% (95% CI: 40%-93%) and infection was 42% (95% CI: 9%-76%). The median progression-free survival (PFS) was 12.97 months (95% CI: 6.02-19.91), and the median overall survival (OS) was 26.63 months (95% CI: 8.14-45.11). Conclusions As a novel immunotherapy strategy with great potential, the combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high efficacy in RRMM, but its safety needs further improvement. This meta-analysis suggests possible optimization of combined CAR-T therapy. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023455002.
Collapse
Affiliation(s)
- Han Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
| | - Chaoyang Guan
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongming Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hua Bai
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Zhou X, Xiao X, Kortuem KM, Einsele H. Bispecific Antibodies in the Treatment of Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:361-381. [PMID: 38199897 DOI: 10.1016/j.hoc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The treatment of multiple myeloma (MM) is evolving rapidly. In recent years, T-cell-based novel immunotherapies emerged as new treatment strategies for patients with relapsed/refractory MM, including highly effective new options like chimeric antigen receptor (CAR)-modified T cells and bispecific antibodies (bsAbs). Currently, B-cell maturation antigen is the most commonly used target antigen for CAR T-cell and bsAb therapies in MM. Results from different clinical trials have demonstrated promising efficacy and acceptable safety profile of bsAb in RRMM.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Xianghui Xiao
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Klaus Martin Kortuem
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
18
|
Bagley SJ, Binder ZA, Lamrani L, Marinari E, Desai AS, Nasrallah MP, Maloney E, Brem S, Lustig RA, Kurtz G, Alonso-Basanta M, Bonté PE, Goudot C, Richer W, Piaggio E, Kothari S, Guyonnet L, Guerin CL, Waterfall JJ, Mohan S, Hwang WT, Tang OY, Logun M, Bhattacharyya M, Markowitz K, Delman D, Marshall A, Wherry EJ, Amigorena S, Beatty GL, Brogdon JL, Hexner E, Migliorini D, Alanio C, O'Rourke DM. Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: a phase 1 trial. NATURE CANCER 2024; 5:517-531. [PMID: 38216766 DOI: 10.1038/s43018-023-00709-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
We previously showed that chimeric antigen receptor (CAR) T-cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) produces upregulation of programmed death-ligand 1 (PD-L1) in the tumor microenvironment (TME). Here we conducted a phase 1 trial (NCT03726515) of CAR T-EGFRvIII cells administered concomitantly with the anti-PD1 (aPD1) monoclonal antibody pembrolizumab in patients with newly diagnosed, EGFRvIII+ glioblastoma (GBM) (n = 7). The primary outcome was safety, and no dose-limiting toxicity was observed. Secondary outcomes included median progression-free survival (5.2 months; 90% confidence interval (CI), 2.9-6.0 months) and median overall survival (11.8 months; 90% CI, 9.2-14.2 months). In exploratory analyses, comparison of the TME in tumors harvested before versus after CAR + aPD1 administration demonstrated substantial evolution of the infiltrating myeloid and T cells, with more exhausted, regulatory, and interferon (IFN)-stimulated T cells at relapse. Our study suggests that the combination of CAR T cells and PD-1 inhibition in GBM is safe and biologically active but, given the lack of efficacy, also indicates a need to consider alternative strategies.
Collapse
Affiliation(s)
- Stephen J Bagley
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lamia Lamrani
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Eliana Marinari
- Agora Cancer Research Center, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Arati S Desai
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen Maloney
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Goldie Kurtz
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pierre-Emmanuel Bonté
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
| | - Christel Goudot
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Eliane Piaggio
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
| | - Shawn Kothari
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Lea Guyonnet
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, France
| | - Coralie L Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, France
| | - Joshua J Waterfall
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
- INSERM U830, PSL University, Institut Curie Research Cente, Paris, France
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Y Tang
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Meghan Logun
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Meghna Bhattacharyya
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kelly Markowitz
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Cambridge, MA, USA
| | - Sebastian Amigorena
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France
| | - Gregory L Beatty
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Elizabeth Hexner
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Denis Migliorini
- Agora Cancer Research Center, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Swiss Cancer Center Léman, Lausanne and Geneva, Geneva, Switzerland
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Cecile Alanio
- Clinical Immunology Laboratory, Institut Curie, Paris, France.
- INSERM U932, PSL University, Immunity and Cancer, Institut Curie Research Center, Paris, France.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Duell J, Leipold AM, Appenzeller S, Fuhr V, Rauert-Wunderlich H, Da Via M, Dietrich O, Toussaint C, Imdahl F, Eisele F, Afrin N, Grundheber L, Einsele H, Weinhold N, Rosenwald A, Topp MS, Saliba AE, Rasche L. Sequential antigen loss and branching evolution in lymphoma after CD19- and CD20-targeted T-cell-redirecting therapy. Blood 2024; 143:685-696. [PMID: 37976456 PMCID: PMC10900140 DOI: 10.1182/blood.2023021672] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander M. Leipold
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Viktoria Fuhr
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Matteo Da Via
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Florian Eisele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Nazia Afrin
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Lars Grundheber
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Max S. Topp
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Rasche L, Hudecek M, Einsele H. CAR T-cell therapy in multiple myeloma: mission accomplished? Blood 2024; 143:305-310. [PMID: 38033289 DOI: 10.1182/blood.2023021221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
ABSTRACT B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cells are the most potent treatment against multiple myeloma (MM). Here, we review the increasing body of clinical and correlative preclinical data that support their inclusion into firstline therapy and sequencing before T-cell-engaging antibodies. The ambition to cure MM with (BCMA-)CAR T cells is informed by genomic and phenotypic analysis that assess BCMA expression for patient stratification and monitoring, steadily improving early diagnosis and management of side effects, and advances in rapid, scalable CAR T-cell manufacturing to improve access.
Collapse
Affiliation(s)
- Leo Rasche
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
22
|
Munawar U, Zhou X, Prommersberger S, Nerreter S, Vogt C, Steinhardt MJ, Truger M, Mersi J, Teufel E, Han S, Haertle L, Banholzer N, Eiring P, Danhof S, Navarro-Aguadero MA, Fernandez-Martin A, Ortiz-Ruiz A, Barrio S, Gallardo M, Valeri A, Castellano E, Raab P, Rudert M, Haferlach C, Sauer M, Hudecek M, Martinez-Lopez J, Waldschmidt J, Einsele H, Rasche L, Kortüm KM. Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma. Commun Biol 2023; 6:1299. [PMID: 38129580 PMCID: PMC10739907 DOI: 10.1038/s42003-023-05683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.
Collapse
Affiliation(s)
- Umair Munawar
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Xiang Zhou
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Silvia Nerreter
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | | | - Julia Mersi
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Seungbin Han
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Nicole Banholzer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sophia Danhof
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | | - Adrian Fernandez-Martin
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Alejandra Ortiz-Ruiz
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Santiago Barrio
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
- Altum Sequencing Co., Madrid, Spain
| | - Miguel Gallardo
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Antonio Valeri
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Eva Castellano
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Peter Raab
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | | | - Markus Sauer
- Department of Hematology, Hospital Universitario 12 de Octubre, CNIO, Complutense University Madrid, Madrid, Spain
| | - Michael Hudecek
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - J Martinez-Lopez
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
- Altum Sequencing Co., Madrid, Spain
| | - Johannes Waldschmidt
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
23
|
Delcanale P, Alampi MM, Mussini A, Fumarola C, Galetti M, Petronini PG, Viappiani C, Bruno S, Abbruzzetti S. A Photoactive Supramolecular Complex Targeting PD-L1 Reveals a Weak Correlation between Photoactivation Efficiency and Receptor Expression Levels in Non-Small-Cell Lung Cancer Tumor Models. Pharmaceutics 2023; 15:2776. [PMID: 38140116 PMCID: PMC10747218 DOI: 10.3390/pharmaceutics15122776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Photo-immunotherapy uses antibodies conjugated to photosensitizers to produce nanostructured constructs endowed with targeting properties and photo-inactivation capabilities towards tumor cells. The superficial receptor density on cancer cells is considered a determining factor for the efficacy of the photodynamic treatment. In this work, we propose the use of a photoactive conjugate that consists of the clinical grade PD-L1-binding monoclonal antibody Atezolizumab, covalently linked to either the well-known photosensitizer eosin or the fluorescent probe Alexa647. Using single-molecule localization microscopy (direct stochastic optical reconstruction microscopy, dSTORM), and an anti-PD-L1 monoclonal antibody labelled with Alexa647, we quantified the density of PD-L1 receptors exposed on the cell surface in two human non-small-cell lung cancer lines (H322 and A549) expressing PD-L1 to a different level. We then investigated if this value correlates with the effectiveness of the photodynamic treatment. The photodynamic treatment of H322 and A549 with the photo-immunoconjugate demonstrated its potential for PDT treatments, but the efficacy did not correlate with the PD-L1 expression levels. Our results provide additional evidence that receptor density does not determine a priori the level of photo-induced cell death.
Collapse
Affiliation(s)
- Pietro Delcanale
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy; (P.D.); (M.M.A.); (A.M.); (C.V.)
| | - Manuela Maria Alampi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy; (P.D.); (M.M.A.); (A.M.); (C.V.)
| | - Andrea Mussini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy; (P.D.); (M.M.A.); (A.M.); (C.V.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (C.F.); (P.G.P.)
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, 00078 Rome, Italy;
| | - Pier Giorgio Petronini
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (C.F.); (P.G.P.)
| | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy; (P.D.); (M.M.A.); (A.M.); (C.V.)
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Stefania Abbruzzetti
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy; (P.D.); (M.M.A.); (A.M.); (C.V.)
| |
Collapse
|
24
|
Tserunyan V, Finley S. Information-Theoretic Analysis of a Model of CAR-4-1BB-Mediated NFκB Activation. Bull Math Biol 2023; 86:5. [PMID: 38038772 PMCID: PMC10691998 DOI: 10.1007/s11538-023-01232-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Systems biology utilizes computational approaches to examine an array of biological processes, such as cell signaling, metabolomics and pharmacology. This includes mathematical modeling of CAR T cells, a modality of cancer therapy by which genetically engineered immune cells recognize and combat a cancerous target. While successful against hematologic malignancies, CAR T cells have shown limited success against other cancer types. Thus, more research is needed to understand their mechanisms of action and leverage their full potential. In our work, we set out to apply information theory on a mathematical model of NFκB signaling initiated by the CAR following antigen encounter. First, we estimated channel capacity for CAR-4-1BB-mediated NFκB signal transduction. Next, we evaluated the pathway's ability to distinguish contrasting "low" and "high" antigen concentration levels, depending on the amount of variability in protein concentrations. Finally, we assessed the fidelity by which NFκB activation reflects the encountered antigen concentration, depending on the prevalence of antigen-positive targets in tumor population. We found that in most scenarios, fold change in the nuclear concentration of NFκB carries a higher channel capacity for the pathway than NFκB's absolute response. Additionally, we found that most errors in transducing the antigen signal through the pathway skew towards underestimating the concentration of encountered antigen. Finally, we found that disabling IKKβ deactivation could increase signaling fidelity against targets with antigen-negative cells. Our information-theoretic analysis of signal transduction can provide novel perspectives on biological signaling, as well as enable a more informed path to cell engineering.Kindly check and confirm whether the corresponding affiliation is correctly identified.this is correct.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Wei Y, Zhao M, He T, Chen N, Rao L, Chen L, Zhang Y, Yang Y, Yuan Q. Quantitatively Lighting up the Spatial Organization of CD47/SIRPα Immune Checkpoints on the Cellular Membrane with Single-Molecule Localization Microscopy. ACS NANO 2023; 17:21626-21638. [PMID: 37878521 DOI: 10.1021/acsnano.3c06709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Immunotherapy including immune checkpoint inhibition has reinvigorated the current cancer treatment field. The development of efficient cancer immunotherapies depends on a thorough understanding of the status of immune checkpoints and how they interact. However, the distribution and spatial organization changes of immune checkpoints during their interactions at the single-molecule level remain difficult to directly visualize due to the lack of in situ imaging techniques with appropriate spatial and stoichiometric resolution. Herein, we report the direct visualization and quantification of the spatial distribution and organization of CD47 on the bladder tumor cell membrane and SIRPα on the macrophage membrane by using a single-molecule localization imaging technique called quantitative direct stochastic optical reconstruction microscopy (QdSTORM). Results showed that a portion of CD47 and SIRPα was present on cell membranes as heterogeneous clusters of varying sizes and densities prior to activation. Quantitative analyses of the reconstructed super-resolution images and theoretical simulation revealed that CD47 and SIRPα were reorganized into larger clusters upon binding to each other. Furthermore, we found that blocking the immune checkpoint interaction with small-molecule inhibitors or antibodies significantly impacted the spatial clustering behavior of CD47 on bladder tumor cells, demonstrating the promise of our QdSTORM strategy in elucidating the molecular mechanisms underlying immunotherapy. This work offers a promising strategy to advance our understanding of immune checkpoint state and interactions while also contributing to the fields including signal regulation and cancer therapy.
Collapse
Affiliation(s)
- Yurong Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Min Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianpei He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Li Rao
- Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Long Chen
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau 999078, P. R. China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350025, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
26
|
D'Ovidio T, Ciccolini K, Kalac M, Osman K, Steinberg A. CD19-Targeted Chimeric Antigen Receptor T-cell Therapy for Concomitant Diffuse Large B-cell Lymphoma and Multiple Myeloma. Cureus 2023; 15:e44542. [PMID: 37790017 PMCID: PMC10544703 DOI: 10.7759/cureus.44542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) comprise a large fraction of hematologic malignancies diagnosed each year. However, the co-occurrence of these conditions in the same patient is rare. CD19- and B-cell maturation antigen-targeted chimeric antigen receptor (CAR) T-cell therapies have been approved in recent years with promising responses. Here, we present a patient who presented following a bone marrow biopsy that revealed MM with 20% lambda-restricted plasma cells with no evidence of lymphoma involvement in the marrow. A subsequent lymph node biopsy of a right thigh mass was done and revealed DLBCL. The patient received CD19-targeted CAR T-cell therapy and has no detectable MM or DLBCL. To our knowledge, this is the first case report in the literature describing a patient with concomitant MM and DLBCL who received CD19-targeted CAR T-cell therapy.
Collapse
Affiliation(s)
- Tyler D'Ovidio
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kathryn Ciccolini
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Matko Kalac
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Keren Osman
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Amir Steinberg
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
27
|
Haake M, Haack B, Schäfer T, Harter PN, Mattavelli G, Eiring P, Vashist N, Wedekink F, Genssler S, Fischer B, Dahlhoff J, Mokhtari F, Kuzkina A, Welters MJP, Benz TM, Sorger L, Thiemann V, Almanzar G, Selle M, Thein K, Späth J, Gonzalez MC, Reitinger C, Ipsen-Escobedo A, Wistuba-Hamprecht K, Eichler K, Filipski K, Zeiner PS, Beschorner R, Goedemans R, Gogolla FH, Hackl H, Rooswinkel RW, Thiem A, Roche PR, Joshi H, Pühringer D, Wöckel A, Diessner JE, Rüdiger M, Leo E, Cheng PF, Levesque MP, Goebeler M, Sauer M, Nimmerjahn F, Schuberth-Wagner C, von Felten S, Mittelbronn M, Mehling M, Beilhack A, van der Burg SH, Riedel A, Weide B, Dummer R, Wischhusen J. Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment. Nat Commun 2023; 14:4253. [PMID: 37474523 PMCID: PMC10359308 DOI: 10.1038/s41467-023-39817-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Collapse
Affiliation(s)
- Markus Haake
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Beatrice Haack
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Tina Schäfer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick N Harter
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Center for Neuropathology and Prion Research, Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Greta Mattavelli
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Patrick Eiring
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Neha Vashist
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Florian Wedekink
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Birgitt Fischer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Julia Dahlhoff
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Fatemeh Mokhtari
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Anastasia Kuzkina
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Marij J P Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Tamara M Benz
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Lena Sorger
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Vincent Thiemann
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Giovanni Almanzar
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Martina Selle
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Klara Thein
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Jacob Späth
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
- Department of Immunology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Department of Internal Medicine I, University Medical Center Tübingen, Tübingen, Germany
| | - Kristin Eichler
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Katharina Filipski
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Pia S Zeiner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Rudi Beschorner
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - Renske Goedemans
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Falk Hagen Gogolla
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | | | - Alexander Thiem
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | - Paula Romer Roche
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Hemant Joshi
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Dirk Pühringer
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | - Joachim E Diessner
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany
| | | | - Eugen Leo
- CatalYm GmbH, Am Klopferspitz 19, 82152, Munich, Germany
| | - Phil F Cheng
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Wagistrasse 18, 8952, Zürich, Switzerland
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius Maximilians University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen, 91058, Erlangen, Germany
| | | | - Stefanie von Felten
- oikostat GmbH, Statistical Analyses and Consulting, Lucerne, Switzerland
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001, Zürich, Switzerland
| | - Michel Mittelbronn
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), Dudelange, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthias Mehling
- Department of Biomedicine and Neurology Department, University Hospital Basel, 4031, Basel, Switzerland
| | - Andreas Beilhack
- Department of Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Benjamin Weide
- Department of Dermatology, University Medical Center Tübingen, Tübingen, Germany
| | | | - Jörg Wischhusen
- Department of Gynecology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
28
|
Edwards K, Lydyard PM, Kulikova N, Tsertsvadze T, Volpi EV, Chiorazzi N, Porakishvili N. The role of CD180 in hematological malignancies and inflammatory disorders. Mol Med 2023; 29:97. [PMID: 37460961 PMCID: PMC10353253 DOI: 10.1186/s10020-023-00682-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Toll-like receptors play a significant role in the innate immune system and are also involved in the pathophysiology of many different diseases. Over the past 35 years, there have been a growing number of publications exploring the role of the orphan toll-like receptor, CD180. We therefore set out to provide a narrative review of the current evidence surrounding CD180 in both health and disease. We first explore the evidence surrounding the role of CD180 in physiology including its expression, function and signaling in antigen presenting cells (APCs) (dendritic cells, monocytes, and B cells). We particularly focus on the role of CD180 as a modulator of other TLRs including TLR2, TLR4, and TLR9. We then discuss the role of CD180 in inflammatory and autoimmune diseases, as well as in hematological malignancies of B cell origin, including chronic lymphocytic leukemia (CLL). Based on this evidence we produce a current model for CD180 in disease and explore the potential role for CD180 as both a prognostic biomarker and therapeutic target. Throughout, we highlight specific areas of research which should be addressed to further the understanding of CD180 biology and the translational potential of research into CD180 in various diseases.
Collapse
Affiliation(s)
- Kurtis Edwards
- School of Life Sciences, University of Westminster, London, UK
| | - Peter M Lydyard
- School of Life Sciences, University of Westminster, London, UK.
- The University of Georgia, Tbilisi, Georgia.
- Division of Infection of Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Nino Kulikova
- Agricultural University of Georgia, Tbilisi, Georgia
| | | | | | | | | |
Collapse
|
29
|
Gu A, Bai Y, Zhang C, Xu C, An Z, Zhang Y, Zhong SH, Hu Y, Zhong X. IL13Rα2-targeted third-generation CAR-T cells with CD28 transmembrane domain mediate the best anti-glioblastoma efficacy. Cancer Immunol Immunother 2023; 72:2393-2403. [PMID: 36991262 PMCID: PMC10992788 DOI: 10.1007/s00262-023-03423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has been proven to be a powerful tool for the treatment of cancer, however, the limits are obvious, especially for solid tumors. Therefore, constantly optimizing the structure of CAR to improve its therapeutic effect is necessary. In this study, we generated three different third-generation CARs targeting IL13Rα2, with the same scFv, but different transmembrane domains (TMDs) from CD4, CD8 or CD28 (IL13-CD4TM-28.BB.ζ, IL13-CD8TM-28.BB.ζ and IL13-CD28TM-28.BB.ζ). CARs were transduced into primary T cells using retroviruses. The anti-GBM efficacy of CAR-T cells was monitored by flow cytometry and real-time cell analysis (RTCA) in vitro and examined in two xenograft mouse models. The differentially expressed genes related to different anti-GBM activity were screened by high throughput RNA sequencing. We observed that T cells transduced with these three CARs have similar anti-tumor activity when co-cultured with U373 cells which expressed higher IL13Rα2 but exhibited different anti-tumor activity when co-cultured with U251 cells that expressed lower IL13Rα2. All the three groups of CAR-T cells can be activated by U373 cells, but only IL13-CD28TM-28.BB.ζ CAR-T cells could be activated and expressed increased IFN-γ after co-culturing with U251 cells. IL13-CD28TM-28.BB.ζ CAR-T cells exhibited the best anti-tumor activity in xenograft mouse models which can infiltrate into the tumors. The superior anti-tumor efficacy of IL13-CD28TM-28.BB.ζ CAR-T cells was partially owing to differentially expressed extracellular assembly, extracellular matrix, cell migration and adhesion-related genes which contribute to the lower activation threshold, increased cell proliferation, and elevated migration capacity.
Collapse
Affiliation(s)
- Aiqin Gu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | - Yue Bai
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | - Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | - Zhijing An
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | - Ying Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China
| | | | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China.
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, 100038, China.
- Carriage Therapeutics for Affiliation, Beijing, China.
| |
Collapse
|
30
|
Tserunyan V, Finley S. Information-theoretic analysis of a model of CAR-4-1BB-mediated NFκB activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544433. [PMID: 37333129 PMCID: PMC10274880 DOI: 10.1101/2023.06.09.544433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Systems biology utilizes computational approaches to examine an array of biological processes, such as cell signaling, metabolomics and pharmacology. This includes mathematical modeling of CAR T cells, a modality of cancer therapy by which genetically engineered immune cells recognize and combat a cancerous target. While successful against hematologic malignancies, CAR T cells have shown limited success against other cancer types. Thus, more research is needed to understand their mechanisms of action and leverage their full potential. In our work, we set out to apply information theory on a mathematical model of cell signaling of CAR-mediated activation following antigen encounter. First, we estimated channel capacity for CAR-4-1BB-mediated NFκB signal transduction. Next, we evaluated the pathway's ability to distinguish contrasting "low" and "high" antigen concentration levels, depending on the amount of intrinsic noise. Finally, we assessed the fidelity by which NFκB activation reflects the encountered antigen concentration, depending on the prevalence of antigen-positive targets in tumor population. We found that in most scenarios, fold change in the nuclear concentration of NFκB carries a higher channel capacity for the pathway than NFκB's absolute response. Additionally, we found that most errors in transducing the antigen signal through the pathway skew towards underestimating the concentration of encountered antigen. Finally, we found that disabling IKKβ deactivation could increase signaling fidelity against targets with antigen-negative cells. Our information-theoretic analysis of signal transduction can provide novel perspectives on biological signaling, as well as enable a more informed path to cell engineering.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Li Y, She W, Xu X, Liu Y, Wang X, Tian S, Li S, Wang M, Yu C, Liu P, Huang T, Wei Y. AAZ2 induces mitochondrial-dependent apoptosis by targeting PDK1 in gastric cancer. J Zhejiang Univ Sci B 2023; 24:232-247. [PMID: 36915999 PMCID: PMC10014317 DOI: 10.1631/jzus.b2200351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Drastic surges in intracellular reactive oxygen species (ROS) induce cell apoptosis, while most chemotherapy drugs lead to the accumulation of ROS. Here, we constructed an organic compound, arsenical N-(4-(1,3,2-dithiarsinan-2-yl)phenyl)acrylamide (AAZ2), which could prompt the ROS to trigger mitochondrial-dependent apoptosis in gastric cancer (GC). Mechanistically, by targeting pyruvate dehydrogenase kinase 1 (PDK1), AAZ2 caused metabolism alteration and the imbalance of redox homeostasis, followed by the inhibition of phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and leading to the activation of B-cell lymphoma 2 (Bcl2)/Bcl2-associated X (Bax)/caspase-9 (Cas9)/Cas3 cascades. Importantly, our in vivo data demonstrated that AAZ2 could inhibit the growth of GC xenograft. Overall, our data suggested that AAZ2 could contribute to metabolic abnormalities, leading to mitochondrial-dependent apoptosis by targeting PDK1 in GC.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Wenyan She
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, China
| | - Xiaoran Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Xinyu Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Shiyi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Miao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Chaochao Yu
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China.
| |
Collapse
|
32
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
33
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
34
|
Riera R, Archontakis E, Cremers G, de Greef T, Zijlstra P, Albertazzi L. Precision and Accuracy of Receptor Quantification on Synthetic and Biological Surfaces Using DNA-PAINT. ACS Sens 2023; 8:80-93. [PMID: 36655822 PMCID: PMC9887648 DOI: 10.1021/acssensors.2c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.
Collapse
Affiliation(s)
- Roger Riera
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Emmanouil Archontakis
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Glenn Cremers
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - Tom de Greef
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands,Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, AJ Nijmegen6525, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands,Nanoscopy
for Nanomedicine, Institute for Bioengineering
of Catalonia, Barcelona08028, Spain,
| |
Collapse
|
35
|
Schaub JM, Ruan Q, Tetin SY. Epifluorescent single-molecule counting with Streptavidin-Phycoerythrin conjugates. Anal Biochem 2022; 659:114955. [PMID: 36265689 DOI: 10.1016/j.ab.2022.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Single-molecule methods, specifically single-molecule counting, convey high sensitivity in research applications. However, single-molecule counting experiments require specialized equipment or consumables to perform. We demonstrate the utility of using bright Streptavidin-Phycoerythrin (SA-PE) conjugates and an epifluorescence microscope, for single-molecule counting applications. In this work, we show that we can visualize single-molecules on glass surfaces, perform single-molecule diagnostic assays on magnetic microparticles, and image individual foci on cell surfaces. This approach is simple and effective for researchers interested in single-molecule counting.
Collapse
Affiliation(s)
- Jeffrey M Schaub
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA
| | - Qiaoqiao Ruan
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA
| | - Sergey Y Tetin
- Applied Research and Technology, Abbott Diagnostics Division, Abbott Laboratories, Abbott Park, IL, 60064, USA.
| |
Collapse
|
36
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Boiarsky R, Haradhvala NJ, Alberge JB, Sklavenitis-Pistofidis R, Mouhieddine TH, Zavidij O, Shih MC, Firer D, Miller M, El-Khoury H, Anand SK, Aguet F, Sontag D, Ghobrial IM, Getz G. Single cell characterization of myeloma and its precursor conditions reveals transcriptional signatures of early tumorigenesis. Nat Commun 2022; 13:7040. [PMID: 36396631 PMCID: PMC9672303 DOI: 10.1038/s41467-022-33944-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is a plasma cell malignancy almost always preceded by precursor conditions, but low tumor burden of these early stages has hindered the study of their molecular programs through bulk sequencing technologies. Here, we generate and analyze single cell RNA-sequencing of plasma cells from 26 patients at varying disease stages and 9 healthy donors. In silico dissection and comparison of normal and transformed plasma cells from the same bone marrow biopsy enables discovery of patient-specific transcriptional changes. Using Non-Negative Matrix Factorization, we discover 15 gene expression signatures which represent transcriptional modules relevant to myeloma biology, and identify a signature that is uniformly lost in abnormal cells across disease stages. Finally, we demonstrate that tumors contain heterogeneous subpopulations expressing distinct transcriptional patterns. Our findings characterize transcriptomic alterations present at the earliest stages of myeloma, providing insight into the molecular underpinnings of disease initiation.
Collapse
Affiliation(s)
- Rebecca Boiarsky
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicholas J Haradhvala
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Cambridge, MA, USA
| | - Jean-Baptiste Alberge
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Romanos Sklavenitis-Pistofidis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oksana Zavidij
- Constellation Pharmaceuticals a MorphoSys Company, Cambridge, MA, USA
| | - Ming-Chieh Shih
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Mendy Miller
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Habib El-Khoury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - David Sontag
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- CSAIL and IMES, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Irene M Ghobrial
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Welters C, Lammoglia Cobo MF, Stein CA, Hsu MT, Ben Hamza A, Penter L, Chen X, Buccitelli C, Popp O, Mertins P, Dietze K, Bullinger L, Moosmann A, Blanc E, Beule D, Gerbitz A, Strobel J, Hackstein H, Rahn HP, Dornmair K, Blankenstein T, Hansmann L. Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma. Cancer Immunol Res 2022; 10:1407-1419. [PMID: 36122410 PMCID: PMC9627264 DOI: 10.1158/2326-6066.cir-22-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/23/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR) αβ sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classic immune-checkpoint molecules PD-1, CTLA-4, or TIM-3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were reexpressed and incubated with multiple myeloma and non-multiple myeloma cells from corresponding patients. Only 1 of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment-naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classic immune-checkpoint molecules. Our data provide experimental context for experiences from clinical immune-checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies.
Collapse
Affiliation(s)
- Carlotta Welters
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - María Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Alexander Stein
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng-Tung Hsu
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Amin Ben Hamza
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaojing Chen
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Christopher Buccitelli
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine and Berlin Institute of Health, Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Moosmann
- Department of Medicine III, Klinikum der Universität München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany
| | - Armin Gerbitz
- Hans Messner Allogeneic Stem Cell Transplant Program, Princess Margaret Cancer Centre, Toronto, Canada
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, LMU Munich, Germany
| | - Thomas Blankenstein
- Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Corresponding Author: Leo Hansmann, Charité–Universitätsmedizin Berlin (CVK), Department of Hematology, Oncology, and Tumor Immunology, Augustenburger Platz 1, 13353 Berlin, Germany. Phone: 49-(0)30-450-665238; Fax: 49-(0)30-450-553914; E-mail:
| |
Collapse
|
39
|
Im NG, Guillaumet-Adkins A, Wal M, Rogers AJ, Frede J, Havig CC, Yang J, Anand P, Stegmann SK, Waldschmidt JM, Sotudeh N, Niu L, Voisine J, Schweiger MR, Grassberger C, Lohr JG, Knoechel B. Regulatory Programs of B-cell Activation and Germinal Center Reaction Allow B-ALL Escape from CD19 CAR T-cell Therapy. Cancer Immunol Res 2022; 10:1055-1068. [PMID: 35759797 PMCID: PMC9444959 DOI: 10.1158/2326-6066.cir-21-0626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 04/13/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has led to tremendous successes in the treatment of B-cell malignancies. However, a large fraction of treated patients relapse, often with disease expressing reduced levels of the target antigen. Here, we report that exposing CD19+ B-cell acute lymphoblastic leukemia (B-ALL) cells to CD19 CAR T cells reduced CD19 expression within hours. Initially, CD19 CAR T cells caused clustering of CD19 at the T cell-leukemia cell interface followed by CD19 internalization and decreased CD19 surface expression on the B-ALL cells. CD19 expression was then repressed by transcriptional rewiring. Using single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing, we demonstrated that a subset of refractory CD19low cells sustained decreased CD19 expression through transcriptional programs of physiologic B-cell activation and germinal center reaction. Inhibiting B-cell activation programs with the Bruton's tyrosine kinase inhibitor ibrutinib increased the cytotoxicity of CD19 CAR T cells without affecting CAR T-cell viability. These results demonstrate transcriptional plasticity as an underlying mechanism of escape from CAR T cells and highlight the importance of combining CAR T-cell therapy with targeted therapies that aim to overcome this plasticity. See related Spotlight by Zhao and Melenhorst, p. 1040.
Collapse
Affiliation(s)
- Nam Gyu Im
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Institute for Translational Epigenetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Amy Guillaumet-Adkins
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Megha Wal
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna J. Rogers
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Frede
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Claire C. Havig
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jing Yang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praveen Anand
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Johannes M. Waldschmidt
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Noori Sotudeh
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Leili Niu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jordan Voisine
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jens G. Lohr
- Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Corresponding Authors: Birgit Knoechel, MD, PhD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2072; ., Jens G. Lohr, MD, PhD, Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2069;
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Department of Medicine, Boston Children’s Hospital, MA, USA.,Corresponding Authors: Birgit Knoechel, MD, PhD, Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2072; ., Jens G. Lohr, MD, PhD, Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Phone: 617-632-2069;
| |
Collapse
|
40
|
García-Guerrero E, Rodríguez-Lobato LG, Sierro-Martínez B, Danhof S, Bates S, Frenz S, Haertle L, Götz R, Sauer M, Rasche L, Kortüm KM, Pérez-Simón JA, Einsele H, Hudecek M, Prommersberger SR. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica 2022; 108:568-580. [PMID: 36722406 PMCID: PMC9890012 DOI: 10.3324/haematol.2022.281339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
B-cell maturation antigen (BCMA) is the lead antigen for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). A challenge is inter- and intra-patient heterogeneity in BCMA expression on MM cells and BCMA downmodulation under therapeutic pressure. Accordingly, there is a desire to augment and sustain BCMA expression on MM cells in patients that receive BCMA-CAR T-cell therapy. We used all-trans retinoic acid (ATRA) to augment BCMA expression on MM cells and to increase the efficacy of BCMA-CAR T cells in pre-clinical models. We show that ATRA treatment leads to an increase in BCMA transcripts by quantitative reverse transcription polymerase chain reaction and an increase in BCMA protein expression by flow cytometry in MM cell lines and primary MM cells. Analyses with super-resolution microscopy confirmed increased BCMA protein expression and revealed an even distribution of non-clustered BCMA molecules on the MM cell membrane after ATRA treatment. The enhanced BCMA expression on MM cells after ATRA treatment led to enhanced cytolysis, cytokine secretion and proliferation of BCMA-CAR T cells in vitro, and increased efficacy of BCMA-CAR T-cell therapy in a murine xenograft model of MM in vivo (NSG/MM.1S). Combination treatment of MM cells with ATRA and the γ- secretase inhibitor crenigacestat further enhanced BCMA expression and the efficacy of BCMA-CAR T-cell therapy in vitro and in vivo. Taken together, the data show that ATRA treatment leads to enhanced BCMA expression on MM cells and consecutively, enhanced reactivity of BCMA-CAR T cells. The data support the clinical evaluation of ATRA in combination with BCMA-CAR T-cell therapy and potentially, other BCMA-directed immunotherapies.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Luis G. Rodríguez-Lobato
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Sophia Danhof
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Bates
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Silke Frenz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralph Götz
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Sauer
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Leo Rasche
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - K. Martin Kortüm
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose A. Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sabrina R. Prommersberger
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,S. Prommersberger
| |
Collapse
|
41
|
Tserunyan V, Finley SD. Computational analysis of 4-1BB-induced NFκB signaling suggests improvements to CAR cell design. Cell Commun Signal 2022; 20:129. [PMID: 36028884 PMCID: PMC9413922 DOI: 10.1186/s12964-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-expressing cells are a powerful modality of adoptive cell therapy against cancer. The potency of signaling events initiated upon antigen binding depends on the costimulatory domain within the structure of the CAR. One such costimulatory domain is 4-1BB, which affects cellular response via the NFκB pathway. However, the quantitative aspects of 4-1BB-induced NFκB signaling are not fully understood. METHODS We developed an ordinary differential equation-based mathematical model representing canonical NFκB signaling activated by CD19scFv-4-1BB. After a global sensitivity analysis on model parameters, we ran Monte Carlo simulations of cell population-wide variability in NFκB signaling and quantified the mutual information between the extracellular signal and different levels of the NFκB signal transduction pathway. RESULTS In response to a wide range of antigen concentrations, the magnitude of the transient peak in NFκB nuclear concentration varies significantly, while the timing of this peak is relatively consistent. Global sensitivity analysis showed that the model is robust to variations in parameters, and thus, its quantitative predictions would remain applicable to a broad range of parameter values. The model predicts that overexpressing NEMO and disabling IKKβ deactivation can increase the mutual information between antigen levels and NFκB activation. CONCLUSIONS Our modeling predictions provide actionable insights to guide CAR development. Particularly, we propose specific manipulations to the NFκB signal transduction pathway that can fine-tune the response of CD19scFv-4-1BB cells to the antigen concentrations they are likely to encounter. Video Abstract.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Tserunyan V, Finley SD. Modelling predicts differences in chimeric antigen receptor T-cell signalling due to biological variability. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220137. [PMID: 36039281 PMCID: PMC9399690 DOI: 10.1098/rsos.220137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
In recent decades, chimeric antigen receptors (CARs) have been successfully used to generate engineered T cells capable of recognizing and eliminating cancer cells. The structure of CARs typically includes costimulatory domains, which enhance the T-cell response upon antigen encounter. However, it is not fully known how those co-stimulatory domains influence cell activation in the presence of biological variability. In this work, we used mathematical modelling to elucidate how the inclusion of one such costimulatory molecule, CD28, impacts the response of a population of CAR T cells under different sources of variability. Particularly, we demonstrate that CD28-bearing CARs mediate a faster and more consistent population response under both target antigen variability and kinetic rate variability. Next, we identify kinetic parameters that have the most impact on cell response time. Finally, based on our findings, we propose that enhancing the catalytic activity of lymphocyte-specific protein tyrosine kinase can result in drastically reduced and more consistent response times among heterogeneous CAR T-cell populations.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D. Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Peng H, Nerreter T, Mestermann K, Wachter J, Chang J, Hudecek M, Rader C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022; 41:4104-4114. [PMID: 35859167 PMCID: PMC9398970 DOI: 10.1038/s41388-022-02416-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023]
Abstract
The success of chimeric antigen receptor T cell (CAR-T) therapy in the treatment of hematologic malignancies has prompted the development of numerous CAR-T technologies, including switchable CAR-T (sCAR-T) systems that combine a universal CAR-T with bispecific adapter proteins. Owing to their controllability and versatility, sCAR-Ts have received considerable attention. To explore the therapeutic utility of sCAR-Ts targeting the receptor tyrosine kinase ROR1, which is expressed in hematologic and solid malignancies, and to identify bispecific adaptor proteins that efficiently mediate universal CAR-T engagement, a panel of switches based on ROR1-targeting Fabs with different epitopes and affinities was compared in in vitro and in vivo models of ROR1-expressing cancers. For switches targeting overlapping or identical epitopes, potency correlated with affinity. Surprisingly, however, we identified a switch targeting a unique epitope with low affinity but mediating potent and selective antitumor activity in vitro and in vivo. Converted to a conventional CAR-T, the same anti-ROR1 mAb (324) outperformed a clinically investigated conventional CAR-T that is based on an anti-ROR1 mAb (R12) with ~200-fold higher affinity. Thus, demonstrating therapeutic utility on their own, sCAR-Ts also facilitate higher throughput screening for the identification of conventional CAR-T candidates for preclinical and clinical studies.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jakob Wachter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
44
|
McComb S, Nguyen T, Shepherd A, Henry KA, Bloemberg D, Marcil A, Maclean S, Zafer A, Gilbert R, Gadoury C, Pon RA, Sulea T, Zhu Q, Weeratna RD. Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Front Immunol 2022; 13:864868. [PMID: 35935988 PMCID: PMC9354126 DOI: 10.3389/fimmu.2022.864868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.
Collapse
Affiliation(s)
- Scott McComb
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Scott McComb,
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Alex Shepherd
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Anne Marcil
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Susanne Maclean
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Department of Bioengineering, McGill University, Montréal, QC, Canada
| | - Christine Gadoury
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Robert A. Pon
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Qin Zhu
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| | - Risini D. Weeratna
- Human Health Therapeutics Research Centre, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
45
|
Schoutrop E, Renken S, Micallef Nilsson I, Hahn P, Poiret T, Kiessling R, Wickström SL, Mattsson J, Magalhaes I. Trogocytosis and fratricide killing impede MSLN-directed CAR T cell functionality. Oncoimmunology 2022; 11:2093426. [PMID: 35898704 PMCID: PMC9313125 DOI: 10.1080/2162402x.2022.2093426] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Successful translation of chimeric antigen receptor (CAR) T cell therapy for the treatment of solid tumors has proved to be troublesome, mainly due to the complex tumor microenvironment promoting T cell dysfunction and antigen heterogeneity. Mesothelin (MSLN) has emerged as an attractive target for CAR T cell therapy of several solid malignancies, including ovarian cancer. To improve clinical response rates with MSLN-CAR T cells, a better understanding of the mechanisms impacting CAR T cell functionality in vitro is crucial. Here, we demonstrated superior cytolytic capacity of CD28-costimulated MSLN-CAR T cells (M28z) relative to 4–1BB-costimulated MSLN-CAR T cells (MBBz). Furthermore, CD28-costimulated MSLN CAR T cells displayed enhanced cytolytic capacity against tumor spheroids with heterogeneous MSLN expression compared to MBBz CAR T cells. In this study, we identified CAR-mediated trogocytosis as a potential impeding factor for successful MSLN-CAR T cell therapy due to fratricide killing and contributing to tumor antigen heterogeneity. Moreover, we link antigen-dependent upregulation of LAG-3 with reduced CAR T cell functionality. Taken together, our study highlights the therapeutic potential and bottlenecks of MSLN-CAR T cells, providing a rationale for combinatorial treatment strategies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Renken
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Paula Hahn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Poiret
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Cancer Centre and University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
46
|
Abstract
Blood cell analysis is essential for the diagnosis and identification of hematological malignancies. The use of digital microscopy systems has been extended in clinical laboratories. Super-resolution microscopy (SRM) has attracted wide attention in the medical field due to its nanoscale spatial resolution and high sensitivity. It is considered to be a potential method of blood cell analysis that may have more advantages than traditional approaches such as conventional optical microscopy and hematology analyzers in certain examination projects. In this review, we firstly summarize several common blood cell analysis technologies in the clinic, and analyze the advantages and disadvantages of these technologies. Then, we focus on the basic principles and characteristics of three representative SRM techniques, as well as the latest advances in these techniques for blood cell analysis. Finally, we discuss the developmental trend and possible research directions of SRM, and provide some discussions on further development of technologies for blood cell analysis.
Collapse
|
47
|
Wang Y, Cao J, Gu W, Shi M, Lan J, Yan Z, Jin L, Xia J, Ma S, Liu Y, Li H, Pan B, Chen W, Fei X, Wang C, Xie X, Yu L, Wang G, Li H, Jing G, Cheng H, Zhu F, Sun H, Sang W, Li D, Li Z, Zheng J, Xu K. Long-Term Follow-Up of Combination of B-Cell Maturation Antigen and CD19 Chimeric Antigen Receptor T Cells in Multiple Myeloma. J Clin Oncol 2022; 40:2246-2256. [PMID: 35333600 DOI: 10.1200/jco.21.01676] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE A combination of anti-B-cell maturation antigen (BCMA) and anti-CD19 chimeric antigen receptor (CAR) T cells induced high response rates in patients with relapsed or refractory (R/R) multiple myeloma (MM), but long-term outcomes have not been assessed yet. PATIENTS AND METHODS In this single-arm, phase II trial, patients with R/R MM received a combination of anti-BCMA CAR T cells and anti-CD19 CAR T cells at a dose of 1 × 106 cells/kg, after receiving a conditioning chemotherapy consisting of cyclophosphamide and fludarabine. The overall response, long-term outcomes, and safety were assessed, as were their associations with clinical and disease characteristics. RESULTS Of 69 enrolled patients, 62 received the combined infusion of anti-BCMA and anti-CD19 CAR T cells with a median follow-up of 21.3 months. The overall response rate was 92% (57/62), and complete response or better was observed in 37 patients (60%). Minimal residual disease-negativity was confirmed in 77% (43/56) of the patients with available minimal residual disease detection. The estimated median duration of response was 20.3 months (95% CI, 9.1 to 31.5). The median progression-free survival was 18.3 months (95% CI, 9.9 to 26.7), and the median overall survival was not reached. Patients with extramedullary disease had significantly inferior survival. Fifty-nine patients (95%) had cytokine release syndrome, with 10% grade 3 or higher. Neurotoxic events occurred in seven patients (11%), including 3% grade 3 or higher. Late adverse effects were rare, except for B-cell aplasia, hypogammaglobulinemia, and infections. CONCLUSION The combination of anti-BCMA and anti-CD19 CAR T cells induced durable response in patients with R/R MM, with a median progression-free survival of 18.3 months and a manageable long-term safety profile.
Collapse
Affiliation(s)
- Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated to Suzhou University, Changzhou, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jianping Lan
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Zhiling Yan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Lai Jin
- Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jieyun Xia
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Sha Ma
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Yang Liu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Hujun Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Bin Pan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Wei Chen
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Xiaoming Fei
- Department of Hematology, the Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunling Wang
- Department of Hematology, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaobao Xie
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated to Suzhou University, Changzhou, China
| | - Liang Yu
- Department of Hematology, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Hai Cheng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Feng Zhu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Haiying Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Wei Sang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Depeng Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of Bone Marrow Stem Cells, Xuzhou, Jiangsu, China
| |
Collapse
|
48
|
Woythe L, Madhikar P, Feiner-Gracia N, Storm C, Albertazzi L. A Single-Molecule View at Nanoparticle Targeting Selectivity: Correlating Ligand Functionality and Cell Receptor Density. ACS NANO 2022; 16:3785-3796. [PMID: 35274534 PMCID: PMC8945370 DOI: 10.1021/acsnano.1c08277] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibody-functionalized nanoparticles (NPs) are commonly used to increase the targeting selectivity toward cells of interest. At a molecular level, the number of functional antibodies on the NP surface and the density of receptors on the target cell determine the targeting interaction. To rationally develop selective NPs, the single-molecule quantitation of both parameters is highly desirable. However, techniques able to count molecules with a nanometric resolution are scarce. Here, we developed a labeling approach to quantify the number of functional cetuximabs conjugated to NPs and the expression of epidermal growth factor receptors (EGFRs) in breast cancer cells using direct stochastic optical reconstruction microscopy (dSTORM). The single-molecule resolution of dSTORM allows quantifying molecules at the nanoscale, giving a detailed insight into the distributions of individual NP ligands and cell receptors. Additionally, we predicted the fraction of accessible antibody-conjugated NPs using a geometrical model, showing that the total number exceeds the accessible number of antibodies. Finally, we correlated the NP functionality, cell receptor density, and NP uptake to identify the highest cell uptake selectivity regimes. We conclude that single-molecule functionality mapping using dSTORM provides a molecular understanding of NP targeting, aiding the rational design of selective nanomedicines.
Collapse
Affiliation(s)
- Laura Woythe
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5612AZ, The Netherlands
| | - Pranav Madhikar
- Department
of Applied Physics, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Natalia Feiner-Gracia
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, Eindhoven 5612AZ, The Netherlands
| | - Cornelis Storm
- Department
of Applied Physics, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08036, Spain
- E-mail:
| |
Collapse
|
49
|
Kinkhabwala A, Herbel C, Pankratz J, Yushchenko DA, Rüberg S, Praveen P, Reiß S, Rodriguez FC, Schäfer D, Kollet J, Dittmer V, Martinez-Osuna M, Minnerup L, Reinhard C, Dzionek A, Rockel TD, Borbe S, Büscher M, Krieg J, Nederlof M, Jungblut M, Eckardt D, Hardt O, Dose C, Schumann E, Peters RP, Miltenyi S, Schmitz J, Müller W, Bosio A. MACSima imaging cyclic staining (MICS) technology reveals combinatorial target pairs for CAR T cell treatment of solid tumors. Sci Rep 2022; 12:1911. [PMID: 35115587 PMCID: PMC8813936 DOI: 10.1038/s41598-022-05841-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022] Open
Abstract
Many critical advances in research utilize techniques that combine high-resolution with high-content characterization at the single cell level. We introduce the MICS (MACSima Imaging Cyclic Staining) technology, which enables the immunofluorescent imaging of hundreds of protein targets across a single specimen at subcellular resolution. MICS is based on cycles of staining, imaging, and erasure, using photobleaching of fluorescent labels of recombinant antibodies (REAfinity Antibodies), or release of antibodies (REAlease Antibodies) or their labels (REAdye_lease Antibodies). Multimarker analysis can identify potential targets for immune therapy against solid tumors. With MICS we analysed human glioblastoma, ovarian and pancreatic carcinoma, and 16 healthy tissues, identifying the pair EPCAM/THY1 as a potential target for chimeric antigen receptor (CAR) T cell therapy for ovarian carcinoma. Using an Adapter CAR T cell approach, we show selective killing of cells only if both markers are expressed. MICS represents a new high-content microscopy methodology widely applicable for personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Rüberg
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Sandy Reiß
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Daniel Schäfer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Jutta Kollet
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Vera Dittmer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | | | | | - Stefan Borbe
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martin Büscher
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Jürgen Krieg
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michel Nederlof
- Qi Biotech, Inc., 12261 Beestone Lane, Raleigh, NC, 27614, USA
| | | | | | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christian Dose
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Eik Schumann
- Miltenyi Imaging GmbH, Radolfzell am Bodensee, Germany
| | | | | | - Jürgen Schmitz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Werner Müller
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.,Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
50
|
Xu R, Dang D, Wang Z, Zhou Y, Xu Y, Zhao Y, Wang X, Yang Z, Meng L. Facilely prepared aggregation-induced emission (AIE) nanocrystals with deep-red emission for super-resolution imaging. Chem Sci 2022; 13:1270-1280. [PMID: 35222910 PMCID: PMC8809421 DOI: 10.1039/d1sc04254h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Organic nanocrystals (NCs) with high brightness are highly desirable for biological imaging. However, the preparation of NCs by a facile and fast method is still challenging. Herein, an aggregation-induced emission (AIE) luminogen of 4,4'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-bis(4-methoxyphenyl)aniline) (DTPA-BT-F) in the deep-red region is designed with intensive crystalline features to obtain NCs by kinetically controlled nanoprecipitation. The prepared AIE NCs with high brightness and good photo-stability are then applied in super-resolution imaging via stimulated emission depletion (STED) nanoscopy. As observed, the nanostructures in lysosomes of both fixed and live cells are well visualized with superior lateral resolutions under STED nanoscopy (full width at half maximum values, 107 and 108 nm) in contrast to that in confocal imaging (548 and 740 nm). More importantly, dynamic monitoring and long-term tracking of lysosomal movements in live HeLa cells, such as lysosomal contact, can also be carried out by using DTPA-BT-F NCs at a superior resolution. To the best of our knowledge, this is the first case of AIE NCs prepared by nanoprecipitation for STED nanoscopy, thus providing a new strategy to develop high performance imaging agents for super-resolution imaging.
Collapse
Affiliation(s)
- Ruohan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Dongfeng Dang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yu Zhou
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yanzi Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yizhen Zhao
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Xiaochi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|