1
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Ito KK, Takumi K, Matsuhashi K, Sakamoto H, Nagai K, Fukuyama M, Yamamoto S, Chinen T, Hata S, Kitagawa D. Multimodal mechanisms of human centriole engagement and disengagement. EMBO J 2025; 44:1294-1321. [PMID: 39905228 PMCID: PMC11876316 DOI: 10.1038/s44318-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Centrioles are unique cellular structures that replicate to produce identical copies, ensuring accurate chromosome segregation during mitosis. A new centriole, the "daughter", is assembled adjacent to an existing "mother" centriole. Only after the daughter centriole is fully developed as a complete replica, does it disengage and become the core of a new functional centrosome. The mechanisms preventing precocious disengagement of the immature daughter centriole have remained unclear. Here, we identify three key mechanisms maintaining mother-daughter centriole engagement: the cartwheel, the torus, and the pericentriolar material (PCM). Among these, the torus critically establishes the characteristic orthogonal engagement. We also demonstrate that engagement mediated by the cartwheel and torus is progressively released during centriole maturation. This release involves structural changes in the daughter, known as centriole blooming and distancing, respectively. Disrupting these structural transitions blocks subsequent steps, preventing centriole disengagement and centrosome conversion in the G1 phase. This study provides a comprehensive understanding of how the maturing daughter centriole progressively disengages from its mother through multiple steps, ensuring its complete structure and conversion into an independent centrosome.
Collapse
Grants
- 18K06246,19H05651,20K15987,20K22701,21H02623,21J22462,22H02629,22K20624,22KJ0633,22KJ0687,23K14176,23KJ0800,23H02627,24K02174 MEXT | Japan Society for the Promotion of Science (JSPS)
- 24H02284 MEXT | Japan Society for the Promotion of Science (JSPS)
- JPMJPR21EC MEXT | JST | Precursory Research for Embryonic Science and Technology (PRESTO)
- JPMJCR22E1 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- Naito Foundation (内藤記念科学振興財団)
- Tokyo Foundation for Pharmaceutical Sciences
- Astellas Foundation for Research on Metabolic Disorders
- Takeda Science Foundation (TSF)
- Uehara Memorial Foundation (UMF)
- The Research Foundation for Pharmaceutical Sciences
- Koyanagi Zaidan
- Kanae Foundation for the Promotion of Medical Science (Kanae Foundation)
- Kato Memorial Bioscience Foundation
- Heiwa Nakajima Foundation (HNF)
- Sumitomo Foundation (SF)
- Inamori Foundation
Collapse
Affiliation(s)
- Kei K Ito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kasuga Takumi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Kyohei Matsuhashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan
| | - Kaho Nagai
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666, Saitama, Japan.
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Sparr C, Meitinger F. Prolonged mitosis: A key indicator for detecting stressed and damaged cells. Curr Opin Cell Biol 2025; 92:102449. [PMID: 39721293 DOI: 10.1016/j.ceb.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
During mitosis, chromosomes condense, align to form a metaphase plate and segregate to the two daughter cells. Mitosis is one of the most complex recurring transformations in the life of a cell and requires a high degree of reliability to ensure the error-free transmission of genetic information to the next cell generation. An abnormally prolonged mitosis indicates potential defects that compromise genomic integrity. The mitotic stopwatch pathway detects even moderately prolonged mitoses by integrating memories of mitotic durations, ultimately leading to p53-mediated cell cycle arrest or death. This mechanism competes with mitogen signaling to stop the proliferation of damaged and potentially dangerous cells at a pre-oncogenic stage. Mitosis is a highly vulnerable phase, which is affected by multiple types of cellular damages and diverse stresses. We discuss the hypothesis that the duration of mitosis serves as an indicator of cell health.
Collapse
Affiliation(s)
- Carmen Sparr
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
| |
Collapse
|
4
|
Qu Y, Loh KM. Can developmental signals shatter or mend our genomes? Trends Genet 2024; 40:993-994. [PMID: 39510942 DOI: 10.1016/j.tig.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Consensus holds that most cells in the embryo are genetically identical and have healthy genomes. However, embryonic cells with abnormal chromosomes are surprisingly frequent. In a recent publication, de Jaime-Soguero et al. report that extracellular developmental signaling pathways, including BMP, FGF, and WNT, can promote or prevent chromosome instability in certain cell types.
Collapse
Affiliation(s)
- Yimiao Qu
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Department of Developmental Biology, Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Guo X, Cao Y, Shi X, Xing J, Feng C, Wang T. Evaluating the prognostic potential of telomerase signature in breast cancer through advanced machine learning model. Front Immunol 2024; 15:1462953. [PMID: 39669558 PMCID: PMC11634871 DOI: 10.3389/fimmu.2024.1462953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
Background Breast cancer prognosis remains a significant challenge due to the disease's molecular heterogeneity and complexity. Accurate predictive models are critical for improving patient outcomes and tailoring personalized therapies. Methods We developed a Machine Learning-assisted Telomerase Signature (MLTS) by integrating multi-omics data from nine independent breast cancer datasets. Using multiple machine learning algorithms, we identified six telomerase-related genes significantly associated with patient survival. The predictive performance of MLTS was evaluated against 66 existing breast cancer prognostic models across diverse cohorts. Results The MLTS demonstrated superior predictive accuracy, stability, and reliability compared to other models. Patients with high MLTS scores exhibited increased tumor mutational burden, chromosomal instability, and poor survival outcomes. Single-cell RNA sequencing analysis further revealed higher MLTS scores in aneuploid tumor cells, suggesting a role in cancer progression. Immune profiling indicated distinct tumor microenvironment characteristics associated with MLTS scores, potentially guiding therapeutic decisions. Conclusions Our findings highlight the utility of MLTS as a robust prognostic biomarker for breast cancer. The ability of MLTS to predict patient outcomes and its association with key genomic and cellular features underscore its potential as a target for personalized therapy. Future research may focus on integrating MLTS with additional molecular signatures to enhance its clinical application in precision oncology.
Collapse
Affiliation(s)
- Xiao Guo
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Yuyan Cao
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Xinlin Shi
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Jiaying Xing
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Chuanbo Feng
- School of Pharmacy, Beihua University, Jilin, Jilin, China
| | - Tao Wang
- Research Laboratory Center, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Kumari L, Sreedharanunni S, Dahiya D, Dey P, Bhatia A. High prevalence of chromosome 17 in breast cancer micronuclei: a means to get rid of tumor suppressors? Hum Cell 2024; 38:5. [PMID: 39438374 DOI: 10.1007/s13577-024-01143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Micronuclei (MN), defined as small extra-nuclear chromatin bodies enclosed by a nuclear envelope, serve as noticeable markers of chromosomal instability (CIN). The MN have been used for breast cancer (BC) screening, diagnosis, and prognosis. However, more recently they have gained attention as seats for active chromosomal rearrangements. BC subtypes exhibit differential CIN levels and aggressiveness. This study aimed to investigate MN chromosomal contents across BC subtypes, exploring its potential role in aggressiveness and pathogenesis. Immunostaining of BC cells was performed with anti-centromeric antibody followed by confocal microscopy. Further, fluorescence in situ hybridization (FISH) was done to check the presence of specific chromosomes in the MN. The real time PCR was also done from the RNA isolated from MN to check the expression of TP53 gene. BC cell lines (CLs) showed the presence of both centromere-positive ( +) and -negative ( -) MN, with significant variation in frequency among hormone and human epidermal growth factor receptor positive and triple-negative (TN) BC cells. FISH targeting chromosomes 1, 3, 8, 11, and 17 detected centromeric signals for all the above chromosomes in MN with a relatively higher prevalence of chromosome 17 in all the CLs. Out of all the CLs, TNBC cells demonstrated the highest frequency of centromere + and chromosome 17 + MN. TP53 expression could also be demonstrated inside the MN by FISH and real time PCR. Patient sample imprints also confirmed the presence of chromosome 17 in MN with polysomy of the same in corresponding nuclei. The high prevalence of chromosome 17 in BC MN may connote the importance of its rearrangements in the pathogenesis of BC. Further, the higher prevalence of chromosome 17 and 1 signals in TNBC MN point towards the significance of pathogenetic events involving the genes located in these chromosomes in evolution of this more aggressive phenotype.
Collapse
Affiliation(s)
- Laxmi Kumari
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pranab Dey
- Department of Cytology and Gynaecological Pathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Dwivedi D, Meraldi P. Balancing Plk1 activity levels: The secret of synchrony between the cell and the centrosome cycle. Bioessays 2024; 46:e2400048. [PMID: 39128131 DOI: 10.1002/bies.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The accuracy of cell division requires precise regulation of the cellular machinery governing DNA/genome duplication, ensuring its equal distribution among the daughter cells. The control of the centrosome cycle is crucial for the formation of a bipolar spindle, ensuring error-free segregation of the genome. The cell and centrosome cycles operate in close synchrony along similar principles. Both require a single duplication round in every cell cycle, and both are controlled by the activity of key protein kinases. Nevertheless, our comprehension of the precise cellular mechanisms and critical regulators synchronizing these two cycles remains poorly defined. Here, we present our hypothesis that the spatiotemporal regulation of a dynamic equilibrium of mitotic kinases activities forms a molecular clock that governs the synchronous progression of both the cell and the centrosome cycles.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Devillers R, Dos Santos A, Destombes Q, Laplante M, Elowe S. Recent insights into the causes and consequences of chromosome mis-segregation. Oncogene 2024; 43:3139-3150. [PMID: 39278989 DOI: 10.1038/s41388-024-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Mitotic cells face the challenging task of ensuring accurate and equal segregation of their duplicated, condensed chromosomes between the nascent daughter cells. Errors in the process result in chromosome missegregation, a significant consequence of which is the emergence of aneuploidy-characterized by an imbalance in chromosome number-and the associated phenomenon of chromosome instability (CIN). Aneuploidy and CIN are common features of cancer, which leverages them to promote genome heterogeneity and plasticity, thereby facilitating rapid tumor evolution. Recent research has provided insights into how mitotic errors shape cancer genomes by inducing both numerical and structural chromosomal changes that drive tumor initiation and progression. In this review, we survey recent findings regarding the mitotic causes and consequences of aneuploidy. We discuss new findings into the types of chromosome segregation errors that lead to aneuploidy and novel pathways that protect genome integrity during mitosis. Finally, we describe new developments in our understanding of the immediate consequences of chromosome mis-segregation on the genome stability of daughter cells.
Collapse
Affiliation(s)
- Romain Devillers
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Alexsandro Dos Santos
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Quentin Destombes
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de Recherche sur le Cancer, CHU de Québec-Université Laval, Québec City, QC, Canada.
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe de reproduction, santé de la mère et de l'enfant, Québec, QC, Canada.
- Regroupement Québécois de Recherche sur la Fonction, L'ingénierie et les Applications des Protéines, Québec, Canada.
- Département de Pédiatrie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
9
|
Edwards F, Fantozzi G, Simon AY, Morretton JP, Herbette A, Tijhuis AE, Wardenaar R, Foulane S, Gemble S, Spierings DC, Foijer F, Mariani O, Vincent-Salomon A, Roman-Roman S, Sastre-Garau X, Goundiam O, Basto R. Centrosome amplification primes ovarian cancer cells for apoptosis and potentiates the response to chemotherapy. PLoS Biol 2024; 22:e3002759. [PMID: 39236086 PMCID: PMC11441705 DOI: 10.1371/journal.pbio.3002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/30/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
Centrosome amplification is a feature of cancer cells associated with chromosome instability and invasiveness. Enhancing chromosome instability and subsequent cancer cell death via centrosome unclustering and multipolar divisions is an aimed-for therapeutic approach. Here, we show that centrosome amplification potentiates responses to conventional chemotherapy in addition to its effect on multipolar divisions and chromosome instability. We perform single-cell live imaging of chemotherapy responses in epithelial ovarian cancer cell lines and observe increased cell death when centrosome amplification is induced. By correlating cell fate with mitotic behaviors, we show that enhanced cell death can occur independently of chromosome instability. We identify that cells with centrosome amplification are primed for apoptosis. We show they are dependent on the apoptotic inhibitor BCL-XL and that this is not a consequence of mitotic stresses associated with centrosome amplification. Given the multiple mechanisms that promote chemotherapy responses in cells with centrosome amplification, we assess such a relationship in an epithelial ovarian cancer patient cohort. We show that high centrosome numbers associate with improved treatment responses and longer overall survival. Our work identifies apoptotic priming as a clinically relevant consequence of centrosome amplification, expanding our understanding of this pleiotropic cancer cell feature.
Collapse
Affiliation(s)
- Frances Edwards
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Giulia Fantozzi
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Anthony Y. Simon
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Jean-Philippe Morretton
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Aurelie Herbette
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stacy Foulane
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Simon Gemble
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | | | - Oumou Goundiam
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Renata Basto
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| |
Collapse
|
10
|
Al-Rawi DH, Lettera E, Li J, DiBona M, Bakhoum SF. Targeting chromosomal instability in patients with cancer. Nat Rev Clin Oncol 2024; 21:645-659. [PMID: 38992122 DOI: 10.1038/s41571-024-00923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and a driver of metastatic dissemination, therapeutic resistance, and immune evasion. CIN is present in 60-80% of human cancers and poses a formidable therapeutic challenge as evidenced by the lack of clinically approved drugs that directly target CIN. This limitation in part reflects a lack of well-defined druggable targets as well as a dearth of tractable biomarkers enabling direct assessment and quantification of CIN in patients with cancer. Over the past decade, however, our understanding of the cellular mechanisms and consequences of CIN has greatly expanded, revealing novel therapeutic strategies for the treatment of chromosomally unstable tumours as well as new methods of assessing the dynamic nature of chromosome segregation errors that define CIN. In this Review, we describe advances that have shaped our understanding of CIN from a translational perspective, highlighting both challenges and opportunities in the development of therapeutic interventions for patients with chromosomally unstable cancers.
Collapse
Affiliation(s)
- Duaa H Al-Rawi
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emanuele Lettera
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jun Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Melody DiBona
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel F Bakhoum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Thomas A, Meraldi P. Centrosome age breaks spindle size symmetry even in cells thought to divide symmetrically. J Cell Biol 2024; 223:e202311153. [PMID: 39012627 PMCID: PMC11252449 DOI: 10.1083/jcb.202311153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 07/17/2024] Open
Abstract
Centrosomes are the main microtubule-organizing centers in animal cells. Due to the semiconservative nature of centrosome duplication, the two centrosomes differ in age. In asymmetric stem cell divisions, centrosome age can induce an asymmetry in half-spindle lengths. However, whether centrosome age affects the symmetry of the two half-spindles in tissue culture cells thought to divide symmetrically is unknown. Here, we show that in human epithelial and fibroblastic cell lines centrosome age imposes a mild spindle asymmetry that leads to asymmetric cell daughter sizes. At the mechanistic level, we show that this asymmetry depends on a cenexin-bound pool of the mitotic kinase Plk1, which favors the preferential accumulation on old centrosomes of the microtubule nucleation-organizing proteins pericentrin, γ-tubulin, and Cdk5Rap2, and microtubule regulators TPX2 and ch-TOG. Consistently, we find that old centrosomes have a higher microtubule nucleation capacity. We postulate that centrosome age breaks spindle size symmetry via microtubule nucleation even in cells thought to divide symmetrically.
Collapse
Affiliation(s)
- Alexandre Thomas
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Técher H, Gopaul D, Heuzé J, Bouzalmad N, Leray B, Vernet A, Mettling C, Moreaux J, Pasero P, Lin YL. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat Commun 2024; 15:5423. [PMID: 38926338 PMCID: PMC11208572 DOI: 10.1038/s41467-024-49740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-β was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, CNRS UMR7284 - INSERM U1081, Nice, France
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jonathan Heuzé
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Nail Bouzalmad
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Baptiste Leray
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Audrey Vernet
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jérôme Moreaux
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
14
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
15
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
Tuppurainen H, Laurila N, Nätynki M, Eshraghi L, Tervasmäki A, Erichsen L, Sørensen CS, Pylkäs K, Winqvist R, Peltoketo H. PALB2-mutated human mammary cells display a broad spectrum of morphological and functional abnormalities induced by increased TGFβ signaling. Cell Mol Life Sci 2024; 81:173. [PMID: 38597967 PMCID: PMC11006627 DOI: 10.1007/s00018-024-05183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/11/2024]
Abstract
Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFβ signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.
Collapse
Affiliation(s)
- Hanna Tuppurainen
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Niina Laurila
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjut Nätynki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Leila Eshraghi
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Garvan Institute of Medical Research, Sydney, Australia
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Louisa Erichsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - Hellevi Peltoketo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
17
|
Kawabata T, Sekiya R, Goto S, Li TS. Chronic replication stress invokes mitochondria dysfunction via impaired parkin activity. Sci Rep 2024; 14:7877. [PMID: 38570643 PMCID: PMC10991263 DOI: 10.1038/s41598-024-58656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/02/2024] [Indexed: 04/05/2024] Open
Abstract
Replication stress is a major contributor to tumorigenesis because it provides a source of chromosomal rearrangements via recombination events. PARK2, which encodes parkin, a regulator of mitochondrial homeostasis, is located on one of the common fragile sites that are prone to rearrangement by replication stress, indicating that replication stress may potentially impact mitochondrial homeostasis. Here, we show that chronic low-dose replication stress causes a fixed reduction in parkin expression, which is associated with mitochondrial dysfunction, indicated by an increase in mtROS. Consistent with the major role of parkin in mitophagy, reduction in parkin protein expression was associated with a slight decrease in mitophagy and changes in mitochondrial morphology. In contrast, cells expressing ectopic PARK2 gene does not show mtROS increases and changes in mitochondrial morphology even after exposure to chronic replication stress, suggesting that intrinsic fragility at PARK2 loci associated with parkin reduction is responsible for mitochondrial dysfunction caused by chronic replication stress. As endogenous replication stress and mitochondrial dysfunction are both involved in multiple pathophysiology, our data support the therapeutic development of recovery of parkin expression in human healthcare.
Collapse
Affiliation(s)
- Tsuyoshi Kawabata
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.
| | - Reiko Sekiya
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shinji Goto
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
19
|
Zekušić M, Bujić Mihica M, Skoko M, Vukušić K, Risteski P, Martinčić J, Tolić IM, Bendelja K, Ramić S, Dolenec T, Vrgoč Zimić I, Puljić D, Petric Vicković I, Iveković R, Batarilo I, Prosenc Zmrzljak U, Hoffmeister A, Vučemilo T. New characterization and safety evaluation of human limbal stem cells used in clinical application: fidelity of mitotic process and mitotic spindle morphologies. Stem Cell Res Ther 2023; 14:368. [PMID: 38093301 PMCID: PMC10720168 DOI: 10.1186/s13287-023-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Limbal stem cells (LSCs) are crucial for the regeneration of the corneal epithelium in patients with limbal stem cell deficiency (LSCD). Thus, LSCs during cultivation in vitro should be in highly homogeneous amounts, while potency and expression of stemness without tumorigenesis would be desirable. Therefore, further characterization and safety evaluation of engineered limbal grafts is required to provide safe and high-quality therapeutic applications. METHODS After in vitro expansion, LSCs undergo laboratory characterization in a single-cell suspension, cell culture, and in limbal grafts before transplantation. Using a clinically applicable protocol, the data collected on LSCs at passage 1 were summarized, including: identity (cell size, morphology); potency (yield, viability, population doubling time, colony-forming efficiency); expression of putative stem cell markers through flow cytometry, immunofluorescence, and immunohistochemistry. Then, mitotic chromosome stability and normal mitotic outcomes were explored by using live-cell imaging. Finally, impurities, bacterial endotoxins and sterility were determined. RESULTS Expression of the stemness marker p63 in single-cell suspension and in cell culture showed high values by different methods. Limbal grafts showed p63-positive cells (78.7 ± 9.4%), Ki67 proliferation (41.7 ± 15.9%), while CK3 was negative. Impurity with 3T3 feeder cells and endotoxins was minimized. We presented mitotic spindles with a length of 11.40 ± 0.54 m and a spindle width of 8.05 ± 0.55 m as new characterization in LSC culture. Additionally, live-cell imaging of LSCs (n = 873) was performed, and only a small fraction < 2.5% of aberrant interphase cells was observed; 2.12 ± 2.10% of mitotic spindles exhibited a multipolar phenotype during metaphase, and 3.84 ± 3.77% of anaphase cells had a DNA signal present within the spindle midzone, indicating a chromosome bridge or lagging chromosome phenotype. CONCLUSION This manuscript provides, for the first time, detailed characterization of the parameters of fidelity of the mitotic process and mitotic spindle morphologies of LSCs used in a direct clinical application. Our data show that p63-positive CK3-negative LSCs grown in vitro for clinical purposes undergo mitotic processes with extremely high fidelity, suggesting high karyotype stability. This finding confirms LSCs as a high-quality and safe therapy for eye regeneration in humans.
Collapse
Affiliation(s)
- Marija Zekušić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marina Bujić Mihica
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia.
| | - Marija Skoko
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Martinčić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, Laboratory of Immunology, University of Zagreb, Zagreb, Croatia
| | - Snježana Ramić
- Department of Oncological Pathology and Clinical Cytology 'Ljudevit Jurak', University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
| | - Tamara Dolenec
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Vrgoč Zimić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dominik Puljić
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivanka Petric Vicković
- Clinical Department of Ophthalmology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Renata Iveković
- Clinical Department of Ophthalmology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivanka Batarilo
- Department of Microbiology, Croatian Institute of Transfusion Medicine, Zagreb, Croatia
| | - Uršula Prosenc Zmrzljak
- Molecular Biology Department, BIA Separations CRO, Labena d.O.O, Ljubljana, Slovenia
- Labena d.o.o, Zagreb, Croatia
| | | | - Tiha Vučemilo
- Department of Transfusion and Regenerative Medicine, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| |
Collapse
|
20
|
Wang N, Xu S, Egli D. Replication stress in mammalian embryo development, differentiation, and reprogramming. Trends Cell Biol 2023; 33:872-886. [PMID: 37202286 PMCID: PMC11214770 DOI: 10.1016/j.tcb.2023.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Duplicating a genome of 3 billion nucleotides is challenged by a variety of obstacles that can cause replication stress and affect the integrity of the genome. Recent studies show that replication fork slowing and stalling is prevalent in early mammalian development, resulting in genome instability and aneuploidy, and constituting a barrier to development in human reproduction. Genome instability resulting from DNA replication stress is a barrier to the cloning of animals and to the reprogramming of differentiated cells to induced pluripotent stem cells, as well as a barrier to cell transformation. Remarkably, the regions most impacted by replication stress are shared in these different cellular contexts, affecting long genes and flanking intergenic areas. In this review we integrate our knowledge of DNA replication stress in mammalian embryos, in programming, and in reprogramming, and we discuss a potential role for fragile sites in sensing replication stress and restricting cell cycle progression in health and disease.
Collapse
Affiliation(s)
- Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Clerbaux LA, Cordier P, Desboeufs N, Unger K, Leary P, Semere G, Boege Y, Chan LK, Desdouets C, Lopes M, Weber A. Mcl-1 deficiency in murine livers leads to nuclear polyploidisation and mitotic errors: Implications for hepatocellular carcinoma. JHEP Rep 2023; 5:100838. [PMID: 37663116 PMCID: PMC10472239 DOI: 10.1016/j.jhepr.2023.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background & Aims Mcl-1, an antiapoptotic protein overexpressed in many tumours, including hepatocellular carcinoma (HCC), represents a promising target for cancer treatment. Although Mcl-1 non-apoptotic roles might critically influence the therapeutic potential of Mcl-1 inhibitors, these functions remain poorly understood. We aimed to investigate the effects of hepatic Mcl-1 deficiency (Mcl-1Δhep) on hepatocyte ploidy and cell cycle in murine liver in vivo and the possible implications on HCC. Methods Livers of young Mcl-1Δhep and wild-type (WT) mice were analysed for ploidy profile, mitotic figures, in situ chromosome segregation, gene set enrichment analysis and were subjected to two-thirds partial hepatectomy to assess Mcl-1 deficiency effect on cell cycle progression in vivo. Mcl-1Δhep tumours in older mice were analysed for ploidy profile, chromosomal instability, and mutational signatures via whole exome sequencing. Results In young mice, Mcl-1 deficiency leads to nuclear polyploidy and to high rates of mitotic errors with abnormal spindle figures and chromosome mis-segregation along with a prolonged spindle assembly checkpoint activation signature. Chromosomal instability and altered ploidy profile are observed in Mcl-1Δhep tumours of old mice as well as a characteristic mutational signature of currently unknown aetiology. Conclusions Our study suggests novel non-apoptotic effects of Mcl-1 deficiency on nuclear ploidy, mitotic regulation, and chromosomal segregation in hepatocytes in vivo. In addition, the Mcl-1 deficiency characteristic mutational signature might reflect mitotic issues. These results are of importance to consider when developing anti-Mcl-1 therapies to treat cancer. Impact and implications Although Mcl-1 inhibitors represent promising hepatocellular carcinoma treatment, the still poorly understood non-apoptotic roles of Mcl-1 might compromise their successful clinical application. Our study shows that Mcl-1 deficiency leads to nuclear polyploidy, mitotic errors, and aberrant chromosomal segregation in hepatocytes in vivo, whereas hepatocellular tumours spontaneously induced by Mcl-1 deficiency exhibit chromosomal instability and a mutational signature potentially reflecting mitotic issues. These results have potential implications for the development of anti-Mcl-1 therapies to treat hepatocellular carcinoma, especially as hyperproliferative liver is a clinically relevant situation.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Pierre Cordier
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Nina Desboeufs
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Munich, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Peter Leary
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
- Functional Genomics Center Zurich, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Gabriel Semere
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Yannick Boege
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Lap Kwan Chan
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée LIGUE 2023, Paris, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zürich (USZ), Zurich, Switzerland
- Institute of Molecular Cancer Research (IMCR), University of Zürich (UZH), Zurich, Switzerland
| |
Collapse
|
22
|
Dwivedi D, Harry D, Meraldi P. Mild replication stress causes premature centriole disengagement via a sub-critical Plk1 activity under the control of ATR-Chk1. Nat Commun 2023; 14:6088. [PMID: 37773176 PMCID: PMC10541884 DOI: 10.1038/s41467-023-41753-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
A tight synchrony between the DNA and centrosome cycle is essential for genomic integrity. Centriole disengagement, which licenses centrosomes for duplication, occurs normally during mitotic exit. We recently demonstrated that mild DNA replication stress typically seen in cancer cells causes premature centriole disengagement in untransformed mitotic human cells, leading to transient multipolar spindles that favour chromosome missegregation. How mild replication stress accelerates the centrosome cycle at the molecular level remained, however, unclear. Using ultrastructure expansion microscopy, we show that mild replication stress induces premature centriole disengagement already in G2 via the ATR-Chk1 axis of the DNA damage repair pathway. This results in a sub-critical Plk1 kinase activity that primes the pericentriolar matrix for Separase-dependent disassembly but is insufficient for rapid mitotic entry, causing premature centriole disengagement in G2. We postulate that the differential requirement of Plk1 activity for the DNA and centrosome cycles explains how mild replication stress disrupts the synchrony between both processes and contributes to genomic instability.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
- Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Geneva, Switzerland.
| |
Collapse
|
23
|
Song H, Kim EH, Hong J, Gwon D, Kim JW, Bae GU, Jang CY. Hornerin mediates phosphorylation of the polo-box domain in Plk1 by Chk1 to induce death in mitosis. Cell Death Differ 2023; 30:2151-2166. [PMID: 37596441 PMCID: PMC10482915 DOI: 10.1038/s41418-023-01208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 08/20/2023] Open
Abstract
The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.
Collapse
Affiliation(s)
- Haiyu Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Jihee Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Dasom Gwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Chang-Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
24
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
25
|
Chang YC, Lin K, Baxley RM, Durrett W, Wang L, Stojkova O, Billmann M, Ward H, Myers CL, Bielinsky AK. RNF4 and USP7 cooperate in ubiquitin-regulated steps of DNA replication. Open Biol 2023; 13:230068. [PMID: 37607592 PMCID: PMC10444366 DOI: 10.1098/rsob.230068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
DNA replication requires precise regulation achieved through post-translational modifications, including ubiquitination and SUMOylation. These modifications are linked by the SUMO-targeted E3 ubiquitin ligases (STUbLs). Ring finger protein 4 (RNF4), one of only two mammalian STUbLs, participates in double-strand break repair and resolving DNA-protein cross-links. However, its role in DNA replication has been poorly understood. Using CRISPR/Cas9 genetic screens, we discovered an unexpected dependency of RNF4 mutants on ubiquitin specific peptidase 7 (USP7) for survival in TP53-null retinal pigment epithelial cells. TP53-/-/RNF4-/-/USP7-/- triple knockout (TKO) cells displayed defects in DNA replication that cause genomic instability. These defects were exacerbated by the proteasome inhibitor bortezomib, which limited the nuclear ubiquitin pool. A shortage of free ubiquitin suppressed the ataxia telangiectasia and Rad3-related (ATR)-mediated checkpoint response, leading to increased cell death. In conclusion, RNF4 and USP7 work cooperatively to sustain a functional level of nuclear ubiquitin to maintain the integrity of the genome.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wesley Durrett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivera Stojkova
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Henry Ward
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
26
|
Bloomfield M, Cimini D. The fate of extra centrosomes in newly formed tetraploid cells: should I stay, or should I go? Front Cell Dev Biol 2023; 11:1210983. [PMID: 37576603 PMCID: PMC10413984 DOI: 10.3389/fcell.2023.1210983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
An increase in centrosome number is commonly observed in cancer cells, but the role centrosome amplification plays along with how and when it occurs during cancer development is unclear. One mechanism for generating cancer cells with extra centrosomes is whole genome doubling (WGD), an event that occurs in over 30% of human cancers and is associated with poor survival. Newly formed tetraploid cells can acquire extra centrosomes during WGD, and a generally accepted model proposes that centrosome amplification in tetraploid cells promotes cancer progression by generating aneuploidy and chromosomal instability. Recent findings, however, indicate that newly formed tetraploid cells in vitro lose their extra centrosomes to prevent multipolar cell divisions. Rather than persistent centrosome amplification, this evidence raises the possibility that it may be advantageous for tetraploid cells to initially restore centrosome number homeostasis and for a fraction of the population to reacquire additional centrosomes in the later stages of cancer evolution. In this review, we explore the different evolutionary paths available to newly formed tetraploid cells, their effects on centrosome and chromosome number distribution in daughter cells, and their probabilities of long-term survival. We then discuss the mechanisms that may alter centrosome and chromosome numbers in tetraploid cells and their relevance to cancer progression following WGD.
Collapse
Affiliation(s)
- Mathew Bloomfield
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| | - Daniela Cimini
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
27
|
Casimir L, Zimmer S, Racine-Brassard F, Goudreau F, Jacques PÉ, Maréchal A. Chronic treatment with ATR and CHK1 inhibitors does not substantially increase the mutational burden of human cells. Mutat Res 2023; 827:111834. [PMID: 37531716 DOI: 10.1016/j.mrfmmm.2023.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
DNA replication stress (RS) entails the frequent slow down and arrest of replication forks by a variety of conditions that hinder accurate and processive genome duplication. Elevated RS leads to genome instability, replication catastrophe and eventually cell death. RS is particularly prevalent in cancer cells and its exacerbation to unsustainable levels by chemotherapeutic agents remains a cornerstone of cancer treatments. The adverse consequences of RS are normally prevented by the ATR and CHK1 checkpoint kinases that stabilize stressed forks, suppress origin firing and promote cell cycle arrest when replication is perturbed. Specific inhibitors of these kinases have been developed and shown to potentiate RS and cell death in multiple in vitro cancer settings. Ongoing clinical trials are now probing their efficacy against various cancer types, either as single agents or in combination with mainstay chemotherapeutics. Despite their promise as valuable additions to the anti-cancer pharmacopoeia, we still lack a genome-wide view of the potential mutagenicity of these new drugs. To investigate this question, we performed chronic long-term treatments of TP53-depleted human cancer cells with ATR and CHK1 inhibitors (ATRi, AZD6738/ceralasertib and CHK1i, MK8776/SCH-900776). ATR or CHK1 inhibition did not significantly increase the mutational burden of cells, nor generate specific mutational signatures. Indeed, no notable changes in the numbers of base substitutions, short insertions/deletions and larger scale rearrangements were observed despite induction of replication-associated DNA breaks during treatments. Interestingly, ATR inhibition did induce a slight increase in closely-spaced mutations, a feature previously attributed to translesion synthesis DNA polymerases. The results suggest that ATRi and CHK1i do not have substantial mutagenic effects in vitro when used as standalone agents.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Félix Goudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke J1K 2R1, QC, Canada; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1K 2R1, QC, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke J1H 5N3, QC, Canada.
| |
Collapse
|
28
|
Sanz-Gómez N, González-Álvarez M, De Las Rivas J, de Cárcer G. Whole-Genome Doubling as a source of cancer: how, when, where, and why? Front Cell Dev Biol 2023; 11:1209136. [PMID: 37342233 PMCID: PMC10277508 DOI: 10.3389/fcell.2023.1209136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Chromosome instability is a well-known hallmark of cancer, leading to increased genetic plasticity of tumoral cells, which favors cancer aggressiveness, and poor prognosis. One of the main sources of chromosomal instability are events that lead to a Whole-Genome Duplication (WGD) and the subsequently generated cell polyploidy. In recent years, several studies showed that WGD occurs at the early stages of cell transformation, which allows cells to later become aneuploid, thus leading to cancer progression. On the other hand, other studies convey that polyploidy plays a tumor suppressor role, by inducing cell cycle arrest, cell senescence, apoptosis, and even prompting cell differentiation, depending on the tissue cell type. There is still a gap in understanding how cells that underwent WGD can overcome the deleterious effect on cell fitness and evolve to become tumoral. Some laboratories in the chromosomal instability field recently explored this paradox, finding biomarkers that modulate polyploid cells to become oncogenic. This review brings a historical view of how WGD and polyploidy impact cell fitness and cancer progression, and bring together the last studies that describe the genes helping cells to adapt to polyploidy.
Collapse
Affiliation(s)
- Natalia Sanz-Gómez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - María González-Álvarez
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo de Cárcer
- Cell Cycle and Cancer Biomarkers Laboratory, Cancer Biology Department, Instituto de Investigaciones Biomédicas “Alberto Sols“. (IIBM) CSIC-UAM, Madrid, Spain
| |
Collapse
|
29
|
Garribba L, De Feudis G, Martis V, Galli M, Dumont M, Eliezer Y, Wardenaar R, Ippolito MR, Iyer DR, Tijhuis AE, Spierings DCJ, Schubert M, Taglietti S, Soriani C, Gemble S, Basto R, Rhind N, Foijer F, Ben-David U, Fachinetti D, Doksani Y, Santaguida S. Short-term molecular consequences of chromosome mis-segregation for genome stability. Nat Commun 2023; 14:1353. [PMID: 36906648 PMCID: PMC10008630 DOI: 10.1038/s41467-023-37095-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/01/2023] [Indexed: 03/13/2023] Open
Abstract
Chromosome instability (CIN) is the most common form of genome instability and is a hallmark of cancer. CIN invariably leads to aneuploidy, a state of karyotype imbalance. Here, we show that aneuploidy can also trigger CIN. We found that aneuploid cells experience DNA replication stress in their first S-phase and precipitate in a state of continuous CIN. This generates a repertoire of genetically diverse cells with structural chromosomal abnormalities that can either continue proliferating or stop dividing. Cycling aneuploid cells display lower karyotype complexity compared to the arrested ones and increased expression of DNA repair signatures. Interestingly, the same signatures are upregulated in highly-proliferative cancer cells, which might enable them to proliferate despite the disadvantage conferred by aneuploidy-induced CIN. Altogether, our study reveals the short-term origins of CIN following aneuploidy and indicates the aneuploid state of cancer cells as a point mutation-independent source of genome instability, providing an explanation for aneuploidy occurrence in tumors.
Collapse
Affiliation(s)
- Lorenza Garribba
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Giuseppina De Feudis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Valentino Martis
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Martina Galli
- IFOM ETS - The AIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Marie Dumont
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Yonatan Eliezer
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Marica Rosaria Ippolito
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Divya Ramalingam Iyer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Andréa E Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Silvia Taglietti
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Simon Gemble
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Nick Rhind
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ylli Doksani
- IFOM ETS - The AIRC Institute of Molecular Oncology, via Adamello 16, 20139, Milan, Italy
| | - Stefano Santaguida
- Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy.
| |
Collapse
|
30
|
Scotto di Carlo F, Russo S, Muyas F, Mangini M, Garribba L, Pazzaglia L, Genesio R, Biamonte F, De Luca AC, Santaguida S, Scotlandi K, Cortés-Ciriano I, Gianfrancesco F. Profilin 1 deficiency drives mitotic defects and reduces genome stability. Commun Biol 2023; 6:9. [PMID: 36599901 PMCID: PMC9813376 DOI: 10.1038/s42003-022-04392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Profilin 1-encoded by PFN1-is a small actin-binding protein with a tumour suppressive role in various adenocarcinomas and pagetic osteosarcomas. However, its contribution to tumour development is not fully understood. Using fix and live cell imaging, we report that Profilin 1 inactivation results in multiple mitotic defects, manifested prominently by anaphase bridges, multipolar spindles, misaligned and lagging chromosomes, and cytokinesis failures. Accordingly, next-generation sequencing technologies highlighted that Profilin 1 knock-out cells display extensive copy-number alterations, which are associated with complex genome rearrangements and chromothripsis events in primary pagetic osteosarcomas with Profilin 1 inactivation. Mechanistically, we show that Profilin 1 is recruited to the spindle midzone at anaphase, and its deficiency reduces the supply of actin filaments to the cleavage furrow during cytokinesis. The mitotic defects are also observed in mouse embryonic fibroblasts and mesenchymal cells deriving from a newly generated knock-in mouse model harbouring a Pfn1 loss-of-function mutation. Furthermore, nuclear atypia is also detected in histological sections of mutant femurs. Thus, our results indicate that Profilin 1 has a role in regulating cell division, and its inactivation triggers mitotic defects, one of the major mechanisms through which tumour cells acquire chromosomal instability.
Collapse
Affiliation(s)
- Federica Scotto di Carlo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy
| | - Sharon Russo
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy ,grid.9841.40000 0001 2200 8888Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Francesc Muyas
- grid.52788.300000 0004 0427 7672European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Maria Mangini
- grid.429047.c0000 0004 6477 0469Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), National Research Council of Italy (CNR), Naples, Italy
| | - Lorenza Garribba
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Pazzaglia
- grid.419038.70000 0001 2154 6641IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Bologna, Italy
| | - Rita Genesio
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Flavia Biamonte
- grid.411489.10000 0001 2168 2547Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy ,grid.411489.10000 0001 2168 2547Center of Interdepartmental Services (CIS), Magna Graecia University, Catanzaro, Italy
| | - Anna Chiara De Luca
- grid.429047.c0000 0004 6477 0469Institute for Experimental Endocrinology and Oncology, “G. Salvatore” (IEOS), National Research Council of Italy (CNR), Naples, Italy
| | - Stefano Santaguida
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology at IEO, European Institute of Oncology IRCCS, Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Scotlandi
- grid.419038.70000 0001 2154 6641IRCCS Istituto Ortopedico Rizzoli, Laboratory of Experimental Oncology, Bologna, Italy
| | - Isidro Cortés-Ciriano
- grid.52788.300000 0004 0427 7672European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fernando Gianfrancesco
- grid.5326.20000 0001 1940 4177Institute of Genetics and Biophysics “Adriano Buzzati-Traverso” (IGB), National Research Council of Italy (CNR), Naples, Italy
| |
Collapse
|
31
|
Piezo mechanosensory channels regulate centrosome integrity and mitotic entry. Proc Natl Acad Sci U S A 2023; 120:e2213846120. [PMID: 36574677 PMCID: PMC9910506 DOI: 10.1073/pnas.2213846120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Piezo1 and 2 are evolutionarily conserved mechanosensory cation channels known to function on the cell surface by responding to external pressure and transducing a mechanically activated Ca2+ current. Here we show that both Piezo1 and 2 also exhibit concentrated intracellular localization at centrosomes. Both Piezo1 and 2 loss-of-function and Piezo1 activation by the small molecule Yoda1 result in supernumerary centrosomes, premature centriole disengagement, multi-polar spindles, and mitotic delay. By using a GFP, Calmodulin and M13 Protein fusion (GCaMP) Ca2+-sensitive reporter, we show that perturbations in Piezo modulate Ca2+ flux at centrosomes. Moreover, the inhibition of Polo-like-kinase 1 eliminates Yoda1-induced centriole disengagement. Because previous studies have implicated force generation by microtubules as essential for maintaining centrosomal integrity, we propose that mechanotransduction by Piezo maintains pericentrosomal Ca2+ within a defined range, possibly through sensing cell intrinsic forces from microtubules.
Collapse
|
32
|
Tucker JB, Bonema SC, García-Varela R, Denu RA, Hu Y, McGregor SM, Burkard ME, Weaver BA. Misaligned Chromosomes are a Major Source of Chromosomal Instability in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:54-65. [PMID: 36968230 PMCID: PMC10035514 DOI: 10.1158/2767-9764.crc-22-0302] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Chromosomal instability (CIN), the persistent reshuffling of chromosomes during mitosis, is a hallmark of human cancers that contributes to tumor heterogeneity and has been implicated in driving metastasis and altering responses to therapy. Though multiple mechanisms can produce CIN, lagging chromosomes generated from abnormal merotelic attachments are the major cause of CIN in a variety of cell lines, and are expected to predominate in cancer. Here, we quantify CIN in breast cancer using a tumor microarray, matched primary and metastatic samples, and patient-derived organoids from primary breast cancer. Surprisingly, misaligned chromosomes are more common than lagging chromosomes and represent a major source of CIN in primary and metastatic tumors. This feature of breast cancers is conserved in a majority of breast cancer cell lines. Importantly, though a portion of misaligned chromosomes align before anaphase onset, the fraction that remain represents the largest source of CIN in these cells. Metastatic breast cancers exhibit higher rates of CIN than matched primary cancers, primarily due to increases in misaligned chromosomes. Whether CIN causes immune activation or evasion is controversial. We find that misaligned chromosomes result in immune-activating micronuclei substantially less frequently than lagging and bridge chromosomes and that breast cancers with greater frequencies of lagging chromosomes and chromosome bridges recruit more stromal tumor-infiltrating lymphocytes. These data indicate misaligned chromosomes represent a major mechanism of CIN in breast cancer and provide support for differential immunostimulatory effects of specific types of CIN. Significance We surveyed the single-cell landscape of mitotic defects that generate CIN in primary and metastatic breast cancer and relevant models. Misaligned chromosomes predominate, and are less immunostimulatory than other chromosome segregation errors.
Collapse
Affiliation(s)
- John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Sarah C. Bonema
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Yang Hu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Mark E. Burkard
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
33
|
Seidel P, Rubarth A, Zodel K, Peighambari A, Neumann F, Federkiel Y, Huang H, Hoefflin R, Adlesic M, Witt C, Hoffmann DJ, Metzger P, Lindemann RK, Zenke FT, Schell C, Boerries M, von Elverfeldt D, Reichardt W, Follo M, Albers J, Frew IJ. ATR represents a therapeutic vulnerability in clear cell renal cell carcinoma. JCI Insight 2022; 7:156087. [PMID: 36413415 PMCID: PMC9869969 DOI: 10.1172/jci.insight.156087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Metastatic clear cell renal cell carcinomas (ccRCCs) are resistant to DNA-damaging chemotherapies, limiting therapeutic options for patients whose tumors are resistant to tyrosine kinase inhibitors and/or immune checkpoint therapies. Here we show that mouse and human ccRCCs were frequently characterized by high levels of endogenous DNA damage and that cultured ccRCC cells exhibited intact cellular responses to chemotherapy-induced DNA damage. We identify that pharmacological inhibition of the DNA damage-sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) with the orally administered, potent, and selective drug M4344 (gartisertib) induced antiproliferative effects in ccRCC cells. This effect was due to replication stress and accumulation of DNA damage in S phase. In some cells, DNA damage persisted into subsequent G2/M and G1 phases, leading to the frequent accumulation of micronuclei. Daily single-agent treatment with M4344 inhibited the growth of ccRCC xenograft tumors. M4344 synergized with chemotherapeutic drugs including cisplatin and carboplatin and the poly(ADP-ribose) polymerase inhibitor olaparib in mouse and human ccRCC cells. Weekly M4344 plus cisplatin treatment showed therapeutic synergy in ccRCC xenografts and was efficacious in an autochthonous mouse ccRCC model. These studies identify ATR inhibition as a potential novel therapeutic option for ccRCC.
Collapse
Affiliation(s)
- Philipp Seidel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Anne Rubarth
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Kyra Zodel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Asin Peighambari
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Felix Neumann
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Yannick Federkiel
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Hsin Huang
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Rouven Hoefflin
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Mojca Adlesic
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Christian Witt
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - David J. Hoffmann
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | | | - Ralph K. Lindemann
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christoph Schell
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF) and
| | | | - Wilfried Reichardt
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Joachim Albers
- Translational Innovation Platform Oncology and Immuno-Oncology, the Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Ian J. Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF) and,Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Böhly N, Schmidt AK, Zhang X, Slusarenko BO, Hennecke M, Kschischo M, Bastians H. Increased replication origin firing links replication stress to whole chromosomal instability in human cancer. Cell Rep 2022; 41:111836. [PMID: 36516748 DOI: 10.1016/j.celrep.2022.111836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and comprises structural CIN (S-CIN) and numerical or whole chromosomal CIN (W-CIN). Recent work indicated that replication stress (RS), known to contribute to S-CIN, also affects mitotic chromosome segregation, possibly explaining the common co-existence of S-CIN and W-CIN in human cancer. Here, we show that RS-induced increased origin firing is sufficient to trigger W-CIN in human cancer cells. We discovered that overexpression of origin firing genes, including GINS1 and CDC45, correlates with W-CIN in human cancer specimens and causes W-CIN in otherwise chromosomally stable human cells. Furthermore, modulation of the ATR-CDK1-RIF1 axis increases the number of firing origins and leads to W-CIN. Importantly, chromosome missegregation upon additional origin firing is mediated by increased mitotic microtubule growth rates, a mitotic defect prevalent in chromosomally unstable cancer cells. Thus, our study identifies increased replication origin firing as a cancer-relevant trigger for chromosomal instability.
Collapse
Affiliation(s)
- Nicolas Böhly
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Ann-Kathrin Schmidt
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Xiaoxiao Zhang
- University of Applied Sciences Koblenz, Department of Mathematics and Technology, 53424 Remagen, Germany; Technical University of Munich, Department of Informatics, 81675 Munich, Germany
| | - Benjamin O Slusarenko
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Magdalena Hennecke
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany
| | - Maik Kschischo
- University of Applied Sciences Koblenz, Department of Mathematics and Technology, 53424 Remagen, Germany
| | - Holger Bastians
- Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany.
| |
Collapse
|
35
|
Grange LJ, Reynolds JJ, Ullah F, Isidor B, Shearer RF, Latypova X, Baxley RM, Oliver AW, Ganesh A, Cooke SL, Jhujh SS, McNee GS, Hollingworth R, Higgs MR, Natsume T, Khan T, Martos-Moreno GÁ, Chupp S, Mathew CG, Parry D, Simpson MA, Nahavandi N, Yüksel Z, Drasdo M, Kron A, Vogt P, Jonasson A, Seth SA, Gonzaga-Jauregui C, Brigatti KW, Stegmann APA, Kanemaki M, Josifova D, Uchiyama Y, Oh Y, Morimoto A, Osaka H, Ammous Z, Argente J, Matsumoto N, Stumpel CTRM, Taylor AMR, Jackson AP, Bielinsky AK, Mailand N, Le Caignec C, Davis EE, Stewart GS. Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy. Nat Commun 2022; 13:6664. [PMID: 36333305 PMCID: PMC9636423 DOI: 10.1038/s41467-022-34349-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
Collapse
Affiliation(s)
- Laura J Grange
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - John J Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Farid Ullah
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Robert F Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xenia Latypova
- Service de Génétique Médicale, CHU Nantes, Nantes Cedex 1, France
| | - Ryan M Baxley
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex, Falmer, Brighton, UK
| | - Anil Ganesh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Sophie L Cooke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S Jhujh
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Gavin S McNee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Robert Hollingworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan
| | - Tahir Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Gabriel Á Martos-Moreno
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Michael A Simpson
- Department of Medical and Molecular Genetics, Faculty of Life Science and Medicine, Guy's Hospital, King's College London, London, UK
| | - Nahid Nahavandi
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Zafer Yüksel
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Mojgan Drasdo
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Anja Kron
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Petra Vogt
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | - Annemarie Jonasson
- Bioscientia Institute for Medical Diagnostics, Human Genetics, Ingelheim, Germany
| | | | - Claudia Gonzaga-Jauregui
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Masato Kanemaki
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | | | - Yuri Uchiyama
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Oh
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Akira Morimoto
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Paediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | | | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, CIBER de fisiopatología de la obesidad y nutrición (CIBEROBN), Instituto de Salud Carlos III, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA Alimentación/IMDEA Food, Madrid, Spain
| | - Naomichi Matsumoto
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Constance T R M Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, Scotland
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cedric Le Caignec
- Centre Hospitalier Universitaire Toulouse, Service de Génétique Médicale and ToNIC, Toulouse NeuroImaging Center, Inserm, UPS, Université de Toulouse, Toulouse, France.
| | - Erica E Davis
- Advanced Center for Genetic and Translational Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
36
|
Ardeshir-Larijani F, Althouse SK, Leal T, Feldman LE, Hejleh TA, Patel M, Gentzler RD, Miller AR, Hanna NH. A Phase II Trial of Atezolizumab Plus Carboplatin Plus Pemetrexed Plus Bevacizumab in the Treatment of Patients with Stage IV Non-Squamous Non-Small Cell Lung Cancer: Big Ten Cancer Research Consortium (BTCRC)- LUN 17-139. Clin Lung Cancer 2022; 23:578-584. [PMID: 36041949 DOI: 10.1016/j.cllc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023]
Abstract
INTRODUCTION LUN17-139 evaluated the safety and efficacy of Atezolizumab (A) plus Carboplatin (C) plus Pemetrexed (Pem) plus Bevacizumab (B) (ACBPem) in treatment naïve patients with stage IV non-squamous non-small cell lung cancer (Ns-NSCLC). PATIENTS AND METHODS In this multicenter, single-arm phase II trial, all patients received A (1200-mg, D1) + C (AUC 5, D1) + Pem (500-mg/m2, D1) + B (15-mg/kg D1) q3 week x4. If no PD (progressive disease), patients received maintenance ABPem until PD or intolerable side effects. The primary endpoint was progression-free survival (PFS). The positive PFS result was considered as PFS>6m (historical control). Secondary endpoints included objective response rate (ORR), disease control rate (DCR) defined by complete response (CR) + partial response (PR) + stable disease (SD) ≥ 2 months, overall survival (OS), and safety. RESULTS Thirty patients were enrolled from November 2018 to October 2020. The study was closed early due to 3 patient deaths, possibly related to treatment. Median age 64 (range 38-83); Men/Women 20/10; PD-L1 TPS < 1%/1-49%/ ≥ 50% (8/15/7). The median follow-up was 20.3 months ( 1-28.1). ORR 42.9% (95% CI, 24.5-62.8%), DCR 96.4% (95% CI, 81.7-99.9%). The median PFS and OS were 11.3m (5.5-14.9,P > .05) and 22.4m (22.4-NR), respectively. Four patients had G4 toxicity (anemia, febrile-neutropenia, severe neutropenia, sepsis), and 3 patients had G5 toxicity (thromboembolism, sepsis, colonic perforation). CONCLUSION ABCPem was associated with increased PFS compared to historical controls but this difference did not meet the statistical significance. Three on-treatment deaths and 5 thromboembolic events prompted early closure.
Collapse
Affiliation(s)
| | - Sandra K Althouse
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | | | | | | | - Malini Patel
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Nasser H Hanna
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN.
| |
Collapse
|
37
|
Shteinman ER, Wilmott JS, da Silva IP, Long GV, Scolyer RA, Vergara IA. Causes, consequences and clinical significance of aneuploidy across melanoma subtypes. Front Oncol 2022; 12:988691. [PMID: 36276131 PMCID: PMC9582607 DOI: 10.3389/fonc.2022.988691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aneuploidy, the state of the cell in which the number of whole chromosomes or chromosome arms becomes imbalanced, has been recognized as playing a pivotal role in tumor evolution for over 100 years. In melanoma, the extent of aneuploidy, as well as the chromosomal regions that are affected differ across subtypes, indicative of distinct drivers of disease. Multiple studies have suggested a role for aneuploidy in diagnosis and prognosis of melanomas, as well as in the context of immunotherapy response. A number of key constituents of the cell cycle have been implicated in aneuploidy acquisition in melanoma, including several driver mutations. Here, we review the state of the art on aneuploidy in different melanoma subtypes, discuss the potential drivers, mechanisms underlying aneuploidy acquisition as well as its value in patient diagnosis, prognosis and response to immunotherapy treatment.
Collapse
Affiliation(s)
- Eva R. Shteinman
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Ines Pires da Silva
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Cancer & Hematology Centre, Blacktown Hospital, Blacktown, NSW, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales (NSW) Health Pathology, Sydney, NSW, Australia
| | - Ismael A. Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Ismael A. Vergara,
| |
Collapse
|
38
|
Dale KL, Armond JW, Hynds RE, Vladimirou E. Modest increase of KIF11 expression exposes fragilities in the mitotic spindle, causing chromosomal instability. J Cell Sci 2022; 135:jcs260031. [PMID: 35929456 PMCID: PMC10500341 DOI: 10.1242/jcs.260031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Chromosomal instability (CIN), the process of increased chromosomal alterations, compromises genomic integrity and has profound consequences on human health. Yet, our understanding of the molecular and mechanistic basis of CIN initiation remains limited. We developed a high-throughput, single-cell, image-based pipeline employing deep-learning and spot-counting models to detect CIN by automatically counting chromosomes and micronuclei. To identify CIN-initiating conditions, we used CRISPR activation in human diploid cells to upregulate, at physiologically relevant levels, 14 genes that are functionally important in cancer. We found that upregulation of CCND1, FOXA1 and NEK2 resulted in pronounced changes in chromosome counts, and KIF11 upregulation resulted in micronuclei formation. We identified KIF11-dependent fragilities within the mitotic spindle; increased levels of KIF11 caused centrosome fragmentation, higher microtubule stability, lagging chromosomes or mitotic catastrophe. Our findings demonstrate that even modest changes in the average expression of single genes in a karyotypically stable background are sufficient for initiating CIN by exposing fragilities of the mitotic spindle, which can lead to a genomically diverse cell population.
Collapse
Affiliation(s)
- Katie L. Dale
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Jonathan W. Armond
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Robert E. Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Epithelial Cell Biology in ENT Research Group, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Elina Vladimirou
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
- Mitotic Dynamics and Chromosomal Instability Laboratory, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| |
Collapse
|
39
|
Hu G, Chen Y, Yang X, Wang Y, He J, Wang T, Fan Q, Deng L, Tu J, Tan H, Cheng J. Mitotic SENP3 activation couples with cGAS signaling in tumor cells to stimulate anti-tumor immunity. Cell Death Dis 2022; 13:640. [PMID: 35869062 PMCID: PMC9307842 DOI: 10.1038/s41419-022-05063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Our previous studies show that the mitotic phosphorylation of SUMO-specific protease 3 (SENP3) can inhibit its de-SUMOylation activity in G2/M phase of the cell cycle. Inhibition of SENP3 plays a critical role in the correct separation of sister chromatids in mitosis. The mutation of mitotic SENP3 phosphorylation causes chromosome instability and promotes tumorigenesis. In this study, we find that the mutation of mitotic SENP3 phosphorylation in tumor cells can suppress tumor growth in immune-competent mouse model. We further detect an increase of CD8+ T cell infiltration in the tumors, which is essential for the anti-tumor effect in immune-competent mouse model. Moreover, we find that mitotic SENP3 activation increases micronuclei formation, which can activate cGAS signaling-dependent innate immune response. We confirmed that cGAS signaling mediates the mitotic SENP3 activation-induced anti-tumor immunity. We further show that p53 responding to DNA damage activates mitotic SENP3 by inhibiting phosphorylation, and further increases cellular senescence as well as the related innate immune response in tumor cells. Furthermore, TCGA database demonstrates that the SENP3 expression positively correlates with the induction of innate immune response as well as the survival of the p53 mutant pancreatic cancer patients. Together, these data reveal that mitotic SENP3 activation in tumor cells can promote host anti-tumor immune response by coupling with cGAS signaling.
Collapse
Affiliation(s)
- Gaolei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liufu Deng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
40
|
Hu G, Chen Y, Yang X, Wang Y, He J, Wang T, Fan Q, Deng L, Tu J, Tan H, Cheng J. Mitotic SENP3 activation couples with cGAS signaling in tumor cells to stimulate anti-tumor immunity. Cell Death Dis 2022; 13:640. [PMID: 35869062 DOI: 10.1038/s41419-022-05063-6if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 10/11/2024]
Abstract
Our previous studies show that the mitotic phosphorylation of SUMO-specific protease 3 (SENP3) can inhibit its de-SUMOylation activity in G2/M phase of the cell cycle. Inhibition of SENP3 plays a critical role in the correct separation of sister chromatids in mitosis. The mutation of mitotic SENP3 phosphorylation causes chromosome instability and promotes tumorigenesis. In this study, we find that the mutation of mitotic SENP3 phosphorylation in tumor cells can suppress tumor growth in immune-competent mouse model. We further detect an increase of CD8+ T cell infiltration in the tumors, which is essential for the anti-tumor effect in immune-competent mouse model. Moreover, we find that mitotic SENP3 activation increases micronuclei formation, which can activate cGAS signaling-dependent innate immune response. We confirmed that cGAS signaling mediates the mitotic SENP3 activation-induced anti-tumor immunity. We further show that p53 responding to DNA damage activates mitotic SENP3 by inhibiting phosphorylation, and further increases cellular senescence as well as the related innate immune response in tumor cells. Furthermore, TCGA database demonstrates that the SENP3 expression positively correlates with the induction of innate immune response as well as the survival of the p53 mutant pancreatic cancer patients. Together, these data reveal that mitotic SENP3 activation in tumor cells can promote host anti-tumor immune response by coupling with cGAS signaling.
Collapse
Affiliation(s)
- Gaolei Hu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianli He
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liufu Deng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Tu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
41
|
Darp R, Vittoria MA, Ganem NJ, Ceol CJ. Oncogenic BRAF induces whole-genome doubling through suppression of cytokinesis. Nat Commun 2022; 13:4109. [PMID: 35840569 PMCID: PMC9287415 DOI: 10.1038/s41467-022-31899-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Melanomas and other solid tumors commonly have increased ploidy, with near-tetraploid karyotypes being most frequently observed. Such karyotypes have been shown to arise through whole-genome doubling events that occur during early stages of tumor progression. The generation of tetraploid cells via whole-genome doubling is proposed to allow nascent tumor cells the ability to sample various pro-tumorigenic genomic configurations while avoiding the negative consequences that chromosomal gains or losses have in diploid cells. Whereas a high prevalence of whole-genome doubling events has been established, the means by which whole-genome doubling arises is unclear. Here, we find that BRAFV600E, the most common mutation in melanomas, can induce whole-genome doubling via cytokinesis failure in vitro and in a zebrafish melanoma model. Mechanistically, BRAFV600E causes decreased activation and localization of RhoA, a critical cytokinesis regulator. BRAFV600E activity during G1/S phases of the cell cycle is required to suppress cytokinesis. During G1/S, BRAFV600E activity causes inappropriate centriole amplification, which is linked in part to inhibition of RhoA and suppression of cytokinesis. Together these data suggest that common abnormalities of melanomas linked to tumorigenesis - amplified centrosomes and whole-genome doubling events - can be induced by oncogenic BRAF and other mutations that increase RAS/MAPK pathway activity.
Collapse
Affiliation(s)
- Revati Darp
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA
| | - Marc A Vittoria
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Neil J Ganem
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Division of Hematology and Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Craig J Ceol
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA.
- University of Massachusetts Chan Medical School, Department of Molecular, Cellular and Cancer Biology, Worcester, MA, USA.
| |
Collapse
|
42
|
The impact of monosomies, trisomies and segmental aneuploidies on chromosomal stability. PLoS One 2022; 17:e0268579. [PMID: 35776704 PMCID: PMC9249180 DOI: 10.1371/journal.pone.0268579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN.
Collapse
|
43
|
Gamba R, Mazzucco G, Wilhelm T, Velikovsky L, Salinas-Luypaert C, Chardon F, Picotto J, Bohec M, Baulande S, Doksani Y, Fachinetti D. Enrichment of centromeric DNA from human cells. PLoS Genet 2022; 18:e1010306. [PMID: 35853083 PMCID: PMC9295943 DOI: 10.1371/journal.pgen.1010306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Centromeres are key elements for chromosome segregation. Canonical centromeres are built over long-stretches of tandem repetitive arrays. Despite being quite abundant compared to other loci, centromere sequences overall still represent only 2 to 5% of the human genome, therefore studying their genetic and epigenetic features is a major challenge. Furthermore, sequencing of centromeric regions requires high coverage to fully analyze length and sequence variations, and this can be extremely costly. To bypass these issues, we have developed a technique, named CenRICH, to enrich for centromeric DNA from human cells based on selective restriction digestion and size fractionation. Combining restriction enzymes cutting at high frequency throughout the genome, except within most human centromeres, with size-selection of fragments >20 kb, resulted in over 25-fold enrichment in centromeric DNA. High-throughput sequencing revealed that up to 60% of the DNA in the enriched samples is made of centromeric repeats. We show that this method can be used in combination with long-read sequencing to investigate the DNA methylation status of certain centromeres and, with a specific enzyme combination, also of their surrounding regions (mainly HSATII). Finally, we show that CenRICH facilitates single-molecule analysis of replicating centromeric fibers by DNA combing. This approach has great potential for making sequencing of centromeric DNA more affordable and efficient and for single DNA molecule studies.
Collapse
Affiliation(s)
- Riccardo Gamba
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Giulia Mazzucco
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Therese Wilhelm
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Leonid Velikovsky
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | | | - Florian Chardon
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Julien Picotto
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Mylène Bohec
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Ylli Doksani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
44
|
Tatekawa S, Tamari K, Chijimatsu R, Konno M, Motooka D, Mitsufuji S, Akita H, Kobayashi S, Murakumo Y, Doki Y, Eguchi H, Ishii H, Ogawa K. N(6)-methyladenosine methylation-regulated polo-like kinase 1 cell cycle homeostasis as a potential target of radiotherapy in pancreatic adenocarcinoma. Sci Rep 2022; 12:11074. [PMID: 35773310 PMCID: PMC9246847 DOI: 10.1038/s41598-022-15196-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
In pancreatic cancer, methyltransferase-like 3 (METTL3), a N(6)-methyladenosine (m6A) methyltransferase, has a favorable effect on tumors and is a risk factor for patients' prognosis. However, the details of what genes are regulated by METTL3 remain unknown. Several RNAs are methylated, and what genes are favored in pancreatic cancer remains unclear. By epitranscriptomic analysis, we report that polo-like kinase 1 (PLK1) is an important hub gene defining patient prognosis in pancreatic cancer and that RNA methylation is involved in regulating its cell cycle-specific expression. We found that insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) binds to m6A of PLK1 3' untranslated region and is involved in upregulating PLK1 expression and that demethylation of this site activates the ataxia telangiectasia and Rad3-related protein pathway by replicating stress and increasing mitotic catastrophe, resulting in increased radiosensitivity. This suggests that PLK1 methylation is essential for cell cycle maintenance in pancreatic cancer and is a new therapeutic target.
Collapse
Affiliation(s)
- Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Konno
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
- Division of Tumor Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Suguru Mitsufuji
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Akita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
45
|
Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell 2022; 82:2298-2314. [PMID: 35714587 DOI: 10.1016/j.molcel.2022.05.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022]
Abstract
Faithful DNA replication is critical for the maintenance of genomic integrity. Although DNA replication machinery is highly accurate, the process of DNA replication is constantly challenged by DNA damage and other intrinsic and extrinsic stresses throughout the genome. A variety of cellular stresses interfering with DNA replication, which are collectively termed replication stress, pose a threat to genomic stability in both normal and cancer cells. To cope with replication stress and maintain genomic stability, cells have evolved a complex network of cellular responses to alleviate and tolerate replication problems. This review will focus on the major sources of replication stress, the impacts of replication stress in cells, and the assays to detect replication stress, offering an overview of the hallmarks of DNA replication stress.
Collapse
Affiliation(s)
- Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
46
|
Njauw CN, Ji Z, Pham DM, Simoneau A, Kumar R, Flaherty KT, Zou L, Tsao H. Oncogenic KIT Induces Replication Stress and Confers Cell Cycle Checkpoint Vulnerability in Melanoma. J Invest Dermatol 2022; 142:1413-1424.e6. [PMID: 34687746 DOI: 10.1016/j.jid.2021.07.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023]
Abstract
Acral and mucosal melanomas arise from sun-protected sites, disproportionately impact darker-skinned individuals, and exact higher mortality than common types of cutaneous melanoma. Genetically, acral and mucosal melanomas harbor more alterations of KIT than typical cutaneous melanomas. Because KIT-mutated melanomas remain largely treatment resistant, we set out to create a faithful murine KIT-driven allograft model to define newer therapeutic strategies. Using the prevalent human KITK642E activating mutation, the murine mKITK641E cellular avatars show features of transformation in vitro and tumorigenicity in immunocompetent C57BL/6J mice. mKITK641E cells proliferate more rapidly, exhibit greater chromosomal aberrations, and sustain three-dimensional spheroid expansion and aggressive tumor growth in C57BL/6J mice compared with their vector-controlled cells. We further verified the functional dependence of these cells on KITK641E with both genetic and pharmacologic suppression. Using these cells, we performed a screen of 199 kinase inhibitors and identified a selective vulnerability to Chk1/ATR inhibition in the KITK641E-activated cells. Mechanistically, we subsequently showed that KITK641E induces a significantly increased level of replication stress compared with murine vector‒controlled cells. These results showcase an allograft model of human KIT-driven melanomas, which uncovered an unappreciated role for replication stress in KIT melanomagenesis and implicated a possible therapeutic strategy with Chk1/ATR inhibitors.
Collapse
Affiliation(s)
- Ching-Ni Njauw
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Duc Minh Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Antoine Simoneau
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith T Flaherty
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee Zou
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
47
|
Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Pena Avalos B, Javanmardi S, Dray E, Sung P, Boyer TG. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep 2022; 12:6169. [PMID: 35418189 PMCID: PMC9008039 DOI: 10.1038/s41598-022-10188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Ross Shamby
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Samin Javanmardi
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
48
|
Oncogenic RAS sensitizes cells to drug-induced replication stress via transcriptional silencing of P53. Oncogene 2022; 41:2719-2733. [PMID: 35393546 PMCID: PMC9076537 DOI: 10.1038/s41388-022-02291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells often experience high basal levels of DNA replication stress (RS), for example due to hyperactivation of oncoproteins like MYC or RAS. Therefore, cancer cells are considered to be sensitive to drugs that exacerbate the level of RS or block the intra S-phase checkpoint. Consequently, RS-inducing drugs including ATR and CHK1 inhibitors are used or evaluated as anti-cancer therapies. However, drug resistance and lack of biomarkers predicting therapeutic efficacy limit efficient use. This raises the question what determines sensitivity of individual cancer cells to RS. Here, we report that oncogenic RAS does not only enhance the sensitivity to ATR/CHK1 inhibitors by directly causing RS. Instead, we observed that HRASG12V dampens the activation of the P53-dependent transcriptional response to drug-induced RS, which in turn confers sensitivity to RS. We demonstrate that inducible expression of HRASG12V sensitized cells to ATR and CHK1 inhibitors. Using RNA-sequencing of FACS-sorted cells we discovered that P53 signaling is the sole transcriptional response to RS. However, oncogenic RAS attenuates the transcription of P53 and TGF-β pathway components which consequently dampens P53 target gene expression. Accordingly, live cell imaging showed that HRASG12V exacerbates RS in S/G2-phase, which could be rescued by stabilization of P53. Thus, our results demonstrate that transcriptional control of P53 target genes is the prime determinant in the response to ATR/CHK1 inhibitors and show that hyperactivation of the MAPK pathway impedes this response. Our findings suggest that the level of oncogenic MAPK signaling could predict sensitivity to intra-S-phase checkpoint inhibition in cancers with intact P53.
Collapse
|
49
|
Roux-Bourdieu ML, Dwivedi D, Harry D, Meraldi P. PLK1 controls centriole distal appendage formation and centrobin removal via independent pathways. J Cell Sci 2022; 135:275085. [PMID: 35343570 DOI: 10.1242/jcs.259120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Centrioles are central structural elements of centrosomes and cilia. In human cells daughter centrioles are assembled adjacent to existing centrioles in S-phase and reach their full functionality with the formation of distal and subdistal appendages one-and-a-half cell cycle later, as they exit their second mitosis. Current models postulate that the centriolar protein centrobin acts as placeholder for distal appendage proteins that must be removed to complete distal appendage formation. Here, we investigated in non-transformed human epithelial RPE1 cells the mechanisms controlling centrobin removal and its effect on distal appendage formation. Our data are consistent with a speculative model in which centrobin is removed from older centrioles due to a higher affinity for the newly born daughter centrioles, under the control of the centrosomal kinase Plk1. This removal also depends on the presence of subdistal appendage proteins on the oldest centriole. Removing centrobin, however, is not required for the recruitment of distal appendage proteins, even though this process is equally dependent on Plk1. We conclude that Plk1 kinase regulates centrobin removal and distal appendage formation during centriole maturation via separate pathways.
Collapse
Affiliation(s)
- Morgan Le Roux-Bourdieu
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Devashish Dwivedi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.,Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
50
|
Lebrec V, Poteau M, Morretton JP, Gavet O. Chk1 dynamics in G2 phase upon replication stress predict daughter cell outcome. Dev Cell 2022; 57:638-653.e5. [PMID: 35245445 DOI: 10.1016/j.devcel.2022.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/27/2022]
Abstract
In human cells, ATR/Chk1 signaling couples S phase exit with the expression of mitotic inducers and prevents premature mitosis upon replication stress (RS). Nonetheless, under-replicated DNA can persist at mitosis, prompting chromosomal instability. To decipher how the DNA replication checkpoint (DRC) allows cells to enter mitosis over time upon RS, we developed a FRET-based Chk1 activity sensor. During unperturbed growth, a basal Chk1 activity level is sustained throughout S phase and relies on replication origin firing. Incremental RS triggers stepwise Chk1 over-activation that delays S-phase, suggesting a rheostat-like role for DRC coupled with the replication machinery. Upon RS, Chk1 is inactivated as DNA replication terminates but surprisingly is reactivated in a subset of G2 cells, which relies on Cdk1/2 and Plk1 and prevents mitotic entry. Cells can override active Chk1 signaling and reach mitosis onset, revealing checkpoint adaptation. Cell division following Chk1 reactivation in G2 results in a p53/p21-dependent G1 arrest, eliminating the daughter cells from proliferation.
Collapse
Affiliation(s)
- Vivianne Lebrec
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Marion Poteau
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Jean-Philippe Morretton
- UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
| | - Olivier Gavet
- Sorbonne Universités, UPMC Paris VI, UFR927, 75005 Paris, France; UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France.
| |
Collapse
|