1
|
Wang D, Lu R, Yan F, Lin Y, Wang H, Xiong H. Analysis of thyroid carcinoma composition and spatial architecture in the progression of dedifferentiation, lymphatic metastasis, and gastric metastasis. J Transl Med 2025; 23:213. [PMID: 39984992 PMCID: PMC11844095 DOI: 10.1186/s12967-025-06252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Gastrointestinal metastases are rare in patients with thyroid carcinoma (TC), and their underlying mechanisms remain unclear. Thus, in this study, we aimed to explore the spatial distribution characteristics of TCs and associated gastrointestinal metastatic cells. METHODS We used spatial transcriptomics to generate an atlas that captures spatial gene expression patterns in papillary thyroid cancer (PTC), anaplastic thyroid carcinoma (ATC), ATC-associated lymphatic metastasis (ATC-LM), and rare ATC-associated gastric metastasis (ATC-GM). RESULTS We demonstrated that tumor-specific myeloid cells with high SFRP4 expression were correlated with TC dedifferentiation and poor prognosis. Moreover, we validated their close localization to CD44+ tissue stem cells using immunofluorescence staining and spatial transcriptomics. We also demonstrated that ATC-LM and ATC-GM tissues exhibited high levels of CD44+PKHD1L1+ cells, which could serve as markers for these two pathological types. CONCLUSIONS These findings highlight the dynamic changes in cell composition, intercellular communication, and potential markers associated with TC dedifferentiation and distant metastasis. Further research based on our findings may contribute to improving diagnostic and therapeutic strategies for patients with TC.
Collapse
Affiliation(s)
- Di Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, China
| | - Ruichun Lu
- Department of Cadre Healthcare/Geriatrics, Qingdao Hospital, University of Health Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266017, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, China
| | - Yansong Lin
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Hao Wang
- Department of Radiotherapy, Qingdao Hospital, University of Health Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, 266071, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
2
|
Zhang X, Wang J, Su H, Liu X. Integrative analysis of single-cell and transcriptome sequencing with experimental validation reveals PKHD1L1 as a novel biomarker in lung adenocarcinoma. Sci Rep 2025; 15:2795. [PMID: 39843484 PMCID: PMC11754870 DOI: 10.1038/s41598-025-85981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is predicted to encode a large type I transmembrane protein involved in hearing transmission and mediating cellular immunity under physiological conditions. However, its role in cancer progression, especially in lung adenocarcinoma (LUAD), has not been fully elucidated. In this study, we observed significantly lower expression of PKHD1L1 in LUAD tissues than in normal lung tissues on the basis of the integration of public datasets from the TCGA and GEO cohorts. Furthermore, we found that low PKHD1L1 expression was a strong predictor of poor prognosis in patients with LUAD. Pathway enrichment analyses revealed that PKHD1L1 is associated primarily with asthma and multiple immune processes. Through meticulous analysis of immune cell infiltrates and single-cell datasets, we discerned a notable correlation between the expression of PKHD1L1 and the presence of B cells, with a particularly strong association observed in plasma cells. This finding led us to believe that the role of PKHD1L1 may extend beyond its previously reported involvement in cellular immunity, potentially impacting humoral immunity as well. In vitro experiments revealed that the over-expression of PKHD1L1 significantly inhibited the proliferation and migration ability of LUAD cell lines. These findings suggest that PKHD1L1 is an important prognostic indicator and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Xiangqian Zhang
- Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Wang
- Department of Gastroenterology & National Clinical Research Centerfor Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hanyang Su
- Department of Respiratory Medicine & Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojin Liu
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Strelkova OS, Osgood RT, Tian C, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. Commun Biol 2024; 7:1423. [PMID: 39482437 PMCID: PMC11527881 DOI: 10.1038/s42003-024-07121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a human deafness gene, responsible for autosomal recessive deafness-124 (DFNB124). Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. PKHD1L1 is a stereocilia protein required for the formation of the developmentally transient stereocilia surface coat. In this study, we carry out an in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-deficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-deficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knockout mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
- Olga S Strelkova
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Richard T Osgood
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Chunjie Tian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Daniel M Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F Models. J Clin Invest 2024; 134:e177700. [PMID: 39441757 PMCID: PMC11601915 DOI: 10.1172/jci177700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 protein in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
Affiliation(s)
| | - Daniel M. Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin T.A. Booth
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mantian Wang
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cole W. Peters
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Alex J. Klein
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinlan Chen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Miller KK, Wang P, Grillet N. SUB-immunogold-SEM reveals nanoscale distribution of submembranous epitopes. Nat Commun 2024; 15:7864. [PMID: 39256352 PMCID: PMC11387508 DOI: 10.1038/s41467-024-51849-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identify four critical sample preparation factors contributing to the method's sensitivity. We validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane protein distribution. We evaluate the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale MYO15A-L rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM extends the application of SEM-based nanoscale protein localization to the detection of intracellular epitopes on the exposed surfaces of any cell.
Collapse
Affiliation(s)
- Katharine K Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for maintaining TMC1 auditory mechanosensitive channels at the site of force transmission. Nat Commun 2024; 15:7865. [PMID: 39256406 PMCID: PMC11387651 DOI: 10.1038/s41467-024-51850-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Hair cell bundles consist of stereocilia arranged in rows of increasing heights, connected by tip links that transmit sound-induced forces to shorter stereocilia tips. Auditory mechanotransduction channel complexes, composed of proteins TMC1/2, TMIE, CIB2, and LHFPL5, are located at the tips of shorter stereocilia. While most components can interact with the tip link in vitro, their ability to maintain the channel complexes at the tip link in vivo is uncertain. Return, using mouse models, we show that an additional component, LOXHD1, is essential for keeping TMC1-pore forming subunits at the tip link but is dispensable for TMC2. Using SUB-immunogold-SEM, we showed that TMC1 localizes near the tip link but mislocalizes without LOXHD1. LOXHD1 selectively interacts with TMC1, CIB2, LHFPL5, and tip-link protein PCDH15. Our results demonstrate that TMC1-driven mature auditory channels require LOXHD1 to stay connected to the tip link and remain functional, while TMC2-driven developmental channels do not.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA.
| |
Collapse
|
7
|
Melrose J. Keratan sulfate, an electrosensory neurosentient bioresponsive cell instructive glycosaminoglycan. Glycobiology 2024; 34:cwae014. [PMID: 38376199 PMCID: PMC10987296 DOI: 10.1093/glycob/cwae014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.
Collapse
Affiliation(s)
- James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
8
|
Strelkova OS, Osgood RT, Tian CJ, Zhang X, Hale E, De-la-Torre P, Hathaway DM, Indzhykulian AA. PKHD1L1 is required for stereocilia bundle maintenance, durable hearing function and resilience to noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582786. [PMID: 38496629 PMCID: PMC10942330 DOI: 10.1101/2024.02.29.582786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sensory hair cells of the cochlea are essential for hearing, relying on the mechanosensitive stereocilia bundle at their apical pole for their function. Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1) is a stereocilia protein required for normal hearing in mice, and for the formation of the transient stereocilia surface coat, expressed during early postnatal development. While the function of the stereocilia coat remains unclear, growing evidence supports PKHD1L1 as a human deafness gene. In this study we carry out in depth characterization of PKHD1L1 expression in mice during development and adulthood, analyze hair-cell bundle morphology and hearing function in aging PKHD1L1-defficient mouse lines, and assess their susceptibility to noise damage. Our findings reveal that PKHD1L1-deficient mice display no disruption to bundle cohesion or tectorial membrane attachment-crown formation during development. However, starting from 6 weeks of age, PKHD1L1-defficient mice display missing stereocilia and disruptions to bundle coherence. Both conditional and constitutive PKHD1L1 knock-out mice develop high-frequency hearing loss progressing to lower frequencies with age. Furthermore, PKHD1L1-deficient mice are susceptible to permanent hearing loss following moderate acoustic overexposure, which induces only temporary hearing threshold shifts in wild-type mice. These results suggest a role for PKHD1L1 in establishing robust sensory hair bundles during development, necessary for maintaining bundle cohesion and function in response to acoustic trauma and aging.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Evan Hale
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pedro De-la-Torre
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Daniel M. Hathaway
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Artur A. Indzhykulian
- Department of Otolaryngology Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Redfield SE, De-la-Torre P, Zamani M, Wang H, Khan H, Morris T, Shariati G, Karimi M, Kenna MA, Seo GH, Xu H, Lu W, Naz S, Galehdari H, Indzhykulian AA, Shearer AE, Vona B. PKHD1L1, a gene involved in the stereocilia coat, causes autosomal recessive nonsyndromic hearing loss. Hum Genet 2024; 143:311-329. [PMID: 38459354 PMCID: PMC11043200 DOI: 10.1007/s00439-024-02649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/21/2024] [Indexed: 03/10/2024]
Abstract
Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.
Collapse
Affiliation(s)
- Shelby E Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA
| | - Pedro De-la-Torre
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Hina Khan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tyler Morris
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karimi
- Khuzestan Cochlear Implantation Center (Tabassom), Ahvaz, Iran
| | - Margaret A Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA
| | | | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-She Road, Zhengzhou, 450052, China
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Artur A Indzhykulian
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, MA, USA.
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - A Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA, 02115, USA.
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Miller KK, Wang P, Grillet N. SUB-Immunogold-SEM reveals nanoscale distribution of submembranous epitopes. RESEARCH SQUARE 2024:rs.3.rs-3876898. [PMID: 38343799 PMCID: PMC10854333 DOI: 10.21203/rs.3.rs-3876898/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Electron microscopy paired with immunogold labeling is the most precise tool for protein localization. However, these methods are either cumbersome, resulting in small sample numbers and restricted quantification, or limited to identifying protein epitopes external to the membrane. Here, we introduce SUB-immunogold-SEM, a scanning electron microscopy technique that detects intracellular protein epitopes proximal to the membrane. We identified four critical sample preparation factors that contribute to the method's sensitivity and validate its efficacy through precise localization and high-powered quantification of cytoskeletal and transmembrane proteins. We evaluated the capabilities of SUB-immunogold-SEM on cells with highly differentiated apical surfaces: (i) auditory hair cells, revealing the presence of nanoscale Myosin rings at the tip of stereocilia; and (ii) respiratory multiciliate cells, mapping the distribution of the SARS-CoV-2 receptor ACE2 along the motile cilia. SUB-immunogold-SEM provides a novel solution for nanoscale protein localization at the exposed surface of any cell.
Collapse
Affiliation(s)
- Katharine K. Miller
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, 240 Pasteur Drive, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Wang P, Miller KK, He E, Dhawan SS, Cunningham CL, Grillet N. LOXHD1 is indispensable for coupling auditory mechanosensitive channels to the site of force transmission. RESEARCH SQUARE 2024:rs.3.rs-3752492. [PMID: 38260480 PMCID: PMC10802736 DOI: 10.21203/rs.3.rs-3752492/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Hearing is initiated in hair cells by the mechanical activation of ion channels in the hair bundle. The hair bundle is formed by stereocilia organized into rows of increasing heights interconnected by tip links, which convey sound-induced forces to stereocilia tips. The auditory mechanosensitive channels are complexes containing at least four protein-subunits - TMC1/2, TMIE, CIB2, and LHFPL51-16 - and are located at the tips of shorter stereocilia at a yet-undetermined distance from the lower tip link insertion point17. While multiple auditory channel subunits appear to interact with the tip link, it remains unknown whether their combined interaction alone can resist the high-frequency mechanical stimulations owing to sound. Here we show that an unanticipated additional element, LOXHD1, is indispensable for maintaining the TMC1 pore-forming channel subunits coupled to the tip link. We demonstrate that LOXHD1 is a unique element of the auditory mechanotransduction complex that selectively affects the localization of TMC1, but not its close developmental paralogue TMC2. Taking advantage of our novel immunogold scanning electron microscopy method for submembranous epitopes (SUB-immunogold-SEM), we demonstrate that TMC1 normally concentrates within 100-nm of the tip link insertion point. In LOXHD1's absence, TMC1 is instead mislocalized away from this force transmission site. Supporting this finding, we found that LOXHD1 interacts selectively in vitro with TMC1 but not with TMC2 while also binding to channel subunits CIB2 and LHFPL5 and tip-link protein PCDH15. SUB-immunogold-SEM additionally demonstrates that LOXHD1 and TMC1 are physically connected to the lower tip-link complex in situ. Our results show that the TMC1-driven mature channels require LOXHD1 to stay coupled to the tip link and remain functional, but the TMC2-driven developmental channels do not. As both tip links and TMC1 remain present in hair bundles lacking LOXHD1, it opens the possibility to reconnect them and restore hearing for this form of genetic deafness.
Collapse
Affiliation(s)
- Pei Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Katharine K. Miller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Enqi He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Siddhant S. Dhawan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
| | - Christopher L. Cunningham
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, 240 Pasteur Drive, Stanford, CA, USA
- Lead contact
| |
Collapse
|
12
|
Kang JY, Yang J, Lee H, Park S, Gil M, Kim KE. Systematic Multiomic Analysis of PKHD1L1 Gene Expression and Its Role as a Predicting Biomarker for Immune Cell Infiltration in Skin Cutaneous Melanoma and Lung Adenocarcinoma. Int J Mol Sci 2023; 25:359. [PMID: 38203530 PMCID: PMC10778817 DOI: 10.3390/ijms25010359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The identification of genetic factors that regulate the cancer immune microenvironment is important for understanding the mechanism of tumor progression and establishing an effective treatment strategy. Polycystic kidney and hepatic disease 1-like protein 1 (PKHD1L1) is a large transmembrane protein that is highly expressed in immune cells; however, its association with tumor progression remains unclear. Here, we systematically analyzed the clinical relevance of PKHD1L1 in the tumor microenvironment in multiple cancer types using various bioinformatic tools. We found that the PKHD1L1 mRNA expression levels were significantly lower in skin cutaneous melanoma (SKCM) and lung adenocarcinoma (LUAD) than in normal tissues. The decreased expression of PKHD1L1 was significantly associated with unfavorable overall survival (OS) in SKCM and LUAD. Additionally, PKHD1L1 expression was positively correlated with the levels of infiltrating B cells, cluster of differentiation (CD)-8+ T cells, and natural killer (NK) cells, suggesting that the infiltration of immune cells could be associated with a good prognosis due to increased PKHD1L1 expression. Gene ontology (GO) analysis also revealed the relationship between PKHD1L1-co-altered genes and the activation of lymphocytes, including B and T cells. Collectively, this study shows that PKHD1L1 expression is positively correlated with a good prognosis via the induction of immune infiltration, suggesting that PKHD1L1 has potential prognostic value in SKCM and LUAD.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Jisun Yang
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (H.L.); (S.P.)
| | - Minchan Gil
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women’s University, Seoul 04310, Republic of Korea; (J.Y.K.); (M.G.)
- Department of Cosmetic Sciences, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| |
Collapse
|
13
|
Redfield SE, De-la-Torre P, Zamani M, Wang H, Khan H, Morris T, Shariati G, Karimi M, Kenna MA, Seo GH, Xu H, Lu W, Naz S, Galehdari H, Indzhykulian AA, Shearer AE, Vona B. PKHD1L1, A Gene Involved in the Stereocilia Coat, Causes Autosomal Recessive Nonsyndromic Hearing Loss. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.08.23296081. [PMID: 37873491 PMCID: PMC10593026 DOI: 10.1101/2023.10.08.23296081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.
Collapse
Affiliation(s)
- Shelby E. Redfield
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
| | - Pedro De-la-Torre
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
| | - Hanjun Wang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Hina Khan
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Tyler Morris
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Kianpars, Ahvaz, Iran
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Karimi
- Khuzestan Cochlear Implantation Center (Tabassom), Ahvaz, Iran
| | - Margaret A. Kenna
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
| | | | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, No. 40 Daxuebei Road, Zhengzhou, 450052, China
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052, China
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Artur A. Indzhykulian
- Mass Eye and Ear, Eaton Peabody Laboratories, Boston, Massachusetts, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - A. Eliot Shearer
- Department of Otolaryngology and Communication Enhancement, Boston Children’s Hospital, 300 Longwood Avenue, BCH-3129, Boston, MA 02115, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
14
|
Ivanchenko MV, Hathaway DM, Mulhall EM, Booth KT, Wang M, Peters CW, Klein AJ, Chen X, Li Y, György B, Corey DP. PCDH15 Dual-AAV Gene Therapy for Deafness and Blindness in Usher Syndrome Type 1F. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566447. [PMID: 38014037 PMCID: PMC10680673 DOI: 10.1101/2023.11.09.566447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore a novel approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual adeno-associated virus (AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice. Importantly, our approach also proves successful in expressing PCDH15 in clinically relevant retinal models, including human retinal organoids and non-human primate retina, showing efficient targeting of photoreceptors and proper protein expression in the calyceal processes. This research represents a major step toward advancing gene therapy for USH1F and the multiple challenges of hearing, balance, and vision impairment.
Collapse
|
15
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. PLoS Genet 2023; 19:e1011058. [PMID: 38011198 PMCID: PMC10718637 DOI: 10.1371/journal.pgen.1011058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/13/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Lois Matthews
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kenneth I. Vaden
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, School of Life Course and Population Sciences, London, United Kingdom
| | - Bradley A. Schulte
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, United Kingdom
- The Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
16
|
Makrogkikas S, Cheng RK, Lu H, Roy S. A conserved function of Pkhd1l1, a mammalian hair cell stereociliary coat protein, in regulating hearing in zebrafish. J Neurogenet 2023; 37:85-92. [PMID: 36960824 DOI: 10.1080/01677063.2023.2187792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Pkhd1l1 is predicted to encode a very large type-I transmembrane protein, but its function has largely remained obscure. Recently, it was shown that Pkhdl1l1 is a component of the coat that decorates stereocilia of outer hair cells in the mouse ear. Consistent with this localization, conditional deletion of Pkhd1l1 specifically from hair cells, was associated with progressive hearing loss. In the zebrafish, there are two paralogous pkhd1l1 genes - pkhd1l1α and pkhd1l1β. Using CRISPR-Cas9 mediated gene editing, we generated loss-of-function alleles for both and show that the double mutants exhibit nonsense-mediated-decay (NMD) of the RNAs. With behavioural assays, we demonstrate that zebrafish pkhd1l1 genes also regulate hearing; however, in contrast to Pkhd1l1 mutant mice, which develop progressive hearing loss, the double mutant zebrafish exhibited statistically significant hearing loss even from the larval stage. Our data highlight a conserved function of Pkhd1l1 in hearing and based on these findings from animal models, we postulate that PKHD1L1 could be a candidate gene for sensorineural hearing loss (SNHL) in humans.
Collapse
Affiliation(s)
- Stylianos Makrogkikas
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ruey-Kuang Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Lewis MA, Schulte J, Matthews L, Vaden KI, Steves CJ, Williams FMK, Schulte BA, Dubno JR, Steel KP. Accurate phenotypic classification and exome sequencing allow identification of novel genes and variants associated with adult-onset hearing loss. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.27.23289040. [PMID: 37163093 PMCID: PMC10168485 DOI: 10.1101/2023.04.27.23289040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adult-onset progressive hearing loss is a common, complex disease with a strong genetic component. Although to date over 150 genes have been identified as contributing to human hearing loss, many more remain to be discovered, as does most of the underlying genetic diversity. Many different variants have been found to underlie adult-onset hearing loss, but they tend to be rare variants with a high impact upon the gene product. It is likely that combinations of more common, lower impact variants also play a role in the prevalence of the disease. Here we present our exome study of hearing loss in a cohort of 532 older adult volunteers with extensive phenotypic data, including 99 older adults with normal hearing, an important control set. Firstly, we carried out an outlier analysis to identify genes with a high variant load in older adults with hearing loss compared to those with normal hearing. Secondly, we used audiometric threshold data to identify individual variants which appear to contribute to different threshold values. We followed up these analyses in a second cohort. Using these approaches, we identified genes and variants linked to better hearing as well as those linked to worse hearing. These analyses identified some known deafness genes, demonstrating proof of principle of our approach. However, most of the candidate genes are novel associations with hearing loss. While the results support the suggestion that genes responsible for severe deafness may also be involved in milder hearing loss, they also suggest that there are many more genes involved in hearing which remain to be identified. Our candidate gene lists may provide useful starting points for improved diagnosis and drug development.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| | | | | | | | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, School of Life Course and Population Sciences, London, UK
| | | | - Judy R Dubno
- The Medical University of South Carolina, SC, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, SE1 1UL, UK
- The Medical University of South Carolina, SC, USA
| |
Collapse
|
18
|
Ivanchenko MV, Hathaway DM, Klein AJ, Pan B, Strelkova O, De-la-Torre P, Wu X, Peters CW, Mulhall EM, Booth KT, Goldstein C, Brower J, Sotomayor M, Indzhykulian AA, Corey DP. Mini-PCDH15 gene therapy rescues hearing in a mouse model of Usher syndrome type 1F. Nat Commun 2023; 14:2400. [PMID: 37100771 PMCID: PMC10133396 DOI: 10.1038/s41467-023-38038-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Usher syndrome type 1 F (USH1F), caused by mutations in the protocadherin-15 gene (PCDH15), is characterized by congenital deafness, lack of balance, and progressive blindness. In hair cells, the receptor cells of the inner ear, PCDH15 is a component of tip links, fine filaments which pull open mechanosensory transduction channels. A simple gene addition therapy for USH1F is challenging because the PCDH15 coding sequence is too large for adeno-associated virus (AAV) vectors. We use rational, structure-based design to engineer mini-PCDH15s in which 3-5 of the 11 extracellular cadherin repeats are deleted, but which still bind a partner protein. Some mini-PCDH15s can fit in an AAV. An AAV encoding one of these, injected into the inner ears of mouse models of USH1F, produces a mini-PCDH15 which properly forms tip links, prevents the degeneration of hair cell bundles, and rescues hearing. Mini-PCDH15s may be a useful therapy for the deafness of USH1F.
Collapse
Affiliation(s)
| | - Daniel M Hathaway
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Alex J Klein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Olga Strelkova
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Eric M Mulhall
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Corey Goldstein
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Brower
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Artur A Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Massachusetts Eye and Ear, Boston, MA, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Scharr AL, Ó Maoiléidigh D, Ricci AJ. Coupling between the Stereocilia of Rat Sensory Inner-Hair-Cell Hair Bundles Is Weak, Shaping Their Sensitivity to Stimulation. J Neurosci 2023; 43:2053-2074. [PMID: 36746628 PMCID: PMC10039747 DOI: 10.1523/jneurosci.1588-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The hair bundle is the universal mechanosensory organelle of auditory, vestibular, and lateral-line systems. A bundle comprises mechanically coupled stereocilia, whose displacements in response to stimulation activate a receptor current. The similarity of stereociliary displacements within a bundle regulates fundamental properties of the receptor current like its speed, magnitude, and sensitivity. However, the dynamics of individual stereocilia from the mammalian cochlea in response to a known bundle stimulus has not been quantified. We developed a novel high-speed system, which dynamically stimulates and tracks individual inner-hair-cell stereocilia from male and female rats. Stimulating two to three of the tallest stereocilia within a bundle (nonuniform stimulation) caused dissimilar stereociliary displacements. Stereocilia farther from the stimulator moved less, but with little delay, implying that there is little slack in the system. Along the axis of mechanical sensitivity, stereocilium displacements peaked and reversed direction in response to a step stimulus. A viscoelastic model explained the observed displacement dynamics, which implies that coupling between the tallest stereocilia is effectively viscoelastic. Coupling elements between the tallest inner-hair-cell stereocilia were two to three times stronger than elements anchoring stereocilia to the surface of the cell but were 100-10,000 times weaker than those of a well-studied noncochlear hair bundle. Coupling was too weak to ensure that stereocilia move similarly in response to nonuniform stimulation at auditory frequencies. Our results imply that more uniform stimulation across the tallest stereocilia of an inner-hair-cell bundle in vivo is required to ensure stereociliary displacement similarity, increasing the speed, sensitivity, and magnitude of the receptor current.SIGNIFICANCE STATEMENT Generation of the receptor current of the hair cell is the first step in electrically encoding auditory information in the hearing organs of all vertebrates. The receptor current is shaped by mechanical coupling between stereocilia in the hair bundle of each hair cell. Here, we provide foundational information on the mechanical coupling between stereocilia of cochlear inner-hair cells. In contrast to other types of hair cell, coupling between inner-hair-cell stereocilia is weak, causing slower, smaller, and less sensitive receptor currents in response to stimulation of few, rather than many, stereocilia. Our results imply that inner-hair cells need many stereocilia to be stimulated in vivo to ensure fast, large, and sensitive receptor currents.
Collapse
Affiliation(s)
| | | | - Anthony J Ricci
- Department of Otolaryngology
- Neuroscience Graduate Program
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
20
|
Yu J, Wang G, Chen Z, Wan L, Zhou J, Cai J, Liu X, Wang Y. Deficit of PKHD1L1 in the dentate gyrus increases seizure susceptibility in mice. Hum Mol Genet 2023; 32:506-519. [PMID: 36067019 DOI: 10.1093/hmg/ddac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is a chronic neurological disorder featuring recurrent, unprovoked seizures, which affect more than 65 million people worldwide. Here, we discover that the PKHD1L1, which is encoded by polycystic kidney and hepatic disease1-like 1 (Pkhd1l1), wildly distributes in neurons in the central nervous system (CNS) of mice. Disruption of PKHD1L1 in the dentate gyrus region of the hippocampus leads to increased susceptibility to pentylenetetrazol-induced seizures in mice. The disturbance of PKHD1L1 leads to the overactivation of the mitogen-activated protein kinase (MAPK)/extracellular regulated kinase (ERK)-Calpain pathway, which is accompanied by remarkable degradation of cytoplasmic potassium chloride co-transporter 2 (KCC2) level together with the impaired expression and function of membrane KCC2. However, the reduction of membrane KCC2 is associated with the damaged inhibitory ability of the vital GABA receptors, which ultimately leads to the significantly increased susceptibility to epileptic seizures. Our data, thus, indicate for the first time that Pkhd1l1, a newly discovered polycystic kidney disease (PKD) association gene, is required in neurons to maintain neuronal excitability by regulation of KCC2 expression in CNS. A new mechanism of the clinical association between genetic PKD and seizures has been built, which could be a potential therapeutic target for treating PKD-related seizures.
Collapse
Affiliation(s)
- Jiangning Yu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiyun Chen
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wan
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Rehabilitation Center, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Jingyi Cai
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Liu
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Lewis MA, Schulte BA, Dubno JR, Steel KP. Investigating the characteristics of genes and variants associated with self-reported hearing difficulty in older adults in the UK Biobank. BMC Biol 2022; 20:150. [PMID: 35761239 PMCID: PMC9238072 DOI: 10.1186/s12915-022-01349-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Age-related hearing loss is a common, heterogeneous disease with a strong genetic component. More than 100 loci have been reported to be involved in human hearing impairment to date, but most of the genes underlying human adult-onset hearing loss remain unknown. Most genetic studies have focussed on very rare variants (such as family studies and patient cohort screens) or very common variants (genome-wide association studies). However, the contribution of variants present in the human population at intermediate frequencies is hard to quantify using these methods, and as a result, the landscape of variation associated with adult-onset hearing loss remains largely unknown. RESULTS Here we present a study based on exome sequencing and self-reported hearing difficulty in the UK Biobank, a large-scale biomedical database. We have carried out variant load analyses using different minor allele frequency and impact filters, and compared the resulting gene lists to a manually curated list of nearly 700 genes known to be involved in hearing in humans and/or mice. An allele frequency cutoff of 0.1, combined with a high predicted variant impact, was found to be the most effective filter setting for our analysis. We also found that separating the participants by sex produced markedly different gene lists. The gene lists obtained were investigated using gene ontology annotation, functional prioritisation and expression analysis, and this identified good candidates for further study. CONCLUSIONS Our results suggest that relatively common as well as rare variants with a high predicted impact contribute to age-related hearing impairment and that the genetic contributions to adult hearing difficulty may differ between the sexes. Our manually curated list of deafness genes is a useful resource for candidate gene prioritisation in hearing loss.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK.
| | | | - Judy R Dubno
- The Medical University of South Carolina, Charleston, SC, USA
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| |
Collapse
|
22
|
Hawari I, Haris B, Mohammed I, Ericsson J, Khalifa A, Hussain K. Infancy onset diabetes mellitus in a patient with a novel homozygous LRBA mutation. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.jecr.2022.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
23
|
Shi H, Wang H, Zhang C, Lu Y, Yao J, Chen Z, Xing G, Wei Q, Cao X. Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via Sonic Hedgehog signaling. JCI Insight 2022; 7:149626. [PMID: 35041619 PMCID: PMC8876550 DOI: 10.1172/jci.insight.149626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Defective primary cilia cause a range of diseases called ciliopathies, which include hearing loss (HL). Variants in the human oxysterol-binding protein like 2 (OSBPL2/ORP2) are responsible for autosomal dominant nonsyndromic HL (DFNA67). However, the pathogenesis of OSBPL2 deficiency has not been fully elucidated. In this study, we show that the Osbpl2-KO mice exhibited progressive HL and abnormal cochlear development with defective cilia. Further research revealed that OSBPL2 was located at the base of the kinocilia in hair cells (HCs) and primary cilia in supporting cells (SCs) and functioned in the maintenance of ciliogenesis by regulating the homeostasis of PI(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) on the cilia membrane. OSBPL2 deficiency led to a significant increase of PI(4,5)P2 on the cilia membrane, which could be partially rescued by the overexpression of INPP5E. In addition, smoothened and GL13, the key molecules in the Sonic Hedgehog (Shh) signaling pathway, were detected to be downregulated in Osbpl2-KO HEI-OC1 cells. Our findings revealed that OSBPL2 deficiency resulted in ciliary defects and abnormal Shh signaling transduction in auditory cells, which helped to elucidate the underlying mechanism of OSBPL2 deficiency in HL.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Cheng Zhang
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, Nanjing Medical Univeristy, Nanjing, China
| |
Collapse
|
24
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
25
|
Nan B, Zhao Z, Jiang K, Gu X, Li H, Huang X. Astaxanthine attenuates cisplatin ototoxicity in vitro and protects against cisplatin-induced hearing loss in vivo. Acta Pharm Sin B 2022; 12:167-181. [PMID: 35127378 PMCID: PMC8800030 DOI: 10.1016/j.apsb.2021.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/16/2021] [Indexed: 01/18/2023] Open
Abstract
Astaxanthine (AST) has important biological activities including antioxidant and anti-inflammatory effects that could alleviate neurological and heart diseases, but its role in the prevention of cisplatin-induced hearing loss (CIHL) is not yet well understood. In our study, a steady interaction between AST and the E3 ligase adapter Kelch-like ECH-associated protein 1, a predominant repressor of nuclear factor erythroid 2-related factor 2 (NRF2), was performed and tested via computer molecular docking and dynamics. AST protected against cisplatin-induced ototoxicity via NRF2 mediated pathway using quantitative PCR and Western blotting. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential revealed that AST reduced ROS overexpression and mitochondrial dysfunction. Moreover, AST exerted anti-apoptosis effects in mouse cochlear explants using immunofluorescence staining and HEI-OC1 cell lines using quantitative PCR and Western blotting. Finally, AST combined with poloxamer was injected into the middle ear through the tympanum, and the protection against CIHL was evaluated using the acoustic brain stem test and immunofluorescent staining in adult mice. Our results suggest that AST reduced ROS overexpression, mitochondrial dysfunction, and apoptosis via NRF2-mediated pathway in cisplatin-exposed HEI-OC1 cell lines and mouse cochlear explants, finally promoting cell survival. Our study demonstrates that AST is a candidate therapeutic agent for CIHL.
Collapse
|
26
|
Ivanchenko MV, Indzhykulian AA, Corey DP. Electron Microscopy Techniques for Investigating Structure and Composition of Hair-Cell Stereociliary Bundles. Front Cell Dev Biol 2021; 9:744248. [PMID: 34746139 PMCID: PMC8569945 DOI: 10.3389/fcell.2021.744248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hair cells—the sensory cells of the vertebrate inner ear—bear at their apical surfaces a bundle of actin-filled protrusions called stereocilia, which mediate the cells’ mechanosensitivity. Hereditary deafness is often associated with morphological disorganization of stereocilia bundles, with the absence or mislocalization within stereocilia of specific proteins. Thus, stereocilia bundles are closely examined to understand most animal models of hereditary hearing loss. Because stereocilia have a diameter less than a wavelength of light, light microscopy is not adequate to reveal subtle changes in morphology or protein localization. Instead, electron microscopy (EM) has proven essential for understanding stereocilia bundle development, maintenance, normal function, and dysfunction in disease. Here we review a set of EM imaging techniques commonly used to study stereocilia, including optimal sample preparation and best imaging practices. These include conventional and immunogold transmission electron microscopy (TEM) and scanning electron microscopy (SEM), as well as focused-ion-beam scanning electron microscopy (FIB-SEM), which enables 3-D serial reconstruction of resin-embedded biological structures at a resolution of a few nanometers. Parameters for optimal sample preparation, fixation, immunogold labeling, metal coating and imaging are discussed. Special attention is given to protein localization in stereocilia using immunogold labeling. Finally, we describe the advantages and limitations of these EM techniques and their suitability for different types of studies.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Artur A Indzhykulian
- Department of Otolaryngology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Tesolin P, Morgan A, Notarangelo M, Ortore RP, Concas MP, Notarangelo A, Girotto G. Non-Syndromic Autosomal Dominant Hearing Loss: The First Italian Family Carrying a Mutation in the NCOA3 Gene. Genes (Basel) 2021; 12:1043. [PMID: 34356059 PMCID: PMC8304864 DOI: 10.3390/genes12071043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hearing loss (HL) is the most frequent sensory disorder, affecting about 1-3 per 1000 live births, with more than half of the cases attributable to genetic causes. Despite the fact that many HL causative genes have already been identified, current genetic tests fail to provide a diagnosis for about 40% of the patients, suggesting that other causes still need to be discovered. Here, we describe a four-generation Italian family affected by autosomal dominant non-syndromic hearing loss (ADNSHL), in which exome sequencing revealed a likely pathogenic variant in NCOA3 (NM_181659.3, c.2909G>C, p.(Gly970Ala)), a gene recently described as a novel candidate for ADNSHL in a Brazilian family. A comparison between the two families highlighted a series of similarities: both the identified variants are missense, localized in exon 15 of the NCOA3 gene and lead to a similar clinical phenotype, with non-syndromic, sensorineural, bilateral, moderate to profound hearing loss, with a variable age of onset. Our findings (i.e., the identification of the second family reported globally with HL caused by a variant in NCOA3) further support the involvement of NCOA3 in the etiopathogenesis of ADNSHL, which should, thus, be considered as a new gene for autosomal dominant non-syndromic hearing loss.
Collapse
Affiliation(s)
- Paola Tesolin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Anna Morgan
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy;
| | - Rocco Pio Ortore
- UOC Otolaryngology, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Maria Pina Concas
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| | - Angelantonio Notarangelo
- UOC Medical Genetics, Institute I.R.C.C.S. “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
- Institute for Maternal and Child Health—I.R.C.C.S. “Burlo Garofolo”, 34137 Trieste, Italy; (A.M.); (M.P.C.)
| |
Collapse
|
28
|
Wang S, Lee MP, Jones S, Liu J, Waldhaus J. Mapping the regulatory landscape of auditory hair cells from single-cell multi-omics data. Genome Res 2021; 31:1885-1899. [PMID: 33837132 DOI: 10.1101/gr.271080.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Auditory hair cells transduce sound to the brain and in mammals these cells reside together with supporting cells in the sensory epithelium of the cochlea, called the organ of Corti. To establish the organ's delicate function during development and differentiation, spatiotemporal gene expression is strictly controlled by chromatin accessibility and cell type-specific transcription factors, jointly representing the regulatory landscape. Bulk-sequencing technology and cellular heterogeneity obscured investigations on the interplay between transcription factors and chromatin accessibility in inner ear development. To study the formation of the regulatory landscape in hair cells, we collected single-cell chromatin accessibility profiles accompanied by single-cell RNA data from genetically labeled murine hair cells and supporting cells after birth. Using an integrative approach, we predicted cell type-specific activating and repressing functions of developmental transcription factors. Furthermore, by integrating gene expression and chromatin accessibility datasets, we reconstructed gene regulatory networks. Then, using a comparative approach, 20 hair cell-specific activators and repressors, including putative downstream target genes, were identified. Clustering of target genes resolved groups of related transcription factors and was utilized to infer their developmental functions. Finally, the heterogeneity in the single-cell data allowed us to spatially reconstruct transcriptional as well as chromatin accessibility trajectories, indicating that gradual changes in the chromatin accessibility landscape were lagging behind the transcriptional identity of hair cells along the organ's longitudinal axis. Overall, this study provides a strategy to spatially reconstruct the formation of a lineage specific regulatory landscape using a single-cell multi-omics approach.
Collapse
Affiliation(s)
- Shuze Wang
- University of Michigan, Kresge Hearing Research Institute
| | - Mary P Lee
- University of Michigan, Kresge Hearing Research Institute
| | - Scott Jones
- University of Michigan, Kresge Hearing Research Institute
| | | | - Joerg Waldhaus
- University of Michigan, Kresge Hearing Research Institute;
| |
Collapse
|
29
|
Ivanchenko MV, Cicconet M, Jandal HA, Wu X, Corey DP, Indzhykulian AA. Serial scanning electron microscopy of anti-PKHD1L1 immuno-gold labeled mouse hair cell stereocilia bundles. Sci Data 2020; 7:182. [PMID: 32555200 PMCID: PMC7299942 DOI: 10.1038/s41597-020-0509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 11/11/2022] Open
Abstract
Serial electron microscopy techniques have proven to be a powerful tool in biology. Unfortunately, the data sets they generate lack robust and accurate automated segmentation algorithms. In this data descriptor publication, we introduce a serial focused ion beam scanning electron microscopy (FIB-SEM) dataset consisting of six outer hair cell (OHC) stereocilia bundles, and the supranuclear part of the hair cell bodies. Also presented are the manual segmentations of stereocilia bundles and the gold bead labeling of PKHD1L1, a coat protein of hair cell stereocilia important for hearing in mice. This depository includes all original data and several intermediate steps of the manual analysis, as well as the MATLAB algorithm used to generate a three-dimensional distribution map of gold labels. They serve as a reference dataset, and they enable reproduction of our analysis, evaluation and improvement of current methods of protein localization, and training of algorithms for accurate automated segmentation.
Collapse
Affiliation(s)
- Maryna V Ivanchenko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Marcelo Cicconet
- Image and Data Analysis Core, Harvard Medical School, 43 Shattuck St, Boston, MA, 02115, USA
| | - Hoor Al Jandal
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
- Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Xudong Wu
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Artur A Indzhykulian
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Otolaryngology, Harvard Medical School and Massachusetts Eye and Ear, 243 Charles St, Boston, MA, 02114, USA.
| |
Collapse
|