1
|
Luo Q, Wang C, Qiao S, Yu S, Chen L, Kim S, Wang K, Zheng J, Zhang Y, Wu F, Lei X, Lou J, Hennig M, Im W, Miao L, Zhou M, Bei W, Huang Y. Surface lipoprotein sorting by crosstalk between Lpt and Lol pathways in gram-negative bacteria. Nat Commun 2025; 16:4357. [PMID: 40348743 PMCID: PMC12065857 DOI: 10.1038/s41467-025-59660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Lipopolysaccharide (LPS) and lipoprotein, two essential components of the outer membrane (OM) in Gram-negative bacteria, play critical roles in bacterial physiology and pathogenicity. LPS translocation to the OM is mediated by LptDE, yet how lipoproteins sort to the cell surface remains elusive. Here, we identify candidate lipoproteins that may be transported to the cell surface via LptDE. Notably, we determine the crystal structures of LptDE from Pseudomonas aeruginosa and its complex with an endogenous Escherichia coli lipoprotein LptM. The paLptDE-LptM structure demonstrates that LptM may translocate to the OM via LptDE, in a manner similar to LPS transport. The β-barrel domain serves as a passage for the proteinaceous moiety while its acyl chains are transported outside. Our finding has been corroborated by results from native mass spectrometry, immunofluorescence, and photocrosslinking assays, revealing a potential surface exposed lipoproteins (SLPs) transport mechanism through which lipoproteins are loaded into LptA by LolCDE prior to assembly of the LptB2FGCADE complex. These observations provide initial evidence of functional overlap between the Lpt and Lol pathways, potentially broadening current perspectives on lipoprotein sorting.
Collapse
Affiliation(s)
- Qingshan Luo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengai Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Department of Oncology, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lianwan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Kun Wang
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, 210094, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Wu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiaoguang Lei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Jizhong Lou
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Long Miao
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Weiwei Bei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Cina NP, Klug CS. The LptC transmembrane helix undergoes a rigid body movement upon LptB 2FG cavity collapse. Protein Sci 2025; 34:e70133. [PMID: 40260908 PMCID: PMC12012751 DOI: 10.1002/pro.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Lipopolysaccharide (LPS) is an essential component of the cellular envelope of Gram-negative bacteria and contributes to antibiotic resistance and pathogenesis. Proper localization of LPS at the outer membrane is facilitated via seven distinct LPS transport (Lpt) proteins that bridge the inner and outer membranes. Mature LPS diffuses into the membrane cavity of the inner membrane ABC transporter LptB2FGC through a lateral gate formed by the LptF and LptG transmembrane (TM) helices. The TM helix of LptC intercalates within the LPS entry point and has been shown to regulate the ATPase activity of LptB2FG and contribute to thermal stability. Determination of the LptB2FGC open state structure revealed the location of the LptC TM helix within the membrane complex. However, in the closed state structure, the LptC TM helix is unresolved, suggesting the helix may be displaced from the lateral gate prior to or upon closure of the cavity. To determine the conformational states of the LptC TM helix in the open and closed LptB2FGC conformations, we utilized site-directed spin labeling in combination with both continuous wave electron paramagnetic resonance (EPR) and double electron electron resonance (DEER) spectroscopies to investigate the LptC TM helix and linker region. These data indicate that the LptC TM helix undergoes a rigid body movement away from the central LptB2FG cavity upon cavity closure. The findings presented here will support structure-based drug design optimization of recently discovered antibiotics that bind LptB2FG and occlude the LptC TM helix from the lateral gate.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
3
|
Yu J, Lan Y, Zhu C, Chen Z, Pan J, Shi Y, Yang L, Hu T, Gao Y, Zhao Y, Chen X, Yang X, Lu S, Guddat LW, Yang H, Rao Z, Li J. Structure and mechanism of a mycobacterial isoniazid efflux pump MsRv1273c/72c with a degenerate nucleotide-binding site. Nat Commun 2025; 16:3969. [PMID: 40295516 PMCID: PMC12038006 DOI: 10.1038/s41467-025-59300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Heterodimeric ATP-binding cassette (ABC) transporters containing one catalytically impaired degenerate nucleotide-binding site (NBS) have a mechanism different from those with two active NBSs. However, the structural basis of their transport mechanism remains to be explained. Here, we determine mycobacterial MsRv1273c/72c to be an isoniazid efflux pump and determine several structures by cryo-electron microscopy showing specific asymmetrical features including an N-terminal extending loop and a periplasmic helical hairpin only found in MsRv1272c. In addition, we capture three distinct asymmetric states where the nucleotide-binding domains are partially dimerized at the degenerate site. Using these intermediate states, the D-WalkerB loop and X-signature loop of MsRv1272c modulate and couple the function of both NBSs through conformational changes. Thus, these data provide insights into the mechanism of this heterodimeric ABC transporter containing a degenerate NBS. The structures also provide a framework for the rational design of anti-tuberculosis drugs targeting this drug-efflux pump.
Collapse
Affiliation(s)
- Jing Yu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuhui Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhendong Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Junyi Pan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanfeng Shi
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Lan Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaobo Chen
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuihua Lu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300353, China.
- Laboratory of Structural Biology, Tsinghua University, 100084, Beijing, China.
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Ascari A, Morona R. Recent insights into Wzy polymerases and lipopolysaccharide O-antigen biosynthesis. J Bacteriol 2025; 207:e0041724. [PMID: 40066993 PMCID: PMC12004945 DOI: 10.1128/jb.00417-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Bacteria synthesize a plethora of complex surface-associated polysaccharides which enable them to persist and thrive in distinct niches. These glycans serve an array of purposes pertaining to virulence, colonization, antimicrobial resistance, stealth, and biofilm formation. The Wzx/Wzy-dependent pathway is universally the predominant system for bacterial polysaccharide synthesis. This system is responsible for the production of lipopolysaccharide (LPS) O-antigen (Oag), enterobacterial common antigen, capsule, and exopolysaccharides, with orthologs present in both Gram-negative and Gram-positive microbes. Studies focusing principally on Pseudomonas, Shigella, and Salmonella LPS Oag synthesis have provided much of the framework underpinning the biochemical and molecular mechanism behind polysaccharide synthesis via this pathway. LPS Oag production via the Wzx/Wzy-dependent pathway occurs through the stepwise activity of multiple key biosynthetic enzymes, including primarily the polymerase, Wzy, which is responsible for the Oag assembly, and the polysaccharide co-polymerase, Wzz, which effectively modulates the length of the glycan produced. In this review, we provide a comprehensive summary of the latest genetic, structural, and mechanistic data for the main protein candidates of the Wzx/Wzy-dependent pathway, in addition to an examination of their substrate specificities. Furthermore, we have reviewed recent insights pertaining to the dynamics/kinetics of glycan synthesis by this mechanism, including the interplay of the key proteins among themselves and in complex with their substrate. Lastly, we outline key gaps in the literature and suggest future research avenues, with the aim to stimulate ongoing research into this critical pathway responsible for the production of key virulence factors for numerous debilitating and lethal pathogens.
Collapse
Affiliation(s)
- Alice Ascari
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Berner B, Daoutsali G, Melén E, Remper N, Weszelovszká E, Rothnie A, Hedfalk K. Successful strategies for expression and purification of ABC transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184401. [PMID: 39537006 DOI: 10.1016/j.bbamem.2024.184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ATP-binding cassette (ABC) transporters are proteins responsible for active transport of various compounds, from small ions to macromolecules, across membranes. Proteins from this superfamily also pump drugs out of the cell resulting in multidrug resistance. Based on the cellular functions of ABC-transporters they are commonly associated with diseases like cancer and cystic fibrosis. To understand the molecular mechanism of this critical family of integral membrane proteins, structural characterization is a powerful tool which in turn requires successful recombinant production of stable and functional protein in good yields. In this review we have used high resolution structures of ABC transporters as a measure of successful protein production and summarized strategies for prokaryotic and eukaryotic proteins, respectively. In general, Escherichia coli is the most frequently used host for production of prokaryotic ABC transporters while human embryonic kidney 293 (HEK293) cells are the preferred host system for eukaryotic proteins. Independent of origin, at least two-steps of purification were required after solubilization in the most used detergent DDM. The purification tag was frequently cleaved off before structural characterization using cryogenic electron microscopy, or crystallization and X-ray analysis for prokaryotic proteins.
Collapse
Affiliation(s)
- Bea Berner
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Georgia Daoutsali
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emilia Melén
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Natália Remper
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Emma Weszelovszká
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden
| | - Alice Rothnie
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | - Kristina Hedfalk
- Department and Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
6
|
Cooper BF, Clark R, Kudhail A, Dunn D, Tian Q, Bhabha G, Ekiert DC, Khalid S, Isom GL. Phospholipid Transport Across the Bacterial Periplasm Through the Envelope-spanning Bridge YhdP. J Mol Biol 2025; 437:168891. [PMID: 39638236 DOI: 10.1016/j.jmb.2024.168891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/24/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of this complex structure necessitates the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the trafficking of inner membrane phospholipids to the outer membrane; however the molecular mechanism of YhdP mediated transport remains elusive. Here, utilising AlphaFold, we observe YhdP to form an elongated assembly of 60 β-strands that curve to form a continuous hydrophobic groove. This architecture is consistent with our negative stain electron microscopy data which reveals YhdP to be approximately 250 Å in length and thus sufficient to span the bacterial cell envelope. Furthermore, molecular dynamics simulations and bacterial growth assays indicate essential helical regions at the N- and C-termini of YhdP, that may embed into the inner and outer membranes respectively, reinforcing its envelope spanning nature. Our in vivo crosslinking data reveal phosphate-containing substrates captured along the length of the YhdP groove, providing direct evidence that YhdP interacts with a phosphate-containing substrate, which we propose to be phospholipids. This finding is congruent with our molecular dynamics simulations which demonstrate the propensity for inner membrane lipids to spontaneously enter the groove of YhdP. Collectively, our results support a model in which YhdP bridges the cell envelope, providing a hydrophobic environment for the transport of phospholipids to the outer membrane.
Collapse
Affiliation(s)
- Benjamin F Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robert Clark
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anju Kudhail
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Dali Dunn
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Qiaoyu Tian
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Gira Bhabha
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Damian C Ekiert
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Georgia L Isom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
7
|
Sayed A, Eswara K, Teles K, Boudellioua A, Fischle W. Nuclear lipids in chromatin regulation: Biological roles, experimental approaches and existing challenges. Biol Cell 2025; 117:e2400103. [PMID: 39648467 PMCID: PMC11758486 DOI: 10.1111/boc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Lipids are crucial for various cellular functions. Besides the storage of energy equivalents, these include forming membrane bilayers and serving as signaling molecules. While significant progress has been made in the comprehension of the molecular and cellular biology of lipids, their functions in the cell nucleus remain poorly understood. The main role of the eukaryotic cell nucleus is to provide an environment for the storage and regulation of chromatin which is a complex of DNA, histones, and associated proteins. Recent studies suggest that nuclear lipids play a role in chromatin regulation and epigenetics. Here, we discuss various experimental methods in lipid-chromatin research, including biophysical, structural, and cell biology approaches, pointing out their strengths and weaknesses. We take the view that nuclear lipids have a far more widespread impact on chromatin than is currently acknowledged. This gap in comprehension is mostly due to existing experimental challenges in the study of lipid-chromatin biology. Several new, interdisciplinary approaches are discussed that could aid in elucidating the roles of nuclear lipids in chromatin regulation and gene expression.
Collapse
Affiliation(s)
- Ahmed Sayed
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- Chemistry DepartmentFaculty of ScienceAssiut UniversityAssiutEgypt
| | - Karthik Eswara
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kaian Teles
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Ahlem Boudellioua
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Wolfgang Fischle
- Bioscience ProgramBiological and Environmental Science and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
8
|
Qiao W, Shen C, Chen Y, Chang S, Wang X, Yang L, Pang J, Luo Q, Zhang Z, Xiang Y, Zhao C, Lu G, Ding BS, Ying B, Tang X, Dong H. Deciphering the molecular basis of lipoprotein recognition and transport by LolCDE. Signal Transduct Target Ther 2024; 9:354. [PMID: 39725716 DOI: 10.1038/s41392-024-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/28/2024] Open
Abstract
Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes. However, the exact mechanism by which LolCDE recognizes and transfers lipoprotein between domains remains unclear. Here, we characterized the E. coli LolCDE complex bound with endogenous lipoprotein or ATP to explore the molecular features governing its substrate binding and transport functions. We found that the N-terminal unstructured linker of lipoprotein is critical for efficient binding by LolCDE; it must be sufficiently long to keep the lipoprotein's main body outside the complex while allowing the triacyl chains to bind within the central cavity. Mutagenic assays identified key residues that mediate allosteric communication between the cytoplasmic and transmembrane domains and in the periplasmic domain to form a lipoprotein transport pathway at the LolC-LolE interface. This study provides insights into the OM lipoprotein relocation process mediated by LolCDE, with significant implications for antimicrobial drug development.
Collapse
Affiliation(s)
- Wen Qiao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Chongrong Shen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yujiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shenghai Chang
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, China
| | - Xin Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lili Yang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jie Pang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qinghua Luo
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zhibo Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yingxin Xiang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chao Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Guangwen Lu
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Bi-Sen Ding
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Xiaodi Tang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
| | - Haohao Dong
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
10
|
Dajka M, Rath T, Morgner N, Joseph B. Dynamic basis of lipopolysaccharide export by LptB 2FGC. eLife 2024; 13:RP99338. [PMID: 39374147 PMCID: PMC11458178 DOI: 10.7554/elife.99338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.
Collapse
Affiliation(s)
- Marina Dajka
- Department of Physics, Freie Universität BerlinBerlinGermany
| | - Tobias Rath
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Benesh Joseph
- Department of Physics, Freie Universität BerlinBerlinGermany
| |
Collapse
|
11
|
Chen Y, Gu J, Yang B, Yang L, Pang J, Luo Q, Li Y, Li D, Deng Z, Dong C, Dong H, Zhang Z. Structure and activity of the septal peptidoglycan hydrolysis machinery crucial for bacterial cell division. PLoS Biol 2024; 22:e3002628. [PMID: 38814940 PMCID: PMC11139282 DOI: 10.1371/journal.pbio.3002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.
Collapse
Affiliation(s)
- Yatian Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiayue Gu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Biao Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lili Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Pang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Anlauf MT, Bilsing FL, Reiners J, Spitz O, Hachani E, Smits SHJ, Schmitt L. Type 1 secretion necessitates a tight interplay between all domains of the ABC transporter. Sci Rep 2024; 14:8994. [PMID: 38637678 PMCID: PMC11026475 DOI: 10.1038/s41598-024-59759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
Type I secretion systems (T1SS) facilitate the secretion of substrates in one step across both membranes of Gram-negative bacteria. A prime example is the hemolysin T1SS which secretes the toxin HlyA. Secretion is energized by the ABC transporter HlyB, which forms a complex together with the membrane fusion protein HlyD and the outer membrane protein TolC. HlyB features three domains: an N-terminal C39 peptidase-like domain (CLD), a transmembrane domain (TMD) and a C-terminal nucleotide binding domain (NBD). Here, we created chimeric transporters by swapping one or more domains of HlyB with the respective domain(s) of RtxB, a HlyB homolog from Kingella kingae. We tested all chimeric transporters for their ability to secrete pro-HlyA when co-expressed with HlyD. The CLD proved to be most critical, as a substitution abolished secretion. Swapping only the TMD or NBD reduced the secretion efficiency, while a simultaneous exchange abolished secretion. These results indicate that the CLD is the most critical secretion determinant, while TMD and NBD might possess additional recognition or interaction sites. This mode of recognition represents a hierarchical and extreme unusual case of substrate recognition for ABC transporters and optimal secretion requires a tight interplay between all domains.
Collapse
Affiliation(s)
- Manuel T Anlauf
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Florestan L Bilsing
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- INCONSULT, Duisburg, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Wang WJ, Dong XM, Li GB. Macrocyclic peptides: up-and-coming weapons to combat antimicrobial resistance. Signal Transduct Target Ther 2024; 9:81. [PMID: 38565549 PMCID: PMC10987554 DOI: 10.1038/s41392-024-01813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Wen-Jing Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiang-Min Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Guo-Bo Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
15
|
Cina NP, Klug CS. Conformational investigation of the asymmetric periplasmic domains of E. coli LptB 2FGC using SDSL CW EPR spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:141-158. [PMID: 38645307 PMCID: PMC11025719 DOI: 10.1007/s00723-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 04/23/2024]
Abstract
The majority of pathogenic Gram-negative bacteria benefit from intrinsic antibiotic resistance, attributed primarily to the lipopolysaccharide (LPS) coating of the bacterial envelope. To effectively coat the bacterial cell envelope, LPS is transported from the inner membrane by the LPS transport (Lpt) system, which comprises seven distinct Lpt proteins, LptA-G, that form a stable protein bridge spanning the periplasm to connect the inner and outer membranes. The driving force of this process, LptB2FG, is an asymmetric ATP binding cassette (ABC) transporter with a novel architecture and function that ejects LPS from the inner membrane and facilitates transfer to the periplasmic bridge. Here, we utilize site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy to probe conformational differences between the periplasmic domains of LptF and LptG. We show that LptC solely interacts with the edge β-strand of LptF and does not directly interact with LptG. We also quantify the interaction of periplasmic LptC with LptF. Additionally, we show that LPS cannot enter the protein complex externally, supporting the unidirectional LPS transport model. Furthermore, we present our findings that the presence of LPS within the LptB2FGC binding cavity and the membrane reconstitution environment affect the structural orientation of the periplasmic domains of LptF and LptG, but overall are relatively fixed with respect to one another. This study will provide insight into the structural asymmetry associated with the newly defined type VI ABC transporter class.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
16
|
Sposato D, Mercolino J, Torrini L, Sperandeo P, Lucidi M, Alegiani R, Varone I, Molesini G, Leoni L, Rampioni G, Visca P, Imperi F. Redundant essentiality of AsmA-like proteins in Pseudomonas aeruginosa. mSphere 2024; 9:e0067723. [PMID: 38305166 PMCID: PMC10900882 DOI: 10.1128/msphere.00677-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral β-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Luisa Torrini
- Department of Science, University Roma Tre, Rome, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Milan, Italy
| | - Massimiliano Lucidi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | | | - Ilaria Varone
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
17
|
Cina NP, Frank DW, Klug CS. Residues within the LptC transmembrane helix are critical for Escherichia coli LptB 2 FG ATPase regulation. Protein Sci 2024; 33:e4879. [PMID: 38131105 PMCID: PMC10804673 DOI: 10.1002/pro.4879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Lipopolysaccharide (LPS) synthesis in Gram-negative bacteria is completed at the outer leaflet of the inner membrane (IM). Following synthesis, seven LPS transport (Lpt) proteins facilitate the movement of LPS to the outer membrane (OM), an essential process that if disrupted at any stage has lethal effects on bacterial viability. LptB2 FG, the IM component of the Lpt bridge system, is a type VI ABC transporter that provides the driving force for LPS extraction from the IM and subsequent transport across a stable protein bridge to the outer leaflet of the OM. LptC is a periplasmic protein anchored to the IM by a single transmembrane (TM) helix intercalating within the lateral gate formed by LptF TM5 and LptG TM1. LptC facilitates the hand-off of LPS from LptB2 FG to the periplasmic protein LptA and has been shown to regulate the ATPase activity of LptB2 FG. Here, using an engineered chromosomal knockout system in Escherichia coli to assess the effects of LptC mutations in vivo, we identified six partial loss of function LptC mutations in the first unbiased alanine screen of this essential protein. To investigate the functional effects of these mutations, nanoDSF (differential scanning fluorimetry) and site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy in combination with an in vitro ATPase assay show that specific residues in the TM helix of LptC destabilize the LptB2 FGC complex and regulate the ATPase activity of LptB.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Dara W. Frank
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
18
|
Pahil KS, Gilman MSA, Baidin V, Clairfeuille T, Mattei P, Bieniossek C, Dey F, Muri D, Baettig R, Lobritz M, Bradley K, Kruse AC, Kahne D. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 2024; 625:572-577. [PMID: 38172635 PMCID: PMC10794137 DOI: 10.1038/s41586-023-06799-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.
Collapse
Affiliation(s)
- Karanbir S Pahil
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Vadim Baidin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Clairfeuille
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Patrizio Mattei
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Bieniossek
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Fabian Dey
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Dieter Muri
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Remo Baettig
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Michael Lobritz
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Kenneth Bradley
- Departments of Immunology, Infectious Disease and Ophthalmology (I2O), Medicinal Chemistry and Lead Discovery, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Remm S, De Vecchis D, Schöppe J, Hutter CAJ, Gonda I, Hohl M, Newstead S, Schäfer LV, Seeger MA. Structural basis for triacylglyceride extraction from mycobacterial inner membrane by MFS transporter Rv1410. Nat Commun 2023; 14:6449. [PMID: 37833269 PMCID: PMC10576003 DOI: 10.1038/s41467-023-42073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mycobacterium tuberculosis is protected from antibiotic therapy by a multi-layered hydrophobic cell envelope. Major facilitator superfamily (MFS) transporter Rv1410 and the periplasmic lipoprotein LprG are involved in transport of triacylglycerides (TAGs) that seal the mycomembrane. Here, we report a 2.7 Å structure of a mycobacterial Rv1410 homologue, which adopts an outward-facing conformation and exhibits unusual transmembrane helix 11 and 12 extensions that protrude ~20 Å into the periplasm. A small, very hydrophobic cavity suitable for lipid transport is constricted by a functionally important ion-lock likely involved in proton coupling. Combining mutational analyses and MD simulations, we propose that TAGs are extracted from the core of the inner membrane into the central cavity via lateral clefts present in the inward-facing conformation. The functional role of the periplasmic helix extensions is to channel the extracted TAG into the lipid binding pocket of LprG.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Dario De Vecchis
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany
| | - Jendrik Schöppe
- Institute of Biochemistry, University of Zurich, Zürich, Switzerland
- Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Cedric A J Hutter
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Linkster Therapeutics, Zürich, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Ruhr University Bochum, Bochum, Germany.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland.
- National Center for Mycobacteria, Zurich, Switzerland.
| |
Collapse
|
20
|
Cooper BF, Clark R, Kudhail A, Bhabha G, Ekiert DC, Khalid S, Isom GL. Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561070. [PMID: 37873249 PMCID: PMC10592960 DOI: 10.1101/2023.10.05.561070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of the outer membrane requires the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the transport of phospholipids from the inner membrane to the outer membrane however the molecular mechanism of YhdP mediated transport remains elusive. Here, utilising AlphaFold, we observe YhdP to form an elongated assembly of 60 β strands that curve to form a continuous hydrophobic groove. This architecture is consistent with our negative stain electron microscopy data which reveals YhdP to be approximately 250 Å in length and thus sufficient to span the bacterial cell envelope. Furthermore, molecular dynamics simulations and in vivo bacterial growth assays indicate essential helical regions at the N- and C-termini of YhdP, that may embed into the inner and outer membranes respectively, reinforcing its envelope spanning nature. Our in vivo crosslinking data reveal phosphate-containing substrates captured along the length of the YhdP groove, providing direct evidence that YhdP transports phospholipids. This finding is congruent with our molecular dynamics simulations which demonstrate the propensity for inner membrane lipids to spontaneously enter the groove of YhdP. Collectively, our results support a model in which YhdP bridges the cell envelope, providing a hydrophobic environment for the transport of phospholipids to the outer membrane.
Collapse
Affiliation(s)
- Benjamin F. Cooper
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert Clark
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anju Kudhail
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
| | - Damian C. Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Georgia L. Isom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
21
|
Schultz KM, Schneider JR, Fischer MA, Cina NP, Riegert MO, Frank DW, Klug CS. Binding and transport of LPS occurs through the coordinated combination of an array of sites across the entire Escherichia coli LPS transport protein LptA. Protein Sci 2023; 32:e4724. [PMID: 37417889 PMCID: PMC10360375 DOI: 10.1002/pro.4724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
The outer leaflet of the outer membrane (OM) of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and other important pathogens is largely composed of lipopolysaccharide (LPS), which is essential to nearly all Gram-negative bacteria. LPS is transported to the outer leaflet of the OM through a yet unknown mechanism by seven proteins that comprise the LPS transport system. LptA, the only entirely periplasmic Lpt protein, bridges the periplasmic space between the IM LptB2 FGC and the OM LptDE complexes. LptA is postulated to protect the hydrophobic acyl chains of LPS as it crosses the hydrophilic periplasm, is essential to cell viability, and contains many conserved residues distributed across the protein. To identify which side chains are required for function of E. coli LptA in vivo, we performed a systematic, unbiased, high-throughput screen of the effect of 172 single alanine substitutions on cell viability utilizing an engineered BL21 derivative with a chromosomal knockout of the lptA gene. Remarkably, LptA is highly tolerant to amino acid substitution with alanine. Only four alanine mutants could not complement the chromosomal knockout; CD spectroscopy showed that these substitutions resulted in proteins with significantly altered secondary structure. In addition, 29 partial loss-of-function mutants were identified that led to OM permeability defects; interestingly, these sites were solely located within β-strands of the central core of the protein and each resulted in misfolding of the protein. Therefore, no single residue within LptA is responsible for LPS binding, supporting previous EPR spectroscopy data indicating that sites across the entire protein work in concert to bind and transport LPS.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - John R. Schneider
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Matthew A. Fischer
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Nicholas P. Cina
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Molly O. Riegert
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Dara W. Frank
- Department of Microbiology & ImmunologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Candice S. Klug
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
22
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
23
|
Suppressor Mutations in LptF Bypass Essentiality of LptC by Forming a Six-Protein Transenvelope Bridge That Efficiently Transports Lipopolysaccharide. mBio 2023; 14:e0220222. [PMID: 36541759 PMCID: PMC9972910 DOI: 10.1128/mbio.02202-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) of many Gram-negative bacteria, providing a barrier against the entry of toxic molecules. In Escherichia coli, LPS is exported to the cell surface by seven essential proteins (LptA-G) that form a transenvelope complex. At the inner membrane, the ATP-binding cassette (ABC) transporter LptB2FG associates with LptC to power LPS extraction from the membrane and transfer to the periplasmic LptA protein, which is in complex with the OM translocon LptDE. LptC interacts both with LptB2FG and LptADE to mediate the formation of the transenvelope bridge and regulates the ATPase activity of LptB2FG. A genetic screen has previously identified suppressor mutants at a residue (R212) of LptF that are viable in the absence of LptC. Here, we present in vivo evidence that the LptF R212G mutant assembles a six-protein transenvelope complex in which LptA mediates interactions with LptF and LptD in the absence of LptC. Furthermore, we present in vitro evidence that the mutant LptB2FG complexes restore the regulation of ATP hydrolysis as it occurs in the LptB2FGC complex to achieve wild-type efficient coupling of ATP hydrolysis and LPS movement. We also show the suppressor mutations restore the wild-type levels of LPS transport both in vivo and in vitro, but remarkably, without restoring the affinity of the inner membrane complex for LptA. Based on the sensitivity of lptF suppressor mutants to selected stress conditions relative to wild-type cells, we show that there are additional regulatory functions of LptF and LptC that had not been identified. IMPORTANCE The presence of an external LPS layer in the outer membrane makes Gram-negative bacteria intrinsically resistant to many antibiotics. Millions of LPS molecules are transported to the cell surface per generation by the Lpt molecular machine made, in E. coli, by seven essential proteins. LptC is the unconventional regulatory subunit of the LptB2FGC ABC transporter, involved in coordinating energy production and LPS transport. Surprisingly, despite being essential for bacterial growth, LptC can be deleted, provided that a specific residue in the periplasmic domain of LptF is mutated and LptA is overexpressed. Here, we apply biochemical techniques to investigate the suppression mechanism. The data produced in this work disclose an unknown regulatory function of LptF in the transporter that not only expands the knowledge about the Lpt complex but can also be targeted by novel LPS biogenesis inhibitors.
Collapse
|
24
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
25
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
26
|
Biou V. Lipid-membrane protein interaction visualised by cryo-EM: A review. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184068. [PMID: 36216098 DOI: 10.1016/j.bbamem.2022.184068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Membrane proteins reside at interfaces between aqueous and lipid media and solving their molecular structure relies most of the time on removing them from the membrane using detergent. Luckily, this solubilization process does not strip them from all the associated lipids and single-particle cryo-transmission electron microscopy (SP-TEM) has proved a very good tool to visualise both protein high-resolution structure and, often, many of its associated lipids. In this review, we observe membrane protein structures from the Protein DataBank and their associated maps in the Electron Microscopy DataBase and determine how the SP-TEM maps allow lipid visualization, the type of binding sites, the influence of symmetry, resolution and other factors. We illustrate lipid visualization around and inside the protein core, show that some lipid bilayers in the core can be shifted with respect to the membrane and how some proteins can actively bend the lipid bilayer that binds to them. We conclude that resolution improvement in SP-TEM will likely enable many more discoveries regarding the role of lipids bound to proteins.
Collapse
Affiliation(s)
- Valérie Biou
- Université de Paris, CNRS, Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique, F-75005 Paris, France.
| |
Collapse
|
27
|
Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nat Commun 2022; 13:7578. [PMID: 36481721 PMCID: PMC9732310 DOI: 10.1038/s41467-022-35334-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
How the carbohydrate binding protein galectin-3 might act as a diabetogenic and tumorogenic factor remains to be investigated. Here we report that intracellular galectin-3 interacts with Rag GTPases and Ragulator on lysosomes. We show that galectin-3 senses lipopolysaccharide (LPS) to facilitate the interaction of Rag GTPases and Ragulator, leading to the activation of mTORC1. We find that the lipopolysaccharide/galectin-3-Rag GTPases/Ragulator-mTORC1 axis regulates a cohort of genes including GLUT1, and HK2, and PKM2 that are critically involved in glucose uptake and glycolysis. Indeed, galectin-3 deficiency severely compromises LPS-promoted glycolysis. Importantly, the expression of HK2 is significantly reduced in diabetes patients. In multiple types of cancer including hepatocellular carcinoma (HCC), galectin-3 is highly expressed, and its level of expression is positively correlated with that of HK2 and PKM2 and negatively correlated with the prognosis of HCC patients. Our study unravels that galectin-3 is a sensor of LPS, an important modulator of the mTORC1 signaling, and a critical regulator of glucose metabolism.
Collapse
|
28
|
Lu Y, Yang GZ, Yang D. Effects of ligand binding on dynamics of fatty acid binding protein and interactions with membranes. Biophys J 2022; 121:4024-4032. [PMID: 36196055 PMCID: PMC9675020 DOI: 10.1016/j.bpj.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Intracellular transport of fatty acids involves binding of ligands to their carrier fatty acid binding proteins (FABPs) and interactions of ligand-free and -bound FABPs with membranes. Previous studies focused on ligand-free FABPs. Here, our amide hydrogen exchange data showed that oleic acid binding to human intestinal FABP (hIFABP) stabilizes the protein, most likely through enhancing the hydrogen-bonding network, and induces rearrangement of sidechains even far away from the ligand binding site. Using NMR relaxation techniques, we found that the ligand binding affects not only conformational exchanges between major and minor states but also the affinity of hIFABP to nanodiscs. Analyses of the relaxation and amide exchange data suggested that two minor native-like states existing in both ligand-free and -bound hIFABPs originate from global "breathing" motions, while one minor native-like state comes from local motions. The amide hydrogen exchange data also indicated that helix αII undergoes local unfolding through which ligands can exit from the binding cavity.
Collapse
Affiliation(s)
- Yimei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Gabriel Zhang Yang
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Bei W, Luo Q, Shi H, Zhou H, Zhou M, Zhang X, Huang Y. Cryo-EM structures of LolCDE reveal the molecular mechanism of bacterial lipoprotein sorting in Escherichia coli. PLoS Biol 2022; 20:e3001823. [PMID: 36228045 PMCID: PMC9595528 DOI: 10.1371/journal.pbio.3001823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 10/25/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial lipoproteins perform a diverse array of functions including bacterial envelope biogenesis and microbe–host interactions. Lipoproteins in gram-negative bacteria are sorted to the outer membrane (OM) via the localization of lipoproteins (Lol) export pathway. The ATP-binding cassette (ABC) transporter LolCDE initiates the Lol pathway by selectively extracting and transporting lipoproteins for trafficking. Here, we report cryo-EM structures of LolCDE in apo, lipoprotein-bound, and AMPPNP-bound states at a resolution of 3.5 to 4.2 Å. Structure-based disulfide crosslinking, photo-crosslinking, and functional complementation assay verify the apo-state structure and reveal the molecular details regarding substrate selectivity and substrate entry route. Our studies snapshot 3 functional states of LolCDE in a transport cycle, providing deep insights into the mechanisms that underlie LolCDE-mediated lipoprotein sorting in E. coli. Lipoproteins in Gram-negative bacteria are sorted to the outer membrane via the Lol export pathway. The ABC transporter LolCDE initiates this pathway by selectively extracting and transporting lipoproteins for trafficking; this study provides a structural basis for the LolCDE-mediated bacterial lipoprotein sorting, with implications for novel antibiotic design against Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Weiwei Bei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingshan Luo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haizhen Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (XZ); (YH)
| | - Yihua Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (XZ); (YH)
| |
Collapse
|
30
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nat Commun 2022; 13:5851. [PMID: 36195619 PMCID: PMC9532399 DOI: 10.1038/s41467-022-33593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.
Collapse
|
32
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Wilson A, Ruiz N. The transmembrane α-helix of LptC participates in LPS extraction by the LptB 2 FGC transporter. Mol Microbiol 2022; 118:61-76. [PMID: 35678757 PMCID: PMC9544173 DOI: 10.1111/mmi.14952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane of most Gram‐negative bacteria that provides resistance to various toxic compounds and antibiotics. Newly synthesized LPS is extracted from the inner membrane by the ATP‐binding cassette (ABC) transporter LptB2FGC, which places the glycolipid onto a periplasmic protein bridge that connects to the outer membrane. This ABC transporter is structurally unusual in that it associates with an additional protein, LptC. The periplasmic domain of LptC is part of the transporter's bridge while its transmembrane α‐helix intercalates into the LPS‐binding cavity of the core LptB2FG transporter. LptC’s transmembrane helix affects the in vitro ATPase activity of LptB2FG, but its role in LPS transport in cells remains undefined. Here, we describe two roles of LptC’s transmembrane helix in Escherichia coli. We demonstrate that it is required to maintain proper levels of LptC and participates in coupling the activity of the ATPase LptB to that of its transmembrane partners LptF/LptG prior to loading LPS onto the periplasmic bridge. Our data support a model in which the association of LptC’s transmembrane helix with LptFG creates a nonessential step that slows down the LPS transporter.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
34
|
Paracini N, Schneck E, Imberty A, Micciulla S. Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Adv Colloid Interface Sci 2022; 301:102603. [PMID: 35093846 DOI: 10.1016/j.cis.2022.102603] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPSs) are a constitutive element of the cell envelope of Gram-negative bacteria, representing the main lipid in the external leaflet of their outer membrane (OM) lipid bilayer. These unique surface-exposed glycolipids play a central role in the interactions of Gram-negative organisms with their surrounding environment and represent a key element for protection against antimicrobials and the development of antibiotic resistance. The biophysical investigation of a wide range of different types of in vitro model membranes containing reconstituted LPS has revealed functional and structural properties of these peculiar membrane lipids, providing molecular-level details of their interaction with antimicrobial compounds. LPS assemblies reconstituted at interfaces represent a versatile tool to study the properties of the Gram-negative OM by exploiting several surface-sensitive techniques, in particular X-ray and neutron scattering, which can probe the structure of thin films with sub-nanometer resolution. This review provides an overview of different approaches employed to investigate structural and biophysical properties of LPS, focusing on studies on Langmuir monolayers of LPS at the air/liquid interface and a range of supported LPS-containing model membranes reconstituted at solid/liquid interfaces.
Collapse
Affiliation(s)
| | - Emanuel Schneck
- Physics Departent, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | | |
Collapse
|
35
|
Thélot FA, Liao M. Cryo-EM Analysis of the Lipopolysaccharide Flippase MsbA. Methods Mol Biol 2022; 2548:233-247. [PMID: 36151501 DOI: 10.1007/978-1-0716-2581-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MsbA is a member of the ATP-binding cassette (ABC) transporter family and harnesses the energy from adenosine triphosphate (ATP) binding and hydrolysis to flip lipopolysaccharide (LPS) across the cytoplasmic membrane in Gram-negative bacteria. MsbA is an essential component of the bacterial envelope biogenesis pathway and an attractive target for developing novel antibiotics against multidrug-resistant strains. Structural characterization of MsbA in different conformations provides crucial insights in understanding druggable pockets and mechanisms of inhibition of this transporter. Recent advances in membrane-mimetic environments and cryo-EM data acquisition and processing have enabled high-resolution imaging of MsbA in complex with its native LPS substrate. Despite these technical advances, MsbA remains a challenging target for cryo-EM analysis due to its small size and extraordinary conformational flexibility. Herein, we provide a protocol for the purification and incorporation of MsbA in lipid nanodiscs, cryo-EM sample preparation, and cryo-EM image processing. The method outlined here is generalizable to the study of other bacterial ABC transporters, including the LPS extractor LptB2FGC.
Collapse
Affiliation(s)
- François A Thélot
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Younus I, Kochkina S, Choi CC, Sun W, Ford RC. ATP-Binding Cassette Transporters: Snap-on Complexes? Subcell Biochem 2022; 99:35-82. [PMID: 36151373 DOI: 10.1007/978-3-031-00793-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ATP-binding cassette (ABC) transporters are one of the largest families of membrane proteins in prokaryotic organisms. Much is now understood about the structure of these transporters and many reviews have been written on that subject. In contrast, less has been written on the assembly of ABC transporter complexes and this will be a major focus of this book chapter. The complexes are formed from two cytoplasmic subunits that are highly conserved (in terms of their primary and three-dimensional structures) across the whole family. These ATP-binding subunits give rise to the name of the family. They must assemble with two transmembrane subunits that will typically form the permease component of the transporter. The transmembrane subunits have been found to be surprisingly diverse in structure when the whole family is examined, with seven distinct folds identified so far. Hence nucleotide-binding subunits appear to have been bolted on to a variety of transmembrane platforms during evolution, leading to a greater variety in function. Furthermore, many importers within the family utilise a further external substrate-binding component to trap scarce substrates and deliver them to the correct permease components. In this chapter, we will discuss whether assembly of the various ABC transporter subunits occurs with high fidelity within the crowded cellular environment and whether promiscuity in assembly of transmembrane and cytoplasmic components can occur. We also discuss the new AlphaFold protein structure prediction tool which predicts a new type of transmembrane domain fold within the ABC transporters that is associated with cation exporters of bacteria and plants.
Collapse
Affiliation(s)
- Iqra Younus
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Sofia Kochkina
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Cheri C Choi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Wenjuan Sun
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Robert C Ford
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
37
|
Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends Biochem Sci 2021; 47:136-148. [PMID: 34930672 DOI: 10.1016/j.tibs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters are widely present molecular machines that transfer substrates across the cell membrane. ABC transporters are involved in numerous physiological processes and are often clinical targets. Structural biology is fundamental to obtain the molecular details underlying ABC transporter function and suggest approaches to modulate it. Until recently, X-ray crystallography has been the only method capable of providing high-resolution structures of ABC transporters. However, modern cryo-electron microscopy (cryo-EM) opens entirely new ways of studying these dynamic membrane proteins. Cryo-EM enables analyses of targets that resist X-ray crystallography, challenging multicomponent complexes, and the exploration of conformational dynamics. These unique capacities have turned cryo-EM into the dominant technique for structural studies of membrane proteins, including ABC transporters.
Collapse
|
38
|
Baeta T, Giandoreggio-Barranco K, Ayala I, Moura ECCM, Sperandeo P, Polissi A, Simorre JP, Laguri C. The lipopolysaccharide-transporter complex LptB 2FG also displays adenylate kinase activity in vitro dependent on the binding partners LptC/LptA. J Biol Chem 2021; 297:101313. [PMID: 34673027 PMCID: PMC8633020 DOI: 10.1016/j.jbc.2021.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers–LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.
Collapse
Affiliation(s)
- Tiago Baeta
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabel Ayala
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| |
Collapse
|
39
|
Fiorentino F, Rotili D, Mai A, Bolla JR, Robinson CV. Mass spectrometry enables the discovery of inhibitors of an LPS transport assembly via disruption of protein-protein interactions. Chem Commun (Camb) 2021; 57:10747-10750. [PMID: 34585198 PMCID: PMC7614387 DOI: 10.1039/d1cc04186j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We developed a native mass spectrometry-based approach to quantify the monomer-dimer equilibrium of the LPS transport protein LptH. We use this method to assess the potency and efficacy of an antimicrobial peptide and small molecule disruptors, obtaining new information on their structure-activity relationships. This approach led to the identification of quinoline-based hit compounds representing the basis for the development of novel LPS transport inhibitors.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK. .,The Kavli Institute for Nanoscience Discovery, 3 South Parks Road, Oxford, OX1 3QU, UK
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P. le A Moro 5, Rome 00185, Italy.
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P. le A Moro 5, Rome 00185, Italy.
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK. .,The Kavli Institute for Nanoscience Discovery, 3 South Parks Road, Oxford, OX1 3QU, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| |
Collapse
|
40
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
41
|
Luo Q, Shi H, Xu X. Cryo-EM structures of LptB 2FG and LptB 2FGC from Klebsiella pneumoniae in complex with lipopolysaccharide. Biochem Biophys Res Commun 2021; 571:20-25. [PMID: 34303191 DOI: 10.1016/j.bbrc.2021.07.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/28/2023]
Abstract
Lipopolysaccharide (LPS) is an essential component of the outer membrane (OM) in most Gram-negative bacteria. LPS transport from the inner membrane (IM) to the OM is achieved by seven lipopolysaccharide transport proteins (LptA-G). LptB2FG, an type VI ATP-binding cassette (ABC) transporter, forms a stable complex with LptC, extracts LPS from the IM and powers LPS transport to the OM. Here we report the cryo-EM structures of LptB2FG and LptB2FGC from Klebsiella pneumoniae in complex with LPS. The KpLptB2FG-LPS structure provides detailed interactions between LPS and the transporter, while the KpLptB2FGC-LPS structure may represent an intermediate state that the transmembrane helix of LptC has not been fully inserted into the transmembrane domains of LptB2FG.
Collapse
Affiliation(s)
- Qingshan Luo
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518133, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Huigang Shi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xueqing Xu
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518133, China.
| |
Collapse
|
42
|
Januliene D, Moeller A. Cryo-EM of ABC transporters: an ice-cold solution to everything? FEBS Lett 2021; 594:3776-3789. [PMID: 33156959 DOI: 10.1002/1873-3468.13989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
High-resolution cryo-EM has revolutionized how we look at ABC transporters and membrane proteins in general. An ever-increasing number of software tools and faster processing now allow dissecting the molecular details of nanomachines at atomic precision. Considering the further benefits of significantly reduced sample demands and increased speed, cryo-EM will dominate the structure determination of membrane proteins in the near future without compromising on data quality or detail. Moreover, improved and new algorithms make it now possible to resolve the conformational spectrum of macromolecular machines under turnover conditions and to analyze heterogeneous samples at high resolution. The future of cryo-EM is, therefore, bright, and the growing number of imaging facilities and groups active in this field will amplify this trend even further. Nevertheless, expectations have to be managed, as cryo-EM alone cannot provide an ultimate answer to all scientific questions. In this review, we discuss the capabilities and limitations of cryo-EM together with possible solutions for studies of ABC transporters.
Collapse
Affiliation(s)
- Dovile Januliene
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Arne Moeller
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
44
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Zhou C, Shi H, Zhang M, Zhou L, Xiao L, Feng S, Im W, Zhou M, Zhang X, Huang Y. Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa. J Mol Biol 2021; 433:166986. [PMID: 33845086 DOI: 10.1016/j.jmb.2021.166986] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria, which consists of lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet, plays a key role in antibiotic resistance and pathogen virulence. The maintenance of lipid asymmetry (Mla) pathway is known to be involved in PL transport and contributes to the lipid homeostasis of the OM, yet the underlying molecular mechanism and the directionality of PL transport in this pathway remain elusive. Here, we reported the cryo-EM structures of the ATP-binding cassette (ABC) transporter MlaFEBD from P. areuginosa, the core complex in the Mla pathway, in nucleotide-free (apo)-, ADP (ATP + vanadate)- and ATP (AMPPNP)-bound states as well as the structures of MlaFEB from E. coli in apo- and AMPPNP-bound states at a resolution range of 3.4-3.9 Å. The structures show that the MlaFEBD complex contains a total of twelve protein molecules with a stoichiometry of MlaF2E2B2D6, and binds a plethora of PLs at different locations. In contrast to canonical ABC transporters, nucleotide binding fails to trigger significant conformational changes of both MlaFEBD and MlaFEB in the nucleotide-binding and transmembrane domains of the ABC transporter, correlated with their low ATPase activities exhibited in both detergent micelles and lipid nanodiscs. Intriguingly, PLs or detergents appeared to relocate to the membrane-proximal end from the distal end of the hydrophobic tunnel formed by the MlaD hexamer in MlaFEBD upon addition of ATP, indicating that retrograde PL transport might occur in the tunnel in an ATP-dependent manner. Site-specific photocrosslinking experiment confirms that the substrate-binding pocket in the dimeric MlaE and the MlaD hexamer are able to bind PLs in vitro, in line with the notion that MlaFEBD complex functions as a PL transporter.
Collapse
Affiliation(s)
- Changping Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Manfeng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Le Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Shasha Feng
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| |
Collapse
|
46
|
Tang X, Chang S, Zhang K, Luo Q, Zhang Z, Wang T, Qiao W, Wang C, Shen C, Zhang Z, Zhu X, Wei X, Dong C, Zhang X, Dong H. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nat Struct Mol Biol 2021; 28:347-355. [PMID: 33782615 DOI: 10.1038/s41594-021-00573-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
Lipoproteins in the outer membrane of Gram-negative bacteria are involved in various vital physiological activities, including multidrug resistance. Synthesized in the cytoplasm and matured in the inner membrane, lipoproteins must be transported to the outer membrane through the Lol pathway mediated by the ATP-binding cassette transporter LolCDE in the inner membrane via an unknown mechanism. Here, we report cryo-EM structures of Escherichia coli LolCDE in apo, lipoprotein-bound, LolA-bound, ADP-bound and AMP-PNP-bound states at a resolution of 3.2-3.8 Å, covering the complete lipoprotein transport cycle. Mutagenesis and in vivo viability assays verify features of the structures and reveal functional residues and structural characteristics of LolCDE. The results provide insights into the mechanisms of sorting and transport of outer-membrane lipoproteins and may guide the development of novel therapies against multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiaodi Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Ke Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhengyu Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ting Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Wen Qiao
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Chen Wang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China.,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China.,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Chongrong Shen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Zhibo Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Xiaofeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.,College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Changjiang Dong
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China. .,Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang, China. .,Zhejiang Laboratory for System and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China.
| |
Collapse
|
47
|
Guest RL, Rutherford ST, Silhavy TJ. Border Control: Regulating LPS Biogenesis. Trends Microbiol 2021; 29:334-345. [PMID: 33036869 PMCID: PMC7969359 DOI: 10.1016/j.tim.2020.09.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The outer membrane (OM) is a defining feature of Gram-negative bacteria that serves as a permeability barrier and provides rigidity to the cell. Critical to OM function is establishing and maintaining an asymmetrical bilayer structure with phospholipids in the inner leaflet and the complex glycolipid lipopolysaccharide (LPS) in the outer leaflet. Cells ensure this asymmetry by regulating the biogenesis of lipid A, the conserved and essential anchor of LPS. Here we review the consequences of disrupting the regulatory components that control lipid A biogenesis, focusing on the rate-limiting step performed by LpxC. Dissection of these processes provides critical insights into bacterial physiology and potential new targets for antibiotics able to overcome rapidly spreading resistance mechanisms.
Collapse
Affiliation(s)
- Randi L Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Steven T Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
48
|
He Q, Mu Z, Shrestha A, Wang C, Wang S, Tang H, Li Y, Song J, Ji P, Huang Y, Chen T. Development of a rat model for type 2 diabetes mellitus peri-implantitis: A preliminary study. Oral Dis 2021; 28:1936-1946. [PMID: 33715257 DOI: 10.1111/odi.13845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/12/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To develop an in vivo model to simulate the complex internal environment of diabetic peri-implantitis (T2DM-PI) model for a better understanding of peri-implantitis in type 2 diabetic patients. MATERIALS AND METHODS Maxillary first molars were extracted in Sprague-Dawley (SD) rats, and customized cone-shaped titanium implants were installed in the extraction sites. Thereafter, implants were uncovered and customized abutments were screwed into implants. A high-fat diet and a low-dose injection of streptozotocin were utilized to induce T2DM. Finally, LPS was locally injected in implant sulcus to induce peri-implantitis. RESULTS In the present study, T2DM-PI model has been successfully established. Imaging analysis revealed that abundant inflammatory cells infiltrated in the soft tissue in T2DM-PI group with concomitant excessive secretion of inflammatory cytokines. Moreover, higher expression of MMP and increased number of osteoclasts led to collagen disintegration and bone resorption in T2DM-PI group. CONCLUSIONS These results describe a novel rat model which stimulate T2DM-PI in vivo, characterized by overwhelming inflammatory response and bone resorption. This model has a potential to be used for investigation of initiation, progression and interventional therapy of T2DM-PI.
Collapse
Affiliation(s)
- Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhixiang Mu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.,Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Annie Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Chao Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yihan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanding Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
49
|
Wilson A, Ruiz N. Transport of lipopolysaccharides and phospholipids to the outer membrane. Curr Opin Microbiol 2021; 60:51-57. [PMID: 33601322 DOI: 10.1016/j.mib.2021.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022]
Abstract
Cells must build and maintain at least one membrane that surrounds essential cellular components and provides structural integrity. Gram-negative bacteria possess an inner membrane, which separates the aqueous cytoplasmic and periplasmic compartments, and an outer membrane, which surrounds the periplasm. The outer membrane is an asymmetric bilayer with phospholipids in its inner leaflet and lipopolysaccharides in its outer leaflet. This structure provides cellular integrity and prevents the entry of many toxic compounds into the cell. Constructing the outer membrane is challenging, since its lipid constituents must be synthesized within the inner membrane, transported across the periplasm, and ultimately assembled into an asymmetric structure. This review highlights major recent advances in our understanding of the mechanism and structure of the intermembrane, multi-protein machine that transports lipopolysaccharide across the cell envelope. Although our understanding of phospholipid transport is very limited, we also provide a brief update on this topic.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
50
|
Liston SD, Willis LM. Racing to build a wall: glycoconjugate assembly in Gram-positive and Gram-negative bacteria. Curr Opin Struct Biol 2021; 68:55-65. [PMID: 33429200 DOI: 10.1016/j.sbi.2020.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
The last two years have seen major advances in understanding the structural basis of bacterial cell envelope glycoconjugate biosynthesis, including capsules, lipopolysaccharide, teichoic acid, cellulose, and peptidoglycan. The recent crystal and cryo-electron microscopy structures of proteins involved in the initial glycosyltransferase steps in the cytoplasm, the transport of large and small lipid-linked glycoconjugates across the inner membrane, the polymerization of glycans in the periplasm, and the export of molecules from the cell have shed light on the mechanisms by which cell envelope glycoconjugates are made. We discuss these recent advances and highlight remaining unanswered questions.
Collapse
Affiliation(s)
- Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G1M1, Canada
| | - Lisa M Willis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2T2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G2T2, Canada; Women and Children's Health Research Institute, Edmonton, AB, T6G2T2, Canada.
| |
Collapse
|