1
|
Mermet-Joret N, Moreno A, Zbela A, Nazari M, Ellendersen BE, Baro RC, Krauth N, von Philipsborn A, Sørensen AT, Piriz J, Lin JYL, Nabavi S. Dual-color optical activation and suppression of neurons with high temporal precision. eLife 2025; 12:RP90327. [PMID: 40357795 PMCID: PMC12074635 DOI: 10.7554/elife.90327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
A well-known phenomenon in the optogenetic toolbox is that all light-gated ion channels, including red-shifted channelrhodopsins (ChRs), are activated by blue light, whereas blue-shifted ChRs are minimally responsive to longer wavelengths. Here, we took advantage of this feature to create a system which allows high-frequency activation of neurons with pulses of red light, while permitting the suppression of action potentials (APs) with millisecond precision by blue light. We achieved this by pairing an ultrafast red-shifted ChR with a blue light-sensitive anion channel of appropriately matching kinetics. This required screening several anion-selective ChRs, followed by a model-based mutagenesis strategy to optimize their kinetics and light spectra. Slice electrophysiology in the hippocampus as well as behavioral inspection of vibrissa movement demonstrate a minimal excitation from blue light. Of significant potential value, in contrast to existing tools, the system we introduce here allows high-frequency optogenetic excitation of neurons with red light, while blue light suppression of APs is confined within the duration of the light pulse.
Collapse
Affiliation(s)
- Noëmie Mermet-Joret
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory - PROMEMO, Danish National Research FoundationAarhusDenmark
| | - Andrea Moreno
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory - PROMEMO, Danish National Research FoundationAarhusDenmark
| | - Agnieszka Zbela
- Tasmanian School of Medicine, College of Health and Medicine, University of TasmaniaTasmaniaAustralia
| | - Milad Nazari
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory - PROMEMO, Danish National Research FoundationAarhusDenmark
| | - Bárður Eyjólfsson Ellendersen
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Raquel Comaposada Baro
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nathalie Krauth
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory - PROMEMO, Danish National Research FoundationAarhusDenmark
| | - Anne von Philipsborn
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Andreas Toft Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Joaquin Piriz
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires, CONICETBuenos AiresArgentina
| | - John Yu-luen Lin
- Tasmanian School of Medicine, College of Health and Medicine, University of TasmaniaTasmaniaAustralia
| | - Sadegh Nabavi
- DANDRITE, The Danish Research Institute of Translational NeuroscienceAarhusDenmark
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
- Center for Proteins in Memory - PROMEMO, Danish National Research FoundationAarhusDenmark
| |
Collapse
|
2
|
Hawes S, Liang B, Oldham B, Sullivan BT, Wang L, Song B, Chang L, Lin DT, Cai H. Patchy Striatonigral Neurons Modulate Locomotor Vigor in Response to Environmental Valence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640838. [PMID: 40093044 PMCID: PMC11908127 DOI: 10.1101/2025.02.28.640838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Spiny projection neurons (SPNs) in the dorsal striatum play crucial roles in locomotion control and value-based decision-making. SPNs, which include both direct-pathway striatonigral and indirect-pathway striatopallidal neurons, can be further classified into subtypes based on distinct transcriptomic profiles and cell body distribution patterns. However, how these SPN subtypes regulate spontaneous locomotion in the context of environmental valence remains unclear. Using Sepw1 - Cre transgenic mice, which label a specific SPN subtype characterized by a patchy distribution of cell bodies in the dorsal striatum, we found that these patchy striatonigral neurons constrain motor vigor in response to valence differentials. In a modified light/dark box test, mice exhibited differential walking speeds between the light and dark zones. Genetic ablation of these patchy SPNs disrupted restful slowing in the dark zone and increased zone discrimination by speed. In vivo recordings linked the activity of these neurons to zone occupancy, speed, and deceleration, with a specific role in mediating deceleration. Furthermore, chemogenetic activation of patchy SPNs-and optical activation of striatonigral neurons in particular-reduced locomotion and attenuated speed-based zone discrimination. These findings reveal that a subtype of patchy striatonigral neurons regulates implicit walking speed selection based on innate valence differentials.
Collapse
|
3
|
Hamed A, Kursa MB, Mrozek W, Piwoński KP, Falińska M, Danielewski K, Rejmak E, Włodkowska U, Kubik S, Czajkowski R. Spatio-temporal mechanisms of consolidation, recall and reconsolidation in reward-related memory trace. Mol Psychiatry 2025; 30:1319-1328. [PMID: 39271752 PMCID: PMC11919705 DOI: 10.1038/s41380-024-02738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
The formation of memories is a complex, multi-scale phenomenon, especially when it involves integration of information from various brain systems. We have investigated the differences between a novel and consolidated association of spatial cues and amphetamine administration, using an in situ hybridisation method to track the short-term dynamics during the recall testing. We have found that remote recall group involves smaller, but more consolidated groups of neurons, which is consistent with their specialisation. By employing machine learning analysis, we have shown this pattern is especially pronounced in the VTA; furthermore, we also uncovered significant activity patterns in retrosplenial and prefrontal cortices, as well as in the DG and CA3 subfields of the hippocampus. The behavioural propensity towards the associated localisation appears to be driven by the nucleus accumbens, however, further modulated by a trio of the amygdala, VTA and hippocampus, as the trained association is confronted with test experience. Moreover, chemogenetic analysis revealed central amygdala as critical for linking appetitive emotional states with spatial contexts. These results show that memory mechanisms must be modelled considering individual differences in motivation, as well as covering dynamics of the process.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Wiktoria Mrozek
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Piotr Piwoński
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Monika Falińska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Danielewski
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Rejmak
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Urszula Włodkowska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Stepan Kubik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Praha, Czechia
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Benevides ES, Rana S, Fuller DD. Chemogenetic activation of the diaphragm after spinal cord injury in rats. Respir Physiol Neurobiol 2025; 336:104421. [PMID: 40154905 DOI: 10.1016/j.resp.2025.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
We tested the hypothesis that activation of DREADDs in the mid-cervical spinal cord could restore diaphragm activation during spontaneous breathing after cervical spinal cord injury (SCI). Adult Sprague Dawley rats (n = 7) received bilateral mid-cervical ventral horn injections of an AAV construct encoding an excitatory DREADD (AAV9-hSyn-HA-hM3D(Gq)-mCherry; titer: 2.44 × 1013 vg/mL). Subsequently, diaphragm electromyogram (EMG) activity was recorded during spontaneous breathing under isoflurane anesthesia. The selective DREADD ligand JHU37160 (J60) was administered intravenously at acute (3 days), sub-acute (2 weeks), and chronic (2 months) timepoints following cervical hemilesion at spinal level C2. J60 administration resulted in robust increases in diaphragm EMG output at all timepoints, and near-complete restoration of diaphragm EMG activity from the paralyzed hemi-diaphragm in 50 % of trials. Administration of J60 to DREADD naïve, spinal intact rats (n = 8) did not produce an increase in diaphragm activity. These proof-of-concept results indicate that refinement of this technique may provide a strategy for improving diaphragm activation after cervical SCI.
Collapse
Affiliation(s)
- Ethan S Benevides
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States; McKnight Brain Institute, University of Florida, Gainesville, FL 32601, United States
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32601, United States; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32601, United States; McKnight Brain Institute, University of Florida, Gainesville, FL 32601, United States.
| |
Collapse
|
5
|
Köhler I, Rennau LM, Rehm A, Große J, Gonda S, Räk A, Riedel C, Wahle P. Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner. Front Cell Neurosci 2025; 19:1524470. [PMID: 40177584 PMCID: PMC11962018 DOI: 10.3389/fncel.2025.1524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H2O. Transfectants expressing hM3Dq mock-stimulated with H2O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5-10, DIV 10-20, and DIV 15-20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10-20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.
Collapse
|
6
|
Di Re J, Koff L, Avchalumov Y, Singh AK, Baumgartner TJ, Marosi M, Matz LM, Hallberg LM, Ameredes BT, Seeley EH, Buffington SA, Green TA, Laezza F. Environmental exposure to common pesticide induces synaptic deficit and social memory impairment driven by neurodevelopmental vulnerability of hippocampal parvalbumin interneurons. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136893. [PMID: 39706027 PMCID: PMC11970102 DOI: 10.1016/j.jhazmat.2024.136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Environmental exposure to pesticides at levels deemed safe by regulatory agencies has been linked to increased risk for neurodevelopmental disorders. Yet, the mechanisms linking exposure to these disorders remain unclear. Here, we show that maternal exposure to the pesticide deltamethrin (DM) at the no observed adverse effect level (NOAEL) disrupts long-term potentiation (LTP) in the hippocampus of adult male offspring three months after exposure, a phenotype absent in female offspring. Clonazepam, a GABAa receptor agonist, rescued this deficit, indicating impaired hippocampal GABAergic signaling. Recordings from CA1 pyramidal neurons, complemented by MALDI mass spectrometry imaging, showed an imbalance in excitatory/inhibitory tone. Using a combination of parvalbumin (PV)-Cre transgenic mice and hippocampal injection of designer receptors exclusively activated by designer drugs (DREADDs), we show that developmental DM exposure reduces hippocampal PV interneuron intrinsic firing. DREADD activation rescued both PV interneuron firing and LTP deficits. Complementary behavioral experiments revealed a deficit in social memory, a behavior relevant to autism spectrum disorder (ASD) symptomatology, which was restored by DREADD activation. Overall, these results establish a novel mechanistic link between maternal exposure to DM at the NOAEL and known cellular, circuital, and behavioral vulnerabilities, indicating it is a potential driver in the exposome of ASD.
Collapse
Affiliation(s)
- Jessica Di Re
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; NIEHS Environmental Toxicology Training Program, University of Texas Medical Branch, USA
| | - Leandra Koff
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yosef Avchalumov
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Timothy J Baumgartner
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mate Marosi
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lisa M Matz
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lance M Hallberg
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Inhalation Toxicology Core, University of Texas Medical Branch, USA
| | - Bill T Ameredes
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Inhalation Toxicology Core, University of Texas Medical Branch, USA
| | - Erin H Seeley
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2025; 50:651-661. [PMID: 39327472 PMCID: PMC11845773 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
8
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Nerella SG, Eldridge MAG, Innis RB, Pike VW. PET Reporter Probes for Brain Imaging of Transduced Gene and Cell Expression: Status and Challenges. J Med Chem 2025; 68:2198-2218. [PMID: 39879224 DOI: 10.1021/acs.jmedchem.4c02326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Gene therapy and cell transduction are gaining interest as therapeutic strategies for neurological and psychiatric disorders. Positron emission tomography (PET) has been established as a uniquely powerful modality for brain molecular imaging in vivo. The utility of PET depends on the development and application of suitably specific radiotracers and/or reporter probes. PET probes are potentially useful to confirm the success of gene therapy or cell transduction without the need for brain biopsy or necroscopy. Probes are needed to target proteins expressed by specific exogenous transgenes or cells and could play a crucial role in elucidating neurobiological mechanisms and in longitudinal tracking of expression for therapeutic applications. This perspective article describes the current status and ongoing challenges for the design and development of PET reporter probes for verifying the expression of reporter genes and cells in the brain. Radiochemical aspects, applications, and translational challenges for diagnostic and therapeutic interventions are highlighted.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, U.K
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States
| |
Collapse
|
10
|
Scott A, Paulson A, Prill C, Kermoade K, Newell B, Eckenwiler EA, Lemos JC, Richard JM. Ventral Pallidal GABAergic Neurons Drive Consumption in Male, But Not Female, Rats. eNeuro 2025; 12:ENEURO.0245-24.2025. [PMID: 39809537 PMCID: PMC11794971 DOI: 10.1523/eneuro.0245-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis and hedonic and motivational aspects of food and food cues that can drive nonhomeostatic or "hedonic" feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and food cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP GABA neurons have been implicated in cue-elicited reward-seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used designer receptors exclusively activated by designer drugs to activate VP GABA neurons in nonrestricted male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Collin Prill
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Klaiten Kermoade
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Molecular Pharmacological and Therapeutics, University of Minnesota, Minneapolis, Minnesota
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth A Eckenwiler
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Julia C Lemos
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
11
|
Kim TA, Cruz G, Syty MD, Wang F, Wang X, Duan A, Halterman M, Xiong Q, Palop JJ, Ge S. Neural circuit mechanisms underlying aberrantly prolonged functional hyperemia in young Alzheimer's disease mice. Mol Psychiatry 2025; 30:367-378. [PMID: 39043843 PMCID: PMC11750623 DOI: 10.1038/s41380-024-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
Neurovascular defects are one of the most common alterations in Alzheimer's disease (AD) pathogenesis, but whether these deficits develop before the onset of amyloid beta (Aβ) accumulation remains to be determined. Using in vivo optical imaging in freely moving mice, we explored activity-induced hippocampal microvascular blood flow dynamics in AppSAA knock-in and J20 mouse models of AD at early stages of disease progression. We found that prior to the onset of Aβ accumulation, there was a pathologically elevated blood flow response to context exploration, termed functional hyperemia. After the onset of Aβ accumulation, this context exploration-induced hyperemia declined rapidly relative to that in control mice. Using in vivo electrophysiology recordings to explore the neural circuit mechanism underlying this blood flow alteration, we found that hippocampal interneurons before the onset of Aβ accumulation were hyperactive during context exploration. Chemogenetic tests suggest that hyperactive activation of inhibitory neurons accounted for the elevated functional hyperemia. The suppression of nitric oxide (NO) produced from hippocampal interneurons in young AD mice decreased the accumulation of Aβ. Together, these findings reveal that neurovascular coupling is aberrantly elevated before Aβ deposition, and this hyperactive functional hyperemia declines rapidly upon Aβ accumulation.
Collapse
Affiliation(s)
- Thomas A Kim
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - George Cruz
- Program in Neuroscience, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Michelle D Syty
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Faye Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Xinxing Wang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Alexandra Duan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Marc Halterman
- Department of Neurology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Jorge J Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
| | - Shaoyu Ge
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
12
|
Scott A, Paulson A, Prill C, Kermoade K, Newell B, Richard JM. Ventral pallidal GABAergic neurons drive consumption in male, but not female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591876. [PMID: 38746325 PMCID: PMC11092650 DOI: 10.1101/2024.04.30.591876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Food intake is controlled by multiple converging signals: hormonal signals that provide information about energy homeostasis, but also hedonic and motivational aspects of food and food cues that can drive non-homeostatic or "hedonic "feeding. The ventral pallidum (VP) is a brain region implicated in the hedonic and motivational impact of food and foods cues, as well as consumption of rewards. Disinhibition of VP neurons has been shown to generate intense hyperphagia, or overconsumption. While VP gamma-Aminobutyric acidergic (GABA) neurons have been implicated in cue-elicited reward seeking and motivation, the role of these neurons in the hyperphagia resulting from VP activation remains unclear. Here, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate or inhibit VP GABA neurons in sated male and female rats during chow and sucrose consumption. We found that activation of VP GABA neurons increases consumption of chow and sucrose in male rats, but not female rats. We also found that, while inhibition of VP GABA neurons tended to decrease sucrose consumption, this effect was not statistically significant. Together, these findings suggest that activation of VP GABA neurons can stimulate consumption of routine or highly palatable rewards selectively in male rats.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Collin Prill
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Klaiten Kermoade
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
- Molecular and Pharmacological Therapeutics, University of Minnesota, Minneapolis, MN
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| | - Jocelyn M. Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN
- Department of Neuroscience, University of Minnesota, Minneapolis, MN
| |
Collapse
|
13
|
Diebold CA, Lawlor J, Allen K, Capshaw G, Humphrey MG, Cintron-De Leon D, Kuchibhotla KV, Moss CF. Rapid sensorimotor adaptation to auditory midbrain silencing in free-flying bats. Curr Biol 2024; 34:5507-5517.e3. [PMID: 39549701 PMCID: PMC11614681 DOI: 10.1016/j.cub.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Echolocating bats rely on rapid processing of auditory information to guide moment-to-moment decisions related to echolocation call design and flight path selection. The fidelity of sonar echoes, however, can be disrupted in natural settings due to occlusions, noise, and conspecific jamming signals. Behavioral sensorimotor adaptation to external blocks of relevant cues has been studied extensively, but little is known about adaptations that mitigate internal sensory flow interruption. How do bats modify their sensory-guided behaviors in natural tasks when central auditory processing is interrupted? Here, we induced internal sensory interruptions by reversibly inactivating excitatory neurons in the inferior colliculus (IC) using ligand-activated inhibitory designer receptors exclusively activated by designer drugs (DREADDs). Bats were trained to navigate through one of three open windows in a curtain to obtain a food reward, while their echolocation and flight behaviors were quantified with synchronized ultrasound microphone and stereo video recordings. Under control conditions, bats reliably steered through the open window, only occasionally contacting the curtain edge. Suppressing IC excitatory activity elevated hearing thresholds, disrupted overall performance in the task, increased the frequency of curtain contact, and led to striking compensatory sensorimotor adjustments. DREADDs-treated bats modified flight trajectories to maximize returning echo information and adjusted sonar call design to boost detection of obstacles. Sensorimotor adaptations appeared immediately and did not change over successive trials, suggesting that these behavioral adaptations are mediated through existing neural circuitry. Our findings highlight the remarkable rapid adaptive strategies bats employ to compensate for internal sensory interruptions to effectively navigate their environments.
Collapse
Affiliation(s)
- Clarice A Diebold
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Kathryne Allen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Grace Capshaw
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Megan G Humphrey
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Diego Cintron-De Leon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Florido A, Curtis VR, Pégard NC, Rodriguez-Romaguera J. Disentangling the Neural Circuits of Arousal and Anxiety-Like Behavior. Curr Top Behav Neurosci 2024. [PMID: 39579325 DOI: 10.1007/7854_2024_539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Anxiety disorders are prevalent and debilitating conditions characterized by excessive concern and fear, affecting thoughts, behaviors, and sensations. A critical component of anxiety is arousal, a complex process involving alertness regulation and stimulus salience modulation. While arousal is adaptive in normal circumstances, dysregulation can lead to hypoarousal or hyperarousal, affecting response selection and threat perception. This chapter reviews challenges in studying arousal in preclinical anxiety models, emphasizing the need for multicomponent measurement and analysis. Novel methodologies integrating physiological measurement with activity tracking of neurons with single-cell resolution in awake animals are discussed, with emphasis in current challenges. Understanding these mechanisms is crucial for developing effective treatments for anxiety disorders.
Collapse
Affiliation(s)
- Antonio Florido
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vincent R Curtis
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Nicolas C Pégard
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Stress Initiative, University of North Carolina, Chapel Hill, NC, USA.
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Stress Initiative, University of North Carolina, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disorders, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Lipari N, Galfano A, Venkatesh S, Grezenko H, Sandoval IM, Manfredsson FP, Bishop C. The effects of chemogenetic targeting of serotonin-projecting pathways on L-DOPA-induced dyskinesia and psychosis in a bilateral rat model of Parkinson's disease. Front Neural Circuits 2024; 18:1463941. [PMID: 39634948 PMCID: PMC11615880 DOI: 10.3389/fncir.2024.1463941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Parkinson's disease (PD) is commonly characterized by severe dopamine (DA) depletion within the substantia nigra (SN) leading to a myriad of motor and non-motor symptoms. One underappreciated and prevalent non-motor symptom, Parkinson's disease-associated psychosis (PDAP), significantly erodes patient and caregiver quality of life yet remains vastly understudied. While the gold standard pharmacotherapy for motor symptoms Levodopa (LD) is initially highly effective, it can lead to motor fluctuations like LD-induced dyskinesia (LID) and non-motor fluctuations such as intermittent PDAP. One source of these fluctuations could be the serotonergic raphe nuclei and their projections. Serotonin (5-HT) neurons possess the machinery necessary to convert and release DA from exogenous LD. In DA-depleted brain regions these 5-HT projections can act as surrogates to the DA system initially compensating but chronically leading to aberrant neuroplasticity which has been linked to LID and may also contribute to non-motor fluctuations. In support, recent work from our lab established a positive relationship between LID and PDAP in parkinsonian rats. Therefore, it was hypothesized that normalizing 5-HT forebrain input would reduce the co-expression of LID and PDAP. Methods To do so, we expressed 5-HT projection specific inhibitory designer receptor exclusively activated by designer drugs (DREADDs) using Cre-dependent AAV9-hM4di in tryptophan hydroxylase 2 (TPH2)-Cre bilaterally 6-OHDA-lesioned rats. Thereafter we used the designer drug Compound 21 to selectively inhibit 5-HT raphe projections during LD treatment to modulate the expression of PDAP, assayed by prepulse inhibition (PPI) and LID, quantified by the abnormal involuntary movements (AIMs) test. Results Our results suggest that chemogenetic inhibition of 5-HT raphe-projecting cells significantly reduces LID without affecting stepping ability or established sensorimotor gating deficits. Discussion Overall, this study provides further evidence for the complex influence of 5-HT raphe-projecting neurons on LD's neurobehavioral effects.
Collapse
Affiliation(s)
- Natalie Lipari
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Ashley Galfano
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Shruti Venkatesh
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Han Grezenko
- Barrow Neurological Institute, Phoenix, AZ, United States
| | | | | | - Christopher Bishop
- Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
16
|
Kouri C, Jia RY, Kentistou KA, Gardner EJ, Perry JRB, Flück CE, Ong KK. Population-Based Study of Rare Coding Variants in NR5A1/SF-1. J Endocr Soc 2024; 8:bvae178. [PMID: 39479520 PMCID: PMC11521259 DOI: 10.1210/jendso/bvae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Steroidogenic Factor 1/Nuclear Receptor Subfamily 5 Group A Member 1 (SF-1/NR5A1) is critical for the development and function of sex organs, influencing steroidogenesis and reproduction. While rare deleterious NR5A1/SF-1 variants have been identified in individuals with various differences of sex development (DSD), primary ovarian insufficiency, and infertility, their impact on the general population remains unclear. Methods We analyzed health records and exome sequencing data from up to 420 162 individuals (227 858 women) from the UK Biobank study to assess the impact of rare (frequency < 0.1%) predicted deleterious NR5A1/SF-1 variants on age at menopause and 26 other traits. Results No carriers of rare protein truncating variants in NR5A1/SF-1 were identified. We found that the previously reported association of rare deleterious missense NR5A1/SF-1 variants with earlier age at menopause is driven by variants in the DNA binding domain (DBD) and ligand binding domain (LBD) (combined test: beta = -2.36 years/allele, [95% CI: 3.21, -1.51], N = 107 carriers, P = 4.6 × 10-8). Carriers also had a higher risk of adult obesity (OR = 1.061, [95% CI: 1.003, 1.104], N = 344, P = .015), particularly among women (OR = 1.095 [95% CI: 1.034, 1.163, P = 3.87 × 10-3], N = 176), but not men (OR = 1.019, [95% CI: 0.955, 1.088], P = .57, N = 168). Conclusion Deleterious missense variants in the DBD and LBD likely disrupt NR5A1/SF-1 function. This study broadens the relevance of deleterious NR5A1/SF-1 variants beyond rare DSDs, suggesting the need for extended phenotyping and monitoring of affected individuals.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Raina Y Jia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John R B Perry
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christa E Flück
- Department of Pediatrics, Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
17
|
Currie AD, Wong JK, Okun MS. A review of temporal interference, nanoparticles, ultrasound, gene therapy, and designer receptors for Parkinson disease. NPJ Parkinsons Dis 2024; 10:195. [PMID: 39443513 PMCID: PMC11500395 DOI: 10.1038/s41531-024-00804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this review, we summarize preclinical and clinical trials investigating innovative neuromodulatory approaches for Parkinson disease (PD) motor symptom management. We highlight the following technologies: temporal interference, nanoparticles for drug delivery, blood-brain barrier opening, gene therapy, optogenetics, upconversion nanoparticles, magnetothermal nanoparticles, magnetoelectric nanoparticles, ultrasound-responsive nanoparticles, and designer receptors exclusively activated by designer drugs. These studies establish the basis for novel and promising neuromodulatory treatments for PD motor symptoms.
Collapse
Affiliation(s)
- A D Currie
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| | - J K Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - M S Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
18
|
Kokinovic B, Ryazantseva M, Molchanova S. Chemogenetic Silencing of Neonatal Spontaneous Activity of Projection Neurons in the Dorsal Striatum of Mice. Bio Protoc 2024; 14:e5088. [PMID: 39512879 PMCID: PMC11539959 DOI: 10.21769/bioprotoc.5088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Neuroscience incorporates manipulating neuronal circuitry to enhance the understanding of intricate brain functions. An effective strategy to attain this objective entails utilizing viral vectors to induce varied gene expression by delivering transgenes into brain cells. Here, we combine the use of transgenic mice, neonatal transduction with adeno-associated viral constructs harboring inhibitory designer receptor exclusively activated by designer drug (DREADD) gene, and the DREADD agonist clozapine N-oxide (CNO). In this way, a chemogenetic approach is employed to suppress neuronal activity in the region of interest during a critical developmental window, with subsequent investigation into its effects on the neuronal circuitry in adulthood. Key features • Comprehensive protocol for newborn viral transduction in the dorsal striatum of mice • Uses a viral construct encoding inhibitory DREADD under the control of Cre recombinase to attenuate the activity of specific cell types in the brain.
Collapse
Affiliation(s)
- Bojana Kokinovic
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana Molchanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
19
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
20
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of Novel Tools for Dissection of Central Versus Peripheral Dopamine D2-Like Receptor Signaling in Dysglycemia. Diabetes 2024; 73:1411-1425. [PMID: 38869519 PMCID: PMC11333378 DOI: 10.2337/db24-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors, including D2 (D2R) and D3 (D3R) receptors, remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analog of D2R/D3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Amy J. Eshleman
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR
| | - Aaron Janowsky
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Toronto, Ontario, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
21
|
Petersen D, Raudales R, Silva AK, Kellendonk C, Canetta S. Adolescent Thalamoprefrontal Inhibition Leads to Changes in Intrinsic Prefrontal Network Connectivity. eNeuro 2024; 11:ENEURO.0284-24.2024. [PMID: 39134414 PMCID: PMC11363513 DOI: 10.1523/eneuro.0284-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 09/01/2024] Open
Abstract
Adolescent inhibition of thalamocortical projections from postnatal days P20 to 50 leads to long-lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuitry during adolescence. Here, we used chemogenetic tools to inhibit thalamoprefrontal projections in male/female mice from P20 to P35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target (mediodorsal thalamus (MD), nucleus accumbens (NAc), or callosal prefrontal projections) 24 h later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III NAc and layer V/VI MD-projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only altered in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosal-projecting neurons. Increased inhibition of intraprefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition.
Collapse
Affiliation(s)
- David Petersen
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Divisions of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Ricardo Raudales
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Divisions of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Ariadna Kim Silva
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Divisions of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Christoph Kellendonk
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Divisions of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York 10032
| | - Sarah Canetta
- Departments of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032
- Developmental Neuroscience, New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
22
|
Labouesse MA, Wilhelm M, Kagiampaki Z, Yee AG, Denis R, Harada M, Gresch A, Marinescu AM, Otomo K, Curreli S, Serratosa Capdevila L, Zhou X, Cola RB, Ravotto L, Glück C, Cherepanov S, Weber B, Zhou X, Katner J, Svensson KA, Fellin T, Trudeau LE, Ford CP, Sych Y, Patriarchi T. A chemogenetic approach for dopamine imaging with tunable sensitivity. Nat Commun 2024; 15:5551. [PMID: 38956067 PMCID: PMC11219860 DOI: 10.1038/s41467-024-49442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Genetically-encoded dopamine (DA) sensors enable high-resolution imaging of DA release, but their ability to detect a wide range of extracellular DA levels, especially tonic versus phasic DA release, is limited by their intrinsic affinity. Here we show that a human-selective dopamine receptor positive allosteric modulator (PAM) can be used to boost sensor affinity on-demand. The PAM enhances DA detection sensitivity across experimental preparations (in vitro, ex vivo and in vivo) via one-photon or two-photon imaging. In vivo photometry-based detection of optogenetically-evoked DA release revealed that DETQ administration produces a stable 31 minutes window of potentiation without effects on animal behavior. The use of the PAM revealed region-specific and metabolic state-dependent differences in tonic DA levels and enhanced single-trial detection of behavior-evoked phasic DA release in cortex and striatum. Our chemogenetic strategy can potently and flexibly tune DA imaging sensitivity and reveal multi-modal (tonic/phasic) DA signaling across preparations and imaging approaches.
Collapse
Affiliation(s)
- Marie A Labouesse
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | | | - Andrew G Yee
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Raphaelle Denis
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Masaya Harada
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Andrea Gresch
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Kanako Otomo
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sebastiano Curreli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Reto B Cola
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Stanislav Cherepanov
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Xin Zhou
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Louis-Eric Trudeau
- Department of Pharmacology & Physiology, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, SNC and CIRCA Research groups, Université de Montréal, Montréal, QC, Canada
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yaroslav Sych
- Institute of Cellular and Integrative Neuroscience, University of Strasbourg, Strasbourg, France
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
23
|
Sniffen SE, Ryu SE, Kokoska MM, Bhattarai J, Wang Y, Thomas ER, Skates GM, Johnson NL, Chavez AA, Iaconis SR, Janke E, Ma M, Wesson DW. Bidirectional modulation of negative emotional states by parallel genetically-distinct basolateral amygdala pathways to ventral striatum subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599749. [PMID: 38948716 PMCID: PMC11213032 DOI: 10.1101/2024.06.19.599749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Distinct basolateral amygdala (BLA) cell populations influence emotional responses in manners thought important for anxiety and anxiety disorders. The BLA contains numerous cell types which can broadcast information into structures that may elicit changes in emotional states and behaviors. BLA excitatory neurons can be divided into two main classes, one of which expresses Ppp1r1b (encoding protein phosphatase 1 regulatory inhibitor subunit 1B) which is downstream of the genes encoding the D1 and D2 dopamine receptors (drd1 and drd2 respectively). The role of drd1+ or drd2+ BLA neurons in learned and unlearned emotional responses is unknown. Here, we identified that the drd1+ and drd2+ BLA neuron populations form two parallel pathways for communication with the ventral striatum. These neurons arise from the basal nucleus of the BLA, innervate the entire space of the ventral striatum, and are capable of exciting ventral striatum neurons. Further, through three separate behavioral assays, we found that the drd1+ and drd2+ parallel pathways bidirectionally influence both learned and unlearned emotional states when they are activated or suppressed, and do so depending upon where they synapse in the ventral striatum - with unique contributions of drd1+ and drd2+ circuitry on negative emotional states. Overall, these results contribute to a model whereby parallel, genetically-distinct BLA to ventral striatum circuits inform emotional states in a projection-specific manner.
Collapse
Affiliation(s)
- Sarah E. Sniffen
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Sang Eun Ryu
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Milayna M. Kokoska
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Janardhan Bhattarai
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingqi Wang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellyse R. Thomas
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Graylin M. Skates
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Natalie L. Johnson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Andy A. Chavez
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Sophia R. Iaconis
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| | - Emma Janke
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, Center for Smell and Taste, Gainesville, FL 32610, USA
| |
Collapse
|
24
|
Clark PJ, Brodnik ZD, España RA. Chemogenetic Signaling in Space and Time: Considerations for Designing Neuroscience Experiments Using DREADDs. Neuroscientist 2024; 30:328-346. [PMID: 36408535 DOI: 10.1177/10738584221134587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The use of designer receptors exclusively activated by designer drugs (DREADDs) has led to significant advances in our understanding of the neural circuits that govern behavior. By allowing selective control over cellular activity and signaling, DREADDs have become an integral tool for defining the pathways and cellular phenotypes that regulate sleep, pain, motor activity, goal-directed behaviors, and a variety of other processes. In this review, we provide a brief overview of DREADDs and discuss notable discoveries in the neurosciences with an emphasis on circuit mechanisms. We then highlight methodological approaches to achieve pathway specific activation of DREADDs. Finally, we discuss spatial and temporal constraints of DREADDs signaling and how these features can be incorporated into experimental designs to precisely dissect circuits of interest.
Collapse
Affiliation(s)
- Philip J Clark
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Zachary D Brodnik
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Rodrigo A España
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
25
|
Lavaud S, Bichara C, D'Andola M, Yeh SH, Takeoka A. Two inhibitory neuronal classes govern acquisition and recall of spinal sensorimotor adaptation. Science 2024; 384:194-201. [PMID: 38603479 DOI: 10.1126/science.adf6801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Spinal circuits are central to movement adaptation, yet the mechanisms within the spinal cord responsible for acquiring and retaining behavior upon experience remain unclear. Using a simple conditioning paradigm, we found that dorsal inhibitory neurons are indispensable for adapting protective limb-withdrawal behavior by regulating the transmission of a specific set of somatosensory information to enhance the saliency of conditioning cues associated with limb position. By contrast, maintaining previously acquired motor adaptation required the ventral inhibitory Renshaw cells. Manipulating Renshaw cells does not affect the adaptation itself but flexibly alters the expression of adaptive behavior. These findings identify a circuit basis involving two distinct populations of spinal inhibitory neurons, which enables lasting sensorimotor adaptation independently from the brain.
Collapse
Affiliation(s)
- Simon Lavaud
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Charlotte Bichara
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Mattia D'Andola
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Shu-Hao Yeh
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
| | - Aya Takeoka
- VIB-Neuroelectronics Research Flanders (NERF), 3001 Leuven, Belgium
- KU Leuven, Department of Neuroscience and Leuven Brain Institute, 3000 Leuven, Belgium
- IMEC, 3001 Leuven, Belgium
- RIKEN Center for Brain Science, Laboratory for Motor Circuit Plasticity, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
26
|
Petersen D, Raudales R, Silva AK, Kellendonk C, Canetta S. Adolescent Thalamocortical Inhibition Alters Prefrontal Excitation-Inhibition Balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.22.568048. [PMID: 38562790 PMCID: PMC10983865 DOI: 10.1101/2023.11.22.568048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Adolescent inhibition of thalamo-cortical projections from postnatal day P20-50 leads to long lasting deficits in prefrontal cortex function and cognition in the adult mouse. While this suggests a role of thalamic activity in prefrontal cortex maturation, it is unclear how inhibition of these projections affects prefrontal circuit connectivity during adolescence. Here, we used chemogenetic tools to inhibit thalamo-prefrontal projections in the mouse from P20-35 and measured synaptic inputs to prefrontal pyramidal neurons by layer (either II/III or V/VI) and projection target twenty-four hours later using slice physiology. We found a decrease in the frequency of excitatory and inhibitory currents in layer II/III nucleus accumbens (NAc) and layer V/VI medio-dorsal thalamus projecting neurons while layer V/VI NAc-projecting neurons showed an increase in the amplitude of excitatory and inhibitory currents. Regarding cortical projections, the frequency of inhibitory but not excitatory currents was enhanced in contralateral mPFC-projecting neurons. Notably, despite these complex changes in individual levels of excitation and inhibition, the overall balance between excitation and inhibition in each cell was only changed in the contralateral mPFC projections. This finding suggests homeostatic regulation occurs within subcortically but not intracortical callosally-projecting neurons. Increased inhibition of intra-prefrontal connectivity may therefore be particularly important for prefrontal cortex circuit maturation. Finally, we observed cognitive deficits in the adult mouse using this narrowed window of thalamocortical inhibition (P20-P35).
Collapse
Affiliation(s)
- David Petersen
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032
| | - Ricardo Raudales
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032
| | - Ariadna Kim Silva
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032
| | - Sarah Canetta
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032
| |
Collapse
|
27
|
Bonifazi A, Ellenberger M, Farino ZJ, Aslanoglou D, Rais R, Pereira S, Mantilla-Rivas JO, Boateng CA, Eshleman AJ, Janowsky A, Hahn MK, Schwartz GJ, Slusher BS, Newman AH, Freyberg Z. Development of novel tools for dissection of central versus peripheral dopamine D 2-like receptor signaling in dysglycemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581451. [PMID: 38529497 PMCID: PMC10962703 DOI: 10.1101/2024.02.21.581451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Ellenberger
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary J. Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Comfort A. Boateng
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Amy J. Eshleman
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Aaron Janowsky
- Research Service, VA Portland Health Care System, Portland, Oregon, USA
- Departments of Behavioral Neuroscience and Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Margaret K. Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting & Best Diabetes Centre, Toronto, ON, Canada
| | - Gary J. Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Lead Contact
| |
Collapse
|
28
|
Sun Q, Wang Y, Hou L, Li S, Hong JS, Wang Q, Zhao J. Clozapine-N-oxide protects dopaminergic neurons against rotenone-induced neurotoxicity by preventing ferritinophagy-mediated ferroptosis. Free Radic Biol Med 2024; 212:384-402. [PMID: 38182072 PMCID: PMC10842931 DOI: 10.1016/j.freeradbiomed.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, yet treatment options are limited. Clozapine (CLZ), an antipsychotic used for schizophrenia, has potential as a PD treatment. CLZ and its metabolite, Clozapine-N-Oxide (CNO), show neuroprotective effects on dopaminergic neurons, with mechanisms needing further investigation. This study aimed to confirm the neuroprotective effects of CLZ and CNO in a rotenone-induced mouse model and further explore the underlying mechanisms of CNO-afforded protection. Gait pattern and rotarod activity evaluations showed motor impairments in rotenone-exposed mice, with CLZ or CNO administration ameliorating behavioral deficits. Cell counts and biochemical analysis demonstrated CLZ and CNO's effectiveness in reducing rotenone-induced neurodegeneration of dopaminergic neurons in the nigrostriatal system in mice. Mechanistic investigations revealed that CNO suppressed rotenone-induced ferroptosis of dopaminergic neurons by rectifying iron imbalances, curtailing lipid peroxidation, and mitigating mitochondrial morphological changes. CNO also reversed autolysosome and ferritinophagic activation in rotenone-exposed mice. SH-SY5Y cell cultures validated these findings, indicating ferritinophage involvement, where CNO-afforded protection was diminished by ferritinophagy enhancers. Furthermore, knockdown of NCOA4, a crucial cargo receptor for ferritin degradation in ferritinophagy, hampered rotenone-induced ferroptosis and NCOA4 overexpression countered the anti-ferroptotic effects of CNO. Whereas, iron-chelating agents and ferroptosis enhancers had no effect on the anti-ferritinophagic effects of CNO in rotenone-treated cells. In summary, CNO shielded dopaminergic neurons in the rotenone-induced PD model by modulating NCOA4-mediated ferritinophagy, highlighting a potential therapeutic pathway for PD treatment. This research provided insights into the role of NCOA4 in ferroptosis and suggested new approaches for PD therapy.
Collapse
Affiliation(s)
- Qingquan Sun
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; Department of Neurology, Dalian University Affiliated Xinhua Hospital, No. 156 W. Wansui Road, Dalian 116021, China
| | - Yan Wang
- Institute of Integrative Medicine, College of Pharmacy, Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liyan Hou
- Dalian Medical University Library, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Sheng Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health, Sciences, NIH, MD F1-01, P. O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China; School of Public Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
29
|
Azadi R, Lopez E, Taubert J, Patterson A, Afraz A. Inactivation of face-selective neurons alters eye movements when free viewing faces. Proc Natl Acad Sci U S A 2024; 121:e2309906121. [PMID: 38198528 PMCID: PMC10801883 DOI: 10.1073/pnas.2309906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/06/2023] [Indexed: 01/12/2024] Open
Abstract
During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face-encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of the inferior temporal (IT) cortex in two macaque monkeys using an functional magnetic resonance imaging (fMRI) localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face-selective neurons altered the pattern of eye movements on faces: The monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements.
Collapse
Affiliation(s)
- Reza Azadi
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Emily Lopez
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Jessica Taubert
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
- School of Psychology, The University of Queensland, Brisbane, QLD4072, Australia
| | - Amanda Patterson
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Arash Afraz
- Unit on Neurons, Circuits and Behavior, Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD20892
| |
Collapse
|
30
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
31
|
Aomine Y, Oyama Y, Sakurai K, Macpherson T, Ozawa T, Hikida T. Clozapine N-oxide, compound 21, and JHU37160 do not influence effortful reward-seeking behavior in mice. Psychopharmacology (Berl) 2024; 241:89-96. [PMID: 37792024 PMCID: PMC10774210 DOI: 10.1007/s00213-023-06465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023]
Abstract
RATIONALE Clozapine N-oxide (CNO) has been developed as a ligand to selectively activate designer receptors exclusively activated by designer drugs (DREADDs). However, previous studies have revealed that peripherally injected CNO is reverse-metabolized into clozapine, which, in addition to activating DREADDs, acts as an antagonist at various neurotransmitter receptors, suggesting potential off-target effects of CNO on animal physiology and behaviors. Recently, second-generation DREADD agonists compound 21 (C21) and JHU37160 (J60) have been developed, but their off-target effects are not fully understood. OBJECTIVES The present studies assessed the effect of novel DREADD ligands on reward-seeking behavior. METHODS We first tested the possible effect of acute i.p. injection of low-to-moderate (0.1, 0.3, 1, 3 mg/kg) of CNO, C21, and J60 on motivated reward-seeking behavior in wild-type mice. We then examined whether a high dose (10 mg/kg) of these drugs might be able to alter responding. RESULTS Low-to-moderate doses of all drugs and a high dose of CNO or C21 did not alter operant lick responding for a reward under a progressive ratio schedule of reinforcement, in which the number of operant lick responses to obtain a reward increases after each reward collection. However, high-dose J60 resulted in a total lack of responding that was later observed in an open field arena to be due to a sedative effect. CONCLUSIONS This study provides definitive evidence that commonly used doses of CNO, C21, and J60 have negligible off-target effects on motivated reward-seeking but urges caution when using high doses of J60 due to sedative effects.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yoshinobu Oyama
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
32
|
MINAMIMOTO T, NAGAI Y, OYAMA K. Imaging-based chemogenetics for dissecting neural circuits in nonhuman primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:476-489. [PMID: 39401901 PMCID: PMC11535006 DOI: 10.2183/pjab.100.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024]
Abstract
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.
Collapse
Affiliation(s)
- Takafumi MINAMIMOTO
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji NAGAI
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kei OYAMA
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
33
|
Amorim MR, Wang X, Aung O, Bevans-Fonti S, Anokye-Danso F, Ribeiro C, Escobar J, Freire C, Pho H, Dergacheva O, Branco LGS, Ahima RS, Mendelowitz D, Polotsky VY. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep 2023; 42:113512. [PMID: 38039129 PMCID: PMC10804286 DOI: 10.1016/j.celrep.2023.113512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.
Collapse
Affiliation(s)
- Mateus R Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA.
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - O Aung
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Shannon Bevans-Fonti
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA
| | | | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Carla Freire
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Huy Pho
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Luiz G S Branco
- University of São Paulo, Ribeirão Preto, São Paulo 14040-904, Brazil
| | - Rexford S Ahima
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | - Vsevolod Y Polotsky
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Anesthesiology and Critical Care Medicine, George Washington University, Washington, DC 20037, USA; Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
34
|
Weera MM, Webster DA, Shackett RS, Benvenuti F, Middleton JW, Gilpin NW. Traumatic Stress-Induced Increases in Anxiety-like Behavior and Alcohol Self-Administration Are Mediated by Central Amygdala CRF1 Neurons That Project to the Lateral Hypothalamus. J Neurosci 2023; 43:8690-8699. [PMID: 37932105 PMCID: PMC10727175 DOI: 10.1523/jneurosci.1414-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Avoidance stress coping, defined as persistent internal and/or external avoidance of stress-related stimuli, is a key feature of anxiety- and stress-related disorders, and contributes to increases in alcohol misuse after stress exposure. Previous work using a rat model of predator odor stress avoidance identified corticotropin-releasing factor (CRF) signaling via CRF Type 1 receptors (CRF1) in the CeA, as well as CeA projections to the lateral hypothalamus (LH) as key mediators of conditioned avoidance of stress-paired contexts and/or increased alcohol drinking after stress. Here, we report that CRF1-expressing CeA cells that project to the LH are preferentially activated in male and female rats that show persistent avoidance of predator odor stress-paired contexts (termed Avoider rats), and that chemogenetic inhibition of these cells rescues stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats. Using slice electrophysiology, we found that prior predator odor stress exposure blunts inhibitory synaptic transmission and increases synaptic drive in CRF1 CeA-LH cells. In addition, we found that CRF bath application reduces synaptic drive in CRF1 CeA-LH cells in Non-Avoiders only. Collectively, these data show that CRF1 CeA-LH cells contribute to stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats.SIGNIFICANCE STATEMENT Stress may lead to a variety of behavioral and physiological negative consequences, and better understanding of the neurobiological mechanisms that contribute to negative stress effects may lead to improved prevention and treatment strategies. This study, performed in laboratory rats, shows that animals that exhibit avoidance stress coping go on to develop heightened anxiety-like behavior and alcohol self-administration, and that these behaviors can be rescued by inhibiting the activity of a specific population of neurons in the central amygdala. This study also describes stress-induced physiological changes in these neurons that may contribute to their role in promoting increased anxiety and alcohol self-administration.
Collapse
Affiliation(s)
- Marcus M Weera
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Daniel A Webster
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Rosetta S Shackett
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Federica Benvenuti
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Jason W Middleton
- Department of Cell Biology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Southeast Louisiana VA Healthcare System, New Orleans, Louisiana 70119
| |
Collapse
|
35
|
Nerella SG, Michaelides M, Minamimoto T, Innis RB, Pike VW, Eldridge MAG. PET reporter systems for the brain. Trends Neurosci 2023; 46:941-952. [PMID: 37734962 PMCID: PMC10592100 DOI: 10.1016/j.tins.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Positron emission tomography (PET) can be used as a noninvasive method to longitudinally monitor and quantify the expression of proteins in the brain in vivo. It can be used to monitor changes in biomarkers of mental health disorders, and to assess therapeutic interventions such as stem cell and molecular genetic therapies. The utility of PET monitoring depends on the availability of a radiotracer with good central nervous system (CNS) penetration and high selectivity for the target protein. This review evaluates existing methods for the visualization of reporter proteins and/or protein function using PET imaging, focusing on engineered systems, and discusses possible approaches for future success in the development of high-sensitivity and high-specificity PET reporter systems for the brain.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Robinson HL, Nicholson KL, Shelton KL, Hamilton PJ, Banks ML. Comparison of three DREADD agonists acting on Gq-DREADDs in the ventral tegmental area to alter locomotor activity in tyrosine hydroxylase:Cre male and female rats. Behav Brain Res 2023; 455:114674. [PMID: 37722510 PMCID: PMC10918529 DOI: 10.1016/j.bbr.2023.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
RATIONALE Despite the increasingly pervasive use of chemogenetic tools in preclinical neuroscience research, the in vivo pharmacology of DREADD agonists remains poorly understood. The pharmacological effects of any ligand acting at receptors, engineered or endogenous, are influenced by numerous factors including potency, time course, and receptor selectivity. Thus, rigorous comparison of the potency and time course of available DREADD ligands may provide an empirical foundation for ligand selection. OBJECTIVES Compare the behavioral pharmacology of three different DREADD ligands clozapine-N-oxide (CNO), compound 21 (C21), and deschloroclozapine (DCZ) in a locomotor activity assay in tyrosine hydroxylase:cre recombinase (TH:Cre) male and female rats. METHODS Locomotor activity in nine adult TH:Cre Sprague-Dawley rats (5 female, 4 male) was monitored for two hours following administration of d-amphetamine (vehicle, 0.1-3.2 mg/kg, IP), DCZ (vehicle, 0.32-320 µg/kg, IP), CNO (vehicle, 0.32-10 mg/kg), and C21 (vehicle, 0.1-3.2 mg/kg, IP). Behavioral sessions were conducted twice per week prior to and starting three weeks after bilateral intra-VTA hM3Dq DREADD virus injection. RESULTS d-Amphetamine significantly increased locomotor activity pre- and post-DREADD virus injection. DCZ, CNO, and C21 did not alter locomotor activity pre-DREADD virus injection. There was no significant effect of DCZ, CNO, and C21 on locomotor activity post-DREADD virus injection; however, large individual differences in both behavioral response and receptor expression were observed. CONCLUSIONS Large individual variability was observed in both DREADD agonist behavioral effects and receptor expression. These results suggest further basic research would facilitate the utility of these chemogenetic tools for behavioral neuroscience research.
Collapse
Affiliation(s)
- Hannah L Robinson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
37
|
Chen Y, Xu Y, Dai J, Ni W, Ding Q, Wu X, Fang J, Wu Y. Research trends in chemogenetics for neuroscience in recent 14 years: A bibliometric study in CiteSpace. Medicine (Baltimore) 2023; 102:e35291. [PMID: 37800804 PMCID: PMC10552966 DOI: 10.1097/md.0000000000035291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Chemogenetics has been widely adopted in Neuroscience. Neuroscience has become a hot research topic for scientists. Therefore, the purpose of this study is to explore the current status and trends in the global application of chemogenetics in neuroscience over the last 14 years via CiteSpace. METHODS Publications related to chemogenetics in neuroscience were retrieved from the Science Citation Index-Extended Web of Science from 2008 to 2021. We used CiteSpace to analyze publications, citations, cited journals, countries, institutions, authors, cited authors, cited references, and keywords. RESULTS A total of 947 records were retrieved from 2008 to 2021 on February 21, 2022. The number and rate of publications and citations increased significantly. Journal of Neuroscience was the most cited journal, and BRAIN RES BULL ranked first in the centrality of cited journals. The United States of America (USA) had the highest number of publications among the countries. Takashi Minamoto was the most prolific author and Armbruster BN ranked the first among authors cited. The first article in the frequency ranking of the references cited was published by Roth BL. The keyword of "nucleus accumben (NAc)" had the highest frequency. The top 3 keywords with the strongest citation bursts include "transgenic mice," "cancer," and "blood-brain barrier." CONCLUSION The period 2008 to 2021 has seen a marked increase in research on chemogenetics in neuroscience. The application of chemogenetics is indispensable for research in the field of neuroscience. This bibliometrics study provides the current situation and trend in chemogenetic methods in neuroscience in recent 14 years, which may help researchers to identify the hot topics and frontiers for future studies in this field.
Collapse
Affiliation(s)
- Yuerong Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyun Xu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiale Dai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqin Ni
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qike Ding
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyuan Wu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
38
|
Mueller SA, Oler JA, Roseboom PH, Aggarwal N, Kenwood MM, Riedel MK, Elam VR, Olsen ME, DiFilippo AH, Christian BT, Hu X, Galvan A, Boehm MA, Michaelides M, Kalin NH. DREADD-mediated amygdala activation is sufficient to induce anxiety-like responses in young nonhuman primates. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100111. [PMID: 38020807 PMCID: PMC10663133 DOI: 10.1016/j.crneur.2023.100111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
Collapse
Affiliation(s)
- Sascha A.L. Mueller
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Jonathan A. Oler
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Patrick H. Roseboom
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Nakul Aggarwal
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Margaux M. Kenwood
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Marissa K. Riedel
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Victoria R. Elam
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Miles E. Olsen
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| | - Alexandra H. DiFilippo
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Bradley T. Christian
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Xing Hu
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ned H. Kalin
- Department of Psychiatry and the HealthEmotions Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53719, USA
| |
Collapse
|
39
|
Lawson KA, Ruiz CM, Mahler SV. A head-to-head comparison of two DREADD agonists for suppressing operant behavior in rats via VTA dopamine neuron inhibition. Psychopharmacology (Berl) 2023; 240:2101-2110. [PMID: 37530882 PMCID: PMC10794001 DOI: 10.1007/s00213-023-06429-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Designer receptors exclusively activated by designer drugs (DREADDs) are a tool for "remote control" of defined neuronal populations during behavior. These receptors are inert unless bound by an experimenter-administered designer drug, commonly clozapine-n-oxide (CNO). However, questions have emerged about the suitability of CNO as a systemically administered DREADD agonist. OBJECTIVES Second-generation agonists such as JHU37160 (J60) have been developed, which may have more favorable properties than CNO. Here we sought to directly compare effects of CNO (0, 1, 5, & 10 mg/kg, i.p.) and J60 (0, 0.03, 0.3, & 3 mg/kg, i.p.) on operant food pursuit. METHODS Male and female TH:Cre + rats and their wildtype (WT) littermates received cre-dependent hM4Di-mCherry vector injections into ventral tegmental area (VTA), causing inhibitory DREADD expression in VTA dopamine neurons of TH:Cre + rats. All rats were trained to stably lever press for palatable food on a fixed ratio 10 schedule, and doses of both agonists were tested on separate days in counterbalanced order. RESULTS All three CNO doses reduced operant rewards earned in rats with DREADDs, and no CNO dose had behavioral effects in WT controls. The highest J60 dose tested significantly reduced responding in DREADD rats, but this dose also increased responding in WTs, indicating non-specific effects. The magnitude of CNO and J60 effects in TH:Cre + rats were correlated and were present in both sexes. CONCLUSIONS Findings demonstrate the usefulness of directly comparing DREADD agonists when optimizing behavioral chemogenetics, and highlight the importance of proper controls, regardless of the DREADD agonist employed.
Collapse
Affiliation(s)
- Kate A Lawson
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA.
| | - Christina M Ruiz
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California Irvine, 1132 McGaugh Hall, Irvine, CA, 92697, USA
| |
Collapse
|
40
|
Hori Y, Nagai Y, Hori Y, Oyama K, Mimura K, Hirabayashi T, Inoue KI, Fujinaga M, Zhang MR, Takada M, Higuchi M, Minamimoto T. Multimodal Imaging for Validation and Optimization of Ion Channel-Based Chemogenetics in Nonhuman Primates. J Neurosci 2023; 43:6619-6627. [PMID: 37620158 PMCID: PMC10538582 DOI: 10.1523/jneurosci.0625-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.
Collapse
Affiliation(s)
- Yuki Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kei Oyama
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama 484-8506, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
41
|
Van Savage J, Avegno EM. High dose administration of DREADD agonist JHU37160 produces increases in anxiety-like behavior in male rats. Behav Brain Res 2023; 452:114553. [PMID: 37352979 PMCID: PMC10527408 DOI: 10.1016/j.bbr.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are a promising tool for analyzing neural circuitry, and improved DREADD-selective ligands continue to be developed. Relative to clozapine-N-oxide (CNO), JHU37160 is a selective DREADD agonist recently shown to exhibit higher blood brain barrier penetrance and DREADD selectivity in vivo; however, relatively few studies have characterized the behavioral effects of systemic JHU37160 administration in animals. Here, we report a dose-dependent anxiogenic effect of systemic JHU37160 in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behavior. These results suggest that high dose (1 mg/kg) JHU37160 should be avoided when performing chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Jacqueline Van Savage
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA; Tulane University, New Orleans, LA 70118, USA
| | - Elizabeth M Avegno
- Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA.
| |
Collapse
|
42
|
Ingiosi AM, Hayworth CR, Frank MG. Activation of Basal Forebrain Astrocytes Induces Wakefulness without Compensatory Changes in Sleep Drive. J Neurosci 2023; 43:5792-5809. [PMID: 37487739 PMCID: PMC10423050 DOI: 10.1523/jneurosci.0163-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Mammalian sleep is regulated by a homeostatic process that increases sleep drive and intensity as a function of prior wake time. Sleep homeostasis has traditionally been thought to be a product of neurons, but recent findings demonstrate that this process is also modulated by glial astrocytes. The precise role of astrocytes in the accumulation and discharge of sleep drive is unknown. We investigated this question by selectively activating basal forebrain (BF) astrocytes using designer receptors exclusively activated by designer drugs (DREADDs) in male and female mice. DREADD activation of the Gq-protein-coupled pathway in BF astrocytes produced long and continuous periods of wakefulness that paradoxically did not cause the expected homeostatic response to sleep loss (e.g., increases in sleep time or intensity). Further investigations showed that this was not because of indirect effects of the ligand that activated DREADDs. These findings suggest that the need for sleep is not only driven by wakefulness per se, but also by specific neuronal-glial circuits that are differentially activated in wakefulness.SIGNIFICANCE STATEMENT Sleep drive is controlled by a homeostatic process that increases sleep duration and intensity based on prior time spent awake. Non-neuronal brain cells (e.g., glial astrocytes) influence this homeostatic process, but their precise role is unclear. We used a genetic technique to activate astrocytes in the basal forebrain (BF) of mice, a brain region important for sleep and wake expression and sleep homeostasis. Astroglial activation induced prolonged wakefulness without the expected homeostatic increase in sleep drive (i.e., sleep duration and intensity). These findings indicate that our need to sleep is also driven by non-neuronal cells, and not only by time spent awake.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Christopher R Hayworth
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington 99202
- Gleason Institute for Neuroscience, Washington State University, Spokane, Washington 99202
- Sleep Performance and Research Center, Washington State University, Spokane, Washington, 99202
| |
Collapse
|
43
|
Bonaventura J, Boehm MA, Jedema HP, Solis O, Pignatelli M, Song X, Lu H, Richie CT, Zhang S, Gomez JL, Lam S, Morales M, Gharbawie OA, Pomper MG, Stein EA, Bradberry CW, Michaelides M. Expression of the excitatory opsin ChRERα can be traced longitudinally in rat and nonhuman primate brains with PET imaging. Sci Transl Med 2023; 15:eadd1014. [PMID: 37494470 PMCID: PMC10938262 DOI: 10.1126/scitranslmed.add1014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Optogenetics is a widely used technology with potential for translational research. A critical component of such applications is the ability to track the location of the transduced opsin in vivo. To address this problem, we engineered an excitatory opsin, ChRERα (hChR2(134R)-V5-ERα-LBD), that could be visualized using positron emission tomography (PET) imaging in a noninvasive, longitudinal, and quantitative manner. ChRERα consists of the prototypical excitatory opsin channelrhodopsin-2 (ChR2) and the ligand-binding domain (LBD) of the human estrogen receptor α (ERα). ChRERα showed conserved ChR2 functionality and high affinity for [18F]16α-fluoroestradiol (FES), an FDA-approved PET radiopharmaceutical. Experiments in rats demonstrated that adeno-associated virus (AAV)-mediated expression of ChRERα enables neural circuit manipulation in vivo and that ChRERα expression could be monitored using FES-PET imaging. In vivo experiments in nonhuman primates (NHPs) confirmed that ChRERα expression could be monitored at the site of AAV injection in the primary motor cortex and in long-range neuronal terminals for up to 80 weeks. The anatomical connectivity map of the primary motor cortex identified by FES-PET imaging of ChRERα expression overlapped with a functional connectivity map identified using resting state fMRI in a separate cohort of NHPs. Overall, our results demonstrate that ChRERα expression can be mapped longitudinally in the mammalian brain using FES-PET imaging and can be used for neural circuit modulation in vivo.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Catalonia 08907, Spain
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Matthew A. Boehm
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Hank P. Jedema
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Oscar Solis
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marco Pignatelli
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaowei Song
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Hanbing Lu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Christopher T. Richie
- Genetic Engineering and Viral Vector Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Juan L. Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Marisela Morales
- Neuronal Networks Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Omar A. Gharbawie
- Systems Neuroscience Center, Departments of Neurobiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Charles W. Bradberry
- Preclinical Pharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
44
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
45
|
Azadi R, Lopez E, Taubert J, Patterson A, Afraz A. Inactivation of face selective neurons alters eye movements when free viewing faces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.544678. [PMID: 37502993 PMCID: PMC10370202 DOI: 10.1101/2023.06.20.544678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During free viewing, faces attract gaze and induce specific fixation patterns corresponding to the facial features. This suggests that neurons encoding the facial features are in the causal chain that steers the eyes. However, there is no physiological evidence to support a mechanistic link between face encoding neurons in high-level visual areas and the oculomotor system. In this study, we targeted the middle face patches of inferior temporal (IT) cortex in two macaque monkeys using an fMRI localizer. We then utilized muscimol microinjection to unilaterally suppress IT neural activity inside and outside the face patches and recorded eye movements while the animals free viewing natural scenes. Inactivation of the face selective neurons altered the pattern of eye movements on faces: the monkeys found faces in the scene but neglected the eye contralateral to the inactivation hemisphere. These findings reveal the causal contribution of the high-level visual cortex in eye movements. Significance It has been shown, for more than half a century, that eye movements follow distinctive patterns when free viewing faces. This suggests causal involvement of the face-encoding visual neurons in the eye movements. However, the literature is scant of evidence for this possibility and has focused mostly on the link between low-level image saliency and eye movements. Here, for the first time, we bring causal evidence showing how face-selective neurons in inferior temporal cortex inform and steer eye movements when free viewing faces.
Collapse
|
46
|
Eliason NL, Sharpe AL. Proopiomelanocortin projections to the nucleus accumbens modulate acquisition and maintenance of operant palatable pellet administration in mice. Physiol Behav 2023; 265:114176. [PMID: 36965574 PMCID: PMC10241194 DOI: 10.1016/j.physbeh.2023.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Obesity is a crisis in the United States, producing many co-morbid diseases that can drastically decrease quality of life. While diet is a major focus for therapeutic intervention, the need to understand underlying appetitive neurocircuitry persists. Proopiomelanocortin (POMC) peptides are well-known for their anorexigenic activity, but also mediate reward and learning. The nucleus accumbens (NAcc) is best known for its role in reward-based learning, but the contribution of POMC projections to NAcc on feeding are controversial since the two major POMC-derived peptides (β-endorphin and α-MSH) have opposite effects on food intake. Our objective was to determine the effect of stimulating POMC projections in the NAcc on acquisition and maintenance of operant self-administration of a palatable food. Adult POMCCre mice were microinjected into the NAcc with a Cre-dependent retrograde adeno-associated viral vector expressing Gq Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Mice were trained to self-administer palatable 20-mg pellets in daily operant sessions. Acquisition of self-administration (fixed ratio 30) and baseline self-administration were measured in daily sessions, with mice receiving injections of either JHU37152 (DREADD agonist) or saline (i.p.) 15 min prior to the sessions. POMC neuron stimulation (JHU injection) before training sessions produced a significant increase in rate of acquisition and accuracy compared to the saline treated group, with no significant effect on rewards earned. Removal of POMC neuron stimulation before sessions initially reduced consumption with a gradual increase in responding for reinforcer over 3 days of saline injections. Reinstatement of POMC neuron stimulation (JHU) before the session resulted in a significant decrease in responding and rewards earned. These results suggest a complex role of POMC peptides within the NAcc that increase reward learning for a novel palatable food while decreasing consumption of the reinforcer following experience with it.
Collapse
Affiliation(s)
- Nicole L Eliason
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America
| | - Amanda L Sharpe
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America; Harold Hamm Diabetes Center, The University of Oklahoma Health Science Center, Oklahoma City, OK, 73117, United States of America.
| |
Collapse
|
47
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
48
|
Suthard RL, Jellinger AL, Surets M, Shpokayte M, Pyo AY, Buzharsky MD, Senne RA, Dorst K, Leblanc H, Ramirez S. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol Aging 2023; 125:9-31. [PMID: 36801699 DOI: 10.1016/j.neurobiolaging.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023]
Abstract
Network dysfunction is implicated in numerous diseases and psychiatric disorders, and the hippocampus serves as a common origin for these abnormalities. To test the hypothesis that chronic modulation of neurons and astrocytes induces impairments in cognition, we activated the hM3D(Gq) pathway in CaMKII+ neurons or GFAP+ astrocytes within the ventral hippocampus across 3, 6, and 9 months. CaMKII-hM3Dq activation impaired fear extinction at 3 months and acquisition at 9 months. Both CaMKII-hM3Dq manipulation and aging had differential effects on anxiety and social interaction. GFAP-hM3Dq activation impacted fear memory at 6 and 9 months. GFAP-hM3Dq activation impacted anxiety in the open field only at the earliest time point. CaMKII-hM3Dq activation modified the number of microglia, while GFAP-hM3Dq activation impacted microglial morphological characteristics, but neither affected these measures in astrocytes. Overall, our study elucidates how distinct cell types can modify behavior through network dysfunction, while adding a more direct role for glia in modulating behavior.
Collapse
Affiliation(s)
- Rebecca L Suthard
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Alexandra L Jellinger
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Michelle Surets
- Undergraduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Angela Y Pyo
- Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | | | - Ryan A Senne
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Kaitlyn Dorst
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Heloise Leblanc
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA
| | - Steve Ramirez
- Department of Biomedical Engineering, Boston University, Boston, MA, USA; Department of Psychological and Brain Sciences, The Center for Systems Neuroscience, Neurophotonics Center, and Photonics Center, Boston University, Boston, MA, USA.
| |
Collapse
|
49
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
50
|
Asaad W, Volos P, Maksimov D, Khavina E, Deviatkin A, Mityaeva O, Volchkov P. AAV genome modification for efficient AAV production. Heliyon 2023; 9:e15071. [PMID: 37095911 PMCID: PMC10121408 DOI: 10.1016/j.heliyon.2023.e15071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The adeno-associated virus (AAV) is one of the most potent vectors in gene therapy. The experimental profile of this vector shows its efficiency and accepted safety, which explains its increased usage by scientists for the research and treatment of a wide range of diseases. These studies require using functional, pure, and high titers of vector particles. In fact, the current knowledge of AAV structure and genome helps improve the scalable production of AAV vectors. In this review, we summarize the latest studies on the optimization of scalable AAV production through modifying the AAV genome or biological processes inside the cell.
Collapse
|