1
|
Ghamlouch H, Gagler DC, Blaney P, Boyle EM, Wang Y, Avigan J, Choi J, Landgren O, Tsirigos A, Maura F, Morgan GJ, Davies FE. A proinflammatory response and polarized differentiation of stromal elements characterizes the murine myeloma bone marrow niche. Exp Hematol Oncol 2025; 14:22. [PMID: 40011943 DOI: 10.1186/s40164-025-00606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The bone marrow (BM) niche contains non-hematopoietic elements including mesenchymal stromal cells (MSC) and bone marrow endothelial cells (BMEC) which provide mechanical support, and control hematopoietic cell growth and differentiation. Although it is known that multiple myeloma (MM) cells interact closely with the BM microenvironment, little is known about the impact of MM on non-hematopoietic niche-forming cells. METHODS To address the role of the niche in MM pathogenesis, we utilized the 5TGM1 murine model. During the asymptomatic precursor stage of the model, we isolated the rare non-hematopoietic cells and performed single cell RNA sequencing. Using in-silico methods we characterized the individual cellular components of the niche, their relative abundance and differentiation state before and after exposure to MM cells as well as their intercellular interactions. RESULTS MM engraftment increased the abundance of MSC-lineage cells, BMECs and enhanced endothelial to mesenchymal transition. An inflammatory and oxidative stress signal was identified together with polarization of MSC differentiation away from osteocyte formation towards adipocytes which provide growth factors that are known to support MM expansion. BMEC differentiation was polarized towards sinusoidal endothelial cells with a pro-angiogenic/pro-inflammatory phenotype. CONCLUSIONS MM cells impact the BM niche by generating a pro-inflammatory microenvironment with MSC differentiation being changed to generate cell subsets that favor MM growth and survival. In order to induce remission and improve long-term outcome for MM patients these inflammatory and oxidative stress signals need to be reduced and normal niche differentiation trajectories restored.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA.
| | - Dylan C Gagler
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Patrick Blaney
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Eileen M Boyle
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
- Cancer Institute, University College London, London, UK
- Clinical Haematology Department, University College London Hospitals NHS Foundation Trust, London, UK
| | - Yubao Wang
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Jason Avigan
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Jinyoung Choi
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Ola Landgren
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories (ABL), NYU Langone Medical Center, New York, NY, USA
| | - Francesco Maura
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Gareth J Morgan
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA
| | - Faith E Davies
- Myeloma Research Program, Perlmutter Cancer Center, NYU Langone Health, 522 First Avenue, MSB4, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Xie W, Li X, Chen H, Chu J, Zhang L, Tang B, Huang W, Li L, Lin J, Dong Y. 5-Hydroxymethylcytosine Profiles of cfDNA in Urine as Diagnostic, Differential Diagnosis and Prognostic Markers for Multiple Myeloma. Cancer Med 2024; 13:e70477. [PMID: 39711442 DOI: 10.1002/cam4.70477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND An effective urine-based method for the diagnosis, differential diagnosis and prognosis of multiple myeloma (MM) has not yet been developed. Urine cell-free DNA (cfDNA) carrying cancer-specific genetic and epigenetic aberrations may enable a noninvasive "liquid biopsy" for diagnosis and monitoring of cancer. METHODS We first identified MM-specific hydroxymethylcytosine signatures by comparing 64 MM patients, 23 amyloidosis (AM) patients and 59 healthy cohort. Then, we applied a machine learning algorithm to develop diagnostic and differential diagnosis model. Finally, the prognosis of MM patients was predicted based on their survival time at the last follow-up. RESULTS We identified 11 5hmC markers using logistic regression algorithm could effectively diagnosis MM (AUC = 0.902), and achieved 85.00% specificity and 85.71% sensitivity. These 11 markers could also effectively differential diagnosis MM (AUC = 0.805) with 88.89% specificity and 73.08% sensitivity. In addition, the prognostic prediction model also effectively predicted the prognosis of patients with MM (p < 0.01), of which 4 differential markers (RAPGEF2, BRD1, TET2, TRAF3IP2) could independently predict the prognosis of MM. CONCLUSIONS Together, our findings showed the value of urine cfDNA hydroxymethylcytosine markers in the diagnosis, differential diagnosis and prognosis of MM. Meantime, our study provides a promising and completely non-invasive method for the diagnosis, differential diagnosis and prognosis prediction of MM.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Jinlin Chu
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| | - Wenrong Huang
- Department of Hematology, Fifth Medical Center, General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| | - Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
- Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release Technology, Urumqi, China
| | - Jian Lin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Peking University Third Hospital Cancer Center, Beijing, China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
3
|
Bogun L, Koch A, Scherer B, Fenk R, Maus U, Bormann F, Köhrer K, Petzsch P, Wachtmeister T, Zukovs R, Dietrich S, Haas R, Schroeder T, Jäger P, Geyh S. Stromal alterations in patients with monoclonal gammopathy of undetermined significance, smoldering myeloma, and multiple myeloma. Blood Adv 2024; 8:2575-2588. [PMID: 38241490 PMCID: PMC11145751 DOI: 10.1182/bloodadvances.2023011632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
ABSTRACT The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages such as monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages such as smoldering myeloma (SMM) can progress to MM. Mesenchymal stromal cells (MSCs) are an integral component of the bone marrow microenvironment and play an important role in osteoblast differentiation and hematopoietic support. Although stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study, we analyzed MSCs from MGUS, SMM, and MM regarding their properties and functionality and performed messenger RNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support were already present in MGUS MSC. As shown by RNA sequencing, there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in patients with SMM and MM. Our data may help to block these signaling pathways in the future to hinder progression to MM.
Collapse
Affiliation(s)
- Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Roland Fenk
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Romans Zukovs
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Rainer Haas
- Institute of Medical Microbiology and Hospital Hygiene, University of Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| |
Collapse
|
4
|
Favaloro J, Bryant CE, Abadir E, Gardiner S, Yang S, King T, Nassif N, Sedger LM, Boyle R, Joshua DE, Ho PJ. Single-cell analysis of the CD8 + T-cell compartment in multiple myeloma reveals disease specific changes are chiefly restricted to a CD69 - subset suggesting potent cytotoxic effectors exist within the tumor bed. Haematologica 2024; 109:1220-1232. [PMID: 37794800 PMCID: PMC10985429 DOI: 10.3324/haematol.2023.283062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable disease of the bone marrow (BM) characterized by the uncontrolled proliferation of neoplastic plasma cells. While CD8+ T cells have an established role in disease control, few studies have focused on these cells within the MM tumor microenvironment (TME). We analyzed CD8+ T cells in the BM and peripheral blood (PB) of untreated patients with MM and non-myeloma controls using flow cytometry, mass cytometry and single-cell RNA sequencing, using several novel bioinformatics workflows. Inter-tissue differences were most evident in the differential expression of Granzymes B and K, which were strongly associated with two distinct subsets of CD8+ T cells delineated by the expression of CD69, accounting for roughly 50% of BM-CD8+ T cells of all assessed cohorts. While few differences were observable between health and disease in the BM-restricted CD8CD69+ T-cell subset, the CD8+CD69- T-cell subset in the BM of untreated MM patients demonstrated increased representation of highly differentiated effector cells and evident compositional parallels between the PB, absent in age-matched controls, where a marked reduction of effector cells was observed. We demonstrate the transcriptional signature of BM-CD8+ T cells from patients with MM more closely resembles TCR-activated CD8+ T cells from age-matched controls than their resting counterparts.
Collapse
Affiliation(s)
- James Favaloro
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW.
| | - Christian E Bryant
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW.
| | - Edward Abadir
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - Samuel Gardiner
- Sydney Local Health District Clinical Research Institute, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Shihong Yang
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Tracy King
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - Najah Nassif
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW
| | - Lisa M Sedger
- Institute for Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital. Westmead NSW, Sydney, Australia; Centre for Virus research, Westmead Institute for Medical research. Westmead NSW, Sydney
| | - Richard Boyle
- Orthopaedics Department, Sydney Local Health District, Royal Prince Alfred Hospital, Camperdown, NSW
| | - Douglas E Joshua
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| | - P Joy Ho
- Institute of Haematology, Multiple Myeloma Research Laboratory, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW
| |
Collapse
|
5
|
Singh AK, Prasad P, Cancelas JA. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis. Front Cell Dev Biol 2023; 11:1325291. [PMID: 38169927 PMCID: PMC10759248 DOI: 10.3389/fcell.2023.1325291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Hematopoietic stem cell (HSC) transplantation-based treatments are in different phases of clinical development, ranging from current therapies to a promise in the repair and regeneration of diseased tissues and organs. Mesenchymal stromal/stem cells (MSCs), which are fibroblast-like heterogeneous progenitors with multilineage differentiation (osteogenic, chondrogenic, and adipogenic) and self-renewal potential, and exist in the bone marrow (BM), adipose, and synovium, among other tissues, represent one of the most widely used sources of stem cells in regenerative medicine. MSCs derived from bone marrow (BM-MSCs) exhibit a variety of traits, including the potential to drive HSC fate and anti-inflammatory and immunosuppressive capabilities via paracrine activities and interactions with the innate and adaptive immune systems. The role of BM-MSC-derived adipocytes is more controversial and may act as positive or negative regulators of benign or malignant hematopoiesis based on their anatomical location and functional crosstalk with surrounding cells in the BM microenvironment. This review highlights the most recent clinical and pre-clinical findings on how BM-MSCs interact with the surrounding HSCs, progenitors, and immune cells, and address some recent insights on the mechanisms that mediate MSCs and adipocyte metabolic control through a metabolic crosstalk between BM microenvironment cells and intercellular mitochondrial transfer in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Parash Prasad
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Hu C, Kuang C, Zhou W. Advances in the pathogenesis of multiple myeloma bone disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1403-1410. [PMID: 38044652 PMCID: PMC10929876 DOI: 10.11817/j.issn.1672-7347.2023.220534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/05/2023]
Abstract
Multiple myeloma (MM) is a clonal proliferative malignant tumor of plasma cells in bone marrow. With the aging of population in China, the incidence of MM is on the rise. Multiple myeloma bone disease (MBD) is one of the common clinical manifestations of MM, and 80%-90% of MM patients are accompanied by osteolytic lesions at the time of their first visit to the clinic. MBD not only increases the disability rate of patients, but also severely reduces the physical function of patients due to skeletal lesions and bone-related events. Currently available drugs for treating of MBD are ineffective and associated with side effects. Therefore, it is important to find new therapeutic approaches for the treatment of MBD. It is generally believed that the increased osteoclast activity and suppressed osteoblast function are the main pathologic mechanisms for MBD. However, more and more studies have suggested that soluble molecules in the bone marrow microenvironment, including cytokines, extracellular bodies, and metabolites, play an important role in the development of MBD. Therefore, exploring the occurrence and potential molecular mechanisms for MBD from multiple perspectives, and identifying the predictive biomarkers and potential therapeutic targets are of significance for the clinical treatment of MBD.
Collapse
Affiliation(s)
- Cong Hu
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China.
| | - Chunmei Kuang
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China
| | - Wen Zhou
- Institute of Oncology, School of Basic Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
7
|
Cao J, Zhang Z, Zhou L, Luo M, Li L, Li B, Nice EC, He W, Zheng S, Huang C. Oncofetal reprogramming in tumor development and progression: novel insights into cancer therapy. MedComm (Beijing) 2023; 4:e427. [PMID: 38045829 PMCID: PMC10693315 DOI: 10.1002/mco2.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Emerging evidence indicates that cancer cells can mimic characteristics of embryonic development, promoting their development and progression. Cancer cells share features with embryonic development, characterized by robust proliferation and differentiation regulated by signaling pathways such as Wnt, Notch, hedgehog, and Hippo signaling. In certain phase, these cells also mimic embryonic diapause and fertilized egg implantation to evade treatments or immune elimination and promote metastasis. Additionally, the upregulation of ATP-binding cassette (ABC) transporters, including multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), and breast cancer-resistant protein (BCRP), in drug-resistant cancer cells, analogous to their role in placental development, may facilitate chemotherapy efflux, further resulting in treatment resistance. In this review, we concentrate on the underlying mechanisms that contribute to tumor development and progression from the perspective of embryonic development, encompassing the dysregulation of developmental signaling pathways, the emergence of dormant cancer cells, immune microenvironment remodeling, and the hyperactivation of ABC transporters. Furthermore, we synthesize and emphasize the connections between cancer hallmarks and embryonic development, offering novel insights for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Jiangjun Cao
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhe Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Diseasethe First Affiliated HospitalSchool of MedicineZhejiang UniversityZhejiangChina
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious Diseasesthe Second Affiliated HospitalInstitute for Viral Hepatitis, Chongqing Medical UniversityChongqingChina
| | - Maochao Luo
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lei Li
- Department of anorectal surgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Weifeng He
- State Key Laboratory of TraumaBurn and Combined InjuryInstitute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University)ChongqingChina
| | - Shaojiang Zheng
- Hainan Cancer Medical Center of The First Affiliated Hospital, the Hainan Branch of National Clinical Research Center for Cancer, Hainan Engineering Research Center for Biological Sample Resources of Major DiseasesHainan Medical UniversityHaikouChina
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Key Laboratory of Emergency and Trauma of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and Department of Biotherapy Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
8
|
He Q, Hu H, Yang F, Song D, Zhang X, Dai X. Advances in chimeric antigen receptor T cells therapy in the treatment of breast cancer. Biomed Pharmacother 2023; 162:114609. [PMID: 37001182 DOI: 10.1016/j.biopha.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Breast cancer (BC) is the most frequently occurring cancer type seriously threatening the lives of women worldwide. Clinically, the high frequency of diverse resistance to current therapeutic strategies advocates a demand to develop novel and effective approaches for the efficient treatment of BC. The chimeric antigen receptor T (CAR-T) cells therapy, one of the immunotherapies, has displayed powerful capacity to specifically kill and eliminate tumors. Due to the success of CAR-T therapy achieved in treating hematological malignancy, the effect of CAR-T cells therapy has been tested in various human diseases including breast cancer. This review summarized and discussed the landscape of the CAR-T therapy for breast cancer, including the advances, challenge and countermeasure of CAR-T therapy in research and clinical application. The roles of potential antigen targets, tumor microenvironment, immune escape in regulating CAR-T therapy, the combination of CAR-T therapy with other therapeutic strategies to further enhance therapeutic efficacy of CAR-T treatment were also highlighted. Therefore, our review provided a comprehensive understanding of CAR-T cell therapy in breast cancer which will awake huge interests for future in-depth investigation of CAR-T based therapy in cancer treatment.
Collapse
|
9
|
Kuang C, Xia M, An G, Liu C, Hu C, Zhang J, Liu Z, Meng B, Su P, Xia J, Guo J, Zhu Y, Liu X, Wu X, Shen Y, Feng X, He Y, Li J, Qiu L, Zhou J, Zhou W. Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma. Nat Commun 2023; 14:2093. [PMID: 37055385 PMCID: PMC10102122 DOI: 10.1038/s41467-023-37699-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
Collapse
Affiliation(s)
- Chunmei Kuang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhenhao Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Meng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiliang Xia
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xing Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuan Wu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Provera MD, Straign DM, Karimpour P, Ihle CL, Owens P. Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer Rep (Hoboken) 2023; 6:e1707. [PMID: 36054271 PMCID: PMC9940003 DOI: 10.1002/cnr2.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.
Collapse
Affiliation(s)
- Meredith D. Provera
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Desiree M. Straign
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | | | - Claire L. Ihle
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Philip Owens
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care SystemAuroraColoradoUSA
| |
Collapse
|
11
|
Dao A, McDonald MM, Savage PB, Little DG, Schindeler A. Preventing osteolytic lesions and osteomyelitis in multiple myeloma. J Bone Oncol 2022; 37:100460. [DOI: 10.1016/j.jbo.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
|
12
|
Saranya I, Akshaya R, Selvamurugan N. Regulation of Wnt signaling by non-coding RNAs during osteoblast differentiation. Differentiation 2022; 128:57-66. [DOI: 10.1016/j.diff.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
13
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
Chen L, Hu B, Wang X, Chen Y, Zhou B. Functional role of cyanidin-3-O-glucoside in osteogenesis: A pilot study based on RNA-seq analysis. Front Nutr 2022; 9:995643. [PMID: 36245484 PMCID: PMC9562617 DOI: 10.3389/fnut.2022.995643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cyanidin-3-O-glucoside (C3G) is the most widely distributed anthocyanin and it can reportedly reduce the risk of osteoporosis, but the molecular mechanism by which C3G promotes bone formation is poorly understood. In the current study, RNA sequencing (RNA-seq) was used to investigate the mechanism of action of C3G in osteogenesis. MC3T3-E1 mouse osteoblasts were divided into a C3G (100 μmol/L)-treated group and a vehicle-treated control group, and differentially expressed genes (DEGs) in groups were evaluated via RNA-seq analysis. The functions of the DEGs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and the genes were validated by quantitative real-time PCR. The RNA-seq analysis identified 34 genes that were upregulated in C3G-treated cells compared to vehicle-treated cells, and 17 that were downregulated GO and KEGG pathway analyses indicated that these genes were highly enriched in functions related to lysosomes and glycolipid biosynthesis, among others. The differential expression of ATPase H+-transporting V0 subunit C (Atp6v0c), chemokine (C-X3-C motif) ligand 1 (Cx3cl1), and lymphocyte antigen 6 complex, locus A (Ly6a) genes was validated by quantitative real-time-PCR. Because these genes have been previously implicated in osteoporosis, they are potential target genes of C3G action in MC3T3-E1 cells. These results provide molecular level evidence for the therapeutic potential of C3G in the treatment of osteoporosis and other disorders of bone metabolism.
Collapse
Affiliation(s)
- Lin Chen
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Bosen Hu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Xiaohong Wang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Yong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| | - Bo Zhou
- School of Public Health, Shenyang Medical College, Shenyang, China
- *Correspondence: Bo Zhou
| |
Collapse
|
15
|
Gai D, Chen JR, Stewart JP, Nookaew I, Habelhah H, Ashby C, Sun F, Cheng Y, Li C, Xu H, Peng B, Garg TK, Schinke C, Thanendrarajan S, Zangari M, Chen F, Barlogie B, van Rhee F, Tricot G, Shaughnessy JD, Zhan F. CST6 suppresses osteolytic bone disease in multiple myeloma by blocking osteoclast differentiation. J Clin Invest 2022; 132:159527. [PMID: 35881476 PMCID: PMC9479617 DOI: 10.1172/jci159527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteolytic bone disease is a hallmark of multiple myeloma (MM). A significant fraction (~20%) of MM patients do not develop osteolytic lesions (OL). The molecular basis for the absence of bone disease in MM is not understood. We combined PET-CT and gene expression profiling (GEP) of purified bone marrow (BM) CD138+ MM cells from 512 newly diagnosed MM patients to reveal that elevated expression of cystatin M/E (CST6) was significantly associated with the absence of OL in MM. An enzyme-linked immunosorbent assay revealed a strong correlation between CST6 levels in BM serum/plasma and CST6 mRNA expression. Both recombinant CST6 protein and BM serum from patients with high CST6 significantly inhibited the activity of the osteoclast-specific protease cathepsin K, and blocked osteoclast differentiation and function. Recombinant CST6 inhibited bone destruction in ex vivo and in vivo myeloma models. Single cell RNA-sequencing identified that CST6 attenuates polarization of monocytes to osteoclast precursors. Furthermore, CST6 protein blocks osteoclast differentiation by suppressing cathepsin-mediated cleavage of NF-κB/p100 and TRAF3 following RANKL stimulation. Secretion by MM cells of CST6, an inhibitor of osteoclast differentiation and function, suppresses osteolytic bone disease in MM and probably other diseases associated with osteoclast-mediated bone loss.
Collapse
Affiliation(s)
- Dongzheng Gai
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - James P Stewart
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Hasem Habelhah
- Department of Pathology, University of Iowa, Iowa City, United States of America
| | - Cody Ashby
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fumou Sun
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Yan Cheng
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Can Li
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Hongwei Xu
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Bailu Peng
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Tarun K Garg
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Carolina Schinke
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Sharmilan Thanendrarajan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Maurizio Zangari
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Bart Barlogie
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Frits van Rhee
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Guido Tricot
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - John D Shaughnessy
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| | - Fenghuang Zhan
- Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, United States of America
| |
Collapse
|
16
|
Qiao Q, Xu L, Li Q, Wang Y, Lu H, Zhao N, Pu Y, Wang L, Guo Y, Guo C. BMPR1α promotes osteolytic lesion of oral squamous cell carcinoma by SHH‐dependent osteoclastogenesis. Cancer Sci 2022; 113:1639-1651. [PMID: 35279920 PMCID: PMC9128187 DOI: 10.1111/cas.15330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive tumor that usually invades the maxilla or mandible. The extent and pattern of mandibular bone invasion caused by OSCC are the most important factors determining the treatment plan and patients' prognosis. Yet, the process of mandibular invasion is not fully understood. The following study explores the molecular mechanism that regulates the mandibular invasion of OSCC by focusing on bone morphogenetic protein receptor 1α (BMPR1α) and Sonic hedgehog (SHH) signals. We found that BMPR1α was positively correlated to bone defect of OSCC patients. Mechanistically, BMPR1α signaling regulated the differentiation and resorption activity of osteoclasts through the interaction of OSCC cells and osteoclast progenitors, and this process was mediated by SHH secreted by tumor cells. The inhibition of SHH protected bone from tumor‐induced osteolytic activity. These results provide a potential new treatment strategy for controlling OSCC from invading the jawbones.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University Shandong 250021 PR China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Han Lu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- Shanghai Stomotological Hospital Fudan University Shanghai 200001 PR China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yinfei Pu
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
- The Second Outpatient Department Peking University School and Hospital of Stomatology, Beijing, 100081, PR China6 Department of Biomedical Engineering, College of Engineering, Peking University Beijing 100871 PR China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery Peking University School and Hospital of Stomatology Beijing 100081 PR China
- National Clinical Research Center for Oral Diseases Beijing 100081 PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing 100081 PR China
- Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing 100081 PR China
| |
Collapse
|
17
|
Venglar O, Bago JR, Motais B, Hajek R, Jelinek T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front Immunol 2022; 12:816499. [PMID: 35087536 PMCID: PMC8787055 DOI: 10.3389/fimmu.2021.816499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells represent a subset of CD3- CD7+ CD56+/dim lymphocytes with cytotoxic and suppressor activity against virus-infected cells and cancer cells. The overall potential of NK cells has brought them to the spotlight of targeted immunotherapy in solid and hematological malignancies, including multiple myeloma (MM). Nonetheless, NK cells are subjected to a variety of cancer defense mechanisms, leading to impaired maturation, chemotaxis, target recognition, and killing. This review aims to summarize the available and most current knowledge about cancer-related impairment of NK cell function occurring in MM.
Collapse
Affiliation(s)
- Ondrej Venglar
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Julio Rodriguez Bago
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Benjamin Motais
- Faculty of Science, University of Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Faculty of Medicine, University of Ostrava, Ostrava, Czechia.,Hematooncology Clinic, University Hospital Ostrava, Ostrava, Czechia
| |
Collapse
|
18
|
Settino M, Cannataro M. Using MMRFBiolinks R-Package for Discovering Prognostic Markers in Multiple Myeloma. Methods Mol Biol 2022; 2401:289-314. [PMID: 34902136 DOI: 10.1007/978-1-0716-1839-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is the second most frequent hematological malignancy in the world although the related pathogenesis remains unclear. Gene profiling studies, commonly carried out through next-generation sequencing (NGS) and Microarrays technologies, represent powerful tools for discovering prognostic markers in MM. NGS technologies have made great leaps forward both economically and technically gaining in popularity. As NGS techniques becomes simpler and cheaper, researchers choose NGS over microarrays for more of their genomic applications. However, Microarrays still provide significant benefits with respect to NGS. For instance, RNA-Seq requires more complex bioinformatic analysis with respect to Microarray as well as it lacks of standardized protocols for analysis. Therefore, a synergy between the two technologies may be well expected in the future. In order to take up this challenge, a valid tool for integrative analysis of MM data retrieved through NGS techniques is MMRFBiolinks, a new R package for integrating and analyzing datasets from the Multiple Myeloma Research Foundation (MMRF) CoMMpass (Clinical Outcomes in MM to Personal Assessment of Genetic Profile) study, available at MMRF Researcher Gateway (MMRF-RG), and at the National Cancer Institute Genomic Data Commons (NCI-GDC) Data Portal. Instead of developing a completely new package from scratch, we decided to leverage TC-GABiolinks, an R/Bioconductor package, because it provides some useful methods to access and analyze MMRF-CoMMpass data. An integrative analysis workflow based on the usage of MMRFBiolinks is illustrated.In particular, it leads towards a comparative analysis of RNA-Seq data stored at GDC Data Portal that allows to carry out a Kaplan Meier (KM ) Survival Analysis and an enrichment analysis for a Differential Gene Expression (DGE) gene set.Furthermore, it deals with MMRF-RG data for analyzing the correlation between canonical variants and treatment outcome as well as treatment class. In order to show the potential of the workflow, we present two case studies. The former deals with data of MM Bone Marrow sample types available at GDC Data Portal. The latter deals with MMRF-RG data for analyzing the correlation between canonical variants in a gene set obtained from the case study 1 and the treatment outcome as well as the treatment class.
Collapse
Affiliation(s)
- Marzia Settino
- University Magna Graecia of Catanzaro, Catanzaro, Italy.
| | | |
Collapse
|
19
|
Yu P, Liu Y, Xie J, Li J. Spatiotemporally controlled calcitonin delivery: Long-term and targeted therapy of skeletal diseases. J Control Release 2021; 338:486-504. [PMID: 34481022 DOI: 10.1016/j.jconrel.2021.08.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Bone is a connective tissue that support the entire body and protect the internal organs. However, there are great challenges on curing intractable skeletal diseases such as hypercalcemia, osteoporosis and osteoarthritis. To address these issues, calcitonin (CT) therapy is an effective treatment alternative to regulate calcium metabolism and suppress inflammation response, which are closely related to skeletal diseases. Traditional calcitonin formulation requires frequent administration due to the low bioavailability resulting from the short half-life and abundant calcitonin receptors distributed through the whole body. Therefore, long-term and targeted calcitonin delivery systems (LCDS and TCDS) have been widely explored as the popular strategies to overcome the intrinsic limitations of calcitonin and improve the functions of calcium management and inflammation inhibition in recent years. In this review, we first explain the physiological effects of calcitonin on bone remodeling: (i) inhibitory effects on osteoclasts and (ii) facilitated effects on osteoblasts. Then we summarized four strategies for spatiotemporally controlled delivery of calcitonin: micro-/nanomedicine (e.g. inorganic micro-/nanomedicine, polymeric micro-/nanomedicine and supramolecular assemblies), hydrogels (especially thermosensitive hydrogels), prodrug (PEGylation and targeting design) and hybrid biomaterials. Subsequently, we discussed the application of LCDS and TCDS in treating hypercalcemia, osteoporosis, and arthritis. Understanding and analyzing these advanced calcitonin delivery applications are essential for future development of calcitonin therapies toward skeletal diseases with superior efficacy in clinic.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yanpeng Liu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, PR China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Visconti RJ, Kolaja K, Cottrell JA. A functional three-dimensional microphysiological human model of myeloma bone disease. J Bone Miner Res 2021; 36:1914-1930. [PMID: 34173283 DOI: 10.1002/jbmr.4404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
Human myeloma bone disease (MBD) occurs when malignant plasma cells migrate to the bone marrow and commence inimical interactions with stromal cells, disrupting the skeletal remodeling process. The myeloma cells simultaneously suppress osteoblastic bone formation while promoting excessive osteoclastic resorption. This bone metabolism imbalance produces osteolytic lesions that cause chronic bone pain and reduce trabecular and cortical bone structural integrity, and often culminate in pathological fractures. Few bone models exist that enable scientists to study MBD and the effect therapies have on restoring the bone metabolism imbalance. The purpose of this research was to develop a well characterized three-dimensional (3D) bone organoid that could be used to study MBD and current or potential treatment options. First, bone marrow stromal cell-derived osteoblasts (OBs) mineralized an endosteal-like extracellular matrix (ECM) over 21 days. Multiple analyses confirmed the generation of hydroxyapatite (HA)-rich bone-like tissue fragments that were abundant in alkaline phosphatase, calcium, and markers of osteoblastic gene expression. On day 22, bone marrow macrophage (BMM)-derived osteoclasts (OCs) were introduced to enhance the resorptive capability of the model and recapitulate the balanced homeostatic nature of skeletal remodeling. Tartrate-resistant acid phosphatase 5b (TRAcP-5b), type I collagen C-telopeptide (CTX-1), and gene expression analysis confirmed OC activity in the normal 3D organoid (3D in vitro model of normal bonelike fragments [3D-NBF]). On day 30, a human multiple myeloma (MM)-derived plasmacytoma cell line was introduced to the 3D-NBF to generate the 3D-myeloma bone disease organoid (3D-MBD). After 12 days, the 3D-MBD had significantly reduced total HA, increased TRAcP-5b levels, increases levels of CTX-1, and decreased expression of osteoblastic genes. Therapeutic intervention with pharmaceutical agents including an immunomodulatory drug, a bisphosphonate, and monoclonal restored HA content and reduced free CTX-1 in a dose-dependent manner. This osteogenically functional model of MBD provides a novel tool to study biological mechanisms guiding the disease and to screen potential therapeutics. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Richard J Visconti
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA.,Investigative Toxicology, Nonclinical Research and Development, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Kyle Kolaja
- Investigative Toxicology, Nonclinical Research and Development, Bristol Myers Squibb, Summit, New Jersey, USA
| | - Jessica A Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, New Jersey, USA
| |
Collapse
|
21
|
Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomater 2021; 132:129-148. [PMID: 33813090 DOI: 10.1016/j.actbio.2021.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have proven their clinical relevance in stem cell transplantation to cure patients with hematological disorders. Key to their regenerative potential is their natural microenvironment - their niche - in the bone marrow (BM). Developments in the field of biomaterials enable the recreation of such environments with increasing preciseness in the laboratory. Such artificial niches help to gain a fundamental understanding of the biophysical and biochemical processes underlying the interaction of HSCs with the materials in their environment and the disturbance of this interplay during diseases affecting the BM. Artificial niches also have the potential to multiply HSCs in vitro, to enable the targeted differentiation of HSCs into mature blood cells or to serve as drug-testing platforms. In this review, we will introduce the importance of artificial niches followed by the biology and biophysics of the natural archetype. We will outline how 2D biomaterials can be used to dissect the complexity of the natural niche into individual parameters for fundamental research and how 3D systems evolved from them. We will present commonly used biomaterials for HSC research and their applications. Finally, we will highlight two areas in the field of HSC research, which just started to unlock the possibilities provided by novel biomaterials, in vitro blood production and studying the pathophysiology of the niche in vitro. With these contents, the review aims to give a broad overview of the different biomaterials applied for HSC research and to discuss their potentials, challenges and future directions in the field. STATEMENT OF SIGNIFICANCE: Hematopoietic stem cells (HSCs) are multipotent cells responsible for maintaining the turnover of all blood cells. They are routinely applied to treat patients with hematological diseases. This high clinical relevance explains the necessity of multiplication or differentiation of HSCs in the laboratory, which is hampered by the missing natural microenvironment - the so called niche. Biomaterials offer the possibility to mimic the niche and thus overcome this hurdle. The review introduces the HSC niche in the bone marrow and discusses the utility of biomaterials in creating artificial niches. It outlines how 2D systems evolved into sophisticated 3D platforms, which opened the gateway to applications such as, expansion of clinically relevant HSCs, in vitro blood production, studying niche pathologies and drug testing.
Collapse
|
22
|
Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma Bone Disease: The Osteoblast in the Spotlight. J Clin Med 2021; 10:jcm10173973. [PMID: 34501423 PMCID: PMC8432062 DOI: 10.3390/jcm10173973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Lytic bone disease remains a life-altering complication of multiple myeloma, with up to 90% of sufferers experiencing skeletal events at some point in their cancer journey. This tumour-induced bone disease is driven by an upregulation of bone resorption (via increased osteoclast (OC) activity) and a downregulation of bone formation (via reduced osteoblast (OB) activity), leading to phenotypic osteolysis. Treatments are limited, and currently exclusively target OCs. Despite existing bone targeting therapies, patients successfully achieving remission from their cancer can still be left with chronic pain, poor mobility, and reduced quality of life as a result of bone disease. As such, the field is desperately in need of new and improved bone-modulating therapeutic agents. One such option is the use of bone anabolics, drugs that are gaining traction in the osteoporosis field following successful clinical trials. The prospect of using these therapies in relation to myeloma is an attractive option, as they aim to stimulate OBs, as opposed to existing therapeutics that do little to orchestrate new bone formation. The preclinical application of bone anabolics in myeloma mouse models has demonstrated positive outcomes for bone repair and fracture resistance. Here, we review the role of the OB in the pathophysiology of myeloma-induced bone disease and explore whether novel OB targeted therapies could improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca E. Andrews
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Michelle A. Lawson
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
| | - Andrew D. Chantry
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield S10 2RX, UK; (J.E.B.); (M.A.L.); (A.D.C.)
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| |
Collapse
|
23
|
Ma Y, Chen L, Li X, Hu A, Wang H, Zhou H, Tian B, Dong J. Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials 2021; 275:120917. [PMID: 34182327 DOI: 10.1016/j.biomaterials.2021.120917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Metastatic tumors present great challenges in diagnosis and treatment. Herein, a proof-of-concept theranostic nanoplatform composed of an Au nanoparticle core and a double-shell of metal-organic framework (MOF) and mesoporous silica (MS) is developed for combating spinal metastasis of lung cancer in an orthotopic model. Two drugs, Alpelisib (BYL719) as an inhibitor and cisplatin as a chemotherapeutic drug, are separately loaded into the double-shell with high loading content. A targeting peptide called dYNH and indocyanine green (ICG) are conjugated onto the outmost MS layer for specifically targeting metastatic tumor cells and enhancing photothermal effect. The resultant Au@MOF@MS-ICG -dYNH-PAA (AMMD) shows enhanced cellular uptake on tumor cells and accumulation at metastatic spinal tumors, as evidenced by fluorescent and photoacoustic imaging. Benefiting from this ultra-high affinity to tumor cells and the photothermal effect of ICG, the dual-drug-loaded AMMD (BCAMMD) modified with ICG exhibits superior therapeutic efficacy on spinal tumors. More importantly, bone destruction, which frequently occurs in bone-related tumors, is effectively suppressed by BYL719 in BCAMMD. Hence, by rationally integrating multiple functions, including excellent targeting ability, dual-drug loading, photothermal therapy, and photoacoustic imaging, the developed all-in-one theranostic nanoplatform provides a useful paradigm of employing nanomedicine to treat metastatic spinal tumors efficiently.
Collapse
Affiliation(s)
- Yiqun Ma
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Xilei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Annan Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Huiren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, PR China
| | - Bo Tian
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Jian Dong
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China; Department of Orthopaedic Surgery, Shanghai Baoshan District Wusong Central Hospital, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, 200940, PR China.
| |
Collapse
|
24
|
Maiso P, Mogollón P, Ocio EM, Garayoa M. Bone Marrow Mesenchymal Stromal Cells in Multiple Myeloma: Their Role as Active Contributors to Myeloma Progression. Cancers (Basel) 2021; 13:2542. [PMID: 34067236 PMCID: PMC8196907 DOI: 10.3390/cancers13112542] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Patricia Maiso
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Pedro Mogollón
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| | - Enrique M. Ocio
- University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria, 39008 Santander, Spain
| | - Mercedes Garayoa
- Cancer Research Center (IBMCC-CSIC-USAL), University Hospital of Salamanca (IBSAL), 37007 Salamanca, Spain; (P.M.); (M.G.)
| |
Collapse
|
25
|
Chen L, Wang X, Zhang S, Wang W, Su B, Xu X, Lv D, Liu W, Li X, Li Z. The Evaluation of the Multiple Myeloma Pathological Osseous Tissue of Microarchitecture. Curr Med Imaging 2021; 17:513-516. [PMID: 33059581 DOI: 10.2174/1573405616666201015144015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The typical imaging finding of MM is bone destruction in the form of diffuse patchy osteolytic lesions or punctate destruction. However, it is difficult to accurately determine the fine structure of bone affected by MM with these techniques due to low specificity and sensitivity. INTRODUCTION This study aimed to investigate the microscopic anatomical morphology and analyze the microstructure changes of trabeculae affected by multiple myeloma (MM) based on micro-CT. METHODS MM-affected and normal trabecular bone samples were imaged by micro-CT to obtain bone structure parameters to assess statistical differences between them and evaluate the degree of microstructural damage of MM-affected trabeculae. RESULTS Micro CT images clearly showed the microstructure of MM-affected trabeculae. The degree of trabecular osteoporosis varied with the severity of MM. There were significant differences in the structural parameters between MM-affected and normal trabeculae (P < 0.05). CONCLUSION Micro-CT clearly reveals the microstructure of MM-affected trabeculae. The obtained bone structure data will help to determine the degree of bone damage caused by MM and assess the efficacy.
Collapse
Affiliation(s)
- Lianxiang Chen
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xing Wang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, 010059, China
| | - Shaojie Zhang
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, 010059, China
| | - Wei Wang
- Department of Emergency, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Baoke Su
- Graduate School, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Xuebin Xu
- Graduate School, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Dongchen Lv
- Graduate School, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Wentao Liu
- Graduate School, Inner Mongolia Medical University, Hohhot, 010059, China
| | - Xiaohe Li
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, 010059, China
| | - Zhijun Li
- Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, 010059, China
| |
Collapse
|
26
|
Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C, Kim SM, Ostland V, Han H, Nemeth E, Fleming R, Rivella S, Lizneva D, Yuen T, Zaidi M, Ginzburg Y. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021; 10:e68217. [PMID: 34002695 PMCID: PMC8205482 DOI: 10.7554/elife.68217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β-thalassemia. Funding YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.
Collapse
Affiliation(s)
- Melanie Castro-Mollo
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria Feola
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marina Planoutene
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Cara Clementelli
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Veena Sangkhae
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Huiling Han
- Intrinsic Lifesciences, LLCLaJollaUnited States
| | - Elizabeta Nemeth
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of MedicineSt LouisUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
27
|
Xu C, Liang T, Zhang F, Liu J, Fu Y. tRNA-derived fragments as novel potential biomarkers for relapsed/refractory multiple myeloma. BMC Bioinformatics 2021; 22:238. [PMID: 33971811 PMCID: PMC8111751 DOI: 10.1186/s12859-021-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background tRNA-derived fragments have been reported to be key regulatory factors in human tumors. However, their roles in the progression of multiple myeloma remain unknown. Results This study employed RNA-sequencing to explore the expression profiles of tRFs/tiRNAs in new diagnosed MM and relapsed/refractory MM samples. The expression of selected tRFs/tiRNAs were further validated in clinical specimens and myeloma cell lines by qPCR. Bioinformatic analysis was performed to predict their roles in multiple myeloma progression.We identified 10 upregulated tRFs/tiRNAs and 16 downregulated tRFs/tiRNAs. GO enrichment and KEGG pathway analysis were performed to analyse the functions of 1 significantly up-regulated and 1 significantly down-regulated tRNA-derived fragments. tRFs/tiRNAs may be involved in MM progression and drug-resistance. Conclusion tRFs/tiRNAs were dysregulated and could be potential biomarkers for relapsed/refractory MM. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04167-8.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Ting Liang
- Department of Blood Transfusion, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410000, China.
| |
Collapse
|
28
|
Saavedra-García P, Roman-Trufero M, Al-Sadah HA, Blighe K, López-Jiménez E, Christoforou M, Penfold L, Capece D, Xiong X, Miao Y, Parzych K, Caputo VS, Siskos AP, Encheva V, Liu Z, Thiel D, Kaiser MF, Piazza P, Chaidos A, Karadimitris A, Franzoso G, Snijders AP, Keun HC, Oyarzún DA, Barahona M, Auner HW. Systems level profiling of chemotherapy-induced stress resolution in cancer cells reveals druggable trade-offs. Proc Natl Acad Sci U S A 2021; 118:e2018229118. [PMID: 33883278 PMCID: PMC8092411 DOI: 10.1073/pnas.2018229118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can survive chemotherapy-induced stress, but how they recover from it is not known. Using a temporal multiomics approach, we delineate the global mechanisms of proteotoxic stress resolution in multiple myeloma cells recovering from proteasome inhibition. Our observations define layered and protracted programs for stress resolution that encompass extensive changes across the transcriptome, proteome, and metabolome. Cellular recovery from proteasome inhibition involved protracted and dynamic changes of glucose and lipid metabolism and suppression of mitochondrial function. We demonstrate that recovering cells are more vulnerable to specific insults than acutely stressed cells and identify the general control nonderepressable 2 (GCN2)-driven cellular response to amino acid scarcity as a key recovery-associated vulnerability. Using a transcriptome analysis pipeline, we further show that GCN2 is also a stress-independent bona fide target in transcriptional signature-defined subsets of solid cancers that share molecular characteristics. Thus, identifying cellular trade-offs tied to the resolution of chemotherapy-induced stress in tumor cells may reveal new therapeutic targets and routes for cancer therapy optimization.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Monica Roman-Trufero
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Hibah A Al-Sadah
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Kevin Blighe
- Clinical Bioinformatics Research, London W1B 3HH, United Kingdom
| | - Elena López-Jiménez
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Marilena Christoforou
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Lucy Penfold
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- Cellular Stress, MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
| | - Daria Capece
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Xiaobei Xiong
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Yirun Miao
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Katarzyna Parzych
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Valentina S Caputo
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Alexandros P Siskos
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - Vesela Encheva
- Proteomics Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Zijing Liu
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Brain Sciences, Imperial College London, London W12 0NN, United Kingdom
- UK Dementia Research Institute at Imperial College, London W12 0NN, United Kingdom
| | - Denise Thiel
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin F Kaiser
- Myeloma Molecular Therapy, The Institute of Cancer Research, Sutton SW7 3RP, United Kingdom
| | - Paolo Piazza
- Imperial BRC Genomics Facility, Department of Metabolism, Digestion and Reproduction, Imperial College London, London W12 0NN, United Kingdom
| | - Aristeidis Chaidos
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Anastasios Karadimitris
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| | - Guido Franzoso
- Centre for Molecular Immunology and Inflammation, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom
| | - Diego A Oyarzún
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Holger W Auner
- Cancer Cell Protein Metabolism, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, United Kingdom;
- The Hugh and Josseline Langmuir Centre for Myeloma Research, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
29
|
Xu C, Fu Y. Expression Profiles of tRNA-Derived Fragments and Their Potential Roles in Multiple Myeloma. Onco Targets Ther 2021; 14:2805-2814. [PMID: 33911877 PMCID: PMC8075357 DOI: 10.2147/ott.s302594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Background Multiple myeloma is an incurable hematologic malignancy. The discovery of mechanisms may help to find new therapeutic targets and prolong survival. tRNA-related fragments (tRF) and tRNA halves (tiRNA) are small RNA derived from tRNAs and implicated in a wide variety of pathological processes, including cancer initiation and progression. However, there are almost no research reporting the role of these tRNA derived fragments in myeloma as far as we know. Methods In this study, we proposed the expression profiles of tRFs/tiRNAs in myeloma through RNA-sequencing in new diagnosed myeloma and healthy donors. The expression of selected tRFs/tiRNAs was further validated in clinical specimens by qPCR. Bioinformatic analysis was performed to predict their potential roles in multiple myeloma. Results A total of 33 upregulated tRFs/tiRNAs and 22 downregulated tRFs/tiRNAs were identified. GO enrichment and KEGG pathway analysis were performed to analyze the functions of one significantly up-regulated and one significantly down-regulated tRNA-derived fragments. tRFs/tiRNAs may be involved in MM initiation and progression. Conclusion We concluded that tRFs/tiRNAs were dysregulated and could be potential biomarkers for multiple myeloma.
Collapse
Affiliation(s)
- Cong Xu
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, 410000, People's Republic of China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410000, People's Republic of China
| |
Collapse
|
30
|
Cheng J, Duan X, Fu X, Jiang Y, Yang P, Cao C, Li Q, Zhang J, Hu X, Zhang X, Ao Y. RIP1 Perturbation Induces Chondrocyte Necroptosis and Promotes Osteoarthritis Pathogenesis via Targeting BMP7. Front Cell Dev Biol 2021; 9:638382. [PMID: 33937236 PMCID: PMC8085605 DOI: 10.3389/fcell.2021.638382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder that characterized by progressive destruction of articular cartilage. There is no effective disease-modifying therapy for the condition due to limited understanding of the molecular mechanisms on cartilage maintenance and destruction. Receptor-interacting protein kinase 1 (RIP1)-mediated necroptosis plays a vital role in various diseases, but the involvement of RIP1 in OA pathogenesis remains largely unknown. Here we show that typical necrotic cell morphology is observed within human OA cartilage samples in situ, and that RIP1 is significantly upregulated in cartilage from both OA patients and experimental OA rat models. Intra-articular RIP1 overexpression is sufficient to induce structural and functional defects of cartilage in rats, highlighting the crucial role of RIP1 during OA onset and progression by mediating chondrocyte necroptosis and disrupting extracellular matrix (ECM) metabolism homeostasis. Inhibition of RIP1 activity by its inhibitor necrostatin-1 protects the rats from trauma-induced cartilage degradation as well as limb pain. More importantly, we identify bone morphogenetic protein 7 (BMP7) as a novel downstream target that mediates RIP1-induced chondrocyte necroptosis and OA manifestations, thereby representing a non-canonical regulation mode of necroptosis. Our study supports a model whereby the activation of RIP1-BMP7 functional axis promotes chondrocyte necroptosis and subsequent OA pathogenesis, thus providing a new therapeutic target for OA.
Collapse
Affiliation(s)
- Jin Cheng
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xiaoning Duan
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xin Fu
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Yanfang Jiang
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Peng Yang
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Chenxi Cao
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Jiying Zhang
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xiaoqing Hu
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xin Zhang
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Yingfang Ao
- Beijing Key Laboratory of Sports Injuries, Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Settino M, Cannataro M. MMRFBiolinks: an R-package for integrating and analyzing MMRF-CoMMpass data. Brief Bioinform 2021; 22:6209690. [PMID: 33821961 DOI: 10.1093/bib/bbab050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 01/05/2023] Open
Abstract
In order to understand the mechanisms underlying the onset and the drug responses in multiple myeloma (MM), the second most frequent hematological cancer, the use of appropriate bioinformatic tools for integrative analysis of publicly available genomic data is required. We present MMRFBiolinks, a new R package for integrating and analyzing datasets from the Multiple Myeloma Research Foundation (MMRF) CoMMpass (Clinical Outcomes in MM to Personal Assessment of Genetic Profile) study, available at MMRF Researcher Gateway (MMRF-RG), and from the National Cancer Institute Genomic Data Commons (NCI-GDC) Data Portal. The package provides several methods for integrative analysis (array-array intensity correlation, Kaplan-Meier survival analysis) and visualization (response to treatments plot) of MMRF data, for performing an easily comprehensible analysis workflow. MMRFBiolinks extends the TCGABiolinks package by providing 13 new functions to analyze MMRF-CoMMpass data: six dealing with MMRF-RG data and seven with NCI-GDC data. As validation of the tool, we present two cases studies for searching, downloading and analyzing MMRF data. The former presents a workflow for identifying genes involved in survival depending on treatment. The latter presents an analysis workflow for analyzing the Best Overall (BO) response through correlation plots between the BO Response with respect to treatments, time, duration of treatment and annotated variants, as well as through Kaplan-Meier survival curves. The case studies demonstrate how MMRFBiolinks is able of overcoming the limitations of the analysis tools available at NCI-GDC and MMRF-RG, facilitating and making more comprehensive the retrieval, downloading and analysis of MMRF data.
Collapse
Affiliation(s)
- Marzia Settino
- Data Analytics Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
32
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
33
|
Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background. Int J Mol Sci 2021; 22:ijms22052375. [PMID: 33673480 PMCID: PMC7956742 DOI: 10.3390/ijms22052375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy arising from terminally differentiated plasma cells. In the majority of cases, symptomatic disease is characterized by the presence of bone disease. Multiple myeloma bone disease (MMBD) is a result of an imbalance in the bone-remodeling process that leads to increased osteoclast activity and decreased osteoblast activity. The molecular background of MMBD appears intriguingly complex, as several signaling pathways and cell-to-cell interactions are implicated in the pathophysiology of MMBD. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate the expression of their target mRNAs. Numerous miRNAs have been witnessed to be involved in cancer and hematological malignancies and their role has been characterized either as oncogenic or oncosuppressive. Recently, scientific research turned towards miRNAs as regulators of MMBD. Scientific data support that miRNAs finely regulate the majority of the signaling pathways implicated in MMBD. In this review, we provide concise information regarding the molecular pathways with a significant role in MMBD and the miRNAs implicated in their regulation. Moreover, we discuss their utility as molecular biomarkers and highlight the putative usage of miRNAs as novel molecular targets for targeted therapy in MMBD.
Collapse
|
34
|
Morris EV, Edwards CM. Morphogens and growth factor signalling in the myeloma bone-lining niche. Cell Mol Life Sci 2021; 78:4085-4093. [PMID: 33570672 PMCID: PMC8164571 DOI: 10.1007/s00018-021-03767-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022]
Abstract
Multiple myeloma is a malignancy caused by the clonal expansion of abnormal plasma cells. Myeloma cells have proven to be incredibly successful at manipulating their microenvironment to promote growth and to evade modern therapies. They have evolved to utilise the integral signalling pathways of the bone and bone marrow to drive disease progression. The bone marrow is often described in the context of a single structure that fills the bone cavity and supports normal haematopoiesis. However, within that structure exists two anatomically different niches, the perivascular niche and the endosteal niche. These contain different cell types functioning to support normal immune and blood cell production as well as healthy bone. These cells secrete numerous signalling molecules that can influence myeloma cell biology and behaviour. The endosteal niche is home to specific bone cell lineages and plays a pivotal role in myeloma cell establishment and survival. This review will concentrate on some of the signalling pathways that are hijacked by myeloma cells to shape a favourable environment, and the different influences myeloma cells are exposed to depending on their spatial location within the bone marrow.
Collapse
Affiliation(s)
- Emma V Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Claire M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK. .,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Oxford, OX3 7LD, UK.
| |
Collapse
|
35
|
Straign DM, Ihle CL, Provera MD, Owens P. Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Front Endocrinol (Lausanne) 2021; 12:769316. [PMID: 34956082 PMCID: PMC8702552 DOI: 10.3389/fendo.2021.769316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
From the 33,000 men in the U.S. who die from prostate cancer each year, the majority of these patients exhibit metastatic disease with bone being the most common site of metastasis. Prostate cancer bone metastases are commonly blastic, exhibiting new growth of unhealthy sclerotic bone, which can cause painful skeletal related events. Patient's current care entails androgen deprivation therapy, anti-resorptive agents, radiation, and chemotherapy to help control the spread of the cancer but little intervention is available to treat blastic bone disease. The transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) pathways are known to regulate bone growth and resorption of destructive lytic bone lesions, yet the role of TGFβ/BMP signaling in prostate cancer blastic vs lytic bone lesions are not fully understood. We hypothesized that to target the BMP/TGFβ pathway, a useful biomarker of bone lytic or blastic pathology would have superior response. We show distinct BMP vs. TGFβ signaling in clinical samples of human prostate cancer bone metastases with either lytic or blastic pathologies. BMPs exhibit distinct effects on bone homeostasis, so to examine the effect of BMP inhibition on healthy bone, we treated mice with the BMP receptor small molecule antagonist DMH1 and saw a modest temporary improvement in bone health, with increased trabecular bone. We next sought to use the BMP inhibitor DMH1 to treat bone metastasis engraftment seeded by a caudal artery injection of the lytic human prostate cell line PC3 in immunodeficient mice. The colonization by PC3 cells to the bone were restricted with DMH1 treatment and bone health was importantly preserved. We next proceeded to test BMP inhibition in an injury model of established bone metastasis via intratibial injection of the MYC-CaP mouse prostate cell line into FVBN syngeneic mice. DMH1 treated mice had a modest decrease in trabecular bone and reduced lymphocytes in circulation without affecting tumor growth. Taken together we show unique responses to BMP inhibition in metastatic prostate cancer in the bone. These studies suggest that profiling bone lesions in metastatic prostate cancer can help identify therapeutic targets that not only treat the metastatic tumor but also address the need to better treat the distinct tumor induced bone disease.
Collapse
Affiliation(s)
- Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claire L. Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Owens
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
- *Correspondence: Philip Owens,
| |
Collapse
|
36
|
Current Understanding of Myelomatous Mesenchymal Stromal Cells Extended through Advances in Experimental Methods. Cancers (Basel) 2020; 13:cancers13010025. [PMID: 33374627 PMCID: PMC7793501 DOI: 10.3390/cancers13010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary As the amount of information available has grown, now it is known that many types of non-hematopoietic cells, including mesenchymal stem/progenitor cells, mature mesenchymal cells, and endothelial cells, as well as mature hematopoietic cells such as monocytes, macrophages, T-cells, and B-cells, have roles in the pathogenesis of multiple myeloma. This review focuses on the role of mesenchymal cells in the microenvironment of multiple myeloma. We summarize the experimental strategies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells. Abstract Multiple myeloma is an incurable cancer formed by malignant plasma cells. For the proliferation and survival of myeloma cells, as well as the occurrence of the complications, numerous intra- and extra-cellular mechanisms are involved. The interaction of myeloma cells with the microenvironment is known to be one of the most critical mechanisms. A specific microenvironment could affect the progression and growth of tumor cells, as well as drug resistance. Among various microenvironment components, such as hematological and non-hematological cells, and soluble factors (cytokines, chemokines, and extracellular matrix (ECM) proteins), in this review, we focus on the role of mesenchymal cells. We aimed to summarize the experimental strategies used for conducting studies and current understanding of the biological roles in the pathogenesis of myeloma. Furthermore, we discuss the possible clinical applications targeting mesenchymal cells.
Collapse
|
37
|
Martinez-Hackert E, Sundan A, Holien T. Receptor binding competition: A paradigm for regulating TGF-β family action. Cytokine Growth Factor Rev 2020; 57:39-54. [PMID: 33087301 DOI: 10.1016/j.cytogfr.2020.09.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The transforming growth factor (TGF)-β family is a group of structurally related, multifunctional growth factors, or ligands that are crucially involved in the development, regulation, and maintenance of animal tissues. In humans, the family counts over 33 members. These secreted ligands typically form multimeric complexes with two type I and two type II receptors to activate one of two distinct signal transduction branches. A striking feature of the family is its promiscuity, i.e., many ligands bind the same receptors and compete with each other for binding to these receptors. Although several explanations for this feature have been considered, its functional significance has remained puzzling. However, several recent reports have promoted the idea that ligand-receptor binding promiscuity and competition are critical features of the TGF-β family that provide an essential regulating function. Namely, they allow a cell to read and process multi-ligand inputs. This capability may be necessary for producing subtle, distinctive, or adaptive responses and, possibly, for facilitating developmental plasticity. Here, we review the molecular basis for ligand competition, with emphasis on molecular structures and binding affinities. We give an overview of methods that were used to establish experimentally ligand competition. Finally, we discuss how the concept of ligand competition may be fundamentally tied to human physiology, disease, and therapy.
Collapse
Affiliation(s)
- Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Anders Sundan
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Centre of Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway; Department of Hematology, St. Olav's University Hospital, 7030, Trondheim, Norway.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The aim of the review is to describe recent advances in our understanding of how multiple myeloma interacts with its cellular and molecular neighbours in the bone marrow microenvironment, and how this may provide targets for prognostication and prevention. RECENT FINDINGS The bone marrow microenvironment in myeloma is beginning to yield targets that are amenable to therapy. A number of trials demonstrate some clinical efficacy in heavily pretreated disease. The challenge remains for how and when these therapeutic interventions are of particular benefit early in disease progression. SUMMARY Multiple myeloma is rarely curable and its interactions with the bone marrow microenvironment are evident. However, separating cause from effect remains a challenge. We propose that targeting specific niches within the bone marrow will yield therapies that have the potential for significant benefit in myeloma and may facilitate earlier intervention to disrupt an environment that is permissive for myeloma progression.
Collapse
|
39
|
Abstract
The success of targeted therapies and immunotherapies has created optimism that cancers may be curable. However, not all patients respond, drug resistance is common and many patients relapse owing to dormant cancer cells. These rare and elusive cells can disseminate early and hide in specialized niches in distant organs before being reactivated to cause disease relapse after successful treatment of the primary tumour. Despite their importance, we are yet to leverage knowledge generated from experimental models and translate the potential of targeting dormant cancer cells to prevent disease relapse in the clinic. This is due, at least in part, to the lack of adherence to consensus definitions by researchers, limited models that faithfully recapitulate this stage of metastatic spread and an absence of interdisciplinary approaches. However, the application of new high-resolution, single-cell technologies is starting to revolutionize the field and transcend classical reductionist models of studying individual cell types or genes in isolation to provide a global view of the complex underlying cellular ecosystem and transcriptional landscape that controls dormancy. In this Perspective, we synthesize some of these recent advances to describe the hallmarks of cancer cell dormancy and how the dormant cancer cell life cycle offers opportunities to target not only the cancer but also its environment to achieve a durable cure for seemingly incurable cancers.
Collapse
Affiliation(s)
- Tri Giang Phan
- Immunology, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| | - Peter I Croucher
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- Bone Biology, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Krzhizhanovskaya VV, Závodszky G, Lees MH, Dongarra JJ, Sloot PMA, Brissos S, Teixeira J. MMRF-CoMMpass Data Integration and Analysis for Identifying Prognostic Markers. ACTA ACUST UNITED AC 2020. [PMCID: PMC7304035 DOI: 10.1007/978-3-030-50420-5_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Multiple Myeloma (MM) is the second most frequent haematological malignancy in the world although the related pathogenesis remains unclear. The study of how gene expression profiling (GEP) is correlated with patients’ survival could be important for understanding the initiation and progression of MM. In order to aid researchers in identifying new prognostic RNA biomarkers as targets for functional cell-based studies, the use of appropriate bioinformatic tools for integrative analysis is required. The main contribution of this paper is the development of a set of functionalities, extending TCGAbiolinks package, for downloading and analysing Multiple Myeloma Research Foundation (MMRF) CoMMpass study data available at the NCI’s Genomic Data Commons (GDC) Data Portal. In this context, we present further a workflow based on the use of this new functionalities that allows to i) download data; ii) perform and plot the Array Array Intensity correlation matrix; ii) correlate gene expression and Survival Analysis to obtain a Kaplan–Meier survival plot.
Collapse
|
41
|
Ihle CL, Straign DM, Provera MD, Novitskiy SV, Owens P. Loss of Myeloid BMPR1a Alters Differentiation and Reduces Mouse Prostate Cancer Growth. Front Oncol 2020; 10:357. [PMID: 32318332 PMCID: PMC7154049 DOI: 10.3389/fonc.2020.00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is a member of the TGFβ signaling family and has complex roles in cancer. BMP signaling is rarely mutated and can be frequently overexpressed in many human cancers. The dichotomous role of BMPs as both tumor promoters and suppressors appears to be largely context based in both the cancer cell and the surrounding microenvironment. Myeloid cells including macrophages and neutrophils have been shown to be tumor promoting when stimulated from BMPs. We found that conditional deletion of BMPR1a in myeloid cells (LysMCre) restricts tumor progression in a syngeneic mouse prostate cancer model. Specific changes occurred in myeloid cells both in tumor bearing mice and tumor naïve mice throughout multiple tissues. We profiled myeloid subsets in the bone marrow, spleen and primary tumor and found myeloid BMPR1a loss altered the differentiation and lineage capability of distinct populations by histologic, flow cytometry and high dimensional mass cytometry analysis. We further confirmed the requirement for BMP signaling with pharmacologic inhibition of THP-1 and Raw264.7 activated into M2 macrophages with the BMP inhibitor DMH1. M2 polarized primary bone marrow derived cells from LysMCre BMPR1a knockout mice indicated a distinct requirement for BMP signaling in myeloid cells during M2 activation. These results indicate a unique necessity for BMP signaling in myeloid cells during tumor progression.
Collapse
Affiliation(s)
- Claire L. Ihle
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sergey V. Novitskiy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
42
|
Ihle CL, Owens P. Integrating the immune microenvironment of prostate cancer induced bone disease. Mol Carcinog 2020; 59:822-829. [PMID: 32233011 DOI: 10.1002/mc.23192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer for men in the U.S. but does not impede patient survival until the disease is metastatic. Metastatic lesions most frequently occur in the bone, which exhibits a distinct microenvironment of immune and bone cell populations. Advances in the diagnosis and treatment of primary PCa allow for the use of tailored therapeutic approaches based on biomarkers, protein expression, and histopathology. Understanding the molecular and cellular characteristics of primary tumors has advanced therapeutic development and survival for patients with PCa. Personalized medicine has only recently emerged for the treatment of metastatic bone lesions. Tumor induced bone disease (TIBD) in patients with PCa can be classified into lytic, blastic, or mixed pathologies, with most patients exhibiting the blastic phenotype. Progress has been made in treating TIBD, but metastatic PCa has yet to be cured. Immune checkpoint inhibitors have exhibited limited responses in immunosuppressive PCa tumors, but have yet to be assessed in metastatic sites which may be susceptible to an increased inflammatory response. Recent discoveries have uncovered distinct tumor microenvironments (TMEs) of blastic and lytic bone metastases from patients with PCa, identifying actionable targets for therapeutic applications, including immune checkpoint inhibitors and targeted therapeutics. Enrichment for macrophages and T cells in patient samples suggests metastatic sites may be reappraised as immunologically targetable, despite their immunologically "cold" primary tumors. The practice of performing bone biopsies will help identify unique cellular and protein targets in the bone TME that can guide therapy decisions.
Collapse
Affiliation(s)
- Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|
43
|
Targeting BMP signaling in the bone marrow microenvironment of myeloid leukemia. Biochem Soc Trans 2020; 48:411-418. [DOI: 10.1042/bst20190223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/29/2022]
Abstract
The bone morphogenetic protein (BMP) pathway regulates the fate and proliferation of normal hematopoietic stem cells (HSC) as well as interactions with their niche. While BMP2 and BMP4 promote HSC differentiation, only BMP4 maintains HSC pool and favors interactions with their niche. In myeloid leukemia, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in Chronic Myeloid Leukemia (CML) and Acute Myeloid leukemia (AML) responsible for leukemic stem cells (LSC) survival. In AML, BMP pathway alterations sustain and promote resistant immature-like leukemic cells by activating a new signaling cascade. Binding of BMP4 to BMPR1A leads to ΔNp73 expression, which in turn induces NANOG, altogether associated with a poor patient's prognosis. Despite efficient targeted therapies, like Tyrosine Kinase Inhibitors (TKI) in CML, many patients retain LSCs. Our laboratory demonstrated that the BMP pathway sustains a permanent pool of LSCs expressing high levels of BMPR1B receptor, that evolve upon treatment to progressively implement a BMP4 autocrine loop, leading to TKI-resistant cells. Single cell RNA-Seq analysis of TKI-persisting LSCs showed a co-enrichment of BMP with Jak2-signaling, quiescence and stem cell (SC) signatures. Using a new model of persisting LSCs, we recently demonstrated that BMPR1B+ cells display co-activated Smad1/5/8 and Stat3 pathways and could be targeted by blocking BMPR1B/Jak2 signal. Lastly, a specific BMPR1B inhibitor impaired BMP4-mediated LSC protection against TKIs. Altogether, data based on various studies including ours, indicate that BMP targeting could eliminate leukemic cells within a protective bone marrow microenvironment to efficiently impact residual resistance or persistence of LSCs in myeloid leukemia.
Collapse
|