1
|
Tong C, Liu Q, Zhang Z, Liang Y, Feng W, Yu H, Lan D, Liu Q, Song B. Identification of a target polypeptide of the CD169 receptor of bovine macrophage using a phage display peptide library. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105359. [PMID: 40086709 DOI: 10.1016/j.dci.2025.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
CD169, a salivary acid adhesion receptor on macrophages, plays a crucial role in enhancing the phagocytic response to pathogenic bacteria and in antibacterial immunity. To explore its potential in targeted veterinary drug applications, we used phage display technology to biopan peptide fragments specific to CD169. After several rounds of screening, 45 phage clones were selected for ELISA testing, resulting in 21 high-affinity clones. DNA sequencing revealed that 65 % of the peptides shared a common amino acid sequence (APRL∗∗∗HHH). A 12-amino acid peptide, CD169-T1, was synthesized with rhodamine B labeling at the N-terminal to assess its targeting capability. Flow cytometry and immunofluorescence assays confirmed that CD169-T1 specifically binds to HEK293T cells expressing bovine CD169 and murine macrophages, showing red fluorescence at the cell membrane. Moreover, the fluorescent marker of CD169-T1 was detected in the flow cytometry test results, thus confirming that the CD169-T1 has a significant targeting effect. The CD169-T1 obtained in this study can serve as the targeted part of the immune preparations to prevent and treat a wide variety of pathogenic bacteria, thus significantly facilitating the antigen presentation and increasing the utilization rate and the immune protection effect. Furthermore, this study provides a reference for the targeted research on CD169.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Qi Liu
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Zhelin Zhang
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Yimin Liang
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Wenzhi Feng
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Honghao Yu
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Di Lan
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Qianyi Liu
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| | - Bocui Song
- College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China.
| |
Collapse
|
2
|
Mason DM, Reddy ST. Predicting adaptive immune receptor specificities by machine learning is a data generation problem. Cell Syst 2024; 15:1190-1197. [PMID: 39701035 DOI: 10.1016/j.cels.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
Determining the specificity of adaptive immune receptors-B cell receptors (BCRs), their secreted form antibodies, and T cell receptors (TCRs)-is critical for understanding immune responses and advancing immunotherapy and drug discovery. Immune receptors exhibit extensive diversity in their variable domains, enabling them to interact with a plethora of antigens. Despite the significant progress made by AI tools such as AlphaFold in predicting protein structures, challenges remain in accurately modeling the structure and specificity of immune receptors, primarily due to the limited availability of high-quality crystal structures and the complexity of immune receptor-antigen interactions. In this perspective, we highlight recent advancements in sequence-based and structure-based data generation for immune receptors, which are crucial for training machine learning models that predict receptor specificity. We discuss the current bottlenecks and potential future directions in generating and utilizing high-dimensional datasets for predicting and designing the specificity of antibodies and TCRs.
Collapse
Affiliation(s)
- Derek M Mason
- Botnar Institute of Immune Engineering, 4056 Basel, Switzerland
| | - Sai T Reddy
- Botnar Institute of Immune Engineering, 4056 Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Sharma G, Round J, Teng F, Ali Z, May C, Yung E, Holt RA. A synthetic cytotoxic T cell platform for rapidly prototyping TCR function. NPJ Precis Oncol 2024; 8:182. [PMID: 39160299 PMCID: PMC11333705 DOI: 10.1038/s41698-024-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Current tools for functionally profiling T cell receptors with respect to cytotoxic potency and cross-reactivity are hampered by difficulties in establishing model systems to test these proteins in the contexts of different HLA alleles and against broad arrays of potential antigens. We have implemented a granzyme-activatable sensor of T cell cytotoxicity in a universal prototyping platform which enables facile recombinant expression of any combination of TCR-, peptide-, and class I MHC-coding sequences and direct assessment of resultant responses. This system consists of an engineered cell platform based on the immortalized natural killer cell line, YT-Indy, and the MHC-null antigen-presenting cell line, K562. These cells were engineered to furnish the YT-Indy/K562 pair with appropriate protein domains required for recombinant TCR expression and function in a non-T cell chassis, integrate a fluorescence-based target-centric early detection reporter of cytotoxic function, and deploy a set of protective genetic interventions designed to preserve antigen-presenting cells for subsequent capture and downstream characterization. Our data show successful reconstitution of the surface TCR complex in the YT-Indy cell line at biologically relevant levels. We also demonstrate successful induction and highly sensitive detection of antigen-specific response in multiple distinct model TCRs. Additionally, we monitored destruction of targets in co-culture and found that our survival-optimized system allowed for complete preservation after 24 h exposure to cytotoxic effectors. With this bioplatform, we anticipate investigators will be empowered to rapidly express and characterize T cell receptor responses, generate knowledge regarding the patterns of T cell receptor recognition, and optimize therapeutic T cell receptors.
Collapse
Affiliation(s)
- Govinda Sharma
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - James Round
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Fei Teng
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Zahra Ali
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Chris May
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Eric Yung
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Institute, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
4
|
Zhang Y, Xue X, Li F, Zhang B, Zheng P, Mi Y. Integrative nomogram model based on anoikis-related genes enhances prognostic evaluation in colorectal cancer. Heliyon 2024; 10:e33637. [PMID: 39040248 PMCID: PMC11261108 DOI: 10.1016/j.heliyon.2024.e33637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and established a novel model for improving the efficiency and accuracy of the prognostic evaluation of CRC. Methods CRC-ARGs were screened out by performing differential expression and univariate Cox analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to facilitate the generalization and practical application of our model. Results We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation between tumor microenvironment and Risk-Score was discovered in the present work. Conclusion This study reveals the potential role of anoikis in CRC and sets new insights into clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the interactive tool provides researchers with a user-friendly interface to input relevant clinical variables and obtain personalized risk predictions or prognostic assessments based on our established model.
Collapse
Affiliation(s)
- Yuexiao Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Bo Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
5
|
Jin Y, Miyama T, Brown A, Hayase T, Song X, Singh AK, Huang L, Flores II, McDaniel LK, Glover I, Halsey TM, Prasad R, Chapa V, Ahmed S, Zhang J, Rai K, Peterson CB, Lizee G, Karmouch J, Hayase E, Molldrem JJ, Chang CC, Tsai WB, Jenq RR. Tsyn-Seq: a T-cell Synapse-Based Antigen Identification Platform. Cancer Immunol Res 2024; 12:530-543. [PMID: 38363296 PMCID: PMC11065584 DOI: 10.1158/2326-6066.cir-23-0467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.
Collapse
Affiliation(s)
- Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Takahiko Miyama
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Alexandria Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Anand K. Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ivonne I. Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Lauren K. McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Israel Glover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Taylor M. Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Valerie Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Saira Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jennifer Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Zdinak PM, Trivedi N, Grebinoski S, Torrey J, Martinez EZ, Martinez S, Hicks L, Ranjan R, Makani VKK, Roland MM, Kublo L, Arshad S, Anderson MS, Vignali DAA, Joglekar AV. De novo identification of CD4 + T cell epitopes. Nat Methods 2024; 21:846-856. [PMID: 38658646 PMCID: PMC11093748 DOI: 10.1038/s41592-024-02255-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/22/2024] [Indexed: 04/26/2024]
Abstract
CD4+ T cells recognize peptide antigens presented on class II major histocompatibility complex (MHC-II) molecules to carry out their function. The remarkable diversity of T cell receptor sequences and lack of antigen discovery approaches for MHC-II make profiling the specificities of CD4+ T cells challenging. We have expanded our platform of signaling and antigen-presenting bifunctional receptors to encode MHC-II molecules presenting covalently linked peptides (SABR-IIs) for CD4+ T cell antigen discovery. SABR-IIs can present epitopes to CD4+ T cells and induce signaling upon their recognition, allowing a readable output. Furthermore, the SABR-II design is modular in signaling and deployment to T cells and B cells. Here, we demonstrate that SABR-IIs libraries presenting endogenous and non-contiguous epitopes can be used for antigen discovery in the context of type 1 diabetes. SABR-II libraries provide a rapid, flexible, scalable and versatile approach for de novo identification of CD4+ T cell ligands from single-cell RNA sequencing data using experimental and computational approaches.
Collapse
Affiliation(s)
- Paul M Zdinak
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nishtha Trivedi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephanie Grebinoski
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessica Torrey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eduardo Zarate Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Microbiology and Immunology Diversity Scholars Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Salome Martinez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louise Hicks
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rashi Ranjan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Venkata Krishna Kanth Makani
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Melissa Roland
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lyubov Kublo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sanya Arshad
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Wang Y, Wang Z, Yang J, Lei X, Liu Y, Frankiw L, Wang J, Li G. Deciphering Membrane-Protein Interactions and High-Throughput Antigen Identification with Cell Doublets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305750. [PMID: 38342599 PMCID: PMC10987144 DOI: 10.1002/advs.202305750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/02/2024] [Indexed: 02/13/2024]
Abstract
Deciphering cellular interactions is essential to both understand the mechanisms underlying a broad range of human diseases, but also to manipulate therapies targeting these diseases. Here, the formation of cell doublets resulting from specific membrane ligand-receptor interactions is discovered. Based on this phenomenon, the study developed DoubletSeeker, a novel high-throughput method for the reliable identification of ligand-receptor interactions. The study shows that DoubletSeeker can accurately identify T cell receptor (TCR)-antigen interactions with high sensitivity and specificity. Notably, DoubletSeeker effectively captured paired TCR-peptide major histocompatibility complex (pMHC) information during a highly complex library-on-library screening and successfully identified three mutant TCRs that specifically recognize the MART-1 epitope. In turn, DoubletSeeker can act as an antigen discovery platform that allows for the development of novel immunotherapy targets, making it valuable for investigating fundamental tumor immunology.
Collapse
Affiliation(s)
- Yuqian Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Zhe Wang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Juan Yang
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Xiaobo Lei
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Yisu Liu
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| | - Luke Frankiw
- Department of PediatricsBoston Children's HospitalBostonMA02115USA
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Guideng Li
- National Key Laboratory of Immunity and InflammationSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
- Key Laboratory of Synthetic Biology Regulatory ElementSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhouJiangsu215123China
| |
Collapse
|
8
|
Cetin M, Pinamonti V, Schmid T, Boschert T, Mellado Fuentes A, Kromer K, Lerner T, Zhang J, Herzig Y, Ehlert C, Hernandez-Hernandez M, Samaras G, Torres CM, Fisch L, Dragan V, Kouwenhoven A, Van Schoubroeck B, Wils H, Van Hove C, Platten M, Green EW, Stevenaert F, Felix NJ, Lindner JM. T-FINDER: A highly sensitive, pan-HLA platform for functional T cell receptor and ligand discovery. SCIENCE ADVANCES 2024; 10:eadk3060. [PMID: 38306432 PMCID: PMC10836725 DOI: 10.1126/sciadv.adk3060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Effective, unbiased, high-throughput methods to functionally identify both class II and class I HLA-presented T cell epitopes and their cognate T cell receptors (TCRs) are essential for and prerequisite to diagnostic and therapeutic applications, yet remain underdeveloped. Here, we present T-FINDER [T cell Functional Identification and (Neo)-antigen Discovery of Epitopes and Receptors], a system to rapidly deconvolute CD4 and CD8 TCRs and targets physiologically processed and presented by an individual's unmanipulated, complete human leukocyte antigen (HLA) haplotype. Combining a highly sensitive TCR signaling reporter with an antigen processing system to overcome previously undescribed limitations to target expression, T-FINDER both robustly identifies unknown peptide:HLA ligands from antigen libraries and rapidly screens and functionally validates the specificity of large TCR libraries against known or predicted targets. To demonstrate its capabilities, we apply the platform to multiple TCR-based applications, including diffuse midline glioma, celiac disease, and rheumatoid arthritis, providing unique biological insights and showcasing T-FINDER's potency and versatility.
Collapse
Affiliation(s)
- Miray Cetin
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Veronica Pinamonti
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Theresa Schmid
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Tamara Boschert
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
| | | | - Kristina Kromer
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Taga Lerner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Jing Zhang
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Yonatan Herzig
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Christopher Ehlert
- Heidelberg Institute for Theoretical Studies (HITS gGmbH), 69118 Heidelberg, Germany
| | | | - Georgios Samaras
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | | | - Laura Fisch
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Valeriia Dragan
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Hans Wils
- Janssen Research and Development, Beerse, Belgium
| | | | - Michael Platten
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmoltz Institute for Translational Oncology (HI-TRON), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | - Edward W. Green
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN Heidelberg University, Mannheim, Germany
| | | | | | - John M. Lindner
- BioMed X GmbH, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Principi N, Esposito S. Development of Vaccines against Emerging Mosquito-Vectored Arbovirus Infections. Vaccines (Basel) 2024; 12:87. [PMID: 38250900 PMCID: PMC10818606 DOI: 10.3390/vaccines12010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Among emergent climate-sensitive infectious diseases, some mosquito-vectored arbovirus infections have epidemiological, social, and economic effects. Dengue virus (DENV), West Nile virus (WNV), and Chikungunya virus (CHIKV) disease, previously common only in the tropics, currently pose a major risk to global health and are expected to expand dramatically in the near future if adequate containment measures are not implemented. The lack of safe and effective vaccines is critical as it seems likely that emerging mosquito-vectored arbovirus infections will be con-trolled only when effective and safe vaccines against each of these infections become available. This paper discusses the clinical characteristics of DENV, WNV, and CHIKV infections and the state of development of vaccines against these viruses. An ideal vaccine should be able to evoke with a single administration a prompt activation of B and T cells, adequate concentrations of protecting/neutralizing antibodies, and the creation of a strong immune memory capable of triggering an effective secondary antibody response after new infection with a wild-type and/or mutated infectious agent. Moreover, the vaccine should be well tolerated, safe, easily administrated, cost-effective, and widely available throughout the world. However, the development of vaccines against emerging mosquito-vectored arbovirus diseases is far from being satisfactory, and it seems likely that it will take many years before effective and safe vaccines for all these infections are made available worldwide.
Collapse
Affiliation(s)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
10
|
Lee HN, Lee SE, Inn KS, Seong J. Optical sensing and control of T cell signaling pathways. Front Physiol 2024; 14:1321996. [PMID: 38269062 PMCID: PMC10806162 DOI: 10.3389/fphys.2023.1321996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
T cells regulate adaptive immune responses through complex signaling pathways mediated by T cell receptor (TCR). The functional domains of the TCR are combined with specific antibodies for the development of chimeric antigen receptor (CAR) T cell therapy. In this review, we first overview current understanding on the T cell signaling pathways as well as traditional methods that have been widely used for the T cell study. These methods, however, are still limited to investigating dynamic molecular events with spatiotemporal resolutions. Therefore, genetically encoded biosensors and optogenetic tools have been developed to study dynamic T cell signaling pathways in live cells. We review these cutting-edge technologies that revealed dynamic and complex molecular mechanisms at each stage of T cell signaling pathways. They have been primarily applied to the study of dynamic molecular events in TCR signaling, and they will further aid in understanding the mechanisms of CAR activation and function. Therefore, genetically encoded biosensors and optogenetic tools offer powerful tools for enhancing our understanding of signaling mechanisms in T cells and CAR-T cells.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technoloy, Seoul, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Eun Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| |
Collapse
|
11
|
Shah RK, Cygan E, Kozlik T, Colina A, Zamora AE. Utilizing immunogenomic approaches to prioritize targetable neoantigens for personalized cancer immunotherapy. Front Immunol 2023; 14:1301100. [PMID: 38149253 PMCID: PMC10749952 DOI: 10.3389/fimmu.2023.1301100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Advancements in sequencing technologies and bioinformatics algorithms have expanded our ability to identify tumor-specific somatic mutation-derived antigens (neoantigens). While recent studies have shown neoantigens to be compelling targets for cancer immunotherapy due to their foreign nature and high immunogenicity, the need for increasingly accurate and cost-effective approaches to rapidly identify neoantigens remains a challenging task, but essential for successful cancer immunotherapy. Currently, gene expression analysis and algorithms for variant calling can be used to generate lists of mutational profiles across patients, but more care is needed to curate these lists and prioritize the candidate neoantigens most capable of inducing an immune response. A growing amount of evidence suggests that only a handful of somatic mutations predicted by mutational profiling approaches act as immunogenic neoantigens. Hence, unbiased screening of all candidate neoantigens predicted by Whole Genome Sequencing/Whole Exome Sequencing may be necessary to more comprehensively access the full spectrum of immunogenic neoepitopes. Once putative cancer neoantigens are identified, one of the largest bottlenecks in translating these neoantigens into actionable targets for cell-based therapies is identifying the cognate T cell receptors (TCRs) capable of recognizing these neoantigens. While many TCR-directed screening and validation assays have utilized bulk samples in the past, there has been a recent surge in the number of single-cell assays that provide a more granular understanding of the factors governing TCR-pMHC interactions. The goal of this review is to provide an overview of existing strategies to identify candidate neoantigens using genomics-based approaches and methods for assessing neoantigen immunogenicity. Additionally, applications, prospects, and limitations of some of the current single-cell technologies will be discussed. Finally, we will briefly summarize some of the recent models that have been used to predict TCR antigen specificity and analyze the TCR receptor repertoire.
Collapse
Affiliation(s)
- Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Erin Cygan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alfredo Colina
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Dezfulian MH, Kula T, Pranzatelli T, Kamitaki N, Meng Q, Khatri B, Perez P, Xu Q, Chang A, Kohlgruber AC, Leng Y, Jupudi AA, Joachims ML, Chiorini JA, Lessard CJ, Farris AD, Muthuswamy SK, Warner BM, Elledge SJ. TScan-II: A genome-scale platform for the de novo identification of CD4 + T cell epitopes. Cell 2023; 186:5569-5586.e21. [PMID: 38016469 PMCID: PMC10841602 DOI: 10.1016/j.cell.2023.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.
Collapse
Affiliation(s)
- Mohammad H Dezfulian
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Tomasz Kula
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Thomas Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Qingda Meng
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Bhuwan Khatri
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paola Perez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Qikai Xu
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ananth Aditya Jupudi
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michelle L Joachims
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - John A Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Christopher J Lessard
- Genes and Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Departmentment of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Pang Z, Lu MM, Zhang Y, Gao Y, Bai JJ, Gu JY, Xie L, Wu WZ. Neoantigen-targeted TCR-engineered T cell immunotherapy: current advances and challenges. Biomark Res 2023; 11:104. [PMID: 38037114 PMCID: PMC10690996 DOI: 10.1186/s40364-023-00534-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell therapy using T cell receptor-engineered T cells (TCR-T) is a promising approach for cancer therapy with an expectation of no significant side effects. In the human body, mature T cells are armed with an incredible diversity of T cell receptors (TCRs) that theoretically react to the variety of random mutations generated by tumor cells. The outcomes, however, of current clinical trials using TCR-T cell therapies are not very successful especially involving solid tumors. The therapy still faces numerous challenges in the efficient screening of tumor-specific antigens and their cognate TCRs. In this review, we first introduce TCR structure-based antigen recognition and signaling, then describe recent advances in neoantigens and their specific TCR screening technologies, and finally summarize ongoing clinical trials of TCR-T therapies against neoantigens. More importantly, we also present the current challenges of TCR-T cell-based immunotherapies, e.g., the safety of viral vectors, the mismatch of T cell receptor, the impediment of suppressive tumor microenvironment. Finally, we highlight new insights and directions for personalized TCR-T therapy.
Collapse
Affiliation(s)
- Zhi Pang
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Man-Man Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yuan Gao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jin-Jin Bai
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Gu
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Wei-Zhong Wu
- Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Sharma G, Round J, Teng F, Ali Z, May C, Yung E, Holt RA. A Synthetic Cytotoxic T cell Platform for Rapidly Prototyping TCR Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567960. [PMID: 38045272 PMCID: PMC10690155 DOI: 10.1101/2023.11.20.567960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Current tools for functionally profiling T cell receptors with respect to cytotoxic potency and cross-reactivity are hampered by difficulties in establishing model systems to test these proteins in the contexts of different HLA alleles and against broad arrays of potential antigens. We have implemented and validated a granzyme-activatable sensor of T cell cytotoxicity in a novel universal prototyping platform which enables facile recombinant expression of any combination of TCR-, peptide-, and class I MHC-coding sequences and direct assessment of resultant responses. This system consists of an engineered cell platform based on the immortalized natural killer cell line, YT-Indy, and the MHC-null antigen-presenting cell line, K562. These cells were engineered using contemporary gene-editing techniques to furnish the YT-Indy/K562 pair with appropriate protein domains required for recombinant TCR expression and function in a non-T cell chassis, integrate a fluorescence-based target-centric early detection reporter of cytotoxic function, and deploy a set of protective genetic interventions designed to preserve antigen-presenting cells for subsequent capture and downstream characterization. Our data show successful reconstitution of the surface TCR complex in the YT-Indy cell line at biologically relevant levels. We also demonstrate successful induction and highly sensitive detection of antigen-specific response in multiple distinct model TCRs, with significant responses (p < 0.05 and Cohen's d >1.9) in all cases. Additionally, we monitored destruction of targets in co-culture and found that our survival-optimized system allowed for complete preservation after 24-hour exposure to cytotoxic effectors. With this bioplatform, we anticipate investigators will be empowered to rapidly express and characterize T cell receptor responses, generate new knowledge regarding the patterns of T cell receptor recognition, and optimize novel therapeutic T cell receptors for improved cytotoxic potential and reduced cross-reactivity to undesired antigenic targets.
Collapse
Affiliation(s)
- Govinda Sharma
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - James Round
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Fei Teng
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Zahra Ali
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Chris May
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Eric Yung
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
| | - Robert A. Holt
- Michael Smith Genome Sciences Centre; British Columbia Cancer Research Institute; 675 W 10 Ave, Vancouver, BC, V5Z 1L3; Canada
- Department of Medical Genetics; University of British Columbia; C201 – 4500 Oak Street, Vancouver, BC, V6H 3N1; Canada
- Department of Molecular Biology and Biochemistry; Simon Fraser University; SSB8166 – 8888 University Drive, Burnaby, BC, V5A 1S6; Canada
| |
Collapse
|
15
|
Abstract
Recent advances in cancer immunotherapy - ranging from immune-checkpoint blockade therapy to adoptive cellular therapy and vaccines - have revolutionized cancer treatment paradigms, yet the variability in clinical responses to these agents has motivated intense interest in understanding how the T cell landscape evolves with respect to response to immune intervention. Over the past decade, the advent of multidimensional single-cell technologies has provided the unprecedented ability to dissect the constellation of cell states of lymphocytes within a tumour microenvironment. In particular, the rapidly expanding capacity to definitively link intratumoural phenotypes with the antigen specificity of T cells provided by T cell receptors (TCRs) has now made it possible to focus on investigating the properties of T cells with tumour-specific reactivity. Moreover, the assessment of TCR clonality has enabled a molecular approach to track the trajectories, clonal dynamics and phenotypic changes of antitumour T cells over the course of immunotherapeutic intervention. Here, we review the current knowledge on the cellular states and antigen specificities of antitumour T cells and examine how fine characterization of T cell dynamics in patients has provided meaningful insights into the mechanisms underlying effective cancer immunotherapy. We highlight those T cell subsets associated with productive T cell responses and discuss how diverse immunotherapies might leverage the pre-existing tumour-reactive T cell pool or instruct de novo generation of antitumour specificities. Future studies aimed at elucidating the factors associated with the elicitation of productive antitumour T cell immunity are anticipated to instruct the design of more efficacious treatment strategies.
Collapse
Affiliation(s)
- Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
16
|
Dutta SK, Langenburg T. A Perspective on Current Flavivirus Vaccine Development: A Brief Review. Viruses 2023; 15:v15040860. [PMID: 37112840 PMCID: PMC10142581 DOI: 10.3390/v15040860] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The flavivirus genus contains several clinically important pathogens that account for tremendous global suffering. Primarily transmitted by mosquitos or ticks, these viruses can cause severe and potentially fatal diseases ranging from hemorrhagic fevers to encephalitis. The extensive global burden is predominantly caused by six flaviviruses: dengue, Zika, West Nile, yellow fever, Japanese encephalitis and tick-borne encephalitis. Several vaccines have been developed, and many more are currently being tested in clinical trials. However, flavivirus vaccine development is still confronted with many shortcomings and challenges. With the use of the existing literature, we have studied these hurdles as well as the signs of progress made in flavivirus vaccinology in the context of future development strategies. Moreover, all current licensed and phase-trial flavivirus vaccines have been gathered and discussed based on their vaccine type. Furthermore, potentially relevant vaccine types without any candidates in clinical testing are explored in this review as well. Over the past decades, several modern vaccine types have expanded the field of vaccinology, potentially providing alternative solutions for flavivirus vaccines. These vaccine types offer different development strategies as opposed to traditional vaccines. The included vaccine types were live-attenuated, inactivated, subunit, VLPs, viral vector-based, epitope-based, DNA and mRNA vaccines. Each vaccine type offers different advantages, some more suitable for flaviviruses than others. Additional studies are needed to overcome the barriers currently faced by flavivirus vaccine development, but many potential solutions are currently being explored.
Collapse
|
17
|
Sánchez-Martínez A, Acevedo-Sáenz L, Alzate-Ángel JC, Álvarez CM, Guzmán F, Roman T, Urcuqui-Inchima S, Cardona-Maya WD, Velilla PA. Functional Profile of CD8 + T-Cells in Response to HLA-A*02:01-Restricted Mutated Epitopes Derived from the Gag Protein of Circulating HIV-1 Strains from Medellín, Colombia. Front Immunol 2022; 13:793982. [PMID: 35392101 PMCID: PMC8980466 DOI: 10.3389/fimmu.2022.793982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
CD8+ T-cells play a crucial role in the control of HIV replication. HIV-specific CD8+ T-cell responses rapidly expand since the acute phase of the infection, and it has been observed that HIV controllers harbor CD8+ T-cells with potent anti-HIV capacity. The development of CD8+ T-cell-based vaccine against HIV-1 has focused on searching for immunodominant epitopes. However, the strong immune pressure of CD8+ T-cells causes the selection of viral variants with mutations in immunodominant epitopes. Since HIV-1 mutations are selected under the context of a specific HLA-I, the circulation of viral variants with these mutations is highly predictable based on the most prevalent HLA-I within a population. We previously demonstrated the adaptation of circulating strains of HIV-1 to the HLA-A*02 molecule by identifying mutations under positive selection located in GC9 and SL9 epitopes derived from the Gag protein. Also, we used an in silico prediction approach and evaluated whether the mutations found had a higher or lower affinity to the HLA-A*02. Although this strategy allowed predicting the interaction between mutated peptides and HLA-I, the functional response of CD8+ T-cells that these peptides induce is unknown. In the present work, peripheral blood mononuclear cells from 12 HIV-1+ HLA-A*02:01+ individuals were stimulated with the mutated and wild-type peptides derived from the GC9 and SL9 epitopes. The functional profile of CD8+ T-cells was evaluated using flow cytometry, and the frequency of subpopulations was determined according to their number of functions and the polyfunctionality index. The results suggest that the quality of the response (polyfunctionality) could be associated with the binding affinity of the peptide to the HLA molecule, and the functional profile of specific CD8+ T-cells to mutated epitopes in individuals under cART is maintained.
Collapse
Affiliation(s)
- Alexandra Sánchez-Martínez
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Cuidado Enfermería CES, Facultad de Enfermería, Universidad CES, Medellín, Colombia
| | - Juan Carlos Alzate-Ángel
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Universidad de Santander (CIB-UDES), Bucaramanga, Colombia
| | - Cristian M Álvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tanya Roman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Walter D Cardona-Maya
- Grupo Reproducción, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Paula Andrea Velilla
- Grupo Inmunovirología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
18
|
Affiliation(s)
- Yuqian Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Zhe Wang
- CAMS Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Guideng Li
- CAMS Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China.
| |
Collapse
|
19
|
Dobson CS, Reich AN, Gaglione S, Smith BE, Kim EJ, Dong J, Ronsard L, Okonkwo V, Lingwood D, Dougan M, Dougan SK, Birnbaum ME. Antigen identification and high-throughput interaction mapping by reprogramming viral entry. Nat Methods 2022; 19:449-460. [PMID: 35396484 PMCID: PMC9012700 DOI: 10.1038/s41592-022-01436-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.
Collapse
Affiliation(s)
- Connor S Dobson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anna N Reich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Stephanie Gaglione
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Ellen J Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Jiayi Dong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | | | - Vintus Okonkwo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Michael Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie K Dougan
- Program in Immunology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore.
| |
Collapse
|
20
|
Chen TC, Chang SW. Repeated cell sorting ensures the homogeneity of ocular cell populations expressing a transgenic protein. PLoS One 2022; 17:e0265183. [PMID: 35333876 PMCID: PMC8956163 DOI: 10.1371/journal.pone.0265183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/25/2022] [Indexed: 11/19/2022] Open
Abstract
Transgenic proteins can be routinely expressed in various mammalian cell types via different transgenic systems, but the efficiency of transgene expression is constrained by the complex interplay among factors such as the temporal consistency of expression and compatibility with specific cell types, including ocular cells. Here, we report a more efficient way to express an enhanced green fluorescent protein (EGFP) in human corneal fibroblasts, corneal epithelial cells, and conjunctival epithelial cells through a lentiviral expression system. The relative transducing unit criterion for EGFP-expressing pseudovirions was first determined in HEK-293T cells. Homogeneous populations of EGFP-positive and EGFP-negative cells could be isolated by cell sorting. The half-maximal inhibitory concentration (IC50) value for puromycin was calculated according to viability curves for each cell type. The results revealed that cell types differed with respect to EGFP expression efficiency after transduction with the same amount of EGFP-encoding pseudovirions. Using a cell sorter, the homogeneity of EGFP-positive cells reached >95%. In the initial sorting stage, however, the efficiency of EGFP expression in the sorted cells was noticeably reduced after two rounds of sequential culture, but repeated sorting for up to four rounds yielded homogeneous EGFP-positive human corneal fibroblasts that could be maintained in continuous culture in vitro. The sorted EGFP-positive cells retained their proper morphology and cell type-specific protein expression patterns. Puromycin resistance was found to depend on cell type, indicating that the IC50 for puromycin must be determined for each cell type to ensure the isolation of homogeneous EGFP-positive cells. Taken together, repeated cell sorting is an efficient means of obtaining homogeneous populations of ocular cells expressing a transgenic protein during continuous culture without the potential confounding effects of antibiotics.
Collapse
Affiliation(s)
- Tsan-Chi Chen
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Shu-Wen Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Liu Y, Sun B, Wang J, Sun H, Lu Z, Chen L, Lan M, Xu J, Pan J, Shi J, Sun Y, Zhang X, Wang J, Jiang D, Yang K. In silico analyses and experimental validation of the MHC class-I restricted epitopes of Ebolavirus GP. Int Immunol 2022; 34:313-325. [PMID: 35192720 DOI: 10.1093/intimm/dxac006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ebolavirus (EBOV) causes an extremely high mortality and prevalence disease called Ebola virus disease (EVD). There is only one glycoprotein (GP) on the virus particle surface, which mediates entry into the host cell. MHC class-I restricted CD8 + T cell responses are important antiviral immune responses. Therefore, it is of great importance to understand EBOV GP-specific MHC class-I restricted epitopes within immunogenicity. In this study, computational approaches were employed to predict the dominant MHC class-I molecule epitopes of EBOV GP for mouse H2 and major alleles of HLA class-I supertypes. Our results yielded 42 dominant epitopes in H2 haplotypes and 301 dominant epitopes in HLA class-I haplotypes. After validation by ELISpot assay, in-depth analyses to ascertain their nature of conservation, immunogenicity, and docking with the corresponding MHC class-I molecules were undertaken. Our study predicted MHC class-I restricted epitopes that may aid the advancement of anti-EBOV immune responses. And the integrated strategy of epitope prediction, validation, and comparative analyses were postulated, promising for epitope-based immunotherapy development and application to viral epidemics.
Collapse
Affiliation(s)
- Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, P.R. China
| | - Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiawei Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China.,Tangshan Sannvhe Airport, Tangshan, Hebei, P.R. China
| | - Zhenhua Lu
- Department of Epidemiology, Public Health School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Mingfu Lan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jiahao Xu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jingqi Shi
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Yuanjie Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Xiyang Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Jing Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
22
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
23
|
Ma KY, Schonnesen AA, He C, Xia AY, Sun E, Chen E, Sebastian KR, Guo YW, Balderas R, Kulkarni-Date M, Jiang N. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8 + T cells. Nat Immunol 2021; 22:1590-1598. [PMID: 34811538 PMCID: PMC9184244 DOI: 10.1038/s41590-021-01073-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Although critical to T cell function, antigen specificity is often omitted in high-throughput multiomics-based T cell profiling due to technical challenges. We describe a high-dimensional, tetramer-associated T cell antigen receptor (TCR) sequencing (TetTCR-SeqHD) method to simultaneously profile cognate antigen specificities, TCR sequences, targeted gene expression and surface-protein expression from tens of thousands of single cells. Using human polyclonal CD8+ T cells with known antigen specificity and TCR sequences, we demonstrate over 98% precision for detecting the correct antigen specificity. We also evaluate gene expression and phenotypic differences among antigen-specific CD8+ T cells and characterize phenotype signatures of influenza- and Epstein-Barr virus-specific CD8+ T cells that are unique to their pathogen targets. Moreover, with the high-throughput capacity of profiling hundreds of antigens simultaneously, we apply TetTCR-SeqHD to identify antigens that preferentially enrich cognate CD8+ T cells in patients with type 1 diabetes compared to healthy controls and discover a TCR that cross-reacts with diabetes-related and microbiome antigens. TetTCR-SeqHD is a powerful approach for profiling T cell responses in humans and mice.
Collapse
MESH Headings
- Antigens/immunology
- Antigens/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Autoantigens/immunology
- Autoantigens/metabolism
- Autoimmunity
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Case-Control Studies
- Cell Separation
- Cells, Cultured
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/pathogenicity
- High-Throughput Nucleotide Sequencing
- Humans
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Phenotype
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis
Collapse
Affiliation(s)
- Ke-Yue Ma
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra A Schonnesen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Chenfeng He
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Amanda Y Xia
- Department of Molecular Biosciences, The University of Texas atAustin, Austin, TX, USA
| | - Eric Sun
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Eunise Chen
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Katherine R Sebastian
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Yu-Wan Guo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mrinalini Kulkarni-Date
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Ning Jiang
- Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA.
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
D'haeseleer P, Collette NM, Lao V, Segelke BW, Branda SS, Franco M. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Front Immunol 2021; 12:716676. [PMID: 34659206 PMCID: PMC8513525 DOI: 10.3389/fimmu.2021.716676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.
Collapse
Affiliation(s)
- Patrik D'haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole M Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Steven S Branda
- Molecular and Microbiology Department, Sandia National Laboratories, Livermore, CA, United States
| | - Magdalena Franco
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
25
|
Lee MY, Jeon JW, Sievers C, Allen CT. Antigen processing and presentation in cancer immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-001111. [PMID: 32859742 PMCID: PMC7454179 DOI: 10.1136/jitc-2020-001111] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Knowledge about and identification of T cell tumor antigens may inform the development of T cell receptor-engineered adoptive cell transfer or personalized cancer vaccine immunotherapy. Here, we review antigen processing and presentation and discuss limitations in tumor antigen prediction approaches. Methods Original articles covering antigen processing and presentation, epitope discovery, and in silico T cell epitope prediction were reviewed. Results Natural processing and presentation of antigens is a complex process that involves proteasomal proteolysis of parental proteins, transportation of digested peptides into the endoplasmic reticulum, loading of peptides onto major histocompatibility complex (MHC) class I molecules, and shuttling of peptide:MHC complexes to the cell surface. A number of T cell tumor antigens have been experimentally validated in patients with cancer. Assessment of predicted MHC class I binding and total score for these validated T cell antigens demonstrated a wide range of values, with nearly one-third of validated antigens carrying an IC50 of greater than 500 nM. Conclusions Antigen processing and presentation is a complex, multistep process. In silico epitope prediction techniques can be a useful tool, but comprehensive experimental testing and validation on a patient-by-patient basis may be required to reliably identify T cell tumor antigens.
Collapse
Affiliation(s)
- Maxwell Y Lee
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun W Jeon
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Cem Sievers
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint T Allen
- NIDCD, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Wang X, Yu Z, Liu W, Tang H, Yi D, Wei M. Recent progress on MHC-I epitope prediction in tumor immunotherapy. Am J Cancer Res 2021; 11:2401-2416. [PMID: 34249407 PMCID: PMC8263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Tumor immunotherapy has now become one of the most potential therapy for those intractable cancer diseases. The antigens on the cancer cell surfaces are the keys for the immune system to recognize and eliminate them. As reported, the immunogenicity of the tumor antigens could be determined by the binding between the key epitope peptides and MHC molecules. In recent years, the approaches to anticipate the peptides from the candidate epitopes have gradually changed into more efficient methods. Including the improved conventional methods, more diverse methods were coming into view. Here we review the anticipated methods of the tumor associated epitopes that specifically bind with major histocompatibility complex (MHC) class I molecules, and the recent advances and applications of those epitope prediction methods.
Collapse
Affiliation(s)
- Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| | - Dongxu Yi
- The Affiliated Reproductive Hospital of China Medical UniversityNo. 10 Puhe Street, Huanggu District Shenyang, Liaoning, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical UniversityNo. 77 Puhe Road, Shenyang North New District, Shenyang, Liaoning, P. R. China
| |
Collapse
|
27
|
Titov A, Zmievskaya E, Ganeeva I, Valiullina A, Petukhov A, Rakhmatullina A, Miftakhova R, Fainshtein M, Rizvanov A, Bulatov E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel) 2021; 13:743. [PMID: 33670139 PMCID: PMC7916861 DOI: 10.3390/cancers13040743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is a vibrant field of cancer treatment that began progressive development in the 1980s. One of the most prominent and promising examples is chimeric antigen receptor (CAR) T-cell immunotherapy for the treatment of B-cell hematologic malignancies. Despite success in the treatment of B-cell lymphomas and leukemia, CAR T-cell therapy remains mostly ineffective for solid tumors. This is due to several reasons, such as the heterogeneity of the cellular composition in solid tumors, the need for directed migration and penetration of CAR T-cells against the pressure gradient in the tumor stroma, and the immunosuppressive microenvironment. To substantially improve the clinical efficacy of ACT against solid tumors, researchers might need to look closer into recent developments in the other branches of adoptive immunotherapy, both traditional and innovative. In this review, we describe the variety of adoptive cell therapies beyond CAR T-cell technology, i.e., exploitation of alternative cell sources with a high therapeutic potential against solid tumors (e.g., CAR M-cells) or aiming to be universal allogeneic (e.g., CAR NK-cells, γδ T-cells), tumor-infiltrating lymphocytes (TILs), and transgenic T-cell receptor (TCR) T-cell immunotherapies. In addition, we discuss the strategies for selection and validation of neoantigens to achieve efficiency and safety. We provide an overview of non-conventional TCRs and CARs, and address the problem of mispairing between the cognate and transgenic TCRs. Finally, we summarize existing and emerging approaches for manufacturing of the therapeutic cell products in traditional, semi-automated and fully automated Point-of-Care (PoC) systems.
Collapse
Affiliation(s)
- Aleksei Titov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Laboratory of Transplantation Immunology, National Hematology Research Centre, 125167 Moscow, Russia
| | - Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Alexey Petukhov
- Institute of Hematology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia;
| | - Aygul Rakhmatullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Regina Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | | | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.T.); (E.Z.); (I.G.); (A.V.); (A.R.); (R.M.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
28
|
Kast F, Klein C, Umaña P, Gros A, Gasser S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology 2021; 10:1869389. [PMID: 33520408 PMCID: PMC7808433 DOI: 10.1080/2162402x.2020.1869389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Based on the success of tumor-infiltrating lymphocytes (TIL)-based therapies, personalized adoptive cell therapies (ACT) targeting neoantigens have the potential to become a disruptive technology and lead to highly effective treatments for cancer patients for whom no other options exist. ACT of TIL, peripheral blood or gene-engineered peripheral blood lymphocytes (PBLs) targeting neoantigens is a highly personalized intervention that requires three discrete steps: i) Identification of suitable personal targets (neoantigens), ii) selection of T cells or their T cell receptors (TCRs) that are specific for the identified neoantigens and iii) expansion of the selected T cell population or generation of sufficient number of TCR modified T cells. In this review, we provide an introduction into challenges and approaches to identify neoantigens and to select the Adoptive Cell Therapy, ACT, Neoantigen, T cell, Cancer respective neoantigen-reactive T cells for use in ACT.
Collapse
Affiliation(s)
- Florian Kast
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Alena Gros
- Vall d'Hebron Institute of Oncology, Cellex Center, Barcelona, Spain
| | - Stephan Gasser
- Roche Pharma Research & Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| |
Collapse
|
29
|
Bousbaine D, Ploegh HL. Antigen discovery tools for adaptive immune receptor repertoire research. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:64-70. [PMID: 33195881 PMCID: PMC7665270 DOI: 10.1016/j.coisb.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The adaptive immune system has evolved to recognize with incredible precision a large diversity of molecules. Innovations in high-throughput sequencing and bioinformatics have accelerated large-scale immune repertoire analyses and given us important insights into the behavior of the adaptive immune system. However, establishing a connection between receptor sequence and its antigen-specificity remains a challenge despite its central role in determining T and B cell fate. We discuss recent large-scale antigen discovery technologies which can be combined with adaptive immune receptor repertoire (AIRR) studies. We highlight important discoveries made using repertoire analyses in the field of host-microbe interactions.
Collapse
Affiliation(s)
- Djenet Bousbaine
- Department of Bioengineering and ChEM-H, Stanford University, Stanford CA, USA
| | - Hidde L. Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston MA, USA
| |
Collapse
|
30
|
Jakobsen MK, Gjerstorff MF. CAR T-Cell Cancer Therapy Targeting Surface Cancer/Testis Antigens. Front Immunol 2020; 11:1568. [PMID: 32983080 PMCID: PMC7492268 DOI: 10.3389/fimmu.2020.01568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Harari A, Graciotti M, Bassani-Sternberg M, Kandalaft LE. Antitumour dendritic cell vaccination in a priming and boosting approach. Nat Rev Drug Discov 2020; 19:635-652. [PMID: 32764681 DOI: 10.1038/s41573-020-0074-8] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Mobilizing antitumour immunity through vaccination potentially constitutes a powerful anticancer strategy but has not yet provided robust clinical benefits in large patient populations. Although major hurdles still exist, we believe that currently available strategies for vaccines that target dendritic cells or use them to present antitumour antigens could be integrated into existing clinical practice using prime-boost approaches. In the priming phase, these approaches capitalize on either standard treatment modalities to trigger in situ vaccination and release tumour antigens or vaccination with dendritic cells loaded with tumour lysates or patient-specific neoantigens. In a second boost phase, personalized synthetic vaccines specifically boost T cells that were triggered during the priming phase. This immunotherapy approach has been enabled by the substantial recent improvements in dendritic cell vaccines. In this Perspective, we discuss these improvements, highlight how the prime-boost approach can be translated into clinical practice and provide solutions for various anticipated hurdles.
Collapse
Affiliation(s)
- Alexandre Harari
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lana E Kandalaft
- Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Abstract
T cells respond to threats in an antigen-specific manner using T cell receptors (TCRs) that recognize short peptide antigens presented on major histocompatibility complex (MHC) proteins. The TCR-peptide-MHC interaction mediated between a T cell and its target cell dictates its function and thereby influences its role in disease. A lack of approaches for antigen discovery has limited the fundamental understanding of the antigenic landscape of the overall T cell response. Recent advances in high-throughput sequencing, mass cytometry, microfluidics and computational biology have led to a surge in approaches to address the challenge of T cell antigen discovery. Here, we summarize the scope of this challenge, discuss in depth the recent exciting work and highlight the outstanding questions and remaining technical hurdles in this field.
Collapse
|
33
|
Fuchs KJ, Honders MW, van der Meijden ED, Adriaans AE, van der Lee DI, Pont MJ, Monajemi R, Kielbasa SM, 't Hoen PAC, van Bergen CAM, Falkenburg JHF, Griffioen M. Optimized Whole Genome Association Scanning for Discovery of HLA Class I-Restricted Minor Histocompatibility Antigens. Front Immunol 2020; 11:659. [PMID: 32362897 PMCID: PMC7180171 DOI: 10.3389/fimmu.2020.00659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Patients undergoing allogeneic stem cell transplantation as treatment for hematological diseases face the risk of Graft-versus-Host Disease as well as relapse. Graft-versus-Host Disease and the favorable Graft-versus-Leukemia effect are mediated by donor T cells recognizing polymorphic peptides, which are presented on the cell surface by HLA molecules and result from single nucleotide polymorphism alleles that are disparate between patient and donor. Identification of polymorphic HLA-binding peptides, designated minor histocompatibility antigens, has been a laborious procedure, and the number and scope for broad clinical use of these antigens therefore remain limited. Here, we present an optimized whole genome association approach for discovery of HLA class I minor histocompatibility antigens. T cell clones isolated from patients who responded to donor lymphocyte infusions after HLA-matched allogeneic stem cell transplantation were tested against a panel of 191 EBV-transformed B cells, which have been sequenced by the 1000 Genomes Project and selected for expression of seven common HLA class I alleles (HLA-A∗01:01, A∗02:01, A∗03:01, B∗07:02, B∗08:01, C∗07:01, and C∗07:02). By including all polymorphisms with minor allele frequencies above 0.01, we demonstrated that the new approach allows direct discovery of minor histocompatibility antigens as exemplified by seven new antigens in eight different HLA class I alleles including one antigen in HLA-A∗24:02 and HLA-A∗23:01, for which the method has not been originally designed. Our new whole genome association strategy is expected to rapidly augment the repertoire of HLA class I-restricted minor histocompatibility antigens that will become available for donor selection and clinical use to predict, follow or manipulate Graft-versus-Leukemia effect and Graft-versus-Host Disease after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Kyra J Fuchs
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - M Willy Honders
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Edith D van der Meijden
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Department of Internal Medicine, Hematology and Internal Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Alwin E Adriaans
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Margot J Pont
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands.,Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ramin Monajemi
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Zvyagin IV, Tsvetkov VO, Chudakov DM, Shugay M. An overview of immunoinformatics approaches and databases linking T cell receptor repertoires to their antigen specificity. Immunogenetics 2019; 72:77-84. [PMID: 31741011 DOI: 10.1007/s00251-019-01139-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 11/26/2022]
Abstract
Recent advances in molecular and bioinformatic methods have greatly improved our ability to study the formation of an adaptive immune response towards foreign pathogens, self-antigens, and cancer neoantigens. T cell receptors (TCR) are the key players in this process that recognize peptides presented by major histocompatibility complex (MHC). Owing to the huge diversity of both TCR sequence variants and peptides they recognize, accumulation and complex analysis of large amounts of TCR-antigen specificity data is required for understanding the structure and features of adaptive immune responses towards pathogens, vaccines, cancer, as well as autoimmune responses. In the present review, we summarize recent efforts on gathering and interpreting TCR-antigen specificity data and outline the critical role of tighter integration with other immunoinformatics data sources that include epitope MHC restriction, TCR repertoire structure models, and TCR/peptide/MHC structural data. We suggest that such integration can lead to the ability to accurately annotate individual TCR repertoires, efficiently estimate epitope and neoantigen immunogenicity, and ultimately, in silico identify TCRs specific to yet unstudied antigens and predict self-peptides related to autoimmunity.
Collapse
Affiliation(s)
- Ivan V Zvyagin
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Vasily O Tsvetkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M Chudakov
- Pirogov Russian Medical State University, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Shugay
- Pirogov Russian Medical State University, Moscow, Russia.
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|