1
|
Cao R, Li Y, Zhou Y, Li M, Lin F, Wang W, Zhang G, Wang G, Jin B, Ren W, Sun Y, Zhao Z, Zhang W, Sun J, Hou Y, Xu X, Hu J, Shi W, Fu S, Liang Q, Lu Y, Li C, Zhao Y, Li Y, Kuang D, Wu J, Fei P, Qu J, Xi P. Dark-based optical sectioning assists background removal in fluorescence microscopy. Nat Methods 2025:10.1038/s41592-025-02667-6. [PMID: 40355726 DOI: 10.1038/s41592-025-02667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
In fluorescence microscopy, a persistent challenge is the defocused background that obscures cellular details and introduces artifacts. Here, we introduce Dark sectioning, a method inspired by natural image dehazing for removing backgrounds that leverages dark channel prior and dual frequency separation to provide single-frame optical sectioning. Unlike denoising or deconvolution, Dark sectioning specifically targets and removes out-of-focus backgrounds, stably improving the signal-to-background ratio by nearly 10 dB and structural similarity index measure of images by approximately tenfold. Dark sectioning was validated using wide-field, confocal, two/three-dimensional structured illumination and one/two-photon microscopy with high-fidelity reconstruction. We further demonstrate its potential to improve the segmentation accuracy in deep tissues, resulting in better recognition of neurons in the mouse brain and accurate assessment of nuclei in prostate lesions or mouse brain sections. Dark sectioning is compatible with many other microscopy modalities, including light-sheet and light-field microscopy, as well as processing algorithms, including deconvolution and super-resolution optical fluctuation imaging.
Collapse
Affiliation(s)
- Ruijie Cao
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yaning Li
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yao Zhou
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, China
| | - Fangrui Lin
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wenyi Wang
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Airy Technologies Co., Beijing, China
| | - Guoxun Zhang
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gang Wang
- Airy Technologies Co., Beijing, China
| | - Boya Jin
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yu Sun
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Zhifeng Zhao
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Department of Computer Technology and Science, Anhui University of Finance and Economics, Bengbu, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Hebei, China
| | - Yiwei Hou
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Xinzhu Xu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Jiakui Hu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Institution of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Wei Shi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuang Fu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qianxi Liang
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yanye Lu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Institution of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Changhui Li
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yuxuan Zhao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiamin Wu
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China.
| |
Collapse
|
2
|
Zhan Z, Sun X, He C, Pan N, Yang X, Sun Y, Han Y, Kuang C, Liu X. Enhancing precision for simultaneous 3D localization and 3D orientation with structured illumination. OPTICS LETTERS 2025; 50:2856-2859. [PMID: 40310783 DOI: 10.1364/ol.559320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
Determining the three-dimensional (3D) position and orientation of molecules from limited fluorescence photons is challenging. Existing modulated illumination localization microscopy partially transfers the photon burden to excitation intensity gradients, advancing precision to the molecular scale. However, most simultaneous localization and orientation methods rely on polarization splitting in the detection path and are sensitive to the signal-to-background ratio. This sensitivity is further exacerbated by sequential structured illumination (SSI), potentially compromising robustness. Here, we introduce V-SIMFLUX, which integrates SSI and the Vortex PSF without polarization-splitting detection. Our theoretical analysis shows that V-SIMFLUX improves the precision of all estimated parameters, notably achieving a typical 2.9-fold improvement in lateral localization and a 1.7-fold enhancement in azimuthal orientation compared to conventional wide-field illumination.
Collapse
|
3
|
Martins CS, Iv F, Suman SK, Panagiotou TC, Sidor C, Ruso-López M, Plancke CN, Omi S, Pagès R, Gomes M, Llewellyn A, Bandi SR, Ramond L, Arbizzani F, Rimoli CV, Schnorrer F, Robin F, Wilde A, LeGoff L, Pedelacq JD, Jégou A, Cabantous S, Rincon SA, Chandre C, Brasselet S, Mavrakis M. Genetically encoded reporters of actin filament organization in living cells and tissues. Cell 2025; 188:2540-2559.e27. [PMID: 40179884 DOI: 10.1016/j.cell.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025]
Abstract
The cytoskeletal protein actin is crucial for cell shape and integrity throughout eukaryotes. Actin filaments perform essential biological functions, including muscle contraction, cell division, and tissue morphogenesis. These diverse activities are achieved through the ability of actin filaments to be arranged into precise architectures. Much progress has been made in defining the proteome of the actin cytoskeleton, but a detailed appreciation of the dynamic organizational state of the actin filaments themselves has been hindered by available tools. Fluorescence polarization microscopy is uniquely placed for measuring actin filament organization by exploiting the sensitivity of polarized light excitation to the orientation of fluorophores attached to actin filaments. By engineering fusions of five widely used actin localization reporters to fluorescent proteins with constrained mobility, we have succeeded in developing genetically encoded, green- and red-fluorescent-protein-based reporters for non-invasive, quantitative measurements of actin filament organization in living cells and tissues by fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - François Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Shashi Kumar Suman
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Clara Sidor
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - María Ruso-López
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | - Camille N Plancke
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Rebecca Pagès
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Sourish Reddy Bandi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Laurie Ramond
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | | | - Caio Vaz Rimoli
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Frank Schnorrer
- Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13009 Marseille, France
| | - François Robin
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, 75005 Paris, France
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1M1, Canada
| | - Loïc LeGoff
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), Inserm, Université Paul Sabatier - Toulouse III, CNRS, 31037 Toulouse, France
| | - Sergio A Rincon
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca 37007, Spain
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Med, 13013 Marseille, France.
| |
Collapse
|
4
|
Gao S, Sun J, Hou Y, Ge X, Shi M, Zheng H, Zhang Y, Li M, Gao B, Xi P. HBimmCue: A Versatile Fluorescent Probe for Multi-Scale Imaging of Lipid Polarity and Membrane Order in Inner Mitochondrial Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414343. [PMID: 39924938 PMCID: PMC11967834 DOI: 10.1002/advs.202414343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Mitochondrial membrane environmental dynamics are crucial for understanding function, yet high-resolution observation remains challenging. Here, HBimmCue is introduced as a fluorescent probe localized to inner mitochondrial membrane (IMM) that reports lipid polarity and membrane order changes, which correlate with cellular respiration levels. Using HBimmCue and fluorescence lifetime imaging microscopy (FLIM), IMM lipid heterogeneity is uncovered across scales, from nanoscale structures within individual mitochondria to mouse pre-implantation embryos. At the sub-organelle level, stimulated emission depletion (STED)-FLIM imaging highlights nanoscale polarity variations within the IMM. At the sub-cellular and cellular level, reduced IMM lipid polarity is observed in damaged mitochondria marked for lysosomal degradation and distinct IMM lipid distributions are identified in neurons and disease models. Additionally, metabolic dysfunction associated with oocytes aging and metabolic reprogramming from zygote to blastocyst is detected. Together, the work demonstrates the broad applicability of HBimmCue, offering a new paradigm for investigating lipid polarity and respiration level at multiple scales.
Collapse
Affiliation(s)
- Shu Gao
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Yiwei Hou
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Ming Shi
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Hongxi Zheng
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Yan Zhang
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Meiqi Li
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Peng Xi
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| |
Collapse
|
5
|
Yao S, Guan M, Ren W, Xi P, Li M, Sun M. Slicing Network for Wide-Field Fluorescence Image Based on the Improved U-Net Model. Microsc Res Tech 2025; 88:678-685. [PMID: 39520144 DOI: 10.1002/jemt.24732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Fluorescence imaging stands as a pivotal component in biomedical research, requiring the elimination of out-of-focus background noise resulting from wide-field volumetric illumination of the whole field-of-view and scattering within thick biological tissues. Traditional methods struggle to effectively address varying degrees of defocusing in fluorescence images. This study introduces the utilization of upU-Net, 3D U-Net, and 3D upU-Net as defocusing networks tailored for 2D and 3D wide-field fluorescence images, yielding notable enhancements. These advancements facilitate more economically viable confocal microscopy, delivering significant advantages to biologists presently utilizing wide-field fluorescence microscopy.
Collapse
Affiliation(s)
- Shiqing Yao
- Control Science and Engineering, Harbin Institute of Technology, Weihai, China
| | - Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Key Laboratory of Computational Optical Imaging Technology, Chinese Academy of Sciences, Beijing, China
| | - Wei Ren
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Meiqi Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Mingjian Sun
- Control Science and Engineering, Harbin Institute of Technology, Weihai, China
| |
Collapse
|
6
|
Wang H, Li Y, Li X, Sun Z, Yu F, Pashang A, Kulasiri D, Li HW, Chen H, Hou H, Zhang Y. The Primary Cilia are Associated with the Axon Initial Segment in Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407405. [PMID: 39804991 PMCID: PMC11884599 DOI: 10.1002/advs.202407405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/16/2024] [Indexed: 01/16/2025]
Abstract
The primary cilia serve as pivotal mediators of environmental signals and play crucial roles in neuronal responses. Disruption of ciliary function has been implicated in neuronal circuit disorders and aberrant neuronal excitability. However, the precise mechanisms remain elusive. To study the link between the primary cilia and neuronal excitability, manipulation of somatostatin receptor 3 (SSTR3) is investigated, as an example of how alterations in ciliary signaling may affect neuronal activity. It is found that aberrant SSTR3 expression perturbed not only ciliary morphology but also disrupted ciliary signaling cascades. Genetic deletion of SSTR3 resulted in perturbed spatial memory and synaptic plasticity. The axon initial segment (AIS) is a specialized region in the axon where action potentials are initiated. Interestingly, loss of ciliary SSTR3 led to decrease of Akt-dependent cyclic AMP-response element binding protein (CREB)-mediated transcription at the AIS, specifically downregulating AIS master organizer adaptor protein ankyrin G (AnkG) expression. In addition, alterations of other ciliary proteins serotonin 6 receptor (5-HT6R)and intraflagellar transport protein 88 (IFT88) also induced length changes of the AIS. The findings elucidate a specific interaction between the primary cilia and AIS, providing insight into the impact of the primary cilia on neuronal excitability and circuit integrity.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Yu Li
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Xin Li
- Beijing Life Science AcademyBeijing102200China
| | - Zehui Sun
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Fengdan Yu
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| | - Abolghasem Pashang
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C‐fACS)AGLS facultyLincoln UniversityCanterbury7647New Zealand
| | - Hung Wing Li
- Department of ChemistryThe Chinese University of Hong KongHong Kong999077China
| | - Huan Chen
- Beijing Life Science AcademyBeijing102200China
| | - Hongwei Hou
- Beijing Life Science AcademyBeijing102200China
| | - Yan Zhang
- State Key Laboratory of Membrane BiologySchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
7
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jaumouillé V, Liu H, Swaminathan V, Nain AS, Oldenbourg R, La Riviere PJ, Shroff H. Volumetric imaging of the 3D orientation of cellular structures with a polarized fluorescence light-sheet microscope. Proc Natl Acad Sci U S A 2025; 122:e2406679122. [PMID: 39982748 PMCID: PMC11874040 DOI: 10.1073/pnas.2406679122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Shalin B. Mehta
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA94158
- Department of Radiology, University of Chicago, Chicago, IL60637
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Tobias I. Baskin
- Department of Biology, University of Massachusetts, Amherst, MA01003
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Valentin Jaumouillé
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCV5A 1S6, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang310027, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, ScaniaSE-221 00, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, ScaniaSE-221 00, Sweden
| | - Amrinder S. Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA24061
| | | | - Patrick J. La Riviere
- Department of Radiology, University of Chicago, Chicago, IL60637
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
- HHMI, Janelia Research Campus, Ashburn, VA20147
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA02543
| |
Collapse
|
8
|
Pedrosa TDL, de Araujo RE, Wachsmann-Hogiu S. On-Chip Polarization Light Microscopy. BIOSENSORS 2025; 15:79. [PMID: 39996981 PMCID: PMC11853662 DOI: 10.3390/bios15020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
Polarization light microscopy (PLM) enables detailed examination of birefringent materials and reveals unique features that cannot be observed under non-polarized light. Implementation of this technique for quantitative PLM (QPLM) assessment of samples is challenging and requires specialized components and equipment. Here, we demonstrate QPLM on a semiconductor imaging chip that is suitable for point-of-care/need applications. A white LED illumination was used with crossed polarizers and a full wave plate to perform on-chip, non-contact-mode QPLM. Polarization complexity is probed by assessing the multispectral phase shift experienced by white light through the distinct optical paths of the sample. This platform can achieve micrometer-scale spatial resolution with a Field of View determined by the size of the semiconductor sensor. Visualization of a biological sample (Euglena gracilis) was demonstrated, as well as the detection of Monosodium Urate crystals, where the presence of negative birefringence of crystals in synovial fluid is important for the diagnosis of gout.
Collapse
Affiliation(s)
- Túlio de L. Pedrosa
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | - Renato E. de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-550, Brazil;
| | | |
Collapse
|
9
|
Song Y, Jian S, Teng J, Zheng P, Zhang Z. Structural basis of human VANGL-PRICKLE interaction. Nat Commun 2025; 16:132. [PMID: 39753555 PMCID: PMC11698917 DOI: 10.1038/s41467-024-55396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025] Open
Abstract
Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear. Here, we present five cryo-electron microscopy structures of human VANGL1, VANGL2, and their complexes with PK1 at resolutions of 2.2-3.0 Å. Through biochemical and cell imaging experiments, we decipher the molecular details of the VANGL-PK interaction. Furthermore, we reveal that PK1 can target VANGL-containing intracellular vesicles to the peripheral cell membrane. These findings provide a solid foundation to understand the explicit interaction between VANGL and PK while opening new avenues for subsequent studies of the PCP pathway.
Collapse
Affiliation(s)
- Yanyi Song
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuyi Jian
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Dean WF, Mattheyses AL. Illuminating cellular architecture and dynamics with fluorescence polarization microscopy. J Cell Sci 2024; 137:jcs261947. [PMID: 39404619 PMCID: PMC11529880 DOI: 10.1242/jcs.261947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Ever since Robert Hooke's 17th century discovery of the cell using a humble compound microscope, light-matter interactions have continuously redefined our understanding of cell biology. Fluorescence microscopy has been particularly transformative and remains an indispensable tool for many cell biologists. The subcellular localization of biomolecules is now routinely visualized simply by manipulating the wavelength of light. Fluorescence polarization microscopy (FPM) extends these capabilities by exploiting another optical property - polarization - allowing researchers to measure not only the location of molecules, but also their organization or alignment within larger cellular structures. With only minor modifications to an existing fluorescence microscope, FPM can reveal the nanoscale architecture, orientational dynamics, conformational changes and interactions of fluorescently labeled molecules in their native cellular environments. Importantly, FPM excels at imaging systems that are challenging to study through traditional structural approaches, such as membranes, membrane proteins, cytoskeletal networks and large macromolecular complexes. In this Review, we discuss key discoveries enabled by FPM, compare and contrast the most common optical setups for FPM, and provide a theoretical and practical framework for researchers to apply this technique to their own research questions.
Collapse
Affiliation(s)
- William F. Dean
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexa L. Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Zhou Q, Yang C, Lin P, Zhang Y, Zhao A, Zhang H, Ren Y, Long Z, Lu YQ, Xu T. Far-Field Phase-Shifting Structured Light Illumination Enabled by Polarization Multiplexing Metasurface for Super-Resolution Imaging. NANO LETTERS 2024; 24:11036-11042. [PMID: 39185718 DOI: 10.1021/acs.nanolett.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The phase-shifting structured light illumination technique is widely used in imaging but often relies on mechanical translation stages or spatial light modulators, leading to system instability, low displacement accuracy, and limited integration feasibility. In response to these challenges, we propose and demonstrate an approach for generating far-field phase-shifting structured light using a polarization multiplexing metasurface. By controlling the polarization states of incident and transmitted light, the metasurface creates a three-step displacement of structured light, eliminating the need to move samples or illumination sources. As a proof of concept, we experimentally demonstrate microscopic imaging using structured light illumination generated by metasurfaces, extracting high-frequency information from objects, and surpassing the diffraction limit. The proposed metasurface platform offers a promising approach for developing compact and robust phase-shifting imaging systems, with broad prospects in quantitative detection, machine vision, and beyond.
Collapse
Affiliation(s)
- Qianwei Zhou
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Cheng Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Peicheng Lin
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yanzeng Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Airong Zhao
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hui Zhang
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yongze Ren
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhongwen Long
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan-Qing Lu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210093, China
| | - Ting Xu
- National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Chandler T, Guo M, Su Y, Chen J, Wu Y, Liu J, Agashe A, Fischer RS, Mehta SB, Kumar A, Baskin TI, Jamouillé V, Liu H, Swaminathan V, Nain A, Oldenbourg R, Riviére PL, Shroff H. Three-dimensional spatio-angular fluorescence microscopy with a polarized dual-view inverted selective-plane illumination microscope (pol-diSPIM). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584243. [PMID: 38712306 PMCID: PMC11071302 DOI: 10.1101/2024.03.09.584243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.
Collapse
Affiliation(s)
- Talon Chandler
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
| | - Min Guo
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Junyu Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Atharva Agashe
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Robert S. Fischer
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
| | - Shalin B. Mehta
- CZ Biohub SF, San Francisco, 94158, California, USA
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Abhishek Kumar
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Tobias I. Baskin
- Biology Department, University of Massachusetts, Amherst, 01003, Maryland, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Valentin Jamouillé
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, V5A 1S6, British Columbia, Canada
| | - Huafeng Liu
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Vinay Swaminathan
- Department of Clinical Sciences, Lund University, Lund, SE-221 00, Scania, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, SE-221 00, Scania, Sweden
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, 24061, Virginia, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Rudolf Oldenbourg
- Bell Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Patrick La Riviére
- Department of Radiology, University of Chicago, Chicago, 60637, Illinois, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, 20892, Maryland, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, 20147, Virginia, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, 02543, Massachusetts, USA
| |
Collapse
|
13
|
Ding L, Chen C, Shan X, Liu B, Wang D, Du Z, Zhao G, Su QP, Yang Y, Halkon B, Tran TT, Liao J, Aharonovich I, Zhang M, Cheng F, Fu L, Xu X, Wang F. Optical Nonlinearity Enabled Super-Resolved Multiplexing Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308844. [PMID: 37972577 DOI: 10.1002/adma.202308844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Optical multiplexing for nanoscale object recognition is of great significance within the intricate domains of biology, medicine, anti-counterfeiting, and microscopic imaging. Traditionally, the multiplexing dimensions of nanoscopy are limited to emission intensity, color, lifetime, and polarization. Here, a novel dimension, optical nonlinearity, is proposed for super-resolved multiplexing microscopy. This optical nonlinearity is attributable to the energy transitions between multiple energy levels of the doped lanthanide ions in upconversion nanoparticles (UCNPs), resulting in unique optical fingerprints for UCNPs with different compositions. A vortex beam is applied to transport the optical nonlinearity onto the imaging point-spread function (PSF), creating a robust super-resolved multiplexing imaging strategy for differentiating UCNPs with distinctive optical nonlinearities. The composition information of the nanoparticles can be retrieved with variations of the corresponding PSF in the obtained image. Four channels multiplexing super-resolved imaging with a single scanning, applying emission color and nonlinearity of two orthogonal imaging dimensions with a spatial resolution higher than 150 nm (1/6.5λ), are demonstrated. This work provides a new and orthogonal dimension - optical nonlinearity - to existing multiplexing dimensions, which shows great potential in bioimaging, anti-counterfeiting, microarray assays, deep tissue multiplexing detection, and high-density data storage.
Collapse
Affiliation(s)
- Lei Ding
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Chaohao Chen
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Xuchen Shan
- School of Physics, Beihang University, Beijing, 100191, China
| | - Baolei Liu
- School of Physics, Beihang University, Beijing, 100191, China
| | - Dajing Wang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Ziqing Du
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Guanshu Zhao
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Qian Peter Su
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Yang Yang
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Benjamin Halkon
- Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Toan Trong Tran
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Jiayan Liao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lan Fu
- Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT, 2600, Australia
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Fan Wang
- School of Physics, Beihang University, Beijing, 100191, China
| |
Collapse
|
14
|
Xu X, Qiu K, Tian Z, Aryal C, Rowan F, Chen R, Sun Y, Diao J. Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy. Trends Analyt Chem 2023; 169:117370. [PMID: 37928815 PMCID: PMC10621629 DOI: 10.1016/j.trac.2023.117370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Structured illumination microscopy (SIM) is a super-resolution technology for imaging living cells and has been used for studying the dynamics of lysosomes and mitochondria. Recently, new probes and analyzing methods have been developed for SIM imaging, enabling the quantitative analysis of these subcellular structures and their interactions. This review provides an overview of the working principle and advances of SIM, as well as the organelle-targeting principles and types of fluorescence probes, including small molecules, metal complexes, nanoparticles, and fluorescent proteins. Additionally, quantitative methods based on organelle morphology and distribution are outlined. Finally, the review provides an outlook on the current challenges and future directions for improving the combination of SIM imaging and image analysis to further advance the study of organelles. We hope that this review will be useful for researchers working in the field of organelle research and help to facilitate the development of SIM imaging and analysis techniques.
Collapse
Affiliation(s)
- Xiuqiong Xu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Chinta Aryal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
15
|
Takahashi M, Norden B. Linear Dichroism Measurements for the Study of Protein-DNA Interactions. Int J Mol Sci 2023; 24:16092. [PMID: 38003280 PMCID: PMC10671323 DOI: 10.3390/ijms242216092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Linear dichroism (LD) is a differential polarized light absorption spectroscopy used for studying filamentous molecules such as DNA and protein filaments. In this study, we review the applications of LD for the analysis of DNA-protein interactions. LD signals can be measured in a solution by aligning the sample using flow-induced shear force or a strong electric field. The signal generated is related to the local orientation of chromophores, such as DNA bases, relative to the filament axis. LD can thus assess the tilt and roll of DNA bases and distinguish intercalating from groove-binding ligands. The intensity of the LD signal depends upon the degree of macroscopic orientation. Therefore, DNA shortening and bending can be detected by a decrease in LD signal intensity. As examples of LD applications, we present a kinetic study of DNA digestion by restriction enzymes and structural analyses of homologous recombination intermediates, i.e., RecA and Rad51 recombinase complexes with single-stranded DNA. LD shows that the DNA bases in these complexes are preferentially oriented perpendicular to the filament axis only in the presence of activators, suggesting the importance of organized base orientation for the reaction. LD measurements detect DNA bending by the CRP transcription activator protein, as well as by the UvrB DNA repair protein. LD can thus provide information about the structures of protein-DNA complexes under various conditions and in real time.
Collapse
Affiliation(s)
- Masayuki Takahashi
- School of Life Science and Technology, Tokyo Institute of Technology, Oookayama, Meguro, Tokyo 152-8550, Japan
| | - Bengt Norden
- Department of Chemical and Biological Engineering, Chemistry, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| |
Collapse
|
16
|
Jin Y, Spiller NP, He C, Faulkner G, Booth MJ, Elston SJ, Morris SM. Zwitterion-doped liquid crystal speckle reducers for immersive displays and vectorial imaging. LIGHT, SCIENCE & APPLICATIONS 2023; 12:242. [PMID: 37735157 PMCID: PMC10514055 DOI: 10.1038/s41377-023-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
Lasers possess many attractive features (e.g., high brightness, narrow linewidth, well-defined polarization) that make them the ideal illumination source for many different scientific and technological endeavors relating to imaging and the display of high-resolution information. However, their high-level of coherence can result in the formation of noise, referred to as speckle, that can corrupt and degrade images. Here, we demonstrate a new electro-optic technology for combatting laser speckle using a chiral nematic liquid crystal (LC) dispersed with zwitterionic dopants. Results are presented that demonstrate when driven at the optimum electric field conditions, the speckle noise can be reduced by >90% resulting in speckle contrast (C) values of C = 0.07, which is approaching that required to be imperceptible to the human eye. This LC technology is then showcased in an array of different display and imaging applications, including a demonstration of speckle reduction in modern vectorial laser-based imaging.
Collapse
Affiliation(s)
- Yihan Jin
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Nathan P Spiller
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Grahame Faulkner
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Steve J Elston
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Stephen M Morris
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
17
|
Yoon K, Han K, Tadesse K, Mandracchia B, Jia S. Simultaneous Multicolor Multifocal Scanning Microscopy. ACS PHOTONICS 2023; 10:3035-3041. [PMID: 37743934 PMCID: PMC10515623 DOI: 10.1021/acsphotonics.3c00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 09/26/2023]
Abstract
Super-resolution fluorescence microscopy has revolutionized cell biology over the past decade, enabling the visualization of subcellular complexity with unparalleled clarity and detail. However, the rapid development of image-scanning-based super-resolution systems still restrains convenient access to commonly used instruments such as epi-fluorescence microscopes. Here, we present multifocal scanning microscopy (MSM) for super-resolution imaging with simultaneous multicolor acquisition and minimal instrumental complexity. MSM implements a stationary, interposed multifocal multicolor excitation by exploiting the motion of the specimens, realizing super-resolution microscopy through a general epi-fluorescence platform without compromising the image-scanning mechanism or inducing complex instrument alignment. The system is demonstrated with various phantom and biological specimens, and the results present effective resolution doubling, optical sectioning, and contrast enhancement. We anticipate MSM, as a highly accessible and compatible super-resolution technique, to offer a promising methodological pathway for broad cell biological discoveries.
Collapse
Affiliation(s)
- Kyungduck Yoon
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Keyi Han
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Kidan Tadesse
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Biagio Mandracchia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Shu Jia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Cao R, Li Y, Chen X, Ge X, Li M, Guan M, Hou Y, Fu Y, Xu X, Leterrier C, Jiang S, Gao B, Xi P. Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform. Nat Methods 2023; 20:1183-1186. [PMID: 37474809 PMCID: PMC10406603 DOI: 10.1038/s41592-023-01958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Open-3DSIM is an open-source reconstruction platform for three-dimensional structured illumination microscopy. We demonstrate its superior performance for artifact suppression and high-fidelity reconstruction relative to other algorithms on various specimens and over a range of signal-to-noise levels. Open-3DSIM also offers the capacity to extract dipole orientation, paving a new avenue for interpreting subcellular structures in six dimensions (xyzθλt). The platform is available as MATLAB code, a Fiji plugin and an Exe application to maximize user-friendliness.
Collapse
Affiliation(s)
- Ruijie Cao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Yaning Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Xin Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environment Science, Hebei University, Baoding, China
| | - Meiqi Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Yiwei Hou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Yunzhe Fu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | - Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, Peking University, Beijing, China
| | | | - Shan Jiang
- Institute of Biomedical Engineering, Beijing Institute of Collaborative Innovation, Beijing, China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environment Science, Hebei University, Baoding, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
19
|
Chen X, Zhong S, Hou Y, Cao R, Wang W, Li D, Dai Q, Kim D, Xi P. Superresolution structured illumination microscopy reconstruction algorithms: a review. LIGHT, SCIENCE & APPLICATIONS 2023; 12:172. [PMID: 37433801 DOI: 10.1038/s41377-023-01204-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023]
Abstract
Structured illumination microscopy (SIM) has become the standard for next-generation wide-field microscopy, offering ultrahigh imaging speed, superresolution, a large field-of-view, and long-term imaging. Over the past decade, SIM hardware and software have flourished, leading to successful applications in various biological questions. However, unlocking the full potential of SIM system hardware requires the development of advanced reconstruction algorithms. Here, we introduce the basic theory of two SIM algorithms, namely, optical sectioning SIM (OS-SIM) and superresolution SIM (SR-SIM), and summarize their implementation modalities. We then provide a brief overview of existing OS-SIM processing algorithms and review the development of SR-SIM reconstruction algorithms, focusing primarily on 2D-SIM, 3D-SIM, and blind-SIM. To showcase the state-of-the-art development of SIM systems and assist users in selecting a commercial SIM system for a specific application, we compare the features of representative off-the-shelf SIM systems. Finally, we provide perspectives on the potential future developments of SIM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Suyi Zhong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yiwei Hou
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Ruijie Cao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Wenyi Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Multidimension & Multiscale Computational Photography, Tsinghua University, Beijing, China
- Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission, Beijing, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Korea
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Wang Z, Zhao T, Cai Y, Zhang J, Hao H, Liang Y, Wang S, Sun Y, Chen T, Bianco PR, Oh K, Lei M. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation (N Y) 2023; 4:100425. [PMID: 37181226 PMCID: PMC10173768 DOI: 10.1016/j.xinn.2023.100425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Super-resolution structured illumination microscopy (SR-SIM) is finding increasing application in biomedical research due to its superior ability to visualize subcellular dynamics in living cells. However, during image reconstruction artifacts can be introduced and when coupled with time-consuming postprocessing procedures, limits this technique from becoming a routine imaging tool for biologists. To address these issues, an accelerated, artifact-reduced reconstruction algorithm termed joint space frequency reconstruction-based artifact reduction algorithm (JSFR-AR-SIM) was developed by integrating a high-speed reconstruction framework with a high-fidelity optimization approach designed to suppress the sidelobe artifact. Consequently, JSFR-AR-SIM produces high-quality, super-resolution images with minimal artifacts, and the reconstruction speed is increased. We anticipate this algorithm to facilitate SR-SIM becoming a routine tool in biomedical laboratories.
Collapse
Affiliation(s)
- Zhaojun Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tianyu Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanan Cai
- College of Science, Northwest A&F University, Yangling 712100, China
| | - Jingxiang Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huiwen Hao
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing 100871, China
| | - Yansheng Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shaowei Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology & Biomedical Pioneer Innovation Center (BIOPIC) & School of Life Sciences, Peking University, Beijing 100871, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Kwangsung Oh
- Department of Computer Science, College of Information Science & Technology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Ming Lei
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Corresponding author
| |
Collapse
|
21
|
Li N, Chen S, Xu K, He MT, Dong MQ, Zhang QC, Gao N. Structural basis of membrane skeleton organization in red blood cells. Cell 2023; 186:1912-1929.e18. [PMID: 37044097 DOI: 10.1016/j.cell.2023.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The spectrin-based membrane skeleton is a ubiquitous membrane-associated two-dimensional cytoskeleton underneath the lipid membrane of metazoan cells. Mutations of skeleton proteins impair the mechanical strength and functions of the membrane, leading to several different types of human diseases. Here, we report the cryo-EM structures of the native spectrin-actin junctional complex (from porcine erythrocytes), which is a specialized short F-actin acting as the central organizational unit of the membrane skeleton. While an α-/β-adducin hetero-tetramer binds to the barbed end of F-actin as a flexible cap, tropomodulin and SH3BGRL2 together create an absolute cap at the pointed end. The junctional complex is strengthened by ring-like structures of dematin in the middle actin layers and by patterned periodic interactions with tropomyosin over its entire length. This work serves as a structural framework for understanding the assembly and dynamics of membrane skeleton and offers insights into mechanisms of various ubiquitous F-actin-binding factors in other F-actin systems.
Collapse
Affiliation(s)
- Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China.
| | - Siyi Chen
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China; Changping Laboratory Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kui Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng-Ting He
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
23
|
dos Santos Rodrigues FH, Delgado GG, Santana da Costa T, Tasic L. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA ADVANCES 2023; 3:100091. [PMID: 37207090 PMCID: PMC10189374 DOI: 10.1016/j.bbadva.2023.100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Emission fluorescence is one of the most versatile and powerful biophysical techniques used in several scientific subjects. It is extensively applied in the studies of proteins, their conformations, and intermolecular contacts, such as in protein-ligand and protein-protein interactions, allowing qualitative, quantitative, and structural data elucidation. This review, aimed to outline some of the most widely used fluorescence techniques in this area, illustrate their applications and display a few examples. At first, the data on the intrinsic fluorescence of proteins is disclosed, mainly on the tryptophan side chain. Predominantly, research to study protein conformational changes, protein interactions, and changes in intensities and shifts of the fluorescence emission maximums were discussed. Fluorescence anisotropy or fluorescence polarization is a measurement of the changing orientation of a molecule in space, concerning the time between the absorption and emission events. Absorption and emission indicate the spatial alignment of the molecule's dipoles relative to the electric vector of the electromagnetic wave of excitation and emitted light, respectively. In other words, if the fluorophore population is excited with vertically polarized light, the emitted light will retain some polarization based on how fast it rotates in solution. Therefore, fluorescence anisotropy can be successfully used in protein-protein interaction investigations. Then, green fluorescent proteins (GFPs), photo-transformable fluorescent proteins (FPs) such as photoswitchable and photoconvertible FPs, and those with Large Stokes Shift (LSS) are disclosed in more detail. FPs are potent tools for the study of biological systems. Their versatility and wide range of colours and properties allow many applications. Finally, the application of fluorescence in life sciences is exposed, especially the application of FPs in fluorescence microscopy techniques with super-resolution that enables precise in vivo photolabeling to monitor the movement and interactions of target proteins.
Collapse
Affiliation(s)
| | - Gonzalo Garcia Delgado
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Thyerre Santana da Costa
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Institute of Chemistry, Organic Chemistry Department, University of Campinas, P. O. Box 6154, Campinas 13083-970, SP, Brazil
- Corresponding author: Ljubica Tasic: IQ, UNICAMP, Rua Josué de Castro sn, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
24
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
25
|
Brasselet S. Fluorescence polarization modulation super-resolution imaging provides refined dynamics orientation processes in biological samples. LIGHT, SCIENCE & APPLICATIONS 2022; 11:322. [PMID: 36336677 PMCID: PMC9637731 DOI: 10.1038/s41377-022-01018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Combining polarization modulation Fourier analysis and spatial information in a joint reconstruction algorithm for polarization-resolved fluorescence imaging provides not only a gain in spatial resolution but also a sensitive readout of anisotropy in cell samples.
Collapse
Affiliation(s)
- Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France.
| |
Collapse
|
26
|
Xu X, Jia S, Xi P. Raster-scanning Donut simplifies MINFLUX and provides alternative implement on other scanning-based microscopes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:293. [PMID: 36216797 PMCID: PMC9550861 DOI: 10.1038/s41377-022-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A donut excitation moves around a single molecule with a zigzag configuration lattice by lattice. Such a method implemented in scanning fluorescence microscopy simplifies the conventional MINFLUX process. Consisting of hollow zero-intensity excitation, single-pixel detection, time-correlated single photon counting, and drift stabilization, the system achieves localization precision and resolution very close to conventional MINFLUX theoretically and experimentally. An averaged high-SNR reference, and pixel-registered intensity from a single molecule is essential to reconstruct localization in maximum likelihood estimation. With performance reaching nearly conventional MINFLUX's, the proposed raster-scanning MINFLUX can inspire researchers expertized in STED or confocal setup to quickly transform to MINFLUX and develop for further exploring on bio-specimens or optical applications.
Collapse
Affiliation(s)
- Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Zhan Z, Li C, Liu X, Sun X, He C, Kuang C, Liu X. Simultaneous super-resolution estimation of single-molecule position and orientation with minimal photon fluxes. OPTICS EXPRESS 2022; 30:22051-22065. [PMID: 36224912 DOI: 10.1364/oe.456557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/24/2022] [Indexed: 06/16/2023]
Abstract
The orientation of a single molecule provides valuable information on fundamental biological processes. We report a technique for the simultaneous estimation of single-molecule 2D position and 2D orientation with ultra-high localization precision (∼2-nm precision with ∼500 photons under a typical 100-nm diameter of excitation beam pattern), which is also compatible with tracking in living cells. In the proposed method, the theoretical precision limits are calculated, and the localization and orientation performance along with potential applications are explored using numerical simulations. Compared to other camera-based orientation measurement methods, it is confirmed that the proposed method can obtain reasonable estimates even under very weak signals (∼15 photons). Moreover, the maximum likelihood estimator (MLE) is found to converge to the theoretical limit when the total number of photons is less than 100.
Collapse
|
28
|
Mazal H, Wieser FF, Sandoghdar V. Deciphering a hexameric protein complex with Angstrom optical resolution. eLife 2022; 11:76308. [PMID: 35616526 PMCID: PMC9142145 DOI: 10.7554/elife.76308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cryogenic optical localization in three dimensions (COLD) was recently shown to resolve up to four binding sites on a single protein. However, because COLD relies on intensity fluctuations that result from the blinking behavior of fluorophores, it is limited to cases where individual emitters show different brightness. This significantly lowers the measurement yield. To extend the number of resolved sites as well as the measurement yield, we employ partial labeling and combine it with polarization encoding in order to identify single fluorophores during their stochastic blinking. We then use a particle classification scheme to identify and resolve heterogenous subsets and combine them to reconstruct the three-dimensional arrangement of large molecular complexes. We showcase this method (polarCOLD) by resolving the trimer arrangement of proliferating cell nuclear antigen (PCNA) and six different sites of the hexamer protein Caseinolytic Peptidase B (ClpB) of Thermus thermophilus in its quaternary structure, both with Angstrom resolution. The combination of polarCOLD and single-particle cryogenic electron microscopy (cryoEM) promises to provide crucial insight into intrinsic heterogeneities of biomolecular structures. Furthermore, our approach is fully compatible with fluorescent protein labeling and can, thus, be used in a wide range of studies in cell and membrane biology.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.,Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.,Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Jin Y, Yan J, Jee Rahman S, Yu X, Zhang J. Interference of the scattered vector light fields from two optically levitated nanoparticles. OPTICS EXPRESS 2022; 30:20026-20037. [PMID: 36221763 DOI: 10.1364/oe.454082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
We experimentally study the interference of dipole scattered light from two optically levitated nanoparticles in vacuum, which present an environment free of particle-substrate interactions. We illuminate the two trapped nanoparticles with a linearly polarized probe beam orthogonal to the propagation of the trapping laser beams. The scattered light from the nanoparticles are collected by a high numerical aperture (NA) objective lens and imaged. The interference fringes from the scattered vector light for the different dipole orientations in image and Fourier space are observed. Especially, the interference fringes of two scattered light fields with polarization vortex show the π shift of the interference fringes between inside and outside the center region of the two nanoparticles in the image space. As far as we know, this is the first experimental observation of the interference of scattered vector light fields from two dipoles in free space. This work also provides a simple and direct method to determine the spatial scales between optically levitated nanoparticles by the interference fringes.
Collapse
|
30
|
Ivanov IE, Yeh LH, Perez-Bermejo JA, Byrum JR, Kim JYS, Leonetti MD, Mehta SB. Correlative imaging of the spatio-angular dynamics of biological systems with multimodal instant polarization microscope. BIOMEDICAL OPTICS EXPRESS 2022; 13:3102-3119. [PMID: 35774313 PMCID: PMC9203109 DOI: 10.1364/boe.455770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 05/29/2023]
Abstract
The spatial and angular organization of biological macromolecules is a key determinant, as well as informative readout, of their function. Correlative imaging of the dynamic spatio-angular architecture of cells and organelles is valuable, but remains challenging with current methods. Correlative imaging of spatio-angular dynamics requires fast polarization-, depth-, and wavelength-diverse measurement of intrinsic optical properties and fluorescent labels. We report a multimodal instant polarization microscope (miPolScope) that combines a broadband polarization-resolved detector, automation, and reconstruction algorithms to enable label-free imaging of phase, retardance, and orientation, multiplexed with fluorescence imaging of concentration, anisotropy, and orientation of molecules at diffraction-limited resolution and high speed. miPolScope enabled multimodal imaging of myofibril architecture and contractile activity of beating cardiomyocytes, cell and organelle architecture of live HEK293T and U2OS cells, and density and anisotropy of white and grey matter of mouse brain tissue across the visible spectrum. We anticipate these developments in joint quantitative imaging of density and anisotropy to enable new studies in tissue pathology, mechanobiology, and imaging-based screens.
Collapse
Affiliation(s)
- Ivan E. Ivanov
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| | - Li-Hao Yeh
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| | | | - Janie R. Byrum
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| | - James Y. S. Kim
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| | | | - Shalin B. Mehta
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
31
|
Thorsen RØ, Hulleman CN, Rieger B, Stallinga S. Photon efficient orientation estimation using polarization modulation in single-molecule localization microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:2835-2858. [PMID: 35774337 PMCID: PMC9203119 DOI: 10.1364/boe.452159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/01/2023]
Abstract
Combining orientation estimation with localization microscopy opens up the possibility to analyze the underlying orientation of biomolecules on the nanometer scale. Inspired by the recent improvement of the localization precision by shifting excitation patterns (MINFLUX, SIMFLUX), we have adapted the idea towards the modulation of excitation polarization to enhance the orientation precision. For this modality two modes are analyzed: i) normally incident excitation with three polarization steps to retrieve the in-plane angle of emitters and ii) obliquely incident excitation with p-polarization with five different azimuthal angles of incidence to retrieve the full orientation. Firstly, we present a theoretical study of the lower precision limit with a Cramér-Rao bound for these modes. For the oblique incidence mode we find a favorable isotropic orientation precision for all molecular orientations if the polar angle of incidence is equal to arccos 2 / 3 ≈ 35 degrees. Secondly, a simulation study is performed to assess the performance for low signal-to-background ratios and how inaccurate illumination polarization angles affect the outcome. We show that a precision, at the Cramér-Rao bound (CRB) limit, of just 2.4 and 1.6 degrees in the azimuthal and polar angles can be achieved with only 1000 detected signal photons and 10 background photons per pixel (about twice better than reported earlier). Lastly, the alignment and calibration of an optical microscope with polarization control is described in detail. With this microscope a proof-of-principle experiment is carried out, demonstrating an experimental in-plane precision close to the CRB limit for signal photon counts ranging from 400 to 10,000.
Collapse
Affiliation(s)
- Rasmus Ø Thorsen
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Christiaan N Hulleman
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Bernd Rieger
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| | - Sjoerd Stallinga
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
- These authors contributed equally
| |
Collapse
|
32
|
Polarization Aberrations in High-Numerical-Aperture Lens Systems and Their Effects on Vectorial-Information Sensing. REMOTE SENSING 2022. [DOI: 10.3390/rs14081932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The importance of polarization aberrations has been recognized and studied in numerous optical systems and related applications. It is known that polarization aberrations are particularly crucial in certain photogrammetry and microscopy techniques that are related to vectorial information—such as polarization imaging, stimulated emission depletion microscopy, and structured illumination microscopy. Hence, a reduction in polarization aberrations would be beneficial to different types of optical imaging/sensing techniques with enhanced vectorial information. In this work, we first analyzed the intrinsic polarization aberrations induced by a high-NA lens theoretically and experimentally. The aberrations of depolarization, diattenuation, and linear retardance were studied in detail using the Mueller matrix polar-decomposition method. Based on an analysis of the results, we proposed strategies to compensate the polarization aberrations induced by high-NA lenses for hardware-based solutions. The preliminary imaging results obtained using a Mueller matrix polarimeter equipped with multiple coated aspheric lenses for polarization-aberration reduction confirmed that the conclusions and strategies proposed in this study had the potential to provide more precise polarization information of the targets for applications spanning across classical optics, remote sensing, biomedical imaging, photogrammetry, and vectorial optical-information extraction.
Collapse
|
33
|
Wang Y, Guan M, Zhang Y, Zhanghao K, Xi P. Glucose increases the length and spacing of the lattice structure of the axon initial segment. Microsc Res Tech 2022; 85:2679-2691. [PMID: 35411984 DOI: 10.1002/jemt.24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
The axon initial segment (AIS) plays an important role in maintaining neuronal polarity and initiating action potentials (APs). The AIS adapts to its environment by changing its length and distance from the cell body, resulting in modulation of neuronal excitability, which is referred to as AIS plasticity. Previous studies found an ~200 nm single periodic distribution of the key AIS components ankyrinG (AnkG), Nav 1.2, and βIV-spectrin, while it remains unclear how the lattice structure is altered by AIS plasticity. In this study, we found that the length of the AIS significantly increased, resulting in increased neuronal excitability, with high-concentration glucose treatment. Structured illumination microscopy (SIM) images of the lattice structure showed a dual-spacing periodic distribution (~200 nm and ~260 nm) of AnkG, Nav 1.2, and βIV-spectrin. Moreover, 480-kDa AnkG was crucial for AIS plasticity and increased lattice structure spacing. The discovery of new regulators for modulating AIS plasticity will help us to understand and manipulate the structure and function of the AIS.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China
| | - Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Karl Zhanghao
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China.,UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.,National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
34
|
Manton JD. Answering some questions about structured illumination microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210109. [PMID: 35152757 PMCID: PMC8841787 DOI: 10.1098/rsta.2021.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/02/2021] [Indexed: 05/05/2023]
Abstract
Structured illumination microscopy (SIM) provides images of fluorescent objects at an enhanced resolution greater than that of conventional epifluorescence wide-field microscopy. Initially demonstrated in 1999 to enhance the lateral resolution twofold, it has since been extended to enhance axial resolution twofold (2008), applied to live-cell imaging (2009) and combined with myriad other techniques, including interferometric detection (2008), confocal microscopy (2010) and light sheet illumination (2012). Despite these impressive developments, SIM remains, perhaps, the most poorly understood 'super-resolution' method. In this article, we provide answers to the 13 questions regarding SIM proposed by Prakash et al. along with answers to a further three questions. After providing a general overview of the technique and its developments, we explain why SIM as normally used is still diffraction-limited. We then highlight the necessity for a non-polynomial, and not just nonlinear, response to the illuminating light in order to make SIM a true, diffraction-unlimited, super-resolution technique. In addition, we present a derivation of a real-space SIM reconstruction approach that can be used to process conventional SIM and image scanning microscopy (ISM) data and extended to process data with quasi-arbitrary illumination patterns. Finally, we provide a simple bibliometric analysis of SIM development over the past two decades and provide a short outlook on potential future work. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Collapse
Affiliation(s)
- James D. Manton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
35
|
Zeng H, Liu G, Zhao R. SIM reconstruction framework for high-speed multi-dimensional super-resolution imaging. OPTICS EXPRESS 2022; 30:10877-10898. [PMID: 35473044 DOI: 10.1364/oe.450136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Structured illumination microscopy (SIM) holds great promise for live cell imaging applications due to its potential to obtain multidimensional information such as intensity, spectrum and polarization (I, λ , p) at high spatial-temporal resolution, enabling the observation of more complex dynamic interactions between subcellular structures. However, the reconstruction results of polarized samples are prone to artifacts because all current SIM reconstruction frameworks use incomplete imaging models which neglect polarization modulation. Such polarization-related artifacts are especially prevalent for SIM reconstruction using a reduced number of raw images (RSIM) and severely undermine the ability of SIM to capture multi-dimensional information. Here, we report a new SIM reconstruction framework (PRSIM) that can recover multi-dimensional information (I, λ, p) using a reduced number of raw images. PRSIM adopts a complete imaging model that is versatile for normal and polarized samples and uses a frequency-domain iterative reconstruction algorithm for artifact-free super-resolution (SR) reconstruction. It can simultaneously obtain the SR spatial structure and polarization orientation of polarized samples using 6 raw SIM images and can perform SR reconstruction using 4 SIM images for normal samples. In addition, PRSIM has less spatial computational complexity and achieves reconstruction speeds tens of times higher than that of the state-of-the-art non-iterative RSIM, making it more suitable for large field-of-view imaging. Thus, PRSIM is expected to facilitate the development of SIM into an ultra-high-speed and multi-dimensional SR imaging tool.
Collapse
|
36
|
Hu X, Shang X, Huang P, Zheng W, Chen X. Polarized Upconversion Luminescence from a Single NaYF 4:Yb 3+/Er 3+ Microrod for Orientation Tracking ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Guan M, Wang M, Zhanghao K, Zhang X, Li M, Liu W, Niu J, Yang X, Chen L, Jing Z, Zhang MQ, Jin D, Xi P, Gao J. Polarization modulation with optical lock-in detection reveals universal fluorescence anisotropy of subcellular structures in live cells. LIGHT, SCIENCE & APPLICATIONS 2022; 11:4. [PMID: 34974519 PMCID: PMC8720311 DOI: 10.1038/s41377-021-00689-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 05/05/2023]
Abstract
The orientation of fluorophores can reveal crucial information about the structure and dynamics of their associated subcellular organelles. Despite significant progress in super-resolution, fluorescence polarization microscopy remains limited to unique samples with relatively strong polarization modulation and not applicable to the weak polarization signals in samples due to the excessive background noise. Here we apply optical lock-in detection to amplify the weak polarization modulation with super-resolution. This novel technique, termed optical lock-in detection super-resolution dipole orientation mapping (OLID-SDOM), could achieve a maximum of 100 frames per second and rapid extraction of 2D orientation, and distinguish distance up to 50 nm, making it suitable for monitoring structural dynamics concerning orientation changes in vivo. OLID-SDOM was employed to explore the universal anisotropy of a large variety of GFP-tagged subcellular organelles, including mitochondria, lysosome, Golgi, endosome, etc. We found that OUF (Orientation Uniformity Factor) of OLID-SDOM can be specific for different subcellular organelles, indicating that the anisotropy was related to the function of the organelles, and OUF can potentially be an indicator to distinguish normal and abnormal cells (even cancer cells). Furthermore, dual-color super-resolution OLID-SDOM imaging of lysosomes and actins demonstrates its potential in studying dynamic molecular interactions. The subtle anisotropy changes of expanding and shrinking dendritic spines in live neurons were observed with real-time OLID-SDOM. Revealing previously unobservable fluorescence anisotropy in various samples and indicating their underlying dynamic molecular structural changes, OLID-SDOM expands the toolkit for live cell research.
Collapse
Affiliation(s)
- Meiling Guan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Miaoyan Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Karl Zhanghao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
- Center for Synthetic & Systems Biology; Department of Automation, Tsinghua University, Beijing, 100084, China
- Beijing Institute of Collaborative Innovation, Beijing, 100094, China
| | - Meiqi Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Wenhui Liu
- Center for Synthetic & Systems Biology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Jing Niu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
| | - Xusan Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Long Chen
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
- Center for Synthetic & Systems Biology; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Zhenli Jing
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
| | - Micheal Q Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China
- Department of Biological Sciences and Center for System Biology, The University of Texas at Dallas, Richardson, 75080, USA
- School of Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Dayong Jin
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Juntao Gao
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist, Beijing, China.
- Center for Synthetic & Systems Biology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
38
|
Bielak M, Stárek R, Krčmarský V, Mičuda M, Ježek M. Accurate polarization preparation and measurement using twisted nematic liquid crystals. OPTICS EXPRESS 2021; 29:33037-33052. [PMID: 34809123 DOI: 10.1364/oe.388675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Generation of particular polarization states of light, encoding information in polarization degree of freedom, and efficient measurement of unknown polarization are the key tasks in optical metrology, optical communications, polarization-sensitive imaging, and photonic information processing. Liquid crystal devices have proved to be indispensable for these tasks, though their limited precision and the requirement of a custom design impose a limit of practical applicability. Here we report fast preparation and detection of polarization states with unprecedented accuracy using liquid-crystal cells extracted from common twisted nematic liquid-crystal displays. To verify the performance of the device we use it to prepare dozens of polarization states with average fidelity 0.999(1) and average angle deviation 0.5(3) deg. Using four-projection minimum tomography as well as six-projection Pauli measurement, we measure polarization states employing the reported device with the average fidelity of 0.999(1). Polarization measurement data are processed by the maximum likelihood method to reach a valid estimate of the polarization state. In addition to the application in classical polarimetry, we also employ the reported liquid-crystal device for full tomographic characterization of a three-mode Greenberger-Horne-Zeilinger entangled state produced by a photonic quantum processor.
Collapse
|
39
|
POLArIS, a versatile probe for molecular orientation, revealed actin filaments associated with microtubule asters in early embryos. Proc Natl Acad Sci U S A 2021; 118:2019071118. [PMID: 33674463 DOI: 10.1073/pnas.2019071118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Biomolecular assemblies govern the physiology of cells. Their function often depends on the changes in molecular arrangements of constituents, both in the positions and orientations. While recent advancements of fluorescence microscopy including super-resolution microscopy have enabled us to determine the positions of fluorophores with unprecedented accuracy, monitoring the orientation of fluorescently labeled molecules within living cells in real time is challenging. Fluorescence polarization microscopy (FPM) reports the orientation of emission dipoles and is therefore a promising solution. For imaging with FPM, target proteins need labeling with fluorescent probes in a sterically constrained manner, but because of difficulties in the rational three-dimensional design of protein connection, a universal method for constrained tagging with fluorophore was not available. Here, we report POLArIS, a genetically encoded and versatile probe for molecular orientation imaging. Instead of using a direct tagging approach, we used a recombinant binder connected to a fluorescent protein in a sterically constrained manner that can target specific biomolecules of interest by combining with phage display screening. As an initial test case, we developed POLArISact, which specifically binds to F-actin in living cells. We confirmed that the orientation of F-actin can be monitored by observing cells expressing POLArISact with FPM. In living starfish early embryos expressing POLArISact, we found actin filaments radially extending from centrosomes in association with microtubule asters during mitosis. By taking advantage of the genetically encoded nature, POLArIS can be used in a variety of living specimens, including whole bodies of developing embryos and animals, and also be expressed in a cell type/tissue specific manner.
Collapse
|
40
|
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: a review. LIGHT, SCIENCE & APPLICATIONS 2021; 10:194. [PMID: 34552045 PMCID: PMC8458371 DOI: 10.1038/s41377-021-00639-x] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes-Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Honghui He
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Jintao Chang
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Binguo Chen
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hui Ma
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
41
|
Backer AS, King GA, Biebricher AS, Shepherd JW, Noy A, Leake MC, Heller I, Wuite GJL, Peterman EJG. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J Phys Chem B 2021; 125:8351-8361. [PMID: 34309392 PMCID: PMC8350907 DOI: 10.1021/acs.jpcb.1c02708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/01/2021] [Indexed: 11/29/2022]
Abstract
The combination of DNA force spectroscopy and polarization microscopy of fluorescent DNA intercalator dyes can provide valuable insights into the structure of DNA under tension. These techniques have previously been used to characterize S-DNA-an elongated DNA conformation that forms when DNA overstretches at forces ≥ 65 pN. In this way, it was deduced that the base pairs of S-DNA are highly inclined, relative to those in relaxed (B-form) DNA. However, it is unclear whether and how topological constraints on the DNA may influence the base-pair inclinations under tension. Here, we apply polarization microscopy to investigate the impact of DNA pulling geometry, torsional constraint, and negative supercoiling on the orientations of intercalated dyes during overstretching. In contrast to earlier predictions, the pulling geometry (namely, whether the DNA molecule is stretched via opposite strands or the same strand) is found to have little influence. However, torsional constraint leads to a substantial reduction in intercalator tilting in overstretched DNA, particularly in AT-rich sequences. Surprisingly, the extent of intercalator tilting is similarly reduced when the DNA molecule is negatively supercoiled up to a critical supercoiling density (corresponding to ∼70% reduction in the linking number). We attribute these observations to the presence of P-DNA (an overwound DNA conformation). Our results suggest that intercalated DNA preferentially flanks regions of P-DNA rather than those of S-DNA and also substantiate previous suggestions that P-DNA forms predominantly in AT-rich sequences.
Collapse
Affiliation(s)
- Adam S. Backer
- Apple Inc, 1 Apple Park Way, Cupertino, California 95014, United States
| | - Graeme A. King
- Institute
of Structural and Molecular Biology, University
College London, Gower Street, London WC1E
6BT, U.K.
| | - Andreas S. Biebricher
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Jack W. Shepherd
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Agnes Noy
- Department
of Physics, University of York, York YO10 5DD, U.K.
| | - Mark C. Leake
- Department
of Physics, University of York, York YO10 5DD, U.K.
- Department
of Biology, University of York, York YO10 5DD, U.K.
| | - Iddo Heller
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Gijs J. L. Wuite
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| | - Erwin J. G. Peterman
- Department
of Physics and Astronomy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
42
|
Blanchard A, Combs JD, Brockman JM, Kellner AV, Glazier R, Su H, Bender RL, Bazrafshan AS, Chen W, Quach ME, Li R, Mattheyses AL, Salaita K. Turn-key mapping of cell receptor force orientation and magnitude using a commercial structured illumination microscope. Nat Commun 2021; 12:4693. [PMID: 34344862 PMCID: PMC8333341 DOI: 10.1038/s41467-021-24602-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm). Here, we show that structured illumination microscopy (SIM), a super-resolution technique, can be used to perform super-resolution MFM. Using SIM-MFM, we generate the highest resolution maps of both the magnitude and orientation of the pN traction forces applied by cells. We apply SIM-MFM to map platelet and fibroblast integrin forces, as well as T cell receptor forces. Using SIM-MFM, we show that platelet traction force alignment occurs on a longer timescale than adhesion. Importantly, SIM-MFM can be implemented on any standard SIM microscope without hardware modifications.
Collapse
Affiliation(s)
- Aaron Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - J Dale Combs
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anna V Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | | | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - M Edward Quach
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Khalid Salaita
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
43
|
Shepherd JW, Payne-Dwyer AL, Lee JE, Syeda A, Leake MC. Combining single-molecule super-resolved localization microscopy with fluorescence polarization imaging to study cellular processes. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac015d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Super-resolution microscopy has catalyzed valuable insights into the sub-cellular, mechanistic details of many different biological processes across a wide range of cell types. Fluorescence polarization spectroscopy tools have also enabled important insights into cellular processes through identifying orientational changes of biological molecules typically at an ensemble level. Here, we combine these two biophysical methodologies in a single home-made instrument to enable the simultaneous detection of orthogonal fluorescence polarization signals from single fluorescent protein molecules used as common reporters on the localization of proteins in cellular processes. These enable measurement of spatial location to a super-resolved precision better than the diffraction-limited optical resolution, as well as estimation of molecular stoichiometry based on the brightness of individual fluorophores. In this innovation we have adapted a millisecond timescale microscope used for single-molecule detection to enable splitting of fluorescence polarization emissions into two separate imaging channels for s- and p-polarization signals, which are imaged onto separate halves of the same high sensitivity back-illuminated CMOS camera detector. We applied this fluorescence polarization super-resolved imaging modality to a range of test fluorescent samples relevant to the study of biological processes, including purified monomeric green fluorescent protein, single combed DNA molecules, and protein assemblies and complexes from live Escherichia coli and Saccharomyces cerevisiae cells. Our findings are qualitative but demonstrate promise in showing how fluorescence polarization and super-resolved localization microscopy can be combined on the same sample to enable simultaneous measurements of polarization and stoichiometry of tracked molecular complexes, as well as the translational diffusion coefficient.
Collapse
|
44
|
Pan X, Zhou Y, Hotulainen P, Meunier FA, Wang T. The axonal radial contractility: Structural basis underlying a new form of neural plasticity. Bioessays 2021; 43:e2100033. [PMID: 34145916 DOI: 10.1002/bies.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022]
Abstract
Axons are the longest cellular structure reaching over a meter in the case of human motor axons. They have a relatively small diameter and contain several cytoskeletal elements that mediate both material and information exchange within neurons. Recently, a novel type of axonal plasticity, termed axonal radial contractility, has been unveiled. It is represented by dynamic and transient diameter changes of the axon shaft to accommodate the passages of large organelles. Mechanisms underpinning this plasticity are not fully understood. Here, we first summarised recent evidence of the functional relevance for axon radial contractility, then discussed the underlying structural basis, reviewing nanoscopic evidence of the subtle changes. Two models are proposed to explain how actomyosin rings are organised. Possible roles of non-muscle myosin II (NM-II) in axon degeneration are discussed. Finally, we discuss the concept of periodic functional nanodomains, which could sense extracellular cues and coordinate the axonal responses. Also see the video abstract here: https://youtu.be/ojCnrJ8RCRc.
Collapse
Affiliation(s)
- Xiaorong Pan
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Yimin Zhou
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| | - Pirta Hotulainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Tong Wang
- Center for Brain Science, School of Life Science and Technology, Shanghaitech University, Shanghai, China
| |
Collapse
|
45
|
Optical vector field rotation and switching with near-unity transmission by fully developed chiral photonic crystals. Proc Natl Acad Sci U S A 2021; 118:2021304118. [PMID: 33853945 DOI: 10.1073/pnas.2021304118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
State-of-the-art nanostructured chiral photonic crystals (CPCs), metamaterials, and metasurfaces have shown giant optical rotatory power but are generally passive and beset with large optical losses and with inadequate performance due to limited size/interaction length and narrow operation bandwidth. In this work, we demonstrate by detailed theoretical modeling and experiments that a fully developed CPC, one for which the number of unit cells N is high enough that it acquires the full potentials of an ideal (N → ∞) crystal, will overcome the aforementioned limitations, leading to a new generation of versatile high-performance polarization manipulation optics. Such high-N CPCs are realized by field-assisted self-assembly of cholesteric liquid crystals to unprecedented thicknesses not possible with any other means. Characterization studies show that high-N CPCs exhibit broad transmission maxima accompanied by giant rotatory power, thereby enabling large (>π) polarization rotation with near-unity transmission over a large operation bandwidth. Polarization rotation is demonstrated to be independent of input polarization orientation and applies equally well on continuous-wave or ultrafast (picosecond to femtosecond) pulsed lasers of simple or complex (radial, azimuthal) vector fields. Liquid crystal-based CPCs also allow very wide tuning of the operation spectral range and dynamic polarization switching and control possibilities by virtue of several stimuli-induced index or birefringence changing mechanisms.
Collapse
|
46
|
Wang X, Zhou W, Xu D, Yin J. Analysis and verification of fluorescence super-resolution microscopy via polarization modulation in reciprocal space. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:337-343. [PMID: 33690462 DOI: 10.1364/josaa.406029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Based on the polarization property of fluorescent dipoles, fluorescence super-resolution microscopy recently has been proposed by modulating the polarization of the excitation light. In this technique, the super-resolution image is reconstructed by processing the polarization-modulated fluorescence image stack with an iteration algorithm. However, the mechanism of resolution improvement by polarization modulation has been questioned. In this paper, the mechanism of resolution enhancement by polarization modulation is analyzed in reciprocal space. The mathematical model and the reconstruction algorithm of fluorescence super-resolution microscopy via polarization modulation are proposed in reciprocal space. The corresponding simulation results and analysis show that polarization modulation can enlarge the highest detected spatial frequency of fluorescence microscopy to achieve super resolution, which verifies the role of polarization modulation in resolution improvement and provides a useful reference to study fluorescence super-resolution microscopy via polarization modulation in reciprocal space.
Collapse
|
47
|
Bondar A, Rybakova O, Melcr J, Dohnálek J, Khoroshyy P, Ticháček O, Timr Š, Miclea P, Sakhi A, Marková V, Lazar J. Quantitative linear dichroism imaging of molecular processes in living cells made simple by open software tools. Commun Biol 2021; 4:189. [PMID: 33580182 PMCID: PMC7881160 DOI: 10.1038/s42003-021-01694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/11/2021] [Indexed: 11/09/2022] Open
Abstract
Fluorescence-detected linear dichroism microscopy allows observing various molecular processes in living cells, as well as obtaining quantitative information on orientation of fluorescent molecules associated with cellular features. Such information can provide insights into protein structure, aid in development of genetically encoded probes, and allow determinations of lipid membrane properties. However, quantitating and interpreting linear dichroism in biological systems has been laborious and unreliable. Here we present a set of open source ImageJ-based software tools that allow fast and easy linear dichroism visualization and quantitation, as well as extraction of quantitative information on molecular orientations, even in living systems. The tools were tested on model synthetic lipid vesicles and applied to a variety of biological systems, including observations of conformational changes during G-protein signaling in living cells, using fluorescent proteins. Our results show that our tools and model systems are applicable to a wide range of molecules and polarization-resolved microscopy techniques, and represent a significant step towards making polarization microscopy a mainstream tool of biological imaging.
Collapse
Affiliation(s)
- Alexey Bondar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Olga Rybakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Josef Melcr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Jan Dohnálek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Ondřej Ticháček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Štěpán Timr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Paul Miclea
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic
| | - Alina Sakhi
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
| | - Vendula Marková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Josef Lazar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6, Czech Republic.
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Science, Nove Hrady, Czech Republic.
| |
Collapse
|
48
|
Putting the axonal periodic scaffold in order. Curr Opin Neurobiol 2021; 69:33-40. [PMID: 33450534 DOI: 10.1016/j.conb.2020.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Neurons rely on a unique organization of their cytoskeleton to build, maintain and transform their extraordinarily intricate shapes. After decades of research on the neuronal cytoskeleton, it is exciting that novel assemblies are still discovered thanks to progress in cellular imaging methods. Indeed, super-resolution microscopy has revealed that axons are lined with a periodic scaffold of actin rings, spaced every 190nm by spectrins. Determining the architecture, composition, dynamics, and functions of this membrane-associated periodic scaffold is a current conceptual and technical challenge, as well as a very active area of research. This short review aims at summarizing the latest research on the axonal periodic scaffold, highlighting recent progress and open questions.
Collapse
|
49
|
Bondar A, Lazar J. Optical sensors of heterotrimeric G protein signaling. FEBS J 2020; 288:2570-2584. [DOI: 10.1111/febs.15655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Alexey Bondar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
- Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
| | - Josef Lazar
- Center for Nanobiology and Structural Biology Institute of Microbiology of the Czech Academy of Sciences Nove Hrady Czech Republic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
50
|
Myšková J, Rybakova O, Brynda J, Khoroshyy P, Bondar A, Lazar J. Directionality of light absorption and emission in representative fluorescent proteins. Proc Natl Acad Sci U S A 2020; 117:32395-32401. [PMID: 33273123 PMCID: PMC7768707 DOI: 10.1073/pnas.2017379117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.
Collapse
Affiliation(s)
- Jitka Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
| | - Olga Rybakova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Petro Khoroshyy
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Alexey Bondar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| | - Josef Lazar
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague 6, Czech Republic;
- Institute of Microbiology, Czech Academy of Sciences, 37333 Nové Hrady, Czech Republic
| |
Collapse
|