1
|
Lucchin A, Fouassier H, Robe E, Mbengue M, Aguilar M, San Clemente H, Vert G, Galaud J, Aldon D. The calcium sensor AtCML8 contributes to Arabidopsis plant cell growth by modulating the brassinosteroid signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17179. [PMID: 39621453 PMCID: PMC11712026 DOI: 10.1111/tpj.17179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/26/2024] [Accepted: 11/14/2024] [Indexed: 01/30/2025]
Abstract
Calcium signaling plays an essential role in integrating plant responses to diverse stimuli and regulating growth and development. While some signaling components and their roles are well-established, such as the ubiquitous calmodulin (CaM) sensor, plants possess a broader repertoire of calcium sensors. Notably, CaM-like proteins (CMLs) represent a poorly characterized class for which interacting partners and biological functions remain largely elusive. Our work investigates the role of Arabidopsis thaliana CML8 that exhibits a unique expression profile in seedlings. A reverse genetic approach revealed a function of CML8 in regulating root growth and hypocotyl elongation. RNA-seq analyses highlighted CML8 association with the regulation of numerous genes involved in growth and brassinosteroid (BR) signaling. Using co-immunoprecipitation experiments, we demonstrated that CML8 interacts with the BR receptor, BRI1, in planta in a ligand-dependent manner. This finding suggests the existence of a novel regulatory step in the BR pathway, involving calcium signaling.
Collapse
Affiliation(s)
- Amandine Lucchin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Hélène Fouassier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Eugénie Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Grégory Vert
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Jean‐Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP24, chemin de Borde RougeAuzeville‐Tolosane31320France
| |
Collapse
|
2
|
Jacott CN, Del Cerro P. CNGC15 and DMI1 ion channel gating in nuclear calcium signaling: opening new questions and closing controversies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6998-7005. [PMID: 39140702 DOI: 10.1093/jxb/erae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Nuclear calcium (Ca2+) signaling is crucial for symbiotic interactions between legumes and beneficial microbes, such as rhizobia and arbuscular mycorrhizal fungi. The ion channels DMI1 and CNGC15 are key to generating repetitive nuclear Ca2+ oscillations. Despite more than 20 years of research on symbiotic nuclear Ca2+ spiking, important questions remain, including the exact function of the DMI1 channel. This review highlights recent developments that have filled knowledge gaps regarding the regulation of CNGC15 and its interplay with DMI1. We also explore new insights into the evolutionary conservation of DMI1-induced symbiotic nuclear Ca2+ oscillations and the roles of CNGC15 and DMI1 beyond symbiosis, such as in nitrate signaling, and discuss new questions this raises. As we delve deeper into the regulatory mechanisms and evolutionary history of these ion channels, we move closer to fully understanding the roles of nuclear Ca2+ signaling in plant life.
Collapse
Affiliation(s)
| | - Pablo Del Cerro
- Department of Microbiology, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Chang J, Zhang R, Fu Z, Wang Y, Lei J, Cheng J, Ren C, Xu K, Gu C, Song Y, Zeng R, Qin Y, Zhang H, Liu J. OsCNGC7 modulates calcium dynamics and accelerates leaf senescence in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109193. [PMID: 39406002 DOI: 10.1016/j.plaphy.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Calcium plays a crucial role in regulating plant senescence. However, the specific effects of increased intranuclear calcium versus cytoplasmic calcium on aging remain unclear. Cyclic nucleotide-gated channels (CNGCs), which manage Ca2⁺ levels in plant cells, are particularly significant in this context. These channels are known to relocate between the nuclear envelope and the plasma membrane in response to stress and developmental signals. Through this movement, CNGCs help regulate the balance of cytosolic and intranuclear Ca2⁺. In this study, we categorized the 16 CNGC genes in rice into five subgroups. OsCNGCs are notably expressed in leaves, especially during the reproductive stage. Both OsCNGC6 and OsCNGC7 exhibit dual localization to the plasma membrane and the nuclear envelope. Knockdown of OsCNGC7 led to reduced levels of Ca2⁺ and K⁺ in plants. Conversely, yeast expressing the OsCNGC7 gene showed increased sensitivity to Ca2⁺. Additionally, while the [Ca2⁺]cyt was maintained at relatively low levels in both wild-type and OsCNGC7-RNAi lines, the fluorescence intensity was significantly higher in OsCNGC7-overexpressing lines, particularly in the nucleus of root tips. Overexpression of OsCNGC7 resulted in enhanced stomatal opening and accelerated leaf senescence from the tillering stage to grain filling in rice. Treatment with MeJA rapidly induced OsCNGC7 expression, while knockdown of OsCNGC7 delayed both MeJA-induced and dark-induced leaf senescence. Further analysis revealed that OsCNGC7 interacts with OsKAT2 and OsALMT2. In conclusion, our findings highlight the distinct roles of OsCNGCs in regulating senescence. This knowledge could provide new strategies for manipulating plant senescence and enhancing crop productivity.
Collapse
Affiliation(s)
- Jun Chang
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China; College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruxuan Zhang
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhanmeng Fu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yifan Wang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhui Lei
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junyi Cheng
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caihui Ren
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Xu
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhen Gu
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiying Zhang
- College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jian Liu
- College of Agriculture, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Li G, Gao Q, Nyande A, Dong Z, Khan EH, Han Y, Wu H. Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca 2+ level. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24196. [PMID: 39365897 DOI: 10.1071/fp24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.
Collapse
Affiliation(s)
- Guangjing Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Quanlong Gao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ashadu Nyande
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zihao Dong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ehtisham Hassan Khan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuqian Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Honghong Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and Hubei Hongshan Laboratory, Wuhan 430070, China; and Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 511464, China; and Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| |
Collapse
|
5
|
Huang Y, Fan R, Wang X, Jiang S, Liu W, Ji W, Li W. Not only phosphorus: dauciform roots can also influence aboveground biomass through root morphological traits and metal cation concentrations. FRONTIERS IN PLANT SCIENCE 2024; 15:1367176. [PMID: 38855469 PMCID: PMC11157042 DOI: 10.3389/fpls.2024.1367176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Background Phosphorus in the soil is mostly too insoluble for plants to utilize, resulting in inhibited aboveground biomass, while Carex can maintain their aboveground biomass through the presence of dauciform roots. However, dauciform roots lead to both morphological and physiological changes in the root system, making their primary mechanism unclear. Methods A greenhouse experiment was conducted on three Carex species, in which Al-P, Ca-P, Fe-P, and K-P were employed as sole phosphorus sources. The plants were harvested and assessed after 30, 60 and 90 days. Results (1) The density of dauciform roots was positively correlated with root length and specific root length, positively influencing aboveground biomass at all three stages. (2) The aboveground phosphorus concentration showed a negative correlation with both dauciform root density and aboveground biomass in the first two stages, which became positive in the third stage. (3) Aboveground biomass correlated negatively with the aboveground Al concentration, and positively with Ca and Fe concentration (except Al-P). (4) Root morphological traits emerged as critical factors in dauciform roots' promotion of aboveground biomass accumulation. Conclusion Despite the difference among insoluble phosphorus, dauciform roots have a contributing effect on aboveground growth status over time, mainly by regulating root morphological traits. This study contributes to our understanding of short-term variation in dauciform roots and their regulatory mechanisms that enhance Carex aboveground biomass under low available phosphorus conditions.
Collapse
Affiliation(s)
- Yulin Huang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Fan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqi Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Songlin Jiang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanting Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenli Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Weizhong Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Du X, Weng X, Lyu B, Zhao L, Wang H. Localized calcium transients in phragmoplast regulate cytokinesis of tobacco BY-2 cells. PLANT CELL REPORTS 2024; 43:97. [PMID: 38488911 DOI: 10.1007/s00299-024-03181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Plants exhibit a unique pattern of cytosolic Ca2+ dynamics to correlate with microtubules to regulate cytokinesis, which significantly differs from those observed in animal and yeast cells. Calcium (Ca2+) transients mediated signaling is known to be essential in cytokinesis across eukaryotic cells. However, the detailed spatiotemporal dynamics of Ca2+ during plant cytokinesis remain largely unexplored. In this study, we employed GCaMP5, a genetically encoded Ca2+ sensor, to investigate cytokinetic Ca2+ transients during cytokinesis in Nicotiana tabacum Bright Yellow-2 (BY-2) cells. We validated the effectiveness of GCaMP5 to capture fluctuations in intracellular free Ca2+ in transgenic BY-2 cells. Our results reveal that Ca2+ dynamics during BY-2 cell cytokinesis are distinctly different from those observed in embryonic and yeast cells. It is characterized by an initial significant Ca2+ spike within the phragmoplast region. This spike is followed by a decrease in Ca2+ concentration at the onset of cytokinesis in phragmoplast, which then remains elevated in comparison to the cytosolic Ca2+ until the completion of cell plate formation. At the end of cytokinesis, Ca2+ becomes uniformly distributed in the cytosol. This pattern contrasts with the typical dual waves of Ca2+ spikes observed during cytokinesis in animal embryonic cells and fission yeasts. Furthermore, applications of pharmaceutical inhibitors for either Ca2+ or microtubules revealed a close correlation between Ca2+ transients and microtubule organization in the regulation of cytokinesis. Collectively, our findings highlight the unique dynamics and crucial role of Ca2+ transients during plant cell cytokinesis, and provides new insights into plant cell division mechanisms.
Collapse
Affiliation(s)
- Xiaojuan Du
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xun Weng
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Binyang Lyu
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lifeng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Wang
- Department of Cell and Developmental Biology, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Tipper E, Leitão N, Dangeville P, Lawson DM, Charpentier M. A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2572-2584. [PMID: 36715622 PMCID: PMC10112680 DOI: 10.1093/jxb/erad041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023]
Abstract
Calcium release to the nucleoplasm of root meristem cells was demonstrated to modulate root development. The calcium channel encoded by cyclic nucleotide-gated channel (CNGC) 15 localizes at the nuclear envelope in young Arabidopsis seedlings. In contrast, at later stages of root growth, overexpression analysis showed that AtCNGC15 can relocalize to the plasma membrane to mediate primary nitrate-induced gene expression. This raises the question as to whether nuclear localized AtCNGC15 is required for root apical meristem development in young Arabidopsis seedlings, and whether nitrate signalling occurs independently of nuclear localized AtCNGC15 at this developmental stage. In this study, we characterize a novel mutant allele of AtCNGC15 and demonstrate that the mutation of a highly conserved aspartic acid in the C-linker domain is sufficient to impair the gating of AtCNCG15. We demonstrate that AtCNGC15 mediates the nuclear calcium release that modulates root apical meristem development and nitrate-induced LBD39 expression. We also show that, in the presence of nitrate, the relocalization of AtCNGC15 at the plasma membrane occurs specifically in the columella cells. Our results further suggest that the induction of LBD37, LBD38, and LBD39 in the presence of nitrate is modulated by different inputs of cytoplasmic or nuclear calcium release.
Collapse
Affiliation(s)
- Emily Tipper
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | - Pierre Dangeville
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
9
|
Zeng F, Nazir MM, Ahmed T, Noman M, Ali S, Rizwan M, Alam MS, Lwalaba JLW, Zhang G. Calcium and L-glutamate present the opposite role in managing arsenic in barley. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121141. [PMID: 36702433 DOI: 10.1016/j.envpol.2023.121141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Arsenic contamination in agricultural soils has posed tremendous threat to sustainable crop production and human health via food chain. Calcium and Glutamate have been well-documented in metal(loid)s detoxification, but it is poorly understood how they regulate arsenic-induced toxicity to plants. In this study, the effect of glutamate and calcium at high concentration on arsenic toxicity and accumulation in barley seedling was accessed in terms of plant growth, photosynthetic efficacy, arsenic uptake, translocation and accumulation, antioxidant defense, nutrient uptake and the expression of As transporters. Our results have demonstrated that calcium could effectively ameliorate arsenic toxicity to barley seedlings, which is mainly attributed to its beneficial effect on increasing nutrient uptake, reducing the aboveground arsenic accumulation and enhancing antioxidative defense capacity. However, it is unexpected that glutamate considerably exacerbated the arsenic toxicity to barley seedlings. More importantly, for the first time, glutamate was observed to tremendously facilitate the root-to-shoot translocation of arsenic by 41.8- to 60.8-fold, leading to 90% of the total amount of As accumulating in barley shoots. The reason of this phenomenon can be well explained by the glutamate-triggered enormous upregulation of genes involved in arsenic uptake (HvPHT1;1, HvPHR2 and HvNIP3;2), reduction (HvHAC1;1), translocation (HvABCC7, HvNIP1;1 and HvNIP3;3) and intracellular sequestration (HvABCC1). These findings suggest that calcium and glutamate function as the opposite player in managing arsenic, with calcium being an effective alleviator of arsenic stress to ensure the safe production of crops; while glutamate being a highly efficient phytoextraction agent for phytoremediation of arsenate-contaminated soils.
Collapse
Affiliation(s)
- Fanrong Zeng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Mudassir Nazir
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Mohammad Shah Alam
- College of Agriculture, Yangtze University, Jingzhou, 434025, China; Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jonas Lwalaba Wa Lwalaba
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Veatch-Blohm ME, Medina G, Butler J. Early lateral root formation in response to calcium and nickel shows variation within disjunct populations of Arabidopsis lyrata spp. lyrata. Heliyon 2023; 9:e13632. [PMID: 36846704 PMCID: PMC9950942 DOI: 10.1016/j.heliyon.2023.e13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Root architecture is important in nutrient uptake and avoidance of toxic compounds within the soil. Arabidopsis lyrata spp. lyrata has widespread distribution in disjunct environments that encounter unique stressors starting at germination. Five populations of A. lyrata spp. lyrata show local adaptation to Nickel (Ni) but cross-tolerance to variations in Calcium (Ca) concentration within the soil. Differentiation among the populations begins early in development and appears to impact timing of lateral root formation; therefore the purpose of the study was to understand changes in root architecture and root exploration in response to Ca and Ni within the first three weeks of growth. Lateral root formation was first characterized under one concentration of Ca and Ni. Lateral root formation and tap root length were reduced in all five populations in response to Ni compared to Ca, with the least reduction in the three serpentine populations. When the populations were exposed to a gradient (either Ca or Ni) there were differences in population response based on the nature of the gradient. Start side was the greatest determinant of root exploration and lateral root formation under a Ca gradient, while population was the greatest determinant of root exploration and lateral root formation under a Ni gradient. All populations exhibited about the same frequency of root exploration under a Ca gradient, while the serpentine populations exhibited much higher levels of root exploration under a Ni gradient compared to the two non-serpentine populations. Differences among populations in response to Ca and Ni demonstrate the importance of stress responses early in development, particularly in species that have widespread distribution among disparate habitats.
Collapse
|
11
|
Fernandez JC, Gilroy S. Imaging systemic calcium response and its molecular dissection using virus-induced gene silencing. Methods Enzymol 2023; 680:439-459. [PMID: 36710022 DOI: 10.1016/bs.mie.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Many biotic and abiotic stimuli arrive locally on the plant. For example, attack by an insect or invasion by a fungal pathogen generally starts with a single leaf. However, the responses that are then elicited are often systemic, triggering effects throughout the entire plant body. One of the rapid signaling systems that helps coordinate these plant-wide response networks is changes in cytoplasmic Ca2+ that rapidly propagate throughout the plant. These Ca2+ signals are readily visualized using plants expressing green fluorescent protein-based Ca2+-sensitive bioreporters, such as those of the GCaMP and GECO families. Dissecting the underlying molecular machinery behind this systemic spread of information is often approached by imaging the Ca2+ response in mutants in candidate genes. Introducing the GFP sensor into the relevant genetic backgrounds and then selecting lines usable for imaging can be very time consuming. An alternative, more rapid approach to screening these candidates is through virus-induced gene silencing (VIGS), where target genes are suppressed in the wild-type bioreporter expressing plants. This chapter describes how to generate VIGS constructs targeted to candidate genes and then how to visualize wound-induced, systemic Ca2+ signaling in the VIGS suppressed plants.
Collapse
Affiliation(s)
| | - Simon Gilroy
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
12
|
Allan C, Tayagui A, Hornung R, Nock V, Meisrimler CN. A dual-flow RootChip enables quantification of bi-directional calcium signaling in primary roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1040117. [PMID: 36704158 PMCID: PMC9871814 DOI: 10.3389/fpls.2022.1040117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
One sentence summary: Bi-directional-dual-flow-RootChip to track calcium signatures in Arabidopsis primary roots responding to osmotic stress. Plant growth and survival is fundamentally linked with the ability to detect and respond to abiotic and biotic factors. Cytosolic free calcium (Ca2+) is a key messenger in signal transduction pathways associated with a variety of stresses, including mechanical, osmotic stress and the plants' innate immune system. These stresses trigger an increase in cytosolic Ca2+ and thus initiate a signal transduction cascade, contributing to plant stress adaptation. Here we combine fluorescent G-CaMP3 Arabidopsis thaliana sensor lines to visualise Ca2+ signals in the primary root of 9-day old plants with an optimised dual-flow RootChip (dfRC). The enhanced polydimethylsiloxane (PDMS) bi-directional-dual-flow-RootChip (bi-dfRC) reported here adds two adjacent inlet channels at the base of the observation chamber, allowing independent or asymmetric chemical stimulation at either the root differentiation zone or tip. Observations confirm distinct early spatio-temporal patterns of salinity (sodium chloride, NaCl) and drought (polyethylene glycol, PEG)-induced Ca2+ signals throughout different cell types dependent on the first contact site. Furthermore, we show that the primary signal always dissociates away from initially stimulated cells. The observed early signaling events induced by NaCl and PEG are surprisingly complex and differ from long-term changes in cytosolic Ca2+ reported in roots. Bi-dfRC microfluidic devices will provide a novel approach to challenge plant roots with different conditions simultaneously, while observing bi-directionality of signals. Future applications include combining the bi-dfRC with H2O2 and redox sensor lines to test root systemic signaling responses to biotic and abiotic factors.
Collapse
Affiliation(s)
- Claudia Allan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ayelen Tayagui
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | | | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | | |
Collapse
|
13
|
Jiang Y, Ding P. Calcium signaling in plant immunity: a spatiotemporally controlled symphony. TRENDS IN PLANT SCIENCE 2023; 28:74-89. [PMID: 36504136 DOI: 10.1016/j.tplants.2022.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Calcium ions (Ca2+) are prominent intracellular messengers in all eukaryotic cells. Recent studies have emphasized the crucial roles of Ca2+ in plant immunity. Here, we review the latest progress on the spatiotemporal control of Ca2+ function in plant immunity. We discuss discoveries of how Ca2+ influx is triggered upon the activation of immune receptors, how Ca2+-permeable channels are activated, how Ca2+ signals are decoded inside plant cells, and how these signals are switched off. Despite recent advances, many open questions remain and we highlight the existing toolkit and the new technologies to address the outstanding questions of Ca2+ signaling in plant immunity.
Collapse
Affiliation(s)
- Yuxiang Jiang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Pingtao Ding
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, Leiden 2333, BE, The Netherlands.
| |
Collapse
|
14
|
Caporale AG, Amato M, Duri LG, Bochicchio R, De Pascale S, Simeone GDR, Palladino M, Pannico A, Rao MA, Rouphael Y, Adamo P. Can Lunar and Martian Soils Support Food Plant Production? Effects of Horse/Swine Monogastric Manure Fertilisation on Regolith Simulants Enzymatic Activity, Nutrient Bioavailability, and Lettuce Growth. PLANTS (BASEL, SWITZERLAND) 2022; 11:3345. [PMID: 36501382 PMCID: PMC9740528 DOI: 10.3390/plants11233345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.
Collapse
Affiliation(s)
- Antonio G. Caporale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Mariana Amato
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Luigi G. Duri
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rocco Bochicchio
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | | | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria A. Rao
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
15
|
Ruberti C, Feitosa-Araujo E, Xu Z, Wagner S, Grenzi M, Darwish E, Lichtenauer S, Fuchs P, Parmagnani AS, Balcerowicz D, Schoenaers S, de la Torre C, Mekkaoui K, Nunes-Nesi A, Wirtz M, Vissenberg K, Van Aken O, Hause B, Costa A, Schwarzländer M. MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. THE PLANT CELL 2022; 34:4428-4452. [PMID: 35938694 PMCID: PMC9614509 DOI: 10.1093/plcell/koac242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Ca2+ signaling is central to plant development and acclimation. While Ca2+-responsive proteins have been investigated intensely in plants, only a few Ca2+-permeable channels have been identified, and our understanding of how intracellular Ca2+ fluxes is facilitated remains limited. Arabidopsis thaliana homologs of the mammalian channel-forming mitochondrial calcium uniporter (MCU) protein showed Ca2+ transport activity in vitro. Yet, the evolutionary complexity of MCU proteins, as well as reports about alternative systems and unperturbed mitochondrial Ca2+ uptake in knockout lines of MCU genes, leave critical questions about the in vivo functions of the MCU protein family in plants unanswered. Here, we demonstrate that MCU proteins mediate mitochondrial Ca2+ transport in planta and that this mechanism is the major route for fast Ca2+ uptake. Guided by the subcellular localization, expression, and conservation of MCU proteins, we generated an mcu triple knockout line. Using Ca2+ imaging in living root tips and the stimulation of Ca2+ transients of different amplitudes, we demonstrated that mitochondrial Ca2+ uptake became limiting in the triple mutant. The drastic cell physiological phenotype of impaired subcellular Ca2+ transport coincided with deregulated jasmonic acid-related signaling and thigmomorphogenesis. Our findings establish MCUs as a major mitochondrial Ca2+ entry route in planta and link mitochondrial Ca2+ transport with phytohormone signaling.
Collapse
Affiliation(s)
| | - Elias Feitosa-Araujo
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | - Zhaolong Xu
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
- Jiangsu Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | | | - Matteo Grenzi
- Department of Biosciences, University of Milano, Milan, I-20133, Italy
| | - Essam Darwish
- Department of Biology, Lund University, Lund, 22362, Sweden
- Agricultural Botany Department, Faculty of Agriculture, Plant Physiology Section, Cairo University, Giza, 12613, Egypt
| | - Sophie Lichtenauer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, D-48143, Germany
| | | | | | - Daria Balcerowicz
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, D-68167, Germany
| | - Khansa Mekkaoui
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Markus Wirtz
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Heidelberg, D-69120, Germany
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, B-2020, Belgium
- Department of Agriculture, Plant Biochemistry and Biotechnology Lab, Hellenic Mediterranean University, Heraklion, 71410, Greece
| | | | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), D-06120, Germany
| | - Alex Costa
- Authors for correspondence: (A.C); (M.S.)
| | | |
Collapse
|
16
|
Lüdke D, Yan Q, Rohmann PFW, Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. THE NEW PHYTOLOGIST 2022; 236:24-42. [PMID: 35794845 DOI: 10.1111/nph.18359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat immune receptors (NLRs) perceive the activity of pathogen-secreted effector molecules that, when undetected, promote colonisation of hosts. Signalling from activated NLRs converges with and potentiates downstream responses from activated pattern recognition receptors (PRRs) that sense microbial signatures at the cell surface. Efficient signalling of both receptor branches relies on the host cell nucleus as an integration point for transcriptional reprogramming, and on the macromolecular transport processes that mediate the communication between cytoplasm and nucleoplasm. Studies on nuclear pore complexes (NPCs), the nucleoporin proteins (NUPs) that compose NPCs, and nuclear transport machinery constituents that control nucleocytoplasmic transport, have revealed that they play important roles in regulating plant immune responses. Here, we discuss the contributions of nucleoporins and nuclear transport receptor (NTR)-mediated signal transduction in plant immunity with an emphasis on NLR immune signalling across the nuclear compartment boundary and within the nucleus. We also highlight and discuss cytoplasmic and nuclear functions of NLRs and their signalling partners and further consider the potential implications of NLR activation and resistosome formation in both cellular compartments for mediating plant pathogen resistance and programmed host cell death.
Collapse
Affiliation(s)
- Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Qiqi Yan
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Philipp F W Rohmann
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
- Biochemistry of Plant-Microbe Interactions, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| |
Collapse
|
17
|
Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce. PLANTS 2022; 11:plants11152030. [PMID: 35956509 PMCID: PMC9370316 DOI: 10.3390/plants11152030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L−1, and 5.0 mL L−1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L−1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L−1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production.
Collapse
|
18
|
Allan C, Morris RJ, Meisrimler CN. Encoding, transmission, decoding, and specificity of calcium signals in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3372-3385. [PMID: 35298633 PMCID: PMC9162177 DOI: 10.1093/jxb/erac105] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.
Collapse
Affiliation(s)
- Claudia Allan
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
19
|
Kleist TJ, Wudick MM. Shaping up: Recent advances in the study of plant calcium channels. Curr Opin Cell Biol 2022; 76:102080. [DOI: 10.1016/j.ceb.2022.102080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022]
|
20
|
Biel A, Moser M, Groves NR, Meier I. Distinct Roles for KASH Proteins SINE1 and SINE2 in Guard Cell Actin Reorganization, Calcium Oscillations, and Vacuolar Remodeling. FRONTIERS IN PLANT SCIENCE 2022; 13:784342. [PMID: 35599883 PMCID: PMC9120628 DOI: 10.3389/fpls.2022.784342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a protein complex spanning the inner and outer membranes of the nuclear envelope. Outer nuclear membrane KASH proteins interact in the nuclear envelope lumen with inner nuclear membrane SUN proteins. The paralogous Arabidopsis KASH proteins SINE1 and SINE2 function during stomatal dynamics induced by light-dark transitions and ABA. Previous studies have shown F-actin organization, cytoplasmic calcium (Ca2+) oscillations, and vacuolar morphology changes are involved in ABA-induced stomatal closure. Here, we show that SINE1 and SINE2 are both required for actin pattern changes during ABA-induced stomatal closure, but influence different, temporally distinguishable steps. External Ca2+ partially overrides the mutant defects. ABA-induced cytoplasmic Ca2+ oscillations are diminished in sine2-1 but not sine1-1, and this defect can be rescued by both exogenous Ca2+ and F-actin depolymerization. We show first evidence for nuclear Ca2+ oscillations during ABA-induced stomatal closure, which are disrupted in sine2-1. Vacuolar fragmentation is impaired in both mutants and is partially rescued by F-actin depolymerization. Together, these data indicate distinct roles for SINE1 and SINE2 upstream of this network of players involved in ABA-based stomatal closure, suggesting a role for the nuclear surface in guard cell ABA signaling.
Collapse
Affiliation(s)
- Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Norman R. Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Liu S, Strauss S, Adibi M, Mosca G, Yoshida S, Dello Ioio R, Runions A, Andersen TG, Grossmann G, Huijser P, Smith RS, Tsiantis M. Cytokinin promotes growth cessation in the Arabidopsis root. Curr Biol 2022; 32:1974-1985.e3. [PMID: 35354067 DOI: 10.1016/j.cub.2022.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.
Collapse
Affiliation(s)
- Shanda Liu
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Sören Strauss
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Milad Adibi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Gabriella Mosca
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Physics Department, Technical University Munich, James-Franck-Str. 1/I, 85748 Garching b. Munich, Germany
| | - Saiko Yoshida
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Raffaele Dello Ioio
- Dipartimento di Biologia e Biotecnologie, Laboratory of Functional Genomics and Proteomics of Model Systems, Università di Roma, Sapienza, via dei Sardi, 70, 00185 Rome, Italy
| | - Adam Runions
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Tonni Grube Andersen
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Guido Grossmann
- Institute for Cell and Interaction Biology, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Peter Huijser
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | - Richard S Smith
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany; Department of Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
22
|
Shin SY, Park SJ, Kim HS, Jeon JH, Lee HJ. Wound-induced signals regulate root organogenesis in Arabidopsis explants. BMC PLANT BIOLOGY 2022; 22:133. [PMID: 35317749 PMCID: PMC8939181 DOI: 10.1186/s12870-022-03524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) and calcium ions (Ca2+) are representative signals of plant wound responses. Wounding triggers cell fate transition in detached plant tissues and induces de novo root organogenesis. While the hormonal regulation of root organogenesis has been widely studied, the role of early wound signals including ROS and Ca2+ remains largely unknown. RESULTS We identified that ROS and Ca2+ are required for de novo root organogenesis, but have different functions in Arabidopsis explants. The inhibition of the ROS and Ca2+ signals delayed root development in detached leaves. Examination of the auxin signaling pathways indicated that ROS and Ca2+ did not affect auxin biosynthesis and transport in explants. Additionally, the expression of key genes related to auxin signals during root organogenesis was not significantly affected by the inhibition of ROS and Ca2+ signals. The addition of auxin partially restored the suppression of root development by the ROS inhibitor; however, auxin supplementation did not affect root organogenesis in Ca2+-depleted explants. CONCLUSIONS Our results indicate that, while both ROS and Ca2+ are key molecules, at least in part of the auxin signals acts downstream of ROS signaling, and Ca2+ acts downstream of auxin during de novo root organogenesis in leaf explants.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
23
|
Huang Q, Liu J, Hu C, Wang N, Zhang L, Mo X, Li G, Liao H, Huang H, Ji S, Chen D. Integrative analyses of transcriptome and carotenoids profiling revealed molecular insight into variations in fruits color of Citrus Reticulata Blanco induced by transplantation. Genomics 2022; 114:110291. [DOI: 10.1016/j.ygeno.2022.110291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
|
24
|
Cortese E, Moscatiello R, Pettiti F, Carraretto L, Baldan B, Frigerio L, Vothknecht UC, Szabo I, De Stefani D, Brini M, Navazio L. Monitoring calcium handling by the plant endoplasmic reticulum with a low-Ca 2+ -affinity targeted aequorin reporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1014-1027. [PMID: 34837294 PMCID: PMC9299891 DOI: 10.1111/tpj.15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/15/2023]
Abstract
Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.
Collapse
Affiliation(s)
- Enrico Cortese
- Department of BiologyUniversity of PadovaPadova35131Italy
| | | | | | | | - Barbara Baldan
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| | | | - Ute C. Vothknecht
- Plant Cell BiologyInstitute of Cellular and Molecular BotanyUniversity of BonnBonnD‐53115Germany
| | - Ildiko Szabo
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| | - Diego De Stefani
- Department of Biomedical SciencesUniversity of PadovaPadova35131Italy
| | - Marisa Brini
- Department of BiologyUniversity of PadovaPadova35131Italy
| | - Lorella Navazio
- Department of BiologyUniversity of PadovaPadova35131Italy
- Botanical GardenUniversity of PadovaPadova35123Italy
| |
Collapse
|
25
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
26
|
Völkner C, Holzner LJ, Day PM, Ashok AD, de Vries J, Bölter B, Kunz HH. Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release. PLANT PHYSIOLOGY 2021; 187:2110-2125. [PMID: 34618095 PMCID: PMC8644588 DOI: 10.1093/plphys/kiab424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive. To reveal candidates, we mined proteomic datasets of isolated pea envelopes. Our search uncovered distant members of the nuclear POLLUX ion channel family. Since pea is not amenable to molecular genetics, we used Arabidopsis thaliana to characterize the two gene homologs. Using several independent approaches, we show that both candidates localize to the chloroplast envelope membrane. The proteins, designated PLASTID ENVELOPE ION CHANNELS (PEC1/2), form oligomers with regulator of K+ conductance domains protruding into the intermembrane space. Heterologous expression of PEC1/2 rescues yeast mutants deficient in K+ uptake. Nuclear POLLUX ion channels cofunction with Ca2+ channels to generate Ca2+ signals, critical for establishing mycorrhizal symbiosis and root development. Chloroplasts also exhibit Ca2+ transients in the stroma, probably to relay abiotic and biotic cues between plastids and the nucleus via the cytosol. Our results show that pec1pec2 loss-of-function double mutants fail to trigger the characteristic stromal Ca2+ release observed in wild-type plants exposed to external stress stimuli. Besides this molecular abnormality, pec1pec2 double mutants do not show obvious phenotypes. Future studies of PEC proteins will help to decipher the plant's stress-related Ca2+ signaling network and the role of plastids. More importantly, the discovery of PECs in the envelope membrane is another critical step towards completing the chloroplast ion transport protein inventory.
Collapse
Affiliation(s)
- Carsten Völkner
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Lorenz Josef Holzner
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Philip M Day
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Amra Dhabalia Ashok
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen,Germany
- International Max Planck Research School for Genome Science, 37077 Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen,Germany
- International Max Planck Research School for Genome Science, 37077 Göttingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Göttingen,Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, 37077 Göttingen, Germany
| | - Bettina Bölter
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Hans-Henning Kunz
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Department of Plant Biochemistry, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
27
|
Resentini F, Ruberti C, Grenzi M, Bonza MC, Costa A. The signatures of organellar calcium. PLANT PHYSIOLOGY 2021; 187:1985-2004. [PMID: 33905517 PMCID: PMC8644629 DOI: 10.1093/plphys/kiab189] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/10/2021] [Indexed: 05/23/2023]
Abstract
Recent insights about the transport mechanisms involved in the in and out of calcium ions in plant organelles, and their role in the regulation of cytosolic calcium homeostasis in different signaling pathways.
Collapse
Affiliation(s)
| | - Cristina Ruberti
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano 20133, Italy
| |
Collapse
|
28
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
29
|
Rowe JH, Jones AM. Focus on biosensors: Looking through the lens of quantitative biology. QUANTITATIVE PLANT BIOLOGY 2021; 2:e12. [PMID: 37077214 PMCID: PMC10095858 DOI: 10.1017/qpb.2021.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.
Collapse
Affiliation(s)
- James H. Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Resentini F, Grenzi M, Ancora D, Cademartori M, Luoni L, Franco M, Bassi A, Bonza MC, Costa A. Simultaneous imaging of ER and cytosolic Ca2+ dynamics reveals long-distance ER Ca2+ waves in plants. PLANT PHYSIOLOGY 2021; 187:603-617. [PMID: 34608947 PMCID: PMC8491065 DOI: 10.1093/plphys/kiab251] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Calcium ions (Ca2+) play a key role in cell signaling across organisms. In plants, a plethora of environmental and developmental stimuli induce specific Ca2+ increases in the cytosol as well as in different cellular compartments including the endoplasmic reticulum (ER). The ER represents an intracellular Ca2+ store that actively accumulates Ca2+ taken up from the cytosol. By exploiting state-of-the-art genetically encoded Ca2+ indicators, specifically the ER-GCaMP6-210 and R-GECO1, we report the generation and characterization of an Arabidopsis (Arabidopsis thaliana) line that allows for simultaneous imaging of Ca2+ dynamics in both the ER and cytosol at different spatial scales. By performing analyses in single cells, we precisely quantified (1) the time required by the ER to import Ca2+ from the cytosol into the lumen and (2) the time required to observe a cytosolic Ca2+ increase upon the pharmacological inhibition of the ER-localized P-Type IIA Ca2+-ATPases. Furthermore, live imaging of mature, soil-grown plants revealed the existence of a wounding-induced, long-distance ER Ca2+ wave propagating in injured and systemic rosette leaves. This technology enhances high-resolution analyses of intracellular Ca2+ dynamics at the cellular level and in adult organisms and paves the way to develop new methodologies aimed at defining the contribution of subcellular compartments in Ca2+ homeostasis and signaling.
Collapse
Affiliation(s)
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Daniele Ancora
- Department of Physics, Politecnico di Milano, Milan 20133, Italy
| | - Mara Cademartori
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Laura Luoni
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Marianna Franco
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, Milan 20133, Italy
| | | | - Alex Costa
- Department of Biosciences, University of Milan, Milan 20133, Italy
- Institute of Biophysics, Consiglio Nazionale Delle Ricerche, Milan 20133, Italy
| |
Collapse
|
31
|
Waadt R, Kudla J, Kollist H. Multiparameter in vivo imaging in plants using genetically encoded fluorescent indicator multiplexing. PLANT PHYSIOLOGY 2021; 187:537-549. [PMID: 35237819 PMCID: PMC8491039 DOI: 10.1093/plphys/kiab399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 05/20/2023]
Abstract
Biological processes are highly dynamic, and during plant growth, development, and environmental interactions, they occur and influence each other on diverse spatiotemporal scales. Understanding plant physiology on an organismic scale requires analyzing biological processes from various perspectives, down to the cellular and molecular levels. Ideally, such analyses should be conducted on intact and living plant tissues. Fluorescent protein (FP)-based in vivo biosensing using genetically encoded fluorescent indicators (GEFIs) is a state-of-the-art methodology for directly monitoring cellular ion, redox, sugar, hormone, ATP and phosphatidic acid dynamics, and protein kinase activities in plants. The steadily growing number of diverse but technically compatible genetically encoded biosensors, the development of dual-reporting indicators, and recent achievements in plate-reader-based analyses now allow for GEFI multiplexing: the simultaneous recording of multiple GEFIs in a single experiment. This in turn enables in vivo multiparameter analyses: the simultaneous recording of various biological processes in living organisms. Here, we provide an update on currently established direct FP-based biosensors in plants, discuss their functional principles, and highlight important biological findings accomplished by employing various approaches of GEFI-based multiplexing. We also discuss challenges and provide advice for FP-based biosensor analyses in plants.
Collapse
Affiliation(s)
- Rainer Waadt
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
- Author for communication:
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, Münster 48149, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
32
|
Grenzi M, Resentini F, Vanneste S, Zottini M, Bassi A, Costa A. Illuminating the hidden world of calcium ions in plants with a universe of indicators. PLANT PHYSIOLOGY 2021; 187:550-571. [PMID: 35237821 PMCID: PMC8491032 DOI: 10.1093/plphys/kiab339] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 05/20/2023]
Abstract
The tools available to carry out in vivo analysis of Ca2+ dynamics in plants are powerful and mature technologies that still require the proper controls.
Collapse
Affiliation(s)
- Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milano, Italy
| | | | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, South Korea
| | - Michela Zottini
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Bassi
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute of Photonics and Nanotechnologies, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milano, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
- Author for communication:
| |
Collapse
|
33
|
Ren Z, Wang X, Feng C, Pan Y, Tian W, Zhang Q, Liu L, Hou C, Kong D, Li L. The diversity of ion channel-assembled molecular switches empowers the flexibility and specificity of Ca 2+ language. PLANT SIGNALING & BEHAVIOR 2021; 16:1924503. [PMID: 33975516 PMCID: PMC8281060 DOI: 10.1080/15592324.2021.1924503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Zhijie Ren
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Wang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Changxin Feng
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yajun Pan
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wang Tian
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Liangyu Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Congcong Hou
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Dongdong Kong
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Legong Li
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
34
|
Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E. Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation. Curr Biol 2021; 31:3538-3550.e5. [PMID: 34216556 DOI: 10.1016/j.cub.2021.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/09/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.
Collapse
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mingxing Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chun-Peng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
35
|
Lee HJ, Seo PJ. Ca 2+talyzing Initial Responses to Environmental Stresses. TRENDS IN PLANT SCIENCE 2021; 26:849-870. [PMID: 33706981 DOI: 10.1016/j.tplants.2021.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Plants have evolved stress-sensing machineries that initiate rapid adaptive environmental stress responses. Cytosolic calcium ion (Ca2+) is the most prominent second messenger that couples extracellular signals with specific intracellular responses. Essential early events that generate a cytosolic Ca2+ spike in response to environmental stress are starting to emerge. We review sensory machineries, including ion channels and transporters, which perceive various stress stimuli and allow cytosolic Ca2+ influx. We highlight integrative roles of Ca2+ channels in plant responses to various environmental stresses, as well as possible interplay of Ca2+ with other early signaling components, which facilitates signal propagation for systemic spread and spatiotemporal variations in respect to external cues. The early Ca2+ signaling schemes inspire the identification of additional stress sensors.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
36
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
37
|
Zhu L, Zhang XQ, Ye D, Chen LQ. The Mildew Resistance Locus O 4 Interacts with CaM/CML and Is Involved in Root Gravity Response. Int J Mol Sci 2021; 22:ijms22115962. [PMID: 34073116 PMCID: PMC8198571 DOI: 10.3390/ijms22115962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
The plant-specific mildew resistance locus O (MLO) proteins, which contain seven transmembrane domains and a conserved calmodulin-binding domain, play important roles in many plant developmental processes. However, their mechanisms that regulate plant development remain unclear. Here, we report the functional characterization of the MLO4 protein in Arabidopsis roots. The MLO4 was identified as interacting with CML12 in a screening for the interaction between the proteins from Arabidopsis MLO and calmodulin/calmodulin-like (CaM/CML) families using yeast two hybrid (Y2H) assays. Then, the interaction between MLO4 and CML12 was further verified by Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation (BiFC) assays. Genetic analysis showed that the mlo4, cml12, and mlo4 cml12 mutants displayed similar defects in root gravity response. These results imply that the MLO4 might play an important role in root gravity response through interaction with CML12. Moreover, our results also demonstrated that the interaction between the MLO and CaM/CML families might be conservative.
Collapse
Affiliation(s)
- Lei Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Correspondence: (L.Z.); (L.-Q.C.)
| | - Xue-Qin Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
| | - De Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
| | - Li-Qun Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.-Q.Z.); (D.Y.)
- Correspondence: (L.Z.); (L.-Q.C.)
| |
Collapse
|
38
|
Wang X, Feng C, Tian L, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C, Luan S, Li L. A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:774-786. [PMID: 33601051 DOI: 10.1016/j.molp.2021.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/03/2021] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Nitrate-induced Ca2+ signaling is crucial for the primary nitrate response in plants. However, the molecular mechanism underlying the generation of the nitrate-specific calcium signature remains unknown. We report here that a cyclic nucleotide-gated channel (CNGC) protein, CNGC15, and the nitrate transceptor (NRT1.1) constitute a molecular switch that controls calcium influx depending on nitrate levels. The expression of CNGC15 is induced by nitrate, and its protein is localized at the plasma membrane after establishment of young seedlings. We found that disruption of CNGC15 results in the loss of the nitrate-induced Ca2+ signature (primary nitrate response) and retards root growth, reminiscent of the phenotype observed in the nrt1.1 mutant. We further showed that CNGC15 is an active Ca2+-permeable channel that physically interacts with the NRT1.1 protein in the plasma membrane. Importantly, we discovered that CNGC15-NRT1.1 interaction silences the channel activity of the heterocomplex, which dissociates upon a rise in nitrate levels, leading to reactivation of the CNGC15 channel. The dynamic interactions between CNGC15 and NRT1.1 therefore control the channel activity and Ca2+ influx in a nitrate-dependent manner. Our study reveals a new nutrient-sensing mechanism that utilizes a nutrient transceptor-channel complex assembly to couple nutrient status to a specific Ca2+ signature.
Collapse
Affiliation(s)
- Xiaohan Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - LiLi Tian
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wang Tian
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qi Niu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
39
|
Jarratt-Barnham E, Wang L, Ning Y, Davies JM. The Complex Story of Plant Cyclic Nucleotide-Gated Channels. Int J Mol Sci 2021; 22:ijms22020874. [PMID: 33467208 PMCID: PMC7830781 DOI: 10.3390/ijms22020874] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.
Collapse
|
40
|
Pirayesh N, Giridhar M, Ben Khedher A, Vothknecht UC, Chigri F. Organellar calcium signaling in plants: An update. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118948. [PMID: 33421535 DOI: 10.1016/j.bbamcr.2021.118948] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.
Collapse
Affiliation(s)
- Niloufar Pirayesh
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Maya Giridhar
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ahlem Ben Khedher
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ute C Vothknecht
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Fatima Chigri
- Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
41
|
Ma Y, Chen R. Nitrogen and Phosphorus Signaling and Transport During Legume-Rhizobium Symbiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:683601. [PMID: 34239527 PMCID: PMC8258413 DOI: 10.3389/fpls.2021.683601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the two predominant mineral elements, which are not only essential for plant growth and development in general but also play a key role in symbiotic N fixation in legumes. Legume plants have evolved complex signaling networks to respond to both external and internal levels of these macronutrients to optimize symbiotic N fixation in nodules. Inorganic phosphate (Pi) and nitrate (NO3 -) are the two major forms of P and N elements utilized by plants, respectively. Pi starvation and NO3 - application both reduce symbiotic N fixation via similar changes in the nodule gene expression and invoke local and long-distance, systemic responses, of which N-compound feedback regulation of rhizobial nitrogenase activity appears to operate under both conditions. Most of the N and P signaling and transport processes have been investigated in model organisms, such as Medicago truncatula, Lotus japonicus, Glycine max, Phaseolus vulgaris, Arabidopsis thaliana, Oryza sativa, etc. We attempted to discuss some of these processes wherever appropriate, to serve as references for a better understanding of the N and P signaling and transport during symbiosis.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, China
- School of Life Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Rujin Chen,
| |
Collapse
|
42
|
Moser M, Kirkpatrick A, Groves NR, Meier I. LINC-complex mediated positioning of the vegetative nucleus is involved in calcium and ROS signaling in Arabidopsis pollen tubes. Nucleus 2020; 11:149-163. [PMID: 32631106 PMCID: PMC7529407 DOI: 10.1080/19491034.2020.1783783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nuclear movement and positioning play a role in developmental processes throughout life. Nuclear movement and positioning are mediated primarily by linker of nucleoskeleton and cytoskeleton (LINC) complexes. LINC complexes are comprised of the inner nuclear membrane SUN proteins and the outer nuclear membrane (ONM) KASH proteins. In Arabidopsis pollen tubes, the vegetative nucleus (VN) maintains a fixed distance from the pollen tube tip during growth, and the VN precedes the sperm cells (SCs). In pollen tubes of wit12 and wifi, mutants deficient in the ONM component of a plant LINC complex, the SCs precede the VN during pollen tube growth and the fixed VN distance from the tip is lost. Subsequently, pollen tubes frequently fail to burst upon reception. In this study, we sought to determine if the pollen tube reception defect observed in wit12 and wifi is due to decreased sensitivity to reactive oxygen species (ROS). Here, we show that wit12 and wifi are hyposensitive to exogenous H2O2, and that this hyposensitivity is correlated with decreased proximity of the VN to the pollen tube tip. Additionally, we report the first instance of nuclear Ca2+ peaks in growing pollen tubes, which are disrupted in the wit12 mutant. In the wit12 mutant, nuclear Ca2+ peaks are reduced in response to exogenous ROS, but these peaks are not correlated with pollen tube burst. This study finds that VN proximity to the pollen tube tip is required for both response to exogenous ROS, as well as internal nuclear Ca2+ fluctuations.
Collapse
Affiliation(s)
- Morgan Moser
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Andrew Kirkpatrick
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA
| | - Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University , Columbus, OH, USA.,Center for Applied Plant Sciences, The Ohio State University , Columbus, OH, USA.,Center for RNA Biology, The Ohio State University , Columbus, OH, USA
| |
Collapse
|
43
|
Groves NR, Biel A, Moser M, Mendes T, Amstutz K, Meier I. Recent advances in understanding the biological roles of the plant nuclear envelope. Nucleus 2020; 11:330-346. [PMID: 33161800 PMCID: PMC7746247 DOI: 10.1080/19491034.2020.1846836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.
Collapse
Affiliation(s)
- Norman Reid Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - Alecia Biel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Morgan Moser
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tyler Mendes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Katelyn Amstutz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
44
|
Jiang W, Zhou S, Huang H, Song H, Zhang Q, Zhao Y. MERISTEM ACTIVITYLESS (MAL) is involved in root development through maintenance of meristem size in rice. PLANT MOLECULAR BIOLOGY 2020; 104:499-511. [PMID: 32918256 DOI: 10.1007/s11103-020-01053-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Rice MERISTEM ACTIVITYLESS (MAL), a RING-H2 finger domain (RFD)-containing gene, regulates meristem cell viability after the initiation of root primordia mediated by cytokinin signaling. Genes in the RING-H2 finger domain (RFD) family play various roles during plant development and in biotic/abiotic stress responses. Rice gene MERISTEM ACTIVITYLESS (MAL), being contained in the RING-H2 finger domain (RFD), is characterized by a transmembrane domain at the N-terminal and a C3H2C3 zinc finger domain at the C-terminal. To elucidate the physiological and molecular functions of MAL, we generated MAL knockdown transgenic plants by RNA interference. MAL RNA-interfered (MRi) transgenic plants exhibited a phenotype with shorter crown root length and lower crown root number, accompanied by a lower cell division rate. The low division rate was observed in the root meristem exactly where MAL was expressed. Furthermore, transcriptome data revealed that cell wall macromolecule metabolism-related genes and redox-related genes were enriched in MAL RNAi lines. Most of these differentially expressed genes (DEGs) were induced by exogenous cytokinin. Hence, we conclude that MAL, as a novel regulatory factor, plays a major role in maintaining cell viability in the meristem after the initiation of root primordial formation, mediated by cytokinin signaling and reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Wei Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honglin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huazhi Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
45
|
Fromm H. GABA signaling in plants: targeting the missing pieces of the puzzle. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6238-6245. [PMID: 32761202 DOI: 10.1093/jxb/eraa358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 05/25/2023]
Abstract
The adaptation of plants to unstable environments relies on their ability to sense their surroundings and to generate and transmit corresponding signals to different parts of the plant to evoke changes necessary for optimizing growth and defense. Plants, like animals, contain a huge repertoire of intra- and intercellular signals, including organic and inorganic molecules. The occurrence of neurotransmitter-like signaling molecules in plants has been an intriguing field of research. Among these, γ-aminobutyric acid (GABA) was discovered in plants over half a century ago, and studies of its roles as a primary metabolite have been well documented, particularly in the context of stress responses. In contrast, evidence of the potential mechanism by which GABA acts as a signaling molecule in plants has only recently been reported. In spite of this breakthrough, the roles of GABA as a signaling molecule in plants have yet to be established and several aspects of the complexity of the GABA signaling system remain obscure. This review summarizes the uncertainties in GABA signaling in plants and suggests research directions and technologies that would help in answering unsolved questions.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
46
|
Matthus E, Doddrell NH, Guillaume G, Mohammad-Sidik AB, Wilkins KA, Swarbreck SM, Davies JM. Phosphate Deprivation Can Impair Mechano-Stimulated Cytosolic Free Calcium Elevation in Arabidopsis Roots. PLANTS 2020; 9:plants9091205. [PMID: 32942534 PMCID: PMC7570281 DOI: 10.3390/plants9091205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022]
Abstract
The root tip responds to mechanical stimulation with a transient increase in cytosolic free calcium as a possible second messenger. Although the root tip will grow through a heterogeneous soil nutrient supply, little is known of the consequence of nutrient deprivation for such signalling. Here, the effect of inorganic phosphate deprivation on the root’s mechano-stimulated cytosolic free calcium increase is investigated. Arabidopsisthaliana (cytosolically expressing aequorin as a bioluminescent free calcium reporter) is grown in zero or full phosphate conditions, then roots or root tips are mechanically stimulated. Plants also are grown vertically on a solid medium so their root skewing angle (deviation from vertical) can be determined as an output of mechanical stimulation. Phosphate starvation results in significantly impaired cytosolic free calcium elevation in both root tips and whole excised roots. Phosphate-starved roots sustain a significantly lower root skewing angle than phosphate-replete roots. These results suggest that phosphate starvation causes a dampening of the root mechano-signalling system that could have consequences for growth in hardened, compacted soils.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Nicholas H. Doddrell
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- NIAB EMR, New Road, East Malling ME19 6BJ, UK
| | - Gaëtan Guillaume
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Amirah B. Mohammad-Sidik
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
| | - Stéphanie M. Swarbreck
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- The John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; (E.M.); (N.H.D.); (G.G.); (A.B.M.-S.); (K.A.W.); (S.M.S.)
- Correspondence:
| |
Collapse
|
47
|
Krogman W, Sparks JA, Blancaflor EB. Cell Type-Specific Imaging of Calcium Signaling in Arabidopsis thaliana Seedling Roots Using GCaMP3. Int J Mol Sci 2020; 21:ijms21176385. [PMID: 32887481 PMCID: PMC7503278 DOI: 10.3390/ijms21176385] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic calcium ([Ca2+]cyt) is a well-characterized second messenger in eukaryotic cells. An elevation in [Ca2+]cyt levels is one of the earliest responses in plant cells after exposure to a range of environmental stimuli. Advances in understanding the role of [Ca2+]cyt in plant development has been facilitated by the use of genetically-encoded reporters such as GCaMP. Most of these studies have relied on promoters such as Cauliflower Mosaic Virus (35S) and Ubiquitin10 (UBQ10) to drive expression of GCaMP in all cell/tissue types. Plant organs such as roots consist of various cell types that likely exhibit unique [Ca2+]cyt responses to exogenous and endogenous signals. However, few studies have addressed this question. Here, we introduce a set of Arabidopsis thaliana lines expressing GCaMP3 in five root cell types including the columella, endodermis, cortex, epidermis, and trichoblasts. We found similarities and differences in the [Ca2+]cyt signature among these root cell types when exposed to adenosine tri-phosphate (ATP), glutamate, aluminum, and salt, which are known to trigger [Ca2+]cyt increases in root cells. These cell type-targeted GCaMP3 lines provide a new resource that should enable more in depth studies that address how a particular environmental stimulus is linked to specific root developmental pathways via [Ca2+]cyt.
Collapse
|
48
|
Dietrich P, Moeder W, Yoshioka K. Plant Cyclic Nucleotide-Gated Channels: New Insights on Their Functions and Regulation. PLANT PHYSIOLOGY 2020; 184:27-38. [PMID: 32576644 PMCID: PMC7479878 DOI: 10.1104/pp.20.00425] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 05/02/2023]
Abstract
Recent advances of plant cyclic nucleotide-gated channels give new insight into their molecular functions focusing on regulation, subunit assembly, and phosphorylation.
Collapse
Affiliation(s)
- Petra Dietrich
- Molecular Plant Physiology, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
49
|
Zhao M, Chen J, Jin H, Qi Z. Extracellular Ca 2+ induces desensitized cytosolic Ca 2+ rise sensitive to phospholipase C inhibitor which suppresses root growth with Ca 2+ dependence. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153190. [PMID: 32688165 DOI: 10.1016/j.jplph.2020.153190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Calcium (Ca) is an essential element for all organisms. In animal cells, the plasma membrane-localized Ca receptor CaSR coupled to a phospholipase C (PLC)-dependent signaling cascade monitors extracellular Ca2+ concentrations ([Ca2+]ext) and responds with increases in cytosolic calcium concentrations ([Ca2+]cyt). Plant roots encounter variable soil conditions, but how they sense changes in [Ca2+]ext is largely unknown. In this study, we demonstrate that increasing [Ca2+]ext evokes a transient increase in [Ca2+] in the cytosol, mitochondria, and nuclei of Arabidopsis thaliana root cells. These increases were strongly desensitized to repeat applications of [Ca2+]ext, a typical feature of receptor-mediated cellular signaling in animal and plant cells. Treatment with gadolinium (Gd3+), a CaSR activator in animal cells, induced concentration-dependent increases in [Ca2+]cyt in roots, which showed self-desensitization and cross-desensitization to [Ca2+]ext-induced increases in [Ca2+]cyt (EICC). EICC was sensitive to extracellular H+, K+, Na+, and Mg2+ levels. Treatment with the PLC inhibitor neomycin suppressed EICC and Ca accumulation in roots. The inhibitory effect of neomycin on root elongation was fully rescued by increasing [Ca2+]ext but not [Mg2+] or [K+] in the growth medium. These results suggest that [Ca2+]ext and the movement of Ca2+ into the cytosol of plant roots are regulated by a receptor-mediated signaling pathway involving PLC.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China
| | - Jianhua Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China
| | - Huiqing Jin
- Research Centre for Horticultural Science and Technology of Hohhot, Hohhot, 010020, PR China
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010071, PR China; State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010071, PR China.
| |
Collapse
|
50
|
Pérez-Alonso MM, Guerrero-Galán C, Scholz SS, Kiba T, Sakakibara H, Ludwig-Müller J, Krapp A, Oelmüller R, Vicente-Carbajosa J, Pollmann S. Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3865-3877. [PMID: 31976537 PMCID: PMC7316966 DOI: 10.1093/jxb/eraa040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/21/2020] [Indexed: 05/15/2023]
Abstract
Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.
Collapse
Affiliation(s)
- Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Carmen Guerrero-Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
| | - Sandra S Scholz
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro, Tsurumi, Yokohama, Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Anne Krapp
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|