1
|
Mercier FE, Gife V, Aloyz R, Hulea L. Translational control of leukemic metabolism and disease progression. Trends Cell Biol 2025:S0962-8924(25)00108-4. [PMID: 40410003 DOI: 10.1016/j.tcb.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological cancer with a 70% five-year mortality rate. Relapse occurs in approximately half of adults treated with intensive chemotherapy, while responses to targeted therapies are short-lasting. Frequent mutations in signaling pathways, such as FLT3 tyrosine kinase and RAS, lead to dysregulated mammalian target of rapamycin complex 1 (mTORC1)and mitogen-activated protein kinase (MAPK) signaling, increased protein synthesis, enhanced mitochondrial fitness, and metabolic adaptations that drive leukemic cell proliferation and survival. Here, emerging evidence supporting the unique role of eukaryotic initiation factor 4F as a key driver of the expression of proteins regulating leukemic cell metabolism and survival and the potential therapeutic benefit of targeting this pathway pharmacologically in AML are discussed.
Collapse
Affiliation(s)
- François E Mercier
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada.
| | - Victor Gife
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada
| | - Raquel Aloyz
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, Montreal, QC, Canada; Department of Medicine, Division of Clinical and Translational Research, McGill University, Montreal, QC, Canada; Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC, Canada; Department of Medicine, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
2
|
Taneera J, Yaseen D, Youssef M, Khalique A, Al Shehadat OS, Mohammed AK, Bustanji Y, Madkour MI, El-Huneidi W. Vitamin D augments insulin secretion via calcium influx and upregulation of voltage calcium channels: Findings from INS-1 cells and human islets. Mol Cell Endocrinol 2025; 599:112472. [PMID: 39864489 DOI: 10.1016/j.mce.2025.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Vitamin D (VD) has been implicated in regulating insulin secretion and pancreatic β-cell function. Yet, the underlying molecular mechanism of VD in glucose homeostasis is not fully understood. This study investigates the effect of VD in regulating insulin secretion and pancreatic β-cell function. INS-1 β-cells were treated with VD to assess cell viability, reactive oxygen species production (ROS), insulin secretion, glucose uptake, proliferation, gene expression alterations, mitochondria metabolism, calcium influx, as well as the effects of antidiabetic drugs on VDR expression. Additionally, RNA sequencing from human pancreatic islets were utilized to examine VDR expression in relation to clinical parameters such as HbA1c, BMI, age, and gender. VD treatment enhanced glucose-stimulated insulin secretion and elevated intracellular calcium levels without affecting insulin content, glucose uptake, ROS production, proliferation, or mitochondrial metabolism. Expression levels of key β-cell function genes, including Ins, Pdx1, and Glut2, remained unchanged with VD treatment. However, genes associated with calcium channels were upregulated. Cell exposure to rosiglitazone and dexamethasone elevated VDR expression in INS-1 cells, while metformin and insulin had no effect. RNA-seq analysis in human islets showed that VDR expression levels in human islets were significantly higher than in other metabolic tissues and were notably reduced in hyperglycemic donors compared to normoglycemic individuals. Furthermore, VDR expression positively correlated with several genes regulating voltage-gated calcium channels. In conclusion, the study indicates that VD plays a significant role in enhancing insulin secretion through modulation of intracellular calcium dynamics, highlighting its potential therapeutic implications for managing type 2 diabetes.
Collapse
Affiliation(s)
- Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center of Excellence of Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Deema Yaseen
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mona Youssef
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Anila Khalique
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola Saed Al Shehadat
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohamed I Madkour
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Hao MW, Zhang TX, Dong D, Zhou X, Gao H. Enhancing KRAS G12D inhibitor sensitivity in pancreatic cancer through SHP2/PI3K pathway. Med Oncol 2025; 42:139. [PMID: 40146324 DOI: 10.1007/s12032-025-02683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
Pancreatic cancer with the KRAS G12D mutation, found in 40% of cases, is challenging to treat. MRTX1133, a non-covalent KRAS G12D inhibitor, shows therapeutic promise but faces resistance issues. Our study combines MRTX1133 with the SHP2 inhibitor SHP099 or PI3K inhibitor Buparlisib, showing synergistic inhibition of pancreatic cancer cell growth and enhanced apoptosis. These combination therapies could improve clinical outcomes for patients with KRAS G12D mutation in pancreatic cancer.
Collapse
Affiliation(s)
- Man-Wei Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Tian-Xing Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Dan Dong
- Gynaecology and Obstetrics Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
O'Rourke RL, Garner AL. Chemical Probes for Studying the Eukaryotic Translation Initiation Factor 4E (eIF4E)-Regulated Translatome in Cancer. ACS Pharmacol Transl Sci 2025; 8:621-635. [PMID: 40109752 PMCID: PMC11915038 DOI: 10.1021/acsptsci.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
The dysregulation of translation is a hallmark of cancer that enables rapid changes in the cell proteome to shape oncogenic phenotypes that promote tumor survival. The predominant signaling pathways leading to dysregulation of translational control in cancer are the PI3K-AKT-mTORC1, RAS-RAF-MAPK, and MYC pathways, which all converge on eukaryotic translation initiation factor 4E (eIF4E), an RNA-binding protein that binds to the m7GpppX cap structure at the 5' end of mRNAs to initiate cap-dependent translation. eIF4E is the rate-limiting factor of translation initiation, and its overexpression is known to drive oncogenic transformation, progression, and chemoresistance across many cancers, establishing it as an attractive therapeutic target. Over the last several decades, significant efforts have been made to inhibit eIF4E through the development of mechanistically distinct small-molecule inhibitors that both directly and indirectly act on eIF4E to prevent cap-dependent translation initiation. These inhibitors can serve as powerful chemical tools to improve our understanding of the mechanisms of cap-dependent translation in cancer and to ultimately predict specific cancers that may benefit from eIF4E-targeted therapeutics. This review discusses the progress made in the development of different classes of small-molecule eIF4E inhibitors, the challenges that remain, and their potential as chemical probes to elucidate the complexities of cap-dependent translation in cancer.
Collapse
Affiliation(s)
- Rachel L O'Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Chaudhary S, Siddiqui JA, Pothuraju R, Bhatia R. Ribosome biogenesis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment. Cancer Lett 2025; 612:217484. [PMID: 39842499 DOI: 10.1016/j.canlet.2025.217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor overall survival rate. Cellular stress response pathways promoting cancer cell fitness in harsh tumor microenvironment (TME) play a critical role in cancer growth and survival. The influence of oncogenic Kras, multi-functional heterogeneous cancer-associated fibroblasts (CAFs), and immunosuppressive TME on cancer cells makes the disease more complex and difficult to treat. The desmoplastic reaction by CAFs comprises approximately 90 % of the tumor, with only 10 % of cancer cells making things even more complicated, resulting in therapy resistance. Consistently increasing fibrosis creates a hypoxic environment and elevated interstitial fluid pressure inside the tumor constraining vascular supply. Stress conditions in TME alter translation efficiency and metabolism to fulfill the energy requirements of rapidly growing cancer cells. Extensive research has been conducted on multiple molecular and metabolic regulators in PDAC TME. However, the role of TME in influencing translation programs, a prerequisite for cell cycle progression and functional/growth requirements for cancer cells, remains elusive. This review highlights the recent advancements in understanding altered translational programs in PDAC TME. We emphasize the role of ribosome biogenesis, ribosome-induced stress response, and the concept of specialized ribosomes and their probable role in mutationally rewiring the pancreatic TME.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India.
| | - Rakesh Bhatia
- Amity School of Biological Sciences, Amity University Punjab, 82A, Mohali, Punjab, 140306, India.
| |
Collapse
|
6
|
Consoli V, Sorrenti V, Gulisano M, Spampinato M, Vanella L. Navigating heme pathways: the breach of heme oxygenase and hemin in breast cancer. Mol Cell Biochem 2025; 480:1495-1518. [PMID: 39287890 PMCID: PMC11842487 DOI: 10.1007/s11010-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
Breast cancer remains a significant global health challenge, with diverse subtypes and complex molecular mechanisms underlying its development and progression. This review comprehensively examines recent advances in breast cancer research, with a focus on classification, molecular pathways, and the role of heme oxygenases (HO), heme metabolism implications, and therapeutic innovations. The classification of breast cancer subtypes based on molecular profiling has significantly improved diagnosis and treatment strategies, allowing for tailored approaches to patient care. Molecular studies have elucidated key signaling pathways and biomarkers implicated in breast cancer pathogenesis, shedding light on potential targets for therapeutic intervention. Notably, emerging evidence suggests a critical role for heme oxygenases, particularly HO-1, in breast cancer progression and therapeutic resistance, highlighting the importance of understanding heme metabolism in cancer biology. Furthermore, this review highlights recent advances in breast cancer therapy, including targeted therapies, immunotherapy, and novel drug delivery systems. Understanding the complex interplay between breast cancer subtypes, molecular pathways, and innovative therapeutic approaches is essential for improving patient outcomes and developing more effective treatment strategies in the fight against breast cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mariarita Spampinato
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
- CERNUT - Research Centre on Nutraceuticals and Health Products, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
7
|
Glorieux C, Enríquez C, Buc Calderon P. The complex interplay between redox dysregulation and mTOR signaling pathway in cancer: A rationale for cancer treatment. Biochem Pharmacol 2025; 232:116729. [PMID: 39709038 DOI: 10.1016/j.bcp.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that plays a critical role in regulating cellular processes such as growth, proliferation, and metabolism in healthy cells. Dysregulation of mTOR signaling and oxidative stress have been implicated in various diseases including cancer. This review aims to provide an overview of the current understanding of mTOR and its involvement in cell survival and the regulation of cancer cell metabolism as well as its complex interplay with reactive oxygen species (ROS). On the one hand, ROS can inhibit or activate mTOR pathway in cancer cells through various mechanisms. Conversely, mTOR signaling can induce oxidative stress in tumor cells notably due to the inhibition in the expression of antioxidant enzyme genes. Since mTOR is often activated and plays crucial role in cancer cell survival, the use of mTOR inhibitors, which often induce ROS accumulation, could be an interesting approach for cancer treatment. This review will address the advantages, disadvantages, combination strategies, and limitations associated with therapeutic modulation of mTOR signaling pathway in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China.
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Programa de Doctorado en Química Medicinal, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, 1100000 Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000 Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Brussels, Belgium.
| |
Collapse
|
8
|
De Siqueira MK, Li G, Zhao Y, Wang S, Ahn IS, Tamboline M, Hildreth AD, Larios J, Schcolnik-Cabrera A, Nouhi Z, Zhang Z, Tol MJ, Pandey V, Xu S, O'Sullivan TE, Mack JJ, Tontonoz P, Sallam T, Wohlschlegel JA, Hulea L, Xiao X, Yang X, Villanueva CJ. PPARγ-dependent remodeling of translational machinery in adipose progenitors is impaired in obesity. Cell Rep 2024; 43:114945. [PMID: 39579770 PMCID: PMC12002411 DOI: 10.1016/j.celrep.2024.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/14/2024] [Accepted: 10/17/2024] [Indexed: 11/25/2024] Open
Abstract
Adipose tissue regulates energy homeostasis and metabolic function, but its adaptability is impaired in obesity. In this study, we investigate the impact of acute PPARγ agonist treatment in obese mice and find significant transcriptional remodeling of cells in the stromal vascular fraction (SVF). Using single-cell RNA sequencing, we profile the SVF of inguinal and epididymal adipose tissue of obese mice following rosiglitazone treatment and find an induction of ribosomal factors in both progenitor and preadipocyte populations, while expression of ribosomal factors is reduced with obesity. Notably, the expression of a subset of ribosomal factors is directly regulated by PPARγ. Polysome profiling of the epididymal SVF shows that rosiglitazone promotes translational selectivity of mRNAs that encode pathways involved in adipogenesis and lipid metabolism. Inhibition of translation using a eukaryotic translation initiation factor 4A (eIF4A) inhibitor is sufficient in blocking adipogenesis. Our findings shed light on how PPARγ agonists promote adipose tissue plasticity in obesity.
Collapse
Affiliation(s)
- Mirian Krystel De Siqueira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gaoyan Li
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yutian Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Siqi Wang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jakeline Larios
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Schcolnik-Cabrera
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Zaynab Nouhi
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada
| | - Zhengyi Zhang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Marcus J Tol
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA 90025, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia J Mack
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tamer Sallam
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, Los Angeles, Los Angeles, CA 90095, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC H1T 2M4, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC H3C 3J7, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90025, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90025, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Claudio J Villanueva
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
10
|
Vaezi MA, Nekoufar S, Robati AK, Salimi V, Tavakoli-Yaraki M. Therapeutic potential of β-hydroxybutyrate in the management of pancreatic neoplasms: exploring novel diagnostic and treatment strategies. Lipids Health Dis 2024; 23:376. [PMID: 39543582 PMCID: PMC11562866 DOI: 10.1186/s12944-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
Pancreatic neoplasm, a highly aggressive and often fatal cancer, poses challenges due to late detection and nonspecific symptoms. Therefore, both early diagnosis and appropriate therapeutic approaches are necessary to augment the condition of these patients. Cancer cells undergo metabolic deregulation, which enables their proliferation, survival, and invasion. As a result, it is crucial to focus on the metabolic pathways in prevalent cancers and explore treatment strategies that target these pathways to control tumor growth effectively. This is particularly relevant in cancers like pancreatic cancer, which undergo numerous metabolic alterations. The ketogenic regimen, characterized by low carbohydrate and protein contents and high-fat sources, does not involve caloric restriction. This allows for the induction of ketogenesis and an increase in ketone bodies, while insulin and glucose levels remain low even after meals. This unique metabolic state may influence the tumor microenvironment. Given the lack of unanimous agreement on the precise role and mechanism of the ketogenic diet, this review aims to clarify the diagnostic value and accuracy of ketone bodies in various types of pancreatic tumors and explore the potential anti-cancer effects of the ketogenic diet when used alone or in conjunction with chemotherapy, also to determine the potential of the ketogenic diet to be used as adjuvant therapy. The outcomes of this study are instrumental in enhancing our understanding of the benefits and drawbacks associated with employing this diet for the management and diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekoufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
- Finetech in Medicine Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Blázquez-Encinas R, Alors-Pérez E, Moreno-Montilla MT, García-Vioque V, Sánchez-Frías ME, Mafficini A, López-Cánovas JL, Bousquet C, Gahete MD, Lawlor RT, Luque RM, Scarpa A, Arjona-Sánchez Á, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The Exon Junction Complex component EIF4A3 plays a splicing-linked oncogenic role in pancreatic ductal adenocarcinoma. Cancer Gene Ther 2024; 31:1646-1657. [PMID: 39232176 PMCID: PMC11567885 DOI: 10.1038/s41417-024-00814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, underscoring the urgent need for in-depth biological research. The phenomenon of alternative RNA splicing dysregulation is a common hallmark in cancer, including PDAC, presenting new avenues for understanding and developing diagnostic and therapeutic tools. Our research focuses on EIF4A3, a core component of the Exon Junction Complex intimately linked to RNA splicing, and its role in PDAC. EIF4A3 is overexpressed in PDAC tissue and associated to clinical parameters of malignancy and poorer patient survival. Mechanistically, exploration of PDAC RNA-seq data unveiled the link of EIF4A3 to diverse malignancy processes, consistent with its association to key molecular pathways. EIF4A3 targeting in vitro decreased essential functional tumor features such as proliferation, migration, colony formation and sphere formation, while its in vivo targeting reduced tumor growth. EIF4A3 silencing in PDAC cell lines severely altered its transcriptional and spliceosomic landscapes, as shown by RNA-seq analyses, suggesting a role for EIF4A3 in maintaining RNA homeostasis. Our results indicate that EIF4A3 dysregulation in PDAC has a pleiotropic regulatory role on RNA biology, influencing key cellular functions. This paves the way to explore its potential as novel biomarker and actionable target candidate for this lethal cancer.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Marina Esther Sánchez-Frías
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Pathology Service, Reina Sofía University Hospital, Córdoba, Spain
| | - Andrea Mafficini
- Department of Engineering for Innovation Medicine, Section of Innovation Biomedicine, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Juan L López-Cánovas
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Corinne Bousquet
- INSERM UMR-1037, Cancer Research Center of Toulouse (CRCT), Team 'Labellisée Ligue Contre le Cancer', University of Toulouse, Toulouse, France
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Rita T Lawlor
- Department of Engineering for Innovation Medicine, Section of Innovation Biomedicine, University and Hospital Trust of Verona, Verona, Italy
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Álvaro Arjona-Sánchez
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Reina Sofia University Hospital, Córdoba, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain.
| |
Collapse
|
13
|
Valcikova B, Vadovicova N, Smolkova K, Zacpalova M, Krejci P, Lee S, Rauch J, Kolch W, von Kriegsheim A, Dorotikova A, Andrysik Z, Vichova R, Vacek O, Soucek K, Uldrijan S. eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Proc Natl Acad Sci U S A 2024; 121:e2321305121. [PMID: 39436655 PMCID: PMC11536119 DOI: 10.1073/pnas.2321305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Collapse
Affiliation(s)
- Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Natalia Vadovicova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Karolina Smolkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Laboratory of Cell Signaling, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno60200, Czech Republic
| | - Shannon Lee
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| | - Alexander von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XR, United Kingdom
| | - Anna Dorotikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
| | - Ondrej Vacek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| |
Collapse
|
14
|
Lizardo MM, Hughes C, Huang YZ, Shyp T, Delaidelli A, Zhang HF, Shaool SS, Renner AF, Burwag F, Sayles LC, Lee AG, Sweet-Cordero A, Sorensen PH. Pharmacologic Inhibition of EIF4A Blocks NRF2 Synthesis to Prevent Osteosarcoma Metastasis. Clin Cancer Res 2024; 30:4464-4481. [PMID: 39078310 PMCID: PMC11443218 DOI: 10.1158/1078-0432.ccr-24-1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
PURPOSE Effective therapies for metastatic osteosarcoma (OS) remain a critical unmet need. Targeting mRNA translation in metastatic OS offers a promising option, as selective translation drives the synthesis of cytoprotective proteins under harsh microenvironmental conditions to facilitate metastatic competence. EXPERIMENTAL DESIGN We assessed the expression levels of eukaryotic translation factors in OS, revealing the high expression of the eukaryotic initiation factor 4A1 (EIF4A1). Using a panel of metastatic OS cell lines and patient-derived xenograft (PDX) models, EIF4A1 inhibitors were evaluated for their ability to block proliferation and reduce survival under oxidative stress, mimicking harsh conditions of the lung microenvironment. Inhibitors were also evaluated for their antimetastatic activity using the ex vivo pulmonary metastasis assay and in vivo metastasis models. Proteomics was performed to catalog which cytoprotective proteins or pathways were affected by EIF4A1 inhibition. RESULTS CR-1-31B, a rocaglate-based EIF4A1 inhibitor, exhibited nanomolar cytotoxicity against all metastatic OS models tested. CR-1-31B exacerbated oxidative stress and apoptosis when OS cells were co-treated with tert-butylhydroquinone, a chemical oxidative stress inducer. CR-1-31B potently inhibited OS growth in the pulmonary metastasis assay model and in experimental and spontaneous models of OS lung metastasis. Proteomic analysis revealed that tert-butylhydroquinone-mediated upregulation of the NRF2 antioxidant factor was blocked by co-treatment with CR-1-31B. Genetic inactivation of NRF2 phenocopied the antimetastatic activity of CR-1-31B. Finally, the clinical-grade EIF4A1 phase-1-to-2 inhibitor, zotatifin, similarly blocked NRF2 synthesis and the OS metastatic phenotype. CONCLUSIONS Collectively, our data reveal that pharmacologic targeting of EIF4A1 is highly effective in blocking OS metastasis by blunting the NRF2 antioxidant response.
Collapse
Affiliation(s)
- Michael M Lizardo
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Christopher Hughes
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Yue Z Huang
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Annalena F Renner
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Farez Burwag
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
| | - Leanne C Sayles
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Alex G Lee
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Alejandro Sweet-Cordero
- Helen Diller Family Comprehensive Cancer Program, University of California San Francisco, San Francisco, California
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Agency, Part of the Provincial Health Services Authority, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Zang X, Lei K, Wang J, Gong R, Gao C, Jing Z, Song J, Ren H. Targeting aberrant amino acid metabolism for pancreatic cancer therapy: Opportunities for nanoparticles. CHEMICAL ENGINEERING JOURNAL 2024; 498:155071. [DOI: 10.1016/j.cej.2024.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Qu T, Cha L, Liu H, Tian L, Hu X, Zou H, Feng Y, Sun C, Cao J, Guo W, Qiu F, Zhou B. Circ_0005397 inhibits ferroptosis of pancreatic cancer cells by up-regulating PCBP2 through KAT6A/H3K9Ac. FASEB J 2024; 38:e70028. [PMID: 39235355 DOI: 10.1096/fj.202401151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Pancreatic cancer is a highly aggressive and lethal carcinoma. Circular RNAs (circRNAs) serve key regulatory functions in pancreatic cancer. Ferroptosis was induced by erastin treatment and analyzed by examining malondialdehyde (MDA), iron, Fe2+ and glutathione (GSH). C11-BODIPY 581/591 was used to stain cells for analyzing lipid peroxidation. RNA immunoprecipitation, pull-down and chromatin immunoprecipitation assays were applied to evaluate intermolecular interaction. Mice received subcutaneous injection of pancreatic cancer cells as a model of subcutaneous tumor for in vivo tests. Circ_0005397 was abundantly expressed in pancreatic cancer, and its upregulation was associated with low survival of patients with pancreatic cancer. Circ_0005397 expression was induced by EIF4A3. PCBP2 was highly expressed in pancreatic cancer, and circ_0005397 and PCBP2 were positively correlated in patients with pancreatic cancer. Circ_0005397 knockdown sensitized pancreatic carcinoma cells to ferroptosis via downregulating PCBP2. Circ_0005397 promoted PCBP2 transcription via facilitating the binding of KAT6A and H3K9ac to PCBP2 promoter. Silencing of circ_0005397 reduced tumor growth by enhancing erastin-induced ferroptosis in vivo. EIF4A3-induced circ_0005397 inhibited erastin-induced ferroptosis in pancreatic cancer by promoting PCBP2 expression through KAT6A and H3K9ac.
Collapse
Affiliation(s)
- Tengfei Qu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lichao Cha
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongliang Liu
- Department of Hepatobiliary Surgery, Qingdao Women's and Children's Hospital, Qingdao, China
| | - Lantian Tian
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujie Feng
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuandong Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingyu Cao
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weidong Guo
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Saito H, Handa Y, Chen M, Schneider-Poetsch T, Shichino Y, Takahashi M, Romo D, Yoshida M, Fürstner A, Ito T, Fukuzawa K, Iwasaki S. DMDA-PatA mediates RNA sequence-selective translation repression by anchoring eIF4A and DDX3 to GNG motifs. Nat Commun 2024; 15:7418. [PMID: 39223140 PMCID: PMC11369270 DOI: 10.1038/s41467-024-51635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Small-molecule compounds that elicit mRNA-selective translation repression have attracted interest due to their potential for expansion of druggable space. However, only a limited number of examples have been reported to date. Here, we show that desmethyl desamino pateamine A (DMDA-PatA) represses translation in an mRNA-selective manner by clamping eIF4A, a DEAD-box RNA-binding protein, onto GNG motifs. By systematically comparing multiple eIF4A inhibitors by ribosome profiling, we found that DMDA-PatA has unique mRNA selectivity for translation repression. Unbiased Bind-n-Seq reveals that DMDA-PatA-targeted eIF4A exhibits a preference for GNG motifs in an ATP-independent manner. This unusual RNA binding sterically hinders scanning by 40S ribosomes. A combination of classical molecular dynamics simulations and quantum chemical calculations, and the subsequent development of an inactive DMDA-PatA derivative reveals that the positive charge of the tertiary amine on the trienyl arm induces G selectivity. Moreover, we identified that DDX3, another DEAD-box protein, is an alternative DMDA-PatA target with the same effects on eIF4A. Our results provide an example of the sequence-selective anchoring of RNA-binding proteins and the mRNA-selective inhibition of protein synthesis by small-molecule compounds.
Collapse
Grants
- Incentive Research Projects MEXT | RIKEN
- JP23gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23H00095 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18H05503 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- S10 OD018174 NIH HHS
- R01 GM052964 NIGMS NIH HHS
- JP21H05281 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- Pioneering Projects MEXT | RIKEN
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP19H05640 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- R37 GM052964 NIGMS NIH HHS
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP24H02307 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- R29 GM052964 NIGMS NIH HHS
Collapse
Affiliation(s)
- Hironori Saito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuma Handa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
| | - Mingming Chen
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Daniel Romo
- Department of Chemistry & Biochemistry and Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, USA
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Kaori Fukuzawa
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
| |
Collapse
|
18
|
Wang Z, Thakare RP, Chitale S, Mishra AK, Goldstein SI, Fan AC, Li R, Zhu LJ, Brown LE, Cencic R, Huang S, Green MR, Pelletier J, Malonia SK, Porco JA. Identification of Rocaglate Acyl Sulfamides as Selective Inhibitors of Glioblastoma Stem Cells. ACS CENTRAL SCIENCE 2024; 10:1640-1656. [PMID: 39220711 PMCID: PMC11363328 DOI: 10.1021/acscentsci.4c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and frequently occurring type of malignant brain tumor in adults. The initiation, progression, and recurrence of malignant tumors are known to be driven by a small subpopulation of cells known as tumor-initiating cells or cancer stem cells (CSCs). GBM CSCs play a pivotal role in orchestrating drug resistance and tumor relapse. As a prospective avenue for GBM intervention, the targeted suppression of GBM CSCs holds considerable promise. In this study, we found that rocaglates, compounds which are known to inhibit translation via targeting of the DEAD-box helicase eIF4A, exert a robust, dose-dependent cytotoxic impact on GBM CSCs with minimal killing of nonstem GBM cells. Subsequent optimization identified novel rocaglate derivatives (rocaglate acyl sulfamides or Roc ASFs) that selectively inhibit GBM CSCs with nanomolar EC50 values. Furthermore, comparative evaluation of a lead CSC-optimized Roc ASF across diverse mechanistic and target profiling assays revealed suppressed translation inhibition relative to that of other CSC-selective rocaglates, with enhanced targeting of the DEAD-box helicase DDX3X, a recently identified secondary target of rocaglates. Overall, these findings suggest a promising therapeutic strategy for targeting GBM CSCs.
Collapse
Affiliation(s)
- Zihao Wang
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ritesh P. Thakare
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Shalaka Chitale
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Alok K. Mishra
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Stanley I. Goldstein
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
- Department
of Pharmacology, Physiology, and Biophysics, Boston University, Boston, Massachusetts 02118, United States
| | - Alice C. Fan
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| | - Rui Li
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lihua Julie Zhu
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Molecular Medicine and Program in Bioinformatics and Integrative
Biology, University of Massachusetts Chan
Medical School, Worcester, Massachusetts 01605, United States
| | - Lauren E. Brown
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Regina Cencic
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sidong Huang
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Michael R. Green
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Jerry Pelletier
- Department
of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Sunil K. Malonia
- Department
of Molecular, Cell and Cancer Biology, University
of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - John A. Porco
- Department
of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Boston
University Target Discovery Laboratory (BU-TDL), Boston, Massachusetts 02215, United States
| |
Collapse
|
19
|
Lu W, Cui J, Wang W, Hu Q, Xue Y, Liu X, Gong T, Lu Y, Ma H, Yang X, Feng B, Wang Q, Zhang N, Xu Y, Liu M, Nussinov R, Cheng F, Ji H, Huang J. PPIA dictates NRF2 stability to promote lung cancer progression. Nat Commun 2024; 15:4703. [PMID: 38830868 PMCID: PMC11148020 DOI: 10.1038/s41467-024-48364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.
Collapse
Affiliation(s)
- Weiqiang Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jiayan Cui
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xi Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ting Gong
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiping Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, China
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yechun Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jin Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
20
|
Cammas A, Desprairies A, Dassi E, Millevoi S. The shaping of mRNA translation plasticity by RNA G-quadruplexes in cancer progression and therapy resistance. NAR Cancer 2024; 6:zcae025. [PMID: 38828391 PMCID: PMC11140630 DOI: 10.1093/narcan/zcae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
Translational reprogramming in response to oncogenic signaling or microenvironmental stress factors shapes the proteome of cancer cells, enabling adaptation and phenotypic changes underlying cell plasticity, tumor progression and response to cancer therapy. Among the mechanisms regulating translation are RNA G-quadruplexes (RG4s), non-canonical four-stranded structures whose conformational modulation by small molecule ligands and RNA-binding proteins affects the expression of cancer proteins. Here, we discuss the role of RG4s in the regulation of mRNA translation by focusing on paradigmatic examples showing their contribution to adaptive mechanisms of mRNA translation in cancer.
Collapse
Affiliation(s)
- Anne Cammas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| | - Alice Desprairies
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento (TN), Italy
| | - Stefania Millevoi
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Equipe Labellisée Fondation ARC, Université de Toulouse, Inserm U1037, CNRS, 2 avenue Hubert Curien, 31037 Toulouse, France
| |
Collapse
|
21
|
Volegova MP, Brown LE, Banerjee U, Dries R, Sharma B, Kennedy A, Porco JA, George RE. The MYCN 5' UTR as a therapeutic target in neuroblastoma. Cell Rep 2024; 43:114134. [PMID: 38662542 PMCID: PMC11284644 DOI: 10.1016/j.celrep.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/07/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024] Open
Abstract
Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.
Collapse
Affiliation(s)
- Marina P Volegova
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lauren E Brown
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Ushashi Banerjee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ruben Dries
- Boston University School of Medicine, Computational Biomedicine, Boston, MA, USA
| | - Bandana Sharma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alyssa Kennedy
- Boston Children's Cancer and Blood Disorders Center, Pediatric Hematology/Oncology, Boston, MA, USA
| | - John A Porco
- Boston University, Center for Molecular Discovery (BU-CMD), Boston, MA, USA; Boston University, Department of Chemistry, Boston, MA, USA
| | - Rani E George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Ross AB, Gorhe D, Kim JK, Hodapp S, DeVine L, Chan KM, Chio IIC, Jovanovic M, Ayres Pereira M. Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO. CELL REPORTS METHODS 2024; 4:100760. [PMID: 38677284 PMCID: PMC11133751 DOI: 10.1016/j.crmeth.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.
Collapse
Affiliation(s)
- Alison B Ross
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Lela DeVine
- Department of Biology, Barnard College, New York, NY 10027, USA; Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina M Chan
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
| | - Marina Ayres Pereira
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
23
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, Herrera A, Ivanova E, Cross M, Bossowski JP, Ding H, Hayashi M, Rajalingam S, Karakousi T, Sayin VI, Khanna KM, Wong KK, Wild R, Tsirigos A, Poirier JT, Rudin CM, Davidson SM, Koralov SB, Papagiannakopoulos T. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. SCIENCE ADVANCES 2024; 10:eadm9859. [PMID: 38536921 PMCID: PMC10971495 DOI: 10.1126/sciadv.adm9859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, NY 10016, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah E. LeBoeuf
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yuan Hao
- Applied Bioinformatics Laboratories, New York University Langone Health, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Connie New
- Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jenna L. E. Blum
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Rashidfarrokhi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shih Ming Huang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian Bahamon
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Warren L. Wu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Burcu Karadal-Ferrena
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ellie Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cross
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jozef P. Bossowski
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hongyu Ding
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Makiko Hayashi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahith Rajalingam
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Triantafyllia Karakousi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Volkan I. Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41345 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Kamal M. Khanna
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Robert Wild
- Dracen Pharmaceuticals Inc., San Diego, CA 92121, USA
| | - Aristotelis Tsirigos
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10655, USA
| | - Shawn M. Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Thales Papagiannakopoulos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
24
|
Zhao N, Kabotyanski EB, Saltzman AB, Malovannaya A, Yuan X, Reineke LC, Lieu N, Gao Y, Pedroza DA, Calderon SJ, Smith AJ, Hamor C, Safari K, Savage S, Zhang B, Zhou J, Solis LM, Hilsenbeck SG, Fan C, Perou CM, Rosen JM. Targeting eIF4A triggers an interferon response to synergize with chemotherapy and suppress triple-negative breast cancer. J Clin Invest 2023; 133:e172503. [PMID: 37874652 PMCID: PMC10721161 DOI: 10.1172/jci172503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A with zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages toward an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon (IFN) response uniformly across models. The induction of an IFN response is partially due to the inhibition of Sox4 translation by zotatifin. A similar induction of IFN-stimulated genes was observed in breast cancer patient biopsies following zotatifin treatment. Surprisingly, zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened IFN response, resulting in T cell-dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for zotatifin, and provide a rationale for new combination regimens consisting of zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology
| | | | | | - Anna Malovannaya
- Mass Spectrometry Proteomics Core
- Department of Biochemistry and Molecular Pharmacology, and
| | | | - Lucas C. Reineke
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Nadia Lieu
- Department of Molecular and Cellular Biology
| | - Yang Gao
- Department of Molecular and Cellular Biology
| | | | | | | | - Clark Hamor
- Department of Molecular and Cellular Biology
| | - Kazem Safari
- Texas A&M Health Science Center, Houston, Texas, USA
| | - Sara Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
25
|
Zhao N, Kabotyanski EB, Saltzman AB, Malovannaya A, Yuan X, Reineke LC, Lieu N, Gao Y, Pedroza DA, Calderon SJ, Smith AJ, Hamor C, Safari K, Savage S, Zhang B, Zhou J, Solis LM, Hilsenbeck SG, Fan C, Perou CM, Rosen JM. Targeting EIF4A triggers an interferon response to synergize with chemotherapy and suppress triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559973. [PMID: 37808840 PMCID: PMC10557675 DOI: 10.1101/2023.09.28.559973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A by Zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages towards an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that Zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon response uniformly across models. The induction of an interferon response is partially due to the inhibition of Sox4 translation by Zotatifin. A similar induction of interferon-stimulated genes was observed in breast cancer patient biopsies following Zotatifin treatment. Surprisingly, Zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened interferon response resulting in T cell-dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for Zotatifin, and provide a rationale for new combination regimens comprising Zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Elena B. Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xueying Yuan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lucas C. Reineke
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Nadia Lieu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Gao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Diego A Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sebastian J Calderon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Alex J Smith
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Clark Hamor
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kazem Safari
- Texas A&M Health Science Center, Houston, Texas, USA
| | - Sara Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jianling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan G. Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
26
|
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han H, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun 2023; 14:5195. [PMID: 37673892 PMCID: PMC10482938 DOI: 10.1038/s41467-023-40798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tania Campos
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhang Cheng
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jan C Lumibao
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ruben M Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nicole M Sodir
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Genentech, Department of Translational Oncology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cory R Fraser
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
- Scottsdale Pathology Associates, Scottsdale, AZ, 85260, USA
| | - Erkut Borazanci
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - David Propper
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Andrew M Lowy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael T Barrett
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gerard I Evan
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
27
|
Pillai R, LeBoeuf SE, Hao Y, New C, Blum JLE, Rashidfarrokhi A, Huang SM, Bahamon C, Wu WL, Karadal-Ferrena B, Herrera A, Ivanova E, Cross M, Bossowski JP, Ding H, Hayashi M, Rajalingam S, Karakousi T, Sayin VI, Khanna KM, Wong KK, Wild R, Tsirigos A, Poirier JT, Rudin CM, Davidson SM, Koralov SB, Papagiannakopoulos T. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546750. [PMID: 37425844 PMCID: PMC10327154 DOI: 10.1101/2023.06.27.546750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.
Collapse
|
28
|
Jin L, Kashyap MP, Chen Y, Khan J, Guo Y, Chen JQ, Lee MB, Weng Z, Oak A, Patcha P, Mayo T, Sinha R, Atigadda V, Mukhtar SM, Deshane JS, Raman C, Elston C, Elewski BE, Elmets CA, Athar M. Mechanism underlying follicular hyperproliferation and oncogenesis in hidradenitis suppurativa. iScience 2023; 26:106896. [PMID: 37332597 PMCID: PMC10275975 DOI: 10.1016/j.isci.2023.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/23/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a skin disorder that causes chronic painful inflammation and hyperproliferation, often with the comorbidity of invasive keratoacanthoma (KA). Our research, employing high-resolution immunofluorescence and data science approaches together with confirmatory molecular analysis, has identified that the 5'-cap-dependent protein translation regulatory complex eIF4F is a key factor in the development of HS and is responsible for regulating follicular hyperproliferation. Specifically, eIF4F translational targets, Cyclin D1 and c-MYC, orchestrate the development of HS-associated KA. Although eIF4F and p-eIF4E are contiguous throughout HS lesions, Cyclin D1 and c-MYC have unique spatial localization and functions. The keratin-filled crater of KA is formed by nuclear c-MYC-induced differentiation of epithelial cells, whereas the co-localization of c-MYC and Cyclin D1 provides oncogenic transformation by activating RAS, PI3K, and ERK pathways. In sum, we have revealed a novel mechanism underlying HS pathogenesis of follicular hyperproliferation and the development of HS-associated invasive KA.
Collapse
Affiliation(s)
- Lin Jin
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mahendra P. Kashyap
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasim Khan
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuanyuan Guo
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jari Q. Chen
- Hoover High School, Hoover, Birmingham, AL 35244, USA
| | - Madison B. Lee
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhiping Weng
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allen Oak
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Prasanth Patcha
- Division of Plastic Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tiffany Mayo
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajesh Sinha
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Venkatram Atigadda
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Shahid M. Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessy S. Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Carly Elston
- Department of Dermatology and Dermatopathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Boni E. Elewski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Craig A. Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohammad Athar
- Center for Epigenomics and Translational Research in Inflammatory Skin Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- UAB Research Center of Excellence in Arsenicals, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
29
|
Hung YW, Ouyang C, Ping X, Qi Y, Wang YC, Kung HJ, Ann DK. Extracellular arginine availability modulates eIF2α O-GlcNAcylation and heme oxygenase 1 translation for cellular homeostasis. J Biomed Sci 2023; 30:32. [PMID: 37217939 PMCID: PMC10201738 DOI: 10.1186/s12929-023-00924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Nutrient limitations often lead to metabolic stress during cancer initiation and progression. To combat this stress, the enzyme heme oxygenase 1 (HMOX1, commonly known as HO-1) is thought to play a key role as an antioxidant. However, there is a discrepancy between the level of HO-1 mRNA and its protein, particularly in cells under stress. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins (O-GlcNAcylation) is a recently discovered cellular signaling mechanism that rivals phosphorylation in many proteins, including eukaryote translation initiation factors (eIFs). The mechanism by which eIF2α O-GlcNAcylation regulates translation of HO-1 during extracellular arginine shortage (ArgS) remains unclear. METHODS We used mass spectrometry to study the relationship between O-GlcNAcylation and Arg availability in breast cancer BT-549 cells. We validated eIF2α O-GlcNAcylation through site-specific mutagenesis and azido sugar N-azidoacetylglucosamine-tetraacylated labeling. We then evaluated the effect of eIF2α O-GlcNAcylation on cell recovery, migration, accumulation of reactive oxygen species (ROS), and metabolic labeling during protein synthesis under different Arg conditions. RESULTS Our research identified eIF2α, eIF2β, and eIF2γ, as key O-GlcNAcylation targets in the absence of Arg. We found that O-GlcNAcylation of eIF2α plays a crucial role in regulating antioxidant defense by suppressing the translation of the enzyme HO-1 during Arg limitation. Our study showed that O-GlcNAcylation of eIF2α at specific sites suppresses HO-1 translation despite high levels of HMOX1 transcription. We also found that eliminating eIF2α O-GlcNAcylation through site-specific mutagenesis improves cell recovery, migration, and reduces ROS accumulation by restoring HO-1 translation. However, the level of the metabolic stress effector ATF4 is not affected by eIF2α O-GlcNAcylation under these conditions. CONCLUSIONS Overall, this study provides new insights into how ArgS fine-tunes the control of translation initiation and antioxidant defense through eIF2α O-GlcNAcylation, which has potential biological and clinical implications.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Xiaoli Ping
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA
| | - Hsing-Jien Kung
- Cancer Center, School of Medicine, University of California, Davis, CA, 95817, USA
| | - David K Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010-3000, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
30
|
Wang JE, Zhou YC, Wu BH, Chen XC, Zhai J, Tan JH, Huang ZS, Chen SB. A rapid and highly sensitive immunosorbent assay to monitor helicases unwinding diverse nucleic acid structures. Analyst 2023; 148:2343-2351. [PMID: 37185609 DOI: 10.1039/d2an01989b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Helicases are crucial enzymes in DNA and RNA metabolism and function by unwinding particular nucleic acid structures. However, most convenient and high-throughput helicase assays are limited to the typical duplex DNA. Herein, we developed an immunosorbent assay to monitor the Werner syndrome (WRN) helicase unwinding a wide range of DNA structures, such as a replication fork, a bubble, Holliday junction, G-quadruplex and hairpin. This assay could sensitively detect the unwinding of DNA structures with detection limits around 0.1 nM, and accurately monitor the substrate-specificity of WRN with a comparatively less time-consuming and high throughput process. Remarkably, we have established that this new assay was compatible in evaluating helicase inhibitors and revealed that the inhibitory effect was substrate-dependent, suggesting that diverse substrate structures other than duplex structures should be considered in discovering new inhibitors. Our study provided a foundational example for using this new assay as a powerful tool to study helicase functions and discover potent inhibitors.
Collapse
Affiliation(s)
- Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiu-Cai Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Junqiu Zhai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou 510330, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Bartish M, Abraham MJ, Gonçalves C, Larsson O, Rolny C, Del Rincón SV. The role of eIF4F-driven mRNA translation in regulating the tumour microenvironment. Nat Rev Cancer 2023; 23:408-425. [PMID: 37142795 DOI: 10.1038/s41568-023-00567-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/06/2023]
Abstract
Cells can rapidly adjust their proteomes in dynamic environments by regulating mRNA translation. There is mounting evidence that dysregulation of mRNA translation supports the survival and adaptation of cancer cells, which has stimulated clinical interest in targeting elements of the translation machinery and, in particular, components of the eukaryotic initiation factor 4F (eIF4F) complex such as eIF4E. However, the effect of targeting mRNA translation on infiltrating immune cells and stromal cells in the tumour microenvironment (TME) has, until recently, remained unexplored. In this Perspective article, we discuss how eIF4F-sensitive mRNA translation controls the phenotypes of key non-transformed cells in the TME, with an emphasis on the underlying therapeutic implications of targeting eIF4F in cancer. As eIF4F-targeting agents are in clinical trials, we propose that a broader understanding of their effect on gene expression in the TME will reveal unappreciated therapeutic vulnerabilities that could be used to improve the efficacy of existing cancer therapies.
Collapse
Affiliation(s)
- Margarita Bartish
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Madelyn J Abraham
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Christophe Gonçalves
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada
| | - Ola Larsson
- Science for Life Laboratory, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Sonia V Del Rincón
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
- Segal Cancer Center, Lady Davis Institute and Jewish General Hospital, Montreal, QC, Canada.
| |
Collapse
|
32
|
Schiffmann S, Henke M, Seifert M, Ulshöfer T, Roser LA, Magari F, Wendel HG, Grünweller A, Parnham MJ. Comparing the Effects of Rocaglates on Energy Metabolism and Immune Modulation on Cells of the Human Immune System. Int J Mol Sci 2023; 24:ijms24065872. [PMID: 36982945 PMCID: PMC10051175 DOI: 10.3390/ijms24065872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
A promising new approach to broad spectrum antiviral drugs is the inhibition of the eukaryotic translation initiation factor 4A (elF4A), a DEAD-box RNA helicase that effectively reduces the replication of several pathogenic virus types. Beside the antipathogenic effect, modulation of a host enzyme activity could also have an impact on the immune system. Therefore, we performed a comprehensive study on the influence of elF4A inhibition with natural and synthetic rocaglates on various immune cells. The effect of the rocaglates zotatifin, silvestrol and CR-31-B (−), as well as the nonactive enantiomer CR-31-B (+), on the expression of surface markers, release of cytokines, proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdMs), monocyte-derived dendritic cells (MdDCs), T cells and B cells was assessed. The inhibition of elF4A reduced the inflammatory potential and energy metabolism of M1 MdMs, whereas in M2 MdMs, drug-specific and less target-specific effects were observed. Rocaglate treatment also reduced the inflammatory potential of activated MdDCs by altering cytokine release. In T cells, the inhibition of elF4A impaired their activation by reducing the proliferation rate, expression of CD25 and cytokine release. The inhibition of elF4A further reduced B-cell proliferation, plasma cell formation and the release of immune globulins. In conclusion, the inhibition of the elF4A RNA helicase with rocaglates suppressed the function of M1 MdMs, MdDCs, T cells and B cells. This suggests that rocaglates, while inhibiting viral replication, may also suppress bystander tissue injury by the host immune system. Thus, dosing of rocaglates would need to be adjusted to prevent excessive immune suppression without reducing their antiviral activity.
Collapse
Affiliation(s)
- Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence:
| | - Marina Henke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michelle Seifert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Luise A. Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Francesca Magari
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Bjargargata 1, 102 Reykjavik, Iceland
| |
Collapse
|
33
|
Chen M, Kumakura N, Saito H, Muller R, Nishimoto M, Mito M, Gan P, Ingolia NT, Shirasu K, Ito T, Shichino Y, Iwasaki S. A parasitic fungus employs mutated eIF4A to survive on rocaglate-synthesizing Aglaia plants. eLife 2023; 12:81302. [PMID: 36852480 PMCID: PMC9977294 DOI: 10.7554/elife.81302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Plants often generate secondary metabolites as defense mechanisms against parasites. Although some fungi may potentially overcome the barrier presented by antimicrobial compounds, only a limited number of examples and molecular mechanisms of resistance have been reported. Here, we found an Aglaia plant-parasitizing fungus that overcomes the toxicity of rocaglates, which are translation inhibitors synthesized by the plant, through an amino acid substitution in a eukaryotic translation initiation factor (eIF). De novo transcriptome assembly revealed that the fungus belongs to the Ophiocordyceps genus and that its eIF4A, a molecular target of rocaglates, harbors an amino acid substitution critical for rocaglate binding. Ribosome profiling harnessing a cucumber-infecting fungus, Colletotrichum orbiculare, demonstrated that the translational inhibitory effects of rocaglates were largely attenuated by the mutation found in the Aglaia parasite. The engineered C. orbiculare showed a survival advantage on cucumber plants with rocaglates. Our study exemplifies a plant-fungus tug-of-war centered on secondary metabolites produced by host plants.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Naoyoshi Kumakura
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Hironori Saito
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Ryan Muller
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Pamela Gan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of Science, The University of TokyoTokyoJapan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
34
|
eIF4A1 Is a Prognostic Marker and Actionable Target in Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032055. [PMID: 36768380 PMCID: PMC9917075 DOI: 10.3390/ijms24032055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver tumor with high lethality and increasing incidence worldwide. While tumor resection or liver transplantation is effective in the early stages of the disease, the therapeutic options for advanced HCC remain limited and the benefits are temporary. Thus, novel therapeutic targets and more efficacious treatments against this deadly cancer are urgently needed. Here, we investigated the pathogenetic and therapeutic role of eukaryotic initiation factor 4A1 (eIF4A1) in this tumor type. We observed consistent eIF4A1 upregulation in HCC lesions compared with non-tumorous surrounding liver tissues. In addition, eIF4A1 levels were negatively correlated with the prognosis of HCC patients. In HCC lines, the exposure to various eIF4A inhibitors triggered a remarkable decline in proliferation and augmented apoptosis, paralleled by the inhibition of several oncogenic pathways. Significantly, anti-growth effects were achieved at nanomolar concentrations of the eIF4A1 inhibitors and were further increased by the simultaneous administration of the pan mTOR inhibitor, Rapalink-1. In conclusion, our results highlight the pathogenetic relevance of eIF4A1 in HCC and recommend further evaluation of the potential usefulness of pharmacological combinations based on eIF4A and mTOR inhibitors in treating this aggressive tumor.
Collapse
|
35
|
Fooks K, Galicia-Vazquez G, Gife V, Schcolnik-Cabrera A, Nouhi Z, Poon WWL, Luo V, Rys RN, Aloyz R, Orthwein A, Johnson NA, Hulea L, Mercier FE. EIF4A inhibition targets bioenergetic homeostasis in AML MOLM-14 cells in vitro and in vivo and synergizes with cytarabine and venetoclax. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:340. [PMID: 36482393 PMCID: PMC9733142 DOI: 10.1186/s13046-022-02542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological cancer resulting from uncontrolled proliferation of differentiation-blocked myeloid cells. Seventy percent of AML patients are currently not cured with available treatments, highlighting the need of novel therapeutic strategies. A promising target in AML is the mammalian target of rapamycin complex 1 (mTORC1). Clinical inhibition of mTORC1 is limited by its reactivation through compensatory and regulatory feedback loops. Here, we explored a strategy to curtail these drawbacks through inhibition of an important effector of the mTORC1signaling pathway, the eukaryotic initiation factor 4A (eIF4A). METHODS We tested the anti-leukemic effect of a potent and specific eIF4A inhibitor (eIF4Ai), CR-1-31-B, in combination with cytosine arabinoside (araC) or the BCL2 inhibitor venetoclax. We utilized the MOLM-14 human AML cell line to model chemoresistant disease both in vitro and in vivo. In eIF4Ai-treated cells, we assessed for changes in survival, apoptotic priming, de novo protein synthesis, targeted intracellular metabolite content, bioenergetic profile, mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP). RESULTS eIF4Ai exhibits anti-leukemia activity in vivo while sparing non-malignant myeloid cells. In vitro, eIF4Ai synergizes with two therapeutic agents in AML, araC and venetoclax. EIF4Ai reduces mitochondrial membrane potential (MMP) and the rate of ATP synthesis from mitochondrial respiration and glycolysis. Furthermore, eIF4i enhanced apoptotic priming while reducing the expression levels of the antiapoptotic factors BCL2, BCL-XL and MCL1. Concomitantly, eIF4Ai decreases intracellular levels of specific metabolic intermediates of the tricarboxylic acid cycle (TCA cycle) and glucose metabolism, while enhancing mtROS. In vitro redox stress contributes to eIF4Ai cytotoxicity, as treatment with a ROS scavenger partially rescued the viability of eIF4A inhibition. CONCLUSIONS We discovered that chemoresistant MOLM-14 cells rely on eIF4A-dependent cap translation for survival in vitro and in vivo. EIF4A drives an intrinsic metabolic program sustaining bioenergetic and redox homeostasis and regulates the expression of anti-apoptotic proteins. Overall, our work suggests that eIF4A-dependent cap translation contributes to adaptive processes involved in resistance to relevant therapeutic agents in AML.
Collapse
Affiliation(s)
- Katie Fooks
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | | | - Victor Gife
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada
| | | | - Zaynab Nouhi
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada
| | - William W. L. Poon
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Vincent Luo
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| | - Ryan N. Rys
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Canada
| | - Raquel Aloyz
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Alexandre Orthwein
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada ,grid.189967.80000 0001 0941 6502Present Address: Department of Radiation Oncology, Emory School of Medicine, Atlanta, USA
| | - Nathalie A. Johnson
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Gerald Bronfman Department of Oncology, McGill University, Montreal, Canada
| | - Laura Hulea
- grid.414216.40000 0001 0742 1666Maisonneuve-Rosemont Hospital Research Centre, Montreal, Canada ,grid.14848.310000 0001 2292 3357Present Address: Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, Canada ,grid.14848.310000 0001 2292 3357Département de Médecine, Université de Montréal, Montreal, Canada
| | - Francois E. Mercier
- grid.414980.00000 0000 9401 2774Lady Davis Institute for Medical Research, Montreal, Canada ,grid.14709.3b0000 0004 1936 8649Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Shin S, Solorzano J, Liauzun M, Pyronnet S, Bousquet C, Martineau Y. Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer 2022; 4:zcac031. [PMID: 36325577 PMCID: PMC9615149 DOI: 10.1093/narcan/zcac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
mRNA translation is a key mechanism for cancer cell proliferation and stress adaptation. Regulation of this machinery implicates upstream pathways such as PI3K/AKT/mTOR, RAS/MEK/ERK and the integrated stress response (ISR), principally coordinating the translation initiation step. During the last decade, dysregulation of the mRNA translation process in pancreatic cancer has been widely reported, and shown to critically impact on cancer initiation, development and survival. This includes translation dysregulation of mRNAs encoding oncogenes and tumor suppressors. Hence, cancer cells survive a stressful microenvironment through a flexible regulation of translation initiation for rapid adaptation. The ISR pathway has an important role in chemoresistance and shows high potential therapeutic interest. Despite the numerous translational alterations reported in pancreatic cancer, their consequences are greatly underestimated. In this review, we summarize the different translation dysregulations described in pancreatic cancer, which make it invulnerable, as well as the latest drug discoveries bringing a glimmer of hope.
Collapse
Affiliation(s)
- Sauyeun Shin
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Jacobo Solorzano
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Mehdi Liauzun
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Stéphane Pyronnet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Corinne Bousquet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | | |
Collapse
|
37
|
Guo A, Zhang J, Tian Y, Peng Y, Luo P, Zhang J, Liu Z, Wu W, Zhang H, Cheng Q. Identify the immune characteristics and immunotherapy value of CD93 in the pan-cancer based on the public data sets. Front Immunol 2022; 13:907182. [PMID: 36389798 PMCID: PMC9646793 DOI: 10.3389/fimmu.2022.907182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
CD93 is a transmembrane receptor that is mainly expressed on endothelial cells. A recent study found that upregulated CD93 in tumor vessels is essential for tumor angiogenesis in several cancers. However, the underlying mechanisms are largely unexplored. Our present research systematically analyzed the characteristics of CD93 in tumor immunotherapy among 33 cancers. CD93 levels and co-expression of CD93 on cancer and stromal cells were detected using public databases and multiple immunofluorescence staining. The Kaplan-Meier (KM) analysis identified the predictive role of CD93 in these cancer types. The survival differences between CD93 mutants and WT, CNV groups, and methylation were also investigated. The immune landscape of CD93 in the tumor microenvironment was analyzed using the SangerBox, TIMER 2.0, and single-cell sequencing. The immunotherapy value of CD93 was predicted through public databases. CD93 mRNA and protein levels differed significantly between cancer samples and adjacent control tissues in multiply cancer types. CD93 mRNA expression associated with patient prognosis in many cancers. The correlation of CD93 levels with mutational status of other gene in these cancers was also analyzed. CD93 levels significantly positively related to three scores (immune, stromal, and extimate), immune infiltrates, immune checkpoints, and neoantigen expression.. Additionally, single-cell sequencing revealed that CD93 is predominantly co-expressed on tumor and stromal cells, such as endothelial cells, cancer-associated fibroblasts (CAFs), neutrophils, T cells, macrophages, M1 and M2 macrophages. Several immune-related signaling pathways were enriched based on CD93 expression, including immune cells activation and migration, focal adhesion, leukocyte transendothelial migration, oxidative phosphorylation, and complement. Multiple immunofluorescence staining displayed the relationship between CD93 expression and CD8, CD68, and CD163 in these cancers. Finally, the treatment response of CD93 in many immunotherapy cohorts and sensitive small molecules was predicted from the public datasets. CD93 expression is closely associated with clinical prognosis and immune infiltrates in a variety of tumors. Targeting CD93-related signaling pathways in the tumor microenvironment may be a novel therapeutic strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqiu Tian
- Department of Infectious Disease, Zhuzhou Central Hospital, Zhuzhou, China
| | - Yun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Kayastha F, Herrington NB, Kapadia B, Roychowdhury A, Nanaji N, Kellogg GE, Gartenhaus RB. Novel eIF4A1 inhibitors with anti-tumor activity in lymphoma. Mol Med 2022; 28:101. [PMID: 36058921 PMCID: PMC9441068 DOI: 10.1186/s10020-022-00534-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deregulated translation initiation is implicated extensively in cancer initiation and progression. It is actively pursued as a viable target that circumvents the dependency on oncogenic signaling, a significant factor in current strategies. Eukaryotic translation initiation factor (eIF) 4A plays an essential role in translation initiation by unwinding the secondary structure of messenger RNA (mRNA) upstream of the start codon, enabling active ribosomal recruitment on the downstream genes. Several natural product molecules with similar scaffolds, such as Rocaglamide A (RocA), targeting eIF4A have been reported in the last decade. However, their clinical utilization is still elusive due to several pharmacological limitations. In this study we identified new eIF4A1 inhibitors and their possible mechanisms. METHODS In this report, we conducted a pharmacophore-based virtual screen of RocA complexed with eIF4A and a polypurine RNA strand for novel eIF4A inhibitors from commercially available compounds in the MolPort Database. We performed target-based screening and optimization of active pharmacophores. We assessed the effects of novel compounds on biochemical and cell-based assays for efficacy and mechanistic evaluation. RESULTS We validated three new potent eIF4A inhibitors, RBF197, RBF 203, and RBF 208, which decreased diffuse large B-cell lymphoma (DLBCL) cell viability. Biochemical and cellular studies, molecular docking, and functional assays revealed that thosenovel compounds clamp eIF4A into mRNA in an ATP-independent manner. Moreover, we found that RBF197 and RBF208 significantly depressed eIF4A-dependent oncogene expression as well as the colony formation capacity of DLBCL. Interestingly, exposure of these compounds to non-malignant cells had only minimal impact on their growth and viability. CONCLUSIONS Identified compounds suggest a new strategy for designing novel eIF4A inhibitors.
Collapse
Affiliation(s)
- Forum Kayastha
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Noah B Herrington
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Bandish Kapadia
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Anirban Roychowdhury
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Nahid Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Ronald B Gartenhaus
- McGuire Cancer Center, Hunter Holmes McGuire VA Medical Center, Richmond, VA, USA.
- Division of Hematology, Oncology, and Palliative care, Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
39
|
Shichino Y, Iwasaki S. Compounds for selective translational inhibition. Curr Opin Chem Biol 2022; 69:102158. [PMID: 35598529 DOI: 10.1016/j.cbpa.2022.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/04/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Since many human diseases are caused by the unwelcome production of harmful proteins, compounds that selectively suppress protein synthesis should provide a unique path for drug development, expanding the druggable proteome. Although surveying the RNA/amino acid contexts that are preferentially affected by translation inhibitors has presented an analytic hurdle, the application of a technique termed ribosome profiling overcomes this problem. Indeed, this technique uncovers the selectivity of translation repression by small molecules such as chloramphenicol, macrolides, PF846, and rocaglates. The molecular understanding of how the compounds inspire context selectivity, despite their targeting to general translation machinery, facilitates rational drug design and discovery for therapeutic purposes.
Collapse
Affiliation(s)
- Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|
40
|
Praditya DF, Klöhn M, Brüggemann Y, Brown LE, Porco JA, Zhang W, Kinast V, Kirschning A, Vondran FWR, Todt D, Steinmann E. Identification of structurally re-engineered rocaglates as inhibitors against hepatitis E virus replication. Antiviral Res 2022; 204:105359. [PMID: 35728703 PMCID: PMC9731315 DOI: 10.1016/j.antiviral.2022.105359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future.
Collapse
Affiliation(s)
- Dimas F Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; Research Center for Vaccine and Drugs, The National Research and Innovation Agency, Cibinong, Indonesia.
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | - Lauren E Brown
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - John A Porco
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - Wenhan Zhang
- Department of Chemistry, Boston University, Boston, MA, 02215, USA; Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA.
| | - Volker Kinast
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany.
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743, Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
41
|
Wu KL, Huang YC, Wu YY, Chang CY, Chang YY, Chiang HH, Liu LX, Tsai YM, Hung JY. Characterization of the Oncogenic Potential of Eukaryotic Initiation Factor 4A1 in Lung Adenocarcinoma via Cell Cycle Regulation and Immune Microenvironment Reprogramming. BIOLOGY 2022; 11:biology11070975. [PMID: 36101357 PMCID: PMC9311917 DOI: 10.3390/biology11070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is a common type of lung cancer. Although the diagnosis and treatment of LUAD have significantly improved in recent decades, the survival for advanced LUAD is still poor. It is necessary to identify more targets for developing potential agents against LUAD. This study explored the dysregulation of translation initiation factors, specifically eukaryotic initiation factors 4A1 (EIF4A1) and EIF4A2, in developing LUAD, as well as their underlying mechanisms. We found that the expression of EIF4A1, but not EIF4A2, was higher in tumor tissue and associated with poor clinical outcomes in LUAD patients. Elevated expression of EIF4H with poor prognosis may potentiate the oncogenic role of EIF4A1. Functional enrichment analysis revealed that upregulation of EIF4A1 was related to cell cycle regulation and DNA repair. The oncogenic effect of EIF4A1 was further elucidated by Gene Set Variation Analysis (GSVA). The GSVA score of the gene set positively correlated with EIF4A1 was higher in tumors and significantly associated with worse survival. In the meantime, gene set enrichment analysis (GSEA) also indicated that elevated EIF4A1 expression in LUAD patients was associated with a decreased infiltration score for immune cells by reducing anticancer immune cell types and recruiting immunosuppressive cells. Consistent with the results, the GSVA score of genes whose expression was negatively correlated with EIF4A1 was lower in the tumor tissue of LUAD cases with worse clinical outcomes and was strongly associated with the disequilibrium of anti-cancer immunity by recruiting anticancer immune cells. Based on the results from the present study, we hypothesize that the dysregulation of EIF4A1 might be involved in the pathophysiology of LUAD development by promoting cancer growth and changing the tumor immune microenvironment. This can be used to develop potential diagnostic biomarkers or therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chao-Yuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yung-Yun Chang
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hung-Hsing Chiang
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Lian-Xiu Liu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (K.-L.W.); (Y.-C.H.); (C.-Y.C.); (L.-X.L.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (Y.-Y.C.); (Y.-M.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 5651)
| |
Collapse
|
42
|
The eIF4A Inhibitor Silvestrol Blocks the Growth of Human Glioblastoma Cells by Inhibiting AKT/mTOR and ERK1/2 Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4396316. [PMID: 35677890 PMCID: PMC9170441 DOI: 10.1155/2022/4396316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
The most frequently identified central nervous system tumor in adults is glioblastoma multiforme (GBM). GBM prognosis remains poor despite multimodal treatment, i.e., surgery and radiation therapy with concurrent temozolomide-based chemotherapy. Silvestrol, an eIF4A inhibitor, has been demonstrated to be able to kill tumor cells in previous studies. In this study, it was found that silvestrol considerably attenuated the proliferative potential of U251 and U87 glioma cells and reduced expression of cyclin D1. In addition, silvestrol reduced the level of ERK1/2 and decreased the levels of AKT phosphorylation. Unfortunately, the effect of silvestrol in inhibiting GBM cells was greatly reduced with hypoxia, and the downregulation in AKT/mTOR and ERK1/2 were also rescued with an upregulation of HIF1α, which warranted further research. Taken together, silvestrol exerted antitumor effects in GBM cells by inhibiting the AKT/mTOR and ERK1/2 signaling cascades.
Collapse
|
43
|
Kovalski JR, Kuzuoglu‐Ozturk D, Ruggero D. Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO J 2022; 41:e109823. [PMID: 35315941 PMCID: PMC9016353 DOI: 10.15252/embj.2021109823] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Translational control of mRNAs is a point of convergence for many oncogenic signals through which cancer cells tune protein expression in tumorigenesis. Cancer cells rely on translational control to appropriately adapt to limited resources while maintaining cell growth and survival, which creates a selective therapeutic window compared to non-transformed cells. In this review, we first discuss how cancer cells modulate the translational machinery to rapidly and selectively synthesize proteins in response to internal oncogenic demands and external factors in the tumor microenvironment. We highlight the clinical potential of compounds that target different translation factors as anti-cancer therapies. Next, we detail how RNA sequence and structural elements interface with the translational machinery and RNA-binding proteins to coordinate the translation of specific pro-survival and pro-growth programs. Finally, we provide an overview of the current and emerging technologies that can be used to illuminate the mechanisms of selective translational control in cancer cells as well as within the microenvironment.
Collapse
Affiliation(s)
- Joanna R Kovalski
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Duygu Kuzuoglu‐Ozturk
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of UrologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|
44
|
Epigenetic regulation of EIF4A1 through DNA methylation and an oncogenic role of eIF4A1 through BRD2 signaling in prostate cancer. Oncogene 2022; 41:2778-2785. [PMID: 35361883 PMCID: PMC9215223 DOI: 10.1038/s41388-022-02272-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
In prostate cancers, elongation initiation factor 4A1 (eIF4A1) supports an oncogenic translation program and is highly expressed, but its role remains elusive. By use of human specimens and cell models, we addressed the role of eIF4A1 in prostate cancer in vitro and in vivo. EIF4A1 expression, as determined by mRNA and protein levels, was higher in primary prostate cancers relative to normal prostate tissue. Also, for primary prostate cancers, elevated mRNA levels of EIF4A1 correlated with DNA hypomethylation levels in the CpG-rich island of EIF4A1. Using a DNMT3a CRISPR-Cas9-based tool for specific targeting of DNA methylation, we characterized, in human prostate cancer cells, the epigenetic regulation of EIF4A1 transcripts through DNA methylation in the CpG-rich island of EIF4A1. Next, we investigated the oncogenic effect of EIF4A1 on cancer cell proliferation in vitro and tumor growth in vivo. For prostate cancer cells, EIF4A1 heterozygous knockout or knockdown inhibited protein translation and tumor growth. In addition, using RNA immunoprecipitation with RNA sequencing, we discovered the eIF4A1-mediated translational regulation of the oncogene BRD2, which contains the most enriched eIF4A1-binding motifs in its 5’ untranslated region, establishing an eIF4A1-BRD2 axis for oncogenic translation. Finally, we found a positive correlation between expression levels of eIF4A1 and BRD2 in primary prostate cancers. Our results demonstrate, for prostate cancer cells, epigenetic regulation of EIF4A1 transcripts through DNA methylation and an oncogenic roles of eIF4A1 through BRD2 signaling.
Collapse
|
45
|
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing Tumors Protected. Cancer Discov 2022; 12:625-643. [PMID: 35101864 DOI: 10.1158/2159-8290.cd-21-0922] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Makiko Hayashi
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Anastasia-Maria Zavitsanou
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
46
|
Oertlin C, Watt K, Ristau J, Larsson O. Anota2seq Analysis for Transcriptome-Wide Studies of mRNA Translation. Methods Mol Biol 2022; 2418:243-268. [PMID: 35119670 DOI: 10.1007/978-1-0716-1920-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
mRNA translation plays a critical role in determining proteome composition. In health, regulation of mRNA translation facilitates rapid gene expression responses to intra- and extracellular signals. Moreover, dysregulated mRNA translation is a common feature in disease states, including neurological disorders and cancer. Yet, most studies of gene expression focus on analysis of mRNA levels, leaving variations in translational efficiencies largely uncharacterized. Here, we outline procedures to identify mRNA-selective alterations in translational efficiencies on a transcriptome-wide scale using the anota2seq package. Anota2seq compares expression data originating from translated mRNA to data from matched total mRNA to identify changes in translated mRNA not paralleled by corresponding changes in total mRNA (interpreted as changes in translational efficiencies impacting protein levels), congruent changes in total and translated mRNA (interpreted as changes in transcription and/or mRNA stability), and changes in total mRNA not paralleled by corresponding alterations in translated mRNA (interpreted as translational buffering). To illustrate the functionality of the anota2seq analysis package, we demonstrate a detailed analysis using a polysome-profiling data set quantified by RNA sequencing, revealing that estrogen receptor α modulates gene expression via a type of translational buffering termed offsetting. Notably, this anota2seq analysis procedure is also applicable to ribosome-profiling (RiboSeq) data sets and can be adapted to a variety of other data types and experimental contexts. Finally, we provide guidance for extending anota2seq analysis to examine associations between untranslated regions and altered translational efficiencies as well as targeted cellular functions to gain insights into mechanisms and phenotypic consequences of altered mRNA translation. Thus, this step-by-step manual allows users to interrogate selective changes in mRNA translation on a transcriptome-wide scale using the Bioconductor package anota2seq.
Collapse
Affiliation(s)
- Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Kathleen Watt
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Johannes Ristau
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
47
|
Greger H. Comparative phytochemistry of flavaglines (= rocaglamides), a group of highly bioactive flavolignans from Aglaia species (Meliaceae). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:725-764. [PMID: 34104125 PMCID: PMC8176878 DOI: 10.1007/s11101-021-09761-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 05/07/2023]
Abstract
Flavaglines are formed by cycloaddition of a flavonoid nucleus with a cinnamic acid moiety representing a typical chemical character of the genus Aglaia of the family Meliaceae. Based on biosynthetic considerations 148 derivatives are grouped together into three skeletal types representing 77 cyclopenta[b]benzofurans, 61 cyclopenta[bc]benzopyrans, and 10 benzo[b]oxepines. Apart from different hydroxy, methoxy, and methylenedioxy groups of the aromatic rings, important structural variation is created by different substitutions and stereochemistries of the central cyclopentane ring. Putrescine-derived bisamides constitute important building blocks occurring as cyclic 2-aminopyrrolidines or in an open-chained form, and are involved in the formation of pyrimidinone flavaglines. Regarding the central role of cinnamic acid in the formation of the basic skeleton, rocagloic acid represents a biosynthetic precursor from which aglafoline- and rocaglamide-type cyclopentabenzofurans can be derived, while those of the rocaglaol-type are the result of decarboxylation. Broad-based comparison revealed characteristic substitution trends which contribute as chemical markers to natural delimitation and grouping of taxonomically problematic Aglaia species. A wide variety of biological activities ranges from insecticidal, antifungal, antiprotozoal, and anti-inflammatory properties, especially to pronounced anticancer and antiviral activities. The high insecticidal activity of flavaglines is comparable with that of the well-known natural insecticide azadirachtin. Comparative feeding experiments informed about structure-activity relationships and exhibited different substitutions of the cyclopentane ring essential for insecticidal activity. Parallel studies on the antiproliferative activity of flavaglines in various tumor cell lines revealed similar structural prerequisites that let expect corresponding molecular mechanisms. An important structural modification with very high cytotoxic potency was found in the benzofuran silvestrol characterized by an unusual dioxanyloxy subunit. It possessed comparable cytotoxicity to that of the natural anticancer compounds paclitaxel (Taxol®) and camptothecin without effecting normal cells. The primary effect was the inhibition of protein synthesis by binding to the translation initiation factor eIF4A, an ATP-dependent DEAD-box RNA helicase. Flavaglines were also shown to bind to prohibitins (PHB) responsible for regulation of important signaling pathways, and to inhibit the transcriptional factor HSF1 deeply involved in metabolic programming, survival, and proliferation of cancer cells. Flavaglines were shown to be not only promising anticancer agents but gained now also high expectations as agents against emerging RNA viruses like SARS-CoV-2. Targeting the helicase eIF4A with flavaglines was recently described as pan-viral strategy for minimizing the impact of future RNA virus pandemics.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty of Life Sciences, University of Vienna, Rennweg 14, 1030 Wien, Austria
| |
Collapse
|
48
|
Zhao Y, Wang Y, Chen W, Bai S, Peng W, Zheng M, Yang Y, Cheng B, Luan Z. Targeted intervention of eIF4A1 inhibits EMT and metastasis of pancreatic cancer cells via c-MYC/miR-9 signaling. Cancer Cell Int 2021; 21:670. [PMID: 34906136 PMCID: PMC8672469 DOI: 10.1186/s12935-021-02390-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background Owing to the lack of effective treatment options, early metastasis remains the major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterized the function of eukaryotic translation initiation factors (eIFs) in epithelial-mesenchymal-transition (EMT) and metastasis in pancreatic cancer cells to investigate whether eIFs and downstream c-MYC affect EMT and metastasis by joint interference. Methods We used The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to analyze eIF4A1 expression in PDAC tissues and further validated the findings with a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1 and c-MYC were performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo. Results Elevated eIF4A1 expression was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through the c-MYC/miR-9 axis. Loss of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells, whereas upregulation of eIF4A1 attenuated the inhibition of EMT and metastasis induced by c-MYC downregulation. Treatment with the eIF4A1 inhibitor rocaglamide (RocA) or the c-MYC inhibitor Mycro3 either alone or in combination significantly decreased the expression level of EMT markers in pancreatic cancer cells in vitro. However, the efficiency and safety of RocA alone were not inferior to those of the combination treatment in vivo. Conclusion Overexpression of eIF4A1 downregulated E-cadherin expression through the c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential feedback loop between eIF4A1 and c-MYC, RocA monotherapy is a promising treatment inhibiting eIF4A1-induced PDAC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02390-0.
Collapse
Affiliation(s)
- Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.,Departement of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Yilei Yang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| | - Zhou Luan
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No. 1095, Wuhan, 430030, China.
| |
Collapse
|
49
|
Qin Y, Zheng Y, Huang C, Li Y, Gu M, Wu Q. Knockdown of circSMAD2 inhibits the tumorigenesis of gallbladder cancer through binding with eIF4A3. BMC Cancer 2021; 21:1172. [PMID: 34727877 PMCID: PMC8564960 DOI: 10.1186/s12885-021-08895-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/08/2021] [Indexed: 01/17/2023] Open
Abstract
Background Gallbladder cancer (GBC) is the seventh most common gastrointestinal cancer worldwide. This study aimed to investigate the function of circSMAD2 in GBC. Methods To investigate the function of circSMAD2 in GBC, the level of circSMAD2 in GBC cells was detected by RT-qPCR. CCK-8 assay was performed to investigate the cell viability. Cell apoptosis was tested by flow cytometry. In addition, transwell assay was used to detect the cell migration and invasion. RIP and RNA pull-down were used to explore the relation among circSMAD2, eIF4A3 and SMAD2. Meanwhile, xenograft mice model was established to investigate the function of circSMAD2 in GBC. Results The data revealed that circSMAD2 was upregulated in GBC, and circSMAD2 knockdown significantly inhibited the viability of GBC cells. In addition, circSMAD2 siRNA notably induced the apoptosis in GBC cells. The migration and invasion of GBC cells were obviously suppressed in the presence of circSMAD2 siRNA. Meanwhile, circSMAD2 suppressed the binding between eukaryotic translation initiation factor 4A3 (eIF4A3) and SMAD2 through binding with eIF4A3. Knockdown of circSMAD2 notably inhibited the expression of SMAD2 in GBC cells, and SMAD2 overexpression partially reversed the anti-tumor effect of circSMAD2 knockdown. Finally, circSMAD2 siRNA significantly inhibited the tumor growth of GBC in vivo. Conclusion Knockdown of circSMAD2 inhibits the tumorigenesis of gallbladder cancer through binding with eIF4A3. Thus, our study provided a new strategy for the treatment of GBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08895-1.
Collapse
Affiliation(s)
- Yiyu Qin
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China.
| | - Yongliang Zheng
- Rehabilitation College, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Cheng Huang
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Yuanyuan Li
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Min Gu
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| | - Qin Wu
- Clinical Medical College, Jiangsu Vocational College of Medicine, 283 Jiefang South Road, Yancheng, 224005, Jiangsu, China
| |
Collapse
|
50
|
Ho JJD, Cunningham TA, Manara P, Coughlin CA, Arumov A, Roberts ER, Osteen A, Kumar P, Bilbao D, Krieger JR, Lee S, Schatz JH. Proteomics reveal cap-dependent translation inhibitors remodel the translation machinery and translatome. Cell Rep 2021; 37:109806. [PMID: 34644561 PMCID: PMC8558842 DOI: 10.1016/j.celrep.2021.109806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple “translational inhibition” as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical “translation inhibitors” is mediated by comprehensive translational landscape remodeling. Tactical protein synthesis inhibition is actively pursued as a cancer therapy that bypasses signaling redundancies limiting current strategies. Ho et al. show that rocaglates, first identified as inhibitors of eIF4A activity, globally reprogram cellular translation at both protein synthesis machinery and translatome levels, inducing cytotoxicity through anti-survival GEF-H1/RHOA/JNK signaling.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Tyler A Cunningham
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paola Manara
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Caroline A Coughlin
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Artavazd Arumov
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Evan R Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ashanti Osteen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Preet Kumar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Stephen Lee
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|