1
|
Luo S, Liao Z, Huang S, Xia X, Zhang Z, Nong B, Luo T, Zhu C, Chen C, Guo H, Feng R, Pan Y, Liang S, Li Y, Liu J, Qiu Y, Li D, Yang X. Genome-wide association study and BSR-seq identify nitrate reductase-related genes in rice landraces (Oryza sativa L.). THE PLANT GENOME 2025; 18:e70035. [PMID: 40281663 PMCID: PMC12032047 DOI: 10.1002/tpg2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 04/29/2025]
Abstract
Nitrogen (N) is an essential nutrient for rice (Oryza sativa L.) growth and development. However, the lower nitrogen use efficiency (NUE) results in an N fertilizer surplus, which causes many environmental problems. In this study, genome-wide association studies were used to detect nitrate reductase (NR)-related loci in 419 rice landraces. Using the general linear model (GLM), mixed linear model (MLM), linear model (LM), and linear mixed model (LMM), we found six, nine, seven, and six significant single-nucleotide polymorphisms (SNPs) associated (p < 1 × 10-5) for three traits. Moreover, 98 significant SNPs were associated (logarithm of odds ≥ 3) with three traits through 3 V multi-locus random-SNP-effect mixed linear model. Interestingly, we found that Chr1_15896481 was significantly associated in the GLM, MLM, LM, and LMM models. Meanwhile, this significant locus overlapped with a candidate region in bulked segregant RNA sequencing. Through integrated analysis, we identified a most likely candidate genomic region 15,627,420-16,084,761 bp on chromosome 1. By performing functional annotation, RNA sequencing, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis for the genes within this interval, we identified five candidate genes that may affect NR activity. Os01g0378400 exhibits a gene expression pattern highly similar to that of OsNR1.2. It belongs to the NAC transcription factor family, which is involved in plant N metabolism. Os01g0377700 is homologous to an ammonium transporter gene (Cre06g293051). Os01g0383700 encodes a WD40 domain protein, Os01g0379400 encodes an F-box protein, and Os01g0382800 encodes a DYW-type PPR domain protein. These findings will provide valuable genetic resources for NUE genetic improvement in rice breeding.
Collapse
Affiliation(s)
- Shuangshuang Luo
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zuyu Liao
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Shilv Huang
- Microbiology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Chenli Zhu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Shuhui Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yongcheng Li
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jianhui Liu
- College of AgricultureGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yongfu Qiu
- College of AgricultureGuangxi UniversityNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesNanningChina
| |
Collapse
|
2
|
Xu S, Wei Y, Zhao P, Sun Y, Gao K, Yin C, Wang C, Fang R, Ye J. A Nitrate Transporter OsNPF6.1 Promotes Nitric Oxide Signaling and Virus Resistance. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40390394 DOI: 10.1111/pce.15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/24/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Nitric oxide (NO) is a vital immune molecule eliciting resistance to diverse microbial pathogens in humans and animals. However, its functional integration into plant immune networks remains incompletely characterized. In this study, we reveal that both endogenous induction and exogenous supplementation of NO significantly enhance resistance to rice stripe virus (RSV), a Bunyavirus that poses a huge threat to rice production. The nitrate transporter OsNPF6.1 potentiates virus resistance by upregulating the expression of nitrate reductase (OsNR2) and subsequent NO biosynthesis. Functional analyses demonstrate that the disease-specific protein (SP) encoded by RSV interacts with OsNPF6.1 to impair its nitrate transport activity, effectively subverting host immunity to facilitate RSV infection. Notably, this host-pathogen interaction exhibits nitrogen dependency: low nitrate availability attenuates the OsNPF6.1-SP association, preserving transporter functionality and virus resistance. Thus, this study not only provides novel insights into the coordination of growth-defense tradeoffs but also proposes actionable strategies for crop protection via optimized nitrogen management.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wei
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pingzhi Zhao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanwei Sun
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kaixing Gao
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cece Yin
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Rongxiang Fang
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- Department of Agri-microbiomics and Biotechnology, State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Liu H, Gao X, Fan W, Fu X. Optimizing carbon and nitrogen metabolism in plants: From fundamental principles to practical applications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40376749 DOI: 10.1111/jipb.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Carbon (C) and nitrogen (N) are fundamental elements essential for plant growth and development, serving as the structural and functional backbone of organic compounds and driving essential biological processes such as photosynthesis, carbohydrate metabolism, and N assimilation. The metabolism and transport of C involve the movement of sugars between shoots and roots through xylem and phloem transport systems, regulated by a sugar-signaling hub. Nitrogen uptake, transport, and metabolism are equally critical, with plants assimilating nitrate and ammonium through specialized transporters and enzymes in response to varying N levels to optimize growth and development. The coordination of C and N metabolism is key to plant productivity and the maintaining of agroecosystem stability. However, inefficient utilization of N fertilizers results in substantial environmental and economic challenges, emphasizing the urgent need to improve N use efficiency (NUE) in crops. Integrating efficient photosynthesis with N uptake offers opportunities for sustainable agricultural practices. This review discusses recent advances in understanding C and N transport, metabolism, and signaling in plants, with a particular emphasis on NUE-related genes in rice, and explores breeding strategies to enhance crop efficiency and agricultural sustainability.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuhua Gao
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weishu Fan
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiangdong Fu
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- New Cornerstone Science Laboratory, College of Life Science, Beijing, 100049, China
| |
Collapse
|
4
|
Fang T, Wang Y, Chen H, Qu J, Xiao P, Wang Y, Jiang X, Li C, Liu JH. Genome-wide identification and expression profiles of NAC transcription factors in Poncirus trifoliata reveal their potential roles in cold tolerance. BMC PLANT BIOLOGY 2025; 25:633. [PMID: 40369459 PMCID: PMC12076880 DOI: 10.1186/s12870-025-06680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Citrus, a globally vital economic crop, faces severe challenges due to extreme climatic conditions and diseases/pests attack. Poncirus trifoliata is closely related to citrus and shows unique cold tolerance, making it a crucial material for unraveling genes involved in cold tolerance. NAC (NAM, ATAF1/2, CUC2) transcription factors play important roles in plant growth, development, and stress responses. However, their evolution patterns and gene functions in citrus remain poorly studied. This study aims to elucidate the genomic characteristics and evolution of the NAC genes in P. trifoliata, and to analyze their expression patterns and conduct functional validation under cold stress. RESULTS Genome-wide analysis identified 135 PtrNAC genes in P. trifoliata with non-random chromosomal distribution, including 20 gene clusters. 57.78% of the NAC genes are located in the chromosomes 3, 4 and 5. Gene duplication analysis revealed that proximal and tandem duplications as primary expansion mechanisms, with tandem repeats specifically driving gene expansion in citrus lineages (subfamilies IV, V, and VII). Collinearity analysis showed that 24.44% of the PtrNAC genes were retained in homologous regions, and Ka/Ks ratio analysis further confirmed that purifying selection dominated their evolutionary process. Transcriptome landscapes revealed that Pt5g024390 (PtrNAC2) was induced to the greatest degree under the cold stress. Meanwhile, expression level of PtrNAC2 in tetraploid was more than two folds higher compared to diploid counterpart in the presence of cold stress. Virus-induced gene silencing of PtrNAC2 led to significantly enhanced cold tolerance, implying that it plays a negative role in regulation of cold tolerance. CONCLUSION This study systematically elucidated the global distribution and evolutionary patterns of NAC genes in P. trifoliata. In addition, the NAC gene exhibit adaptive expansion driven by tandem duplications. The identification of PtrNAC2, a negative regulator of cold tolerance in P. trifoliata, provides valuable insights into unravelling potential candidates for engineering cold tolerance in citrus.
Collapse
Affiliation(s)
- Tian Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haowei Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
5
|
Li Z, Chen H, Yuan DP, Jiang X, Li ZM, Wang ST, Zhou TG, Zhu HY, Bian Q, Zhu XF, Xuan YH. IDD10-NAC079 transcription factor complex regulates sheath blight resistance by inhibiting ethylene signaling in rice. J Adv Res 2025; 71:93-106. [PMID: 38825317 DOI: 10.1016/j.jare.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024] Open
Abstract
INTRODUCTION Rhizoctonia solani Kühn is a pathogen causing rice sheath blight (ShB). Ammonium transporter 1 (AMT1) promotes resistance of rice to ShB by activating ethylene signaling. However, how AMT1 activates ethylene signaling remains unclear. OBJECTIVE In this study, the indeterminate domain 10 (IDD10)-NAC079 interaction model was used to investigate whether ethylene signaling is modulated downstream of ammonium signaling and modulates ammonium-mediated ShB resistance. METHODS RT-qPCR assay was used to identify the relative expression levels of nitrogen and ethylene related genes. Yeast two-hybrid assays, Bimolecular fluorescence complementation (BiFC) and Co-immunoprecipitation (Co-IP) assay were conducted to verify the IDD10-NAC079-calcineurin B-like interacting protein kinase 31 (CIPK31) transcriptional complex. Yeast one-hybrid assay, Chromatin immunoprecipitation (ChIP) assay, and Electrophoretic mobility shift assay (EMSA) were used to verify whether ETR2 was activated by IDD10 and NAC079. Ethylene quantification assay was used to verify ethylene content in IDD10 transgenic plants. Genetic analysis is used to detect the response of IDD10, NAC079 and CIPK31 to ShB infestation. RESULTS IDD10-NAC079 forms a transcription complex that activates ETR2 to inhibit the ethylene signaling pathway to negatively regulating ShB resistance. CIPK31 interacts and phosphorylates NAC079 to enhance its transcriptional activation activity. In addition, AMT1-mediated ammonium absorption and subsequent N assimilation inhibit the expression of IDD10 and CIPK31 to activate the ethylene signaling pathway, which positively regulates ShB resistance. CONCLUSION The study identified the link between ammonium and ethylene signaling and improved the understanding of the rice resistance mechanism.
Collapse
Affiliation(s)
- Zhuo Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - De Peng Yuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China
| | - Xu Jiang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Zhi Min Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Si Ting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian Ge Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Yao Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Hou L, Chen D, Pan X, Jiang S, Liu J, Li Q, Liu Y, Tong Y, Zhu L, Hu J, Zhang G, Dong G, Zhang Q, Ren D, Shen L, Guo L, Qian Q, Gao Z. 9311 allele of OsNAR2.2 enhances nitrate transport to improve rice yield and nitrogen use efficiency. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40162885 DOI: 10.1111/pbi.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Improving nitrogen use efficiency (NUE) in rice is a requirement for future sustainable agricultural production. However, key factors and regulatory networks involved in NUE remain unclear. Here, QTL analysis, fine-mapping and functional validation demonstrated that qCR4 encodes a putative high-affinity nitrate transporter-activating protein 2.2 (OsNAR2.2). Located in the endoplasmic reticulum (ER), OsNAR2.2 was confirmed to regulate nitrate transport from root-to-shoot and control panicle number, grain yield and NUE in rice. RNA-seq and RT-qPCR revealed that OsNAR2.2 modulates nitrogen utilization by altering the expressions of some nitrogen metabolism-related genes and auxin signal-related genes. Furthermore, the 9311 allele of OsNAR2.2 significantly enhanced panicle number, grain yield and NUE, which provides a potential target for rice yield and NUE improvement.
Collapse
Affiliation(s)
- Linlin Hou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiangjian Pan
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shenghang Jiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jiajia Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yuanyuan Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yi Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Sanya Nan Fan Research Institute of Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yan M, Feng H, Gu M, Mei H, Wang L, Xu K, Chen S, Zhang A, Zhou L, Xu X, Fan P, Chen L, Feng F, Xu G, Luo L, Xia H. Variation in the promoter of OsNPF7.1 contributes to nitrate uptake, remobilization, and grain yield in upland rice. J Genet Genomics 2025:S1673-8527(25)00083-9. [PMID: 40154598 DOI: 10.1016/j.jgg.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Affiliation(s)
- Ming Yan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Huimin Feng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mian Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hanwei Mei
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lei Wang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Kai Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Shoujun Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Anning Zhang
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liguo Zhou
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Xiaoyan Xu
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Peiqing Fan
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Liang Chen
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Fangjun Feng
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lijun Luo
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Hui Xia
- MOA Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Shanghai Agrobiological Gene Center, Shanghai 201106, China; College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Zhang K, Yang Q, Bo Y, Zhou Y, Liao N, Lyu X, Yang J, Hu Z, Zhang M. Genome-Wide Association Study Identifies the Serine/Threonine Kinase ClSIK1 for Low Nitrogen Tolerance in Watermelon Species. PLANT, CELL & ENVIRONMENT 2025; 48:2111-2124. [PMID: 39552475 DOI: 10.1111/pce.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Plants have evolved multiple complex mechanisms enabling them to adapt to low nitrogen (LN) stress via increased nitrogen use efficiency (NUE) as nitrogen deficiency in soil is a major factor limiting plant growth and development. However, the adaptive process and evolutionary roles of LN tolerance-related genes in plants remain largely unknown. In this study, we resequenced 191 watermelon accessions and examined their phenotypic differences related to LN tolerance. A major gene ClSIK1 encoding a serine/threonine protein kinase involved in the response to LN stress was identified on chromosome 11 using genome-wide association study and RNA-Seq analysis. According to a functional analysis, ClSIK1 overexpression can increase the root area, total biomass, NUE and LN tolerance by manipulating multiple nitrogen-metabolized genes. Interestingly, the desirable LN-tolerant haplotype ClSIK1HapC was detected in only one wild relative (Citrullus mucosospermus) and likely gradually lost during watermelon domestication and improvement. This study clarified the regulatory effects of ClSIK1 on NUE and adaptations to LN stress, which also identifying valuable haplotypes-resolved gene variants for molecular design breeding of 'green' watermelon varieties highly tolerant to LN stress.
Collapse
Affiliation(s)
- Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Qinrong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Nanqiao Liao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Ningbo Weimeng Seed Company, Ningbo, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
9
|
Zhang M, Wang Y, Wu Q, Sun Y, Zhao C, Ge M, Zhou L, Zhang T, Zhang W, Qian Y, Ruan L, Zhao H. Time-course transcriptomic analysis reveals transcription factors involved in modulating nitrogen sensibility in maize. J Genet Genomics 2025; 52:400-410. [PMID: 39395686 DOI: 10.1016/j.jgg.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Nitrogen (N) serves both as a vital macronutrient and a signaling molecule for plants. Unveiling key regulators involved in N metabolism helps dissect the mechanisms underlying N metabolism, which is essential for developing maize with high N use efficiency. Two maize lines, B73 and Ki11, show differential chlorate and low-N tolerance. Time-course transcriptomic analysis reveals that the expression of N utilization genes (NUGs) in B73 and Ki11 have distinct responsive patterns to nitrate variation. By the coexpression networks, significant differences in the number of N response modules and regulatory networks of transcription factors (TFs) are revealed between B73 and Ki11. There are 23 unique TFs in B73 and 41 unique TFs in Ki11. MADS26 is a unique TF in the B73 N response network, with different expression levels and N response patterns in B73 and Ki11. Overexpression of MADS26 enhances the sensitivity to chlorate and the utilization of nitrate in maize, at least partially explaining the differential chlorate tolerance and low-N sensitivity between B73 and Ki11. The findings in this work provide unique insights and promising candidates for maize breeding to reduce unnecessary N overuse.
Collapse
Affiliation(s)
- Mingliang Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yuancong Wang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Qi Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Yangming Sun
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Chenxu Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wei Zhang
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Yiliang Qian
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Long Ruan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230041, China
| | - Han Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| |
Collapse
|
10
|
Fan X, Lu C, Khan Z, Li Z, Duan S, Shen H, Fu Y. Mixed Ammonium-Nitrate Nutrition Regulates Enzymes, Gene Expression, and Metabolic Pathways to Improve Nitrogen Uptake, Partitioning, and Utilization Efficiency in Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:611. [PMID: 40006870 PMCID: PMC11859190 DOI: 10.3390/plants14040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Ammonium and nitrate nitrogen are the two main forms of inorganic nitrogen (N) available to crops. However, it is not clear how mixtures of ammonium and nitrate N affect N uptake and partitioning in major rice cultivars in southern China. This study investigated the effects of different ammonium nitrogen and nitrate nitrogen mixture treatments (100:0, 75:25, 50:50, 25:75, and 0:100) on the growth, photosynthetic characteristics, nitrogen uptake, gene expression, and yield of different rice cultivars (Mei Xiang Zhan NO. 2: MXZ2; Nan Jing Xiang Zhan: NJXZ). Rice root biomass, tiller number, and yield were increased by 69.5%, 42.5%, and 46.8%, respectively, in the 75:25 ammonium-nitrate mixed treatment compared to the 100:0 ammonium-nitrate mixed treatment. The nitrogen content in rice roots, stems, leaves, and grains increased by 69.5%, 64.0%, 65.5%, and 17.5%, respectively. In addition, compared with MXZ2, NJXZ had a greater proportion of N allocated to leaves and grains. Analysis of root enzyme activities revealed that the 75:25 ammonium-nitrate mixed nutrient treatment increased rice root glutamine synthetase activity by an average of 35.0% and glutamate synthetase activity by an average of 52.0%. Transcriptome analysis revealed that the 75:25 mixed ammonium-nitrate nutrient treatment upregulated the expression of genes related to the nitrogen metabolism transporter pathway. Weighted correlation network analysis revealed that some differentially expressed genes (HISX and RPAB5) regulated the activities of nitrogen-metabolizing enzymes in rice and some (SAT2, CYSKP, SYIM, CHI1, and XIP1) modulated amino acid synthesis; greater expression of these genes was detected in the 75:25 ammonium-nitrate mixed nutrient treatment. The expression characteristics of the above genes were further confirmed by RT‒qPCR. Interestingly, the expression levels of the above genes were significantly correlated with the glutamate synthase activity, photosynthetic rate, and root volume. It is noteworthy that increasing the expression of the aforementioned genes coupled with nitrogen uptake was observed in the three main rice cultivars. These results suggest that the 75:25 ammonium-nitrate mixture may have increased nitrogen-metabolizing enzyme activities and promoted nitrogen uptake through the upregulated expression of nitrogen metabolism-related genes, thereby increasing tiller number and improving rice yield.
Collapse
Affiliation(s)
- Xianting Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chusheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zaid Khan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Zhiming Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Songpo Duan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.F.); (C.L.); (Z.K.); (Z.L.); (S.D.)
| | - Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Key Laboratory of Rice Science and Technology, Guangzhou 510640, China
- Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| |
Collapse
|
11
|
Ji P, Xu C, Ling F, Li X, Qi Z, Chen Y, Liu X, Zhang Z, Wang J, Luo Z, Cheng Z, Chen J. Improvement in Nitrogen-Use Efficiency Increases Salt Stress Tolerance in Rice Seedlings and Grain Yield in Salinized Soil. PLANTS (BASEL, SWITZERLAND) 2025; 14:556. [PMID: 40006815 PMCID: PMC11858976 DOI: 10.3390/plants14040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Salt stress has become a major limiting factor of rice (Oryza sativa L.) yield worldwide. Appropriate nitrogen application contributes to improvement in the salt tolerance of rice. Here, we show that improvement in nitrogen-use efficiency increases salt stress tolerance in rice. Rice varieties with different nitrogen-use efficiencies were subjected to salt stress; they were stimulated with 50, 100, and 150 mmol/L of NaCl solution at the seedling stage and subjected to salinities of 0.2, 0.4%, and 0.6% at the reproductive growth stage. Compared with nitrogen-inefficient rice varieties, the nitrogen-efficient rice varieties showed significant increases in the expression levels of nitrogen-use-efficiency-related genes (TOND1 and OsNPF6.1), nitrogen content (5.1-12.1%), and nitrogen-use enzyme activities (11.7-36.4%) when under salt stress conditions. The nitrogen-efficient rice varieties showed a better adaptation to salt stress, as shown by the decrease in leaf-withering rate (4.7-10.3%), the higher chlorophyll (3.8-9.7%) and water contents (1.1-9.2%), and the better root status (7.3-9.1%) found in the rice seedlings under salt stress conditions. Analysis of physiological indexes revealed that the nitrogen-efficient rice varieties accumulated higher osmotic adjustment substances (9.7-79.9%), lower ROS (23.1-190.8%) and Na+ (15.9-97.5%) contents, higher expression levels of salt stress-related genes in rice seedlings under salt stress conditions. Furthermore, the nitrogen-efficient rice varieties showed higher yield under salt stress, as shown by a lower salt-induced decrease in 1000-grain weight (2.1-6.2%), harvest index (1.4-4.9%), and grain yield (2.8-4.1%) at the reproductive growth stage in salinized soil. Conversely, the nitrogen-efficient rice varieties showed better growth and physiological metabolism statuses under severe salt stress conditions. Our results suggest that nitrogen-efficient rice varieties could improve nitrogen-use and transport efficiency; accordingly, their use can improve the gene expression network, alleviating salt damage and improving grain yield under severe salt stress conditions.
Collapse
Affiliation(s)
- Ping Ji
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Chen Xu
- Institute of Agricultural Resources and Environment, Jilin Academy of Agriculture Sciences, Changchun 130033, China;
| | - Fenglou Ling
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xingjie Li
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Zexin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yunfeng Chen
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Xiaolong Liu
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Zhian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Jinze Wang
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Zhiyang Luo
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Ziwen Cheng
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| | - Jianrui Chen
- College of Life Sciences and Resources and Environment, Yichun University, Yichun 336000, China; (P.J.)
| |
Collapse
|
12
|
Luo C, Dai H, Liang S, Zhao H, Zhou L. Integration of GWAS and Co-Expression Network Analysis Identified Main Genes Responsible for Nitrogen Uptake Traits in Seedling Waxy Corn. Genes (Basel) 2025; 16:126. [PMID: 40004455 PMCID: PMC11854815 DOI: 10.3390/genes16020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Waxy corn has a unique taste and flavor that a majority of consumers love, and the market application prospect is broad. Nitrogen plays an important role in the growth and development of waxy corn. Exploring the key genes that affect nitrogen absorption can lay a foundation for improving the quality of waxy corn. Methods: In this study, a total of 534 local waxy corn inbred lines were used to perform genome-wide association studies (GWAS) to mine the significant Quantitative Trait Nucleotides (QTNs) for nitrogen content of waxy corn at seedling stage in two different environments. The Weighted Gene Co-Expression Network Analysis (WGCNA) nitrogen response co-expression network was also constructed to explore the differences of gene expression patterns and the co-expression relationship between transcription factors and functional genes to find candidate genes significantly associated with nitrogen uptake in waxy corn. Results: A total of 97 significant associations (LOD-value ≥ 3) were detected between SNPs and nitrate content traits under single and multi-environment conditions. Fifty-four candidate genes were identified around the significant SNPs in about a 20 Kb region. Combined with nitrogen response differential co-expression network analysis, 17 out of the 54 candidate genes were identified in the nitrogen response module, among which 4 main genes (Zm00001d029012, Zm00001d034035, Zm00001d007890, and Zm00001d045097) were repeatedly detected in multiple environments. Conclusions: This study jointly identified four stable and heritable candidate genes involved in the nitrogen metabolism process through GWAS and co-expression network analysis. The results of this study provide theoretical guidance for further elucidating the genetic mechanism of nitrogen efficiency in waxy corn and breeding new germplasm of waxy corn.
Collapse
Affiliation(s)
- Chunmei Luo
- College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China;
| | - Huixue Dai
- Nanjing Vegetables Research Institute, Nanjing 210042, China
| | - Shuaiqiang Liang
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| | - Han Zhao
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| | - Ling Zhou
- Jiangsu Academy of Agricultural Sciences, Institute of Genetic Resources and Biotechnology, Nanjing 210014, China (H.Z.)
| |
Collapse
|
13
|
Jiang D, Xu L, Wen W. A novel transcription factor CsSNACA2 plays a pivotal role within nitrogen assimilation in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17198. [PMID: 39661731 DOI: 10.1111/tpj.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
Tea (Camellia sinensis) is a globally renowned economic crop, with organs such as leaves and buds utilized for consumption. As a perennial foliage crop, tea plants have high-nitrogen consumption and demand but exhibit relatively low nitrogen use efficiency. Exploring the genetic factors involved in nitrogen assimilation in tea plants could lead to improvements in both tea yield and quality. Here, we first conducted transcriptome sequencing on two tissues (roots and young leaves) under two different nitrate levels (0.2 and 2.5 mm KNO3) and at six time points (0, 15, and 45 min; 2 and 6 h and 2 days). Differential gene expression patterns were observed for several genes that exhibited altered expression at 2 h. Clustering and enrichment analyses, along with co-expression network construction, provided evidence for the crucial involvement of CsSNACA2 in nitrogen assimilation. CsSNACA2 overexpression elicited pronounced phenotypic changes in nitrogen-deficient plants. Furthermore, CsSNACA2 suppressed the expression of CsNR (encoding nitrate reductase) and CsCLCa (encoding aNO 3 - /H+ exchanger). Moreover, CsSNACA2 served as a downstream target of CsSPL6.1. In addition, we characterized Csi-miR156e and Csi-miR156k, which directly cleave CsSPL6.1. This study identified a transcription factor module participating in nitrogen assimilation in tea plants, providing a genetic foundation for future innovations in tea cultivar improvement. These results broaden our understanding of the genetic mechanisms governing nitrogen assimilation in dicotyledonous plants.
Collapse
Affiliation(s)
- Deyuan Jiang
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Xu
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Weiwei Wen
- National Key Lab for Germplasm Innovation and Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
14
|
Hu Q, Zhang K, Jiang W, Qiu S, Li G, Xu F, Zhu Y, Liu G, Gao H, Zhang H, Wei H. Coordination of Carbon and Nitrogen Metabolism Through Well-Timed Mid-Stage Nitrogen Compensation in Japonica Super Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3351. [PMID: 39683143 DOI: 10.3390/plants13233351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The carbon and nitrogen (N) metabolism of rice under different mid-stage N compensation timings is unclear. Two Japonica super rice cultivars were examined under four N compensation timings (N1-N3: N compensation at mid-tillering, panicle initiation, and spikelet differentiation. N0: no N compensation) and CK with no N application. Mid-stage N compensation increased the N concentrations of various tissues, and N2 showed the highest plant N uptake at both the heading stage, maturity, and the grain filling period. Among the treatments, N2 showed the highest N utilization efficiency. With delayed compensation timing, there was a gradual decrease in soluble sugar and starch concentrations in each tissue, accompanied by a decline in the non-structural carbohydrate (NSC) concentration. Specifically, N2 treatment exhibited the highest NSC accumulation and the remobilized NSC reserve, but NSCs per spikelet decreased with delayed compensation timing. The highest yield was also obtained with N2, exhibiting a 4.5% increase compared to the N0 treatment, primarily due to an improvement in spikelets per panicle. Conclusively, N compensation at the panicle initiation stage is a reasonable N management strategy that can coordinate the improvement of carbon and N metabolism, enhance N accumulation with efficient utilization and NSC accumulation, and ultimately increase the yield.
Collapse
Affiliation(s)
- Qun Hu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Kaiwei Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiqin Jiang
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an 223001, China
| | - Shi Qiu
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guangyan Li
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Fangfu Xu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Guodong Liu
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hui Gao
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Salama EAA, Kambale R, Gnanapanditha Mohan SV, Premnath A, Fathy Yousef A, Moursy ARA, Abdelsalam NR, Abd El Moneim D, Muthurajan R, Manikanda Boopathi N. Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency. Gene 2024; 927:148715. [PMID: 38909967 DOI: 10.1016/j.gene.2024.148715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.
Collapse
Affiliation(s)
- Ehab A A Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Shobhana V Gnanapanditha Mohan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ameena Premnath
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt.
| | - Ali R A Moursy
- Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt.
| | - Nader R Abdelsalam
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt.
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
16
|
Wu B, Yang G, Huang W, Ruan J, Fang Z. Altered expression of amino acid permease OsAAP11 mediates bud outgrowth and tillering by regulating transport and accumulation of amino acids in rice. Int J Biol Macromol 2024; 280:136230. [PMID: 39362435 DOI: 10.1016/j.ijbiomac.2024.136230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guo Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jingjun Ruan
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
17
|
Ge Y, Chen G, Cheng X, Li C, Tian Y, Chi W, Li J, Dai Z, Wang C, Duan E, Liu Y, Sun Z, Li J, Wang B, Xu D, Sun X, Zhang H, Zhang W, Wang C, Wan J. The superior allele LEA12 OR in wild rice enhances salt tolerance and yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2971-2984. [PMID: 38923790 PMCID: PMC11501004 DOI: 10.1111/pbi.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Soil salinity has negative impacts on food security and sustainable agriculture. Ion homeostasis, osmotic adjustment and reactive oxygen species scavenging are the main approaches utilized by rice to resist salt stress. Breeding rice cultivars with high salt tolerance (ST) and yield is a significant challenge due to the lack of elite alleles conferring ST. Here, we report that the elite allele LEA12OR, which encodes a late embryogenesis abundant (LEA) protein from the wild rice Oryza rufipogon Griff., improves osmotic adjustment and increases yield under salt stress. Mechanistically, LEA12OR, as the early regulator of the LEA12OR-OsSAPK10-OsbZIP86-OsNCED3 functional module, maintains the kinase stability of OsSAPK10 under salt stress, thereby conferring ST by promoting abscisic acid biosynthesis and accumulation in rice. The superior allele LEA12OR provides a new avenue for improving ST and yield via the application of LEA12OR in current rice through molecular breeding and genome editing.
Collapse
Affiliation(s)
- Yuwei Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Jin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Erchao Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Yan Liu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Jingfang Li
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Dayong Xu
- Lianyungang Academy of Agricultural ScienceLianyungangJiangsuChina
| | - Xianjun Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| | - Hui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- Zhongshan Biological Breeding LaboratorySouthern Japonica Rice R&D Corporation LtdNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of AgriculturalSciencesBeijingChina
| |
Collapse
|
18
|
Jin F, Huang W, Xie P, Wu B, Zhao Q, Fang Z. Amino acid permease OsAAP12 negatively regulates rice tillers and grain yield by transporting specific amino acids to affect nitrogen and cytokinin pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112202. [PMID: 39069009 DOI: 10.1016/j.plantsci.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Amino acids are necessary nutrients for the growth of Oryza sativa (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene OsAAP12 differed between indica and japonica rice. Altered expression of OsAAP12 negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in OsAAP12 overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in OsAAP12 modified lines. Hormone assays indicated that OsAAP12 mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of OsAAP12 boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
19
|
Xin W, Chen N, Wang J, Liu Y, Sun Y, Han B, Wang X, Liu Z, Liu H, Zheng H, Yang L, Zou D, Wang J. Candidate gene analysis of rice grain shape based on genome-wide association study. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:241. [PMID: 39342533 DOI: 10.1007/s00122-024-04724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
KEY MESSAGE Thirteen QTLs associated with rice grain shape were localized by genome-wide association study. LOC_Os01g74020, the putative candidate gene in the co-localized QTL-qGSE1.2 interval, was identified and validated. Grain shape (GS) is a key trait that affects yield and quality of rice. Identifying and analyzing GS-related genes and elucidating the physiological, biochemical and molecular mechanisms are important for rice breeding. In this study, genome-wide association studies (GWAS) were conducted based on 1, 795, 076 single-nucleotide polymorphisms (SNPs) and three GS-related traits, grain length (GL), grain width (GW) and thousand-grain weight (TGW), in a natural population which comprised 374 rice varieties. A total of 13 quantitative trait locus (QTLs) related to GL, GW and TGW were identified, respectively, of which two QTLs (qGSE1.2 and qGSE5.3) were associated with both GL and TGW. A known key GS regulatory gene, GW5, was present in the interval of qGSE5.3. Based on the qRT-PCR results, LOC_Os01g74020 (OsGSE1.2) was identified as a GS candidate gene. Functional analysis of OsGSE1.2 showed that glume cell width and GW were significantly reduced, and that glume cell length, GL, TGW and single-plant yield were significantly increased in OsGSE1.2 knockout lines than those of wild type. OsGSE1.2 affects rice grain length by suppressing the elongation of glume cell and is a novel GS regulatory gene. These findings laid the foundation for molecular breeding to improve rice GS and increase rice yield and profitability.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Ning Chen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Jiaqi Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Yilei Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Yifeng Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Baojia Han
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Xinghua Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Zijie Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Northeast Agricultural University, Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
20
|
Li Y, Tian X, Liu T, Shi Y, Li Y, Wang H, Cui Y, Lu S, Gong X, Mao K, Li M, Ma F, Li C. MdSINA2-MdNAC104 Module Regulates Apple Alkaline Resistance by Affecting γ-Aminobutyric Acid Synthesis and Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400930. [PMID: 39032167 PMCID: PMC11425205 DOI: 10.1002/advs.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Indexed: 07/22/2024]
Abstract
Soil alkalization is an adverse factor limiting plant growth and yield. As a signaling molecule and secondary metabolite, γ-aminobutyric acid (GABA) responds rapidly to alkaline stress and enhances the alkaline resistance of plants. However, the molecular mechanisms by which the GABA pathway adapts to alkaline stress remain unclear. In this study, a transcription factor, MdNAC104 is identified, from the transcriptome of the alkaline-stressed roots of apple, which effectively reduces GABA levels and negatively regulates alkaline resistance. Nevertheless, applying exogenous GABA compensates the negative regulatory mechanism of overexpressed MdNAC104 on alkaline resistance. Further research confirms that MdNAC104 repressed the GABA biosynthetic gene MdGAD1/3 and the GABA transporter gene MdALMT13 by binding to their promoters. Here, MdGAD1/3 actively regulates alkaline resistance by increasing GABA synthesis, while MdALMT13 promotes GABA accumulation and efflux in roots, resulting in an improved resistance to alkaline stress. This subsequent assays reveal that MdSINA2 interacts with MdNAC104 and positively regulates root GABA content and alkaline resistance by ubiquitinating and degrading MdNAC104 via the 26S proteasome pathway. Thus, the study reveals the regulation of alkaline resistance and GABA homeostasis via the MdSINA2-MdNAC104-MdGAD1/3/MdALMT13 module in apple. These findings provide novel insight into the molecular mechanisms of alkaline resistance in plants.
Collapse
Affiliation(s)
- Yuxing Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiaocheng Tian
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Tanfang Liu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yanjiao Shi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yunhao Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hongtao Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yinglian Cui
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Shuaiyu Lu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Xiaoqing Gong
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ke Mao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| | - Cuiying Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production/Shaanxi Key Laboratory of AppleCollege of HorticultureNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
21
|
Yin W, Yang H, Feng P, Qi P, Li B, Li Y, Huang Q, Peng Y, Wang N, Hu Y. Rapid function analysis of OsiWAK1 using a Dual-Luciferase assay in rice. Sci Rep 2024; 14:19412. [PMID: 39169077 PMCID: PMC11339413 DOI: 10.1038/s41598-024-69955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
In the past decade, the exploration of genetic resources in rice has significantly enhanced the efficacy of rice breeding. However, the exploration of genetic resources is hindered by the identification of candidate genes. To expedite the identification of candidate genes, this study examined tapetum programmed cell death-related genes OsiWAK1, OsPDT1, EAT1, TDR, and TIP2 to assess the efficacy of the Dual-Luciferase (Dual-LUC) assay in rapidly determining gene relationships. The study found that, in the Dual-LUC assay, OsiWAK1 and its various recombinant proteins exhibit comparable activation abilities on the EAT1 promoter, potentially indicating a false positive. However, the Dual-LUC assay can reveal that OsiWAK1 impacts both the function of its upstream regulatory factor OsPDT1 and the TDR/TIP2 transcription complex. By rapidly studying the relationship between diverse candidate genes and regulatory genes in a well-known trait via the Dual-LUC assay, this study provides a novel approach to expedite the determination of candidate genes such as genome-wide association study.
Collapse
Affiliation(s)
- Wuzhong Yin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hongxia Yang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Pan Qi
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Biluo Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuanyuan Li
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qingxiong Huang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Youlin Peng
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China.
| | - Yungao Hu
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
22
|
Zhang X, Zhang Q, Gao N, Liu M, Zhang C, Luo J, Sun Y, Feng Y. Nitrate transporters and mechanisms of nitrate signal transduction in Arabidopsis and rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14486. [PMID: 39187436 DOI: 10.1111/ppl.14486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Nitrate (NO3 -) is a significant inorganic nitrogen source in soil, playing a crucial role in influencing crop productivity. As sessile organisms, plants have evolved complex mechanisms for nitrate uptake and response to varying soil levels. Recent advancements have enhanced our understanding of nitrate uptake and signaling pathways. This mini-review offers a comparative analysis of nitrate uptake mechanisms in Arabidopsis and rice. It also examines nitrate signal transduction, highlighting the roles of AtNRT1.1 and AtNLP7 as nitrate receptors and elucidating the OsNRT1.1B-OsSPX4-OsNLP3 cascade. Additionally, it investigates nuclear transcriptional networks that regulate nitrate-responsive genes, controlled by various transcription factors (TFs) crucial for plant development. By integrating these findings, we highlight mechanisms that may help to enhance crop nitrogen utilization.
Collapse
Affiliation(s)
- Xiaojia Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Qian Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Na Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Mingchao Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Chang Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Jiajun Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yibo Sun
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Yulong Feng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
23
|
Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald PC, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet 2024; 56:1516-1526. [PMID: 38872029 PMCID: PMC11250373 DOI: 10.1038/s41588-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yujun Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Jinlong H, Yu Z, Ruizhi W, Xiaoyu W, Zhiming F, Qiangqiang X, Nianbing Z, Yong Z, Haiyan W, Hongcheng Z, Jinyan Z. A genome-wide association study of panicle blast resistance to Magnaporthe oryzae in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:49. [PMID: 39007057 PMCID: PMC11236831 DOI: 10.1007/s11032-024-01486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae (M. oryzae), is one of the most serious diseases worldwide. Developing blast-resistant rice varieties is an effective strategy to control the spread of rice blast and reduce the reliance on chemical pesticides. In this study, 477 sequenced rice germplasms from 48 countries were inoculated and assessed at the booting stage. We found that 23 germplasms exhibited high panicle blast resistance against M. oryzae. Genome-wide association analysis (GWAS) identified 43 quantitative trait loci (QTLs) significantly associated (P < 1.0 × 10-4) with resistance to rice panicle blast. These QTL intervals encompass four genes (OsAKT1, OsRACK1A, Bsr-k1 and Pi25/Pid3) previously reported to contribute to rice blast resistance. We selected QTLs with -Log10 (P-value) greater than 6.0 or those detected in two-year replicates, amounting to 12 QTLs, for further candidate gene analysis. Three blast resistance candidate genes (Os06g0316800, Os06g0320000, Pi25/Pid3) were identified based on significant single nucleotide polymorphisms (SNP) distributions within annotated gene sequences across these 12 QTLs and the differential expression levels among blast-resistant varieties after 72 h of inoculation. Os06g0316800 encodes a glycine-rich protein, OsGrp6, an important component of plant cell walls involved in cellular stress responses and signaling. Os06g0320000 encodes a protein with unknown function (DUF953), part of the thioredoxin-like family, which is crucial for maintaining reactive oxygen species (ROS) homeostasis in vivo, named as OsTrxl1. Lastly, Pi25/Pid3 encodes a disease resistance protein, underscoring its potential importance in plant biology. By analyzing the haplotypes of these three genes, we identified favorable haplotypes for blast resistance, providing valuable genetic resources for future rice blast resistance breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01486-5.
Collapse
Affiliation(s)
- Hu Jinlong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhang Yu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Wang Ruizhi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Wang Xiaoyu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Feng Zhiming
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Xiong Qiangqiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhou Nianbing
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhou Yong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Wei Haiyan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhang Hongcheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhu Jinyan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
25
|
Jyoti SD, Singh G, Pradhan AK, Tarpley L, Septiningsih EM, Talukder SK. Rice breeding for low input agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1408356. [PMID: 38974981 PMCID: PMC11224470 DOI: 10.3389/fpls.2024.1408356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/24/2024] [Indexed: 07/09/2024]
Abstract
A low-input-based farming system can reduce the adverse effects of modern agriculture through proper utilization of natural resources. Modern varieties often need to improve in low-input settings since they are not adapted to these systems. In addition, rice is one of the most widely cultivated crops worldwide. Enhancing rice performance under a low input system will significantly reduce the environmental concerns related to rice cultivation. Traits that help rice to maintain yield performance under minimum inputs like seedling vigor, appropriate root architecture for nutrient use efficiency should be incorporated into varieties for low input systems through integrated breeding approaches. Genes or QTLs controlling nutrient uptake, nutrient assimilation, nutrient remobilization, and root morphology need to be properly incorporated into the rice breeding pipeline. Also, genes/QTLs controlling suitable rice cultivars for sustainable farming. Since several variables influence performance under low input conditions, conventional breeding techniques make it challenging to work on many traits. However, recent advances in omics technologies have created enormous opportunities for rapidly improving multiple characteristics. This review highlights current research on features pertinent to low-input agriculture and provides an overview of alternative genomics-based breeding strategies for enhancing genetic gain in rice suitable for low-input farming practices.
Collapse
Affiliation(s)
- Subroto Das Jyoti
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Gurjeet Singh
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | | | - Lee Tarpley
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Shyamal K. Talukder
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| |
Collapse
|
26
|
Xia Z, Fan W, Liu D, Chen Y, Lv J, Xu M, Zhang M, Ren Z, Chen X, Wang X, Li L, Zhu P, Liu C, Song Z, Huang C, Wang X, Wang S, Zhao A. Haplotype-resolved chromosomal-level genome assembly reveals regulatory variations in mulberry fruit anthocyanin content. HORTICULTURE RESEARCH 2024; 11:uhae120. [PMID: 38919559 PMCID: PMC11197311 DOI: 10.1093/hr/uhae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/14/2024] [Indexed: 06/27/2024]
Abstract
Understanding the intricate regulatory mechanisms underlying the anthocyanin content (AC) in fruits and vegetables is crucial for advanced biotechnological customization. In this study, we generated high-quality haplotype-resolved genome assemblies for two mulberry cultivars: the high-AC 'Zhongsang5801' (ZS5801) and the low-AC 'Zhenzhubai' (ZZB). Additionally, we conducted a comprehensive analysis of genes associated with AC production. Through genome-wide association studies (GWAS) on 112 mulberry fruits, we identified MaVHAG3, which encodes a vacuolar-type H+-ATPase G3 subunit, as a key gene linked to purple pigmentation. To gain deeper insights into the genetic and molecular processes underlying high AC, we compared the genomes of ZS5801 and ZZB, along with fruit transcriptome data across five developmental stages, and quantified the accumulation of metabolic substances. Compared to ZZB, ZS5801 exhibited significantly more differentially expressed genes (DEGs) related to anthocyanin metabolism and higher levels of anthocyanins and flavonoids. Comparative analyses revealed expansions and contractions in the flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) genes, resulting in altered carbon flow. Co-expression analysis demonstrated that ZS5801 displayed more significant alterations in genes involved in late-stage AC regulation compared to ZZB, particularly during the phase stage. In summary, our findings provide valuable insights into the regulation of mulberry fruit AC, offering genetic resources to enhance cultivars with higher AC traits.
Collapse
Affiliation(s)
- Zhongqiang Xia
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Duanyang Liu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yuane Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jing Lv
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Mengxia Xu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Meirong Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Zuzhao Ren
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xuefei Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Xiujuan Wang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Liang Li
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Panpan Zhu
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Zhiguang Song
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Chuanshu Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing.400715, China
| | - Xiling Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuchang Wang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 570100, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
da Silva RC, Oliveira HC, Igamberdiev AU, Stasolla C, Gaspar M. Interplay between nitric oxide and inorganic nitrogen sources in root development and abiotic stress responses. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154241. [PMID: 38640547 DOI: 10.1016/j.jplph.2024.154241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Nitrogen (N) is an essential nutrient for plants, and the sources from which it is obtained can differently affect their entire development as well as stress responses. Distinct inorganic N sources (nitrate and ammonium) can lead to fluctuations in the nitric oxide (NO) levels and thus interfere with nitric oxide (NO)-mediated responses. These could lead to changes in reactive oxygen species (ROS) homeostasis, hormone synthesis and signaling, and post-translational modifications of key proteins. As the consensus suggests that NO is primarily synthesized in the reductive pathways involving nitrate and nitrite reduction, it is expected that plants grown in a nitrate-enriched environment will produce more NO than those exposed to ammonium. Although the interplay between NO and different N sources in plants has been investigated, there are still many unanswered questions that require further elucidation. By building on previous knowledge regarding NO and N nutrition, this review expands the field by examining in more detail how NO responses are influenced by different N sources, focusing mainly on root development and abiotic stress responses.
Collapse
Affiliation(s)
- Rafael Caetano da Silva
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, State University of Londrina, Londrina, PR, 86057-970, Brazil
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Marilia Gaspar
- Department of Biodiversity Conservation, Institute of Environmental Research, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
28
|
Chen M, Feng S, Lv H, Wang Z, Zeng Y, Shao C, Lin W, Zhang Z. OsCIPK2 mediated rice root microorganisms and metabolites to improve plant nitrogen uptake. BMC PLANT BIOLOGY 2024; 24:285. [PMID: 38627617 PMCID: PMC11020999 DOI: 10.1186/s12870-024-04982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.
Collapse
Affiliation(s)
- Mengying Chen
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Shizhong Feng
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - He Lv
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zewen Wang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yuhang Zeng
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Caihong Shao
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Wenxiong Lin
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhixing Zhang
- College of JunCao Science and Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
29
|
Tang W, Chen H, Zhang S, Tang J, Lin J, Fang X, Chen G, Zhang Y. A Novel Allele in the Promoter of Wx Decreases Gene Expression and Confers Lower Apparent Amylose Contents in Japonica Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:745. [PMID: 38475591 DOI: 10.3390/plants13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Wx is the key gene that controls amylose content (AC), and various alleles have been found in rice populations. Wxb is the major allele in japonica and produces moderate AC (15~18%). It was recently found that editing the promoter of Wx could produce a series of alleles that have different Wx activities. Although some studies have edited the promoter, few studies have focused on the natural variations in Wx. Here, we used the Rice3K database to investigate variations in the Wx promoter and found that the allele Wx1764178 (A/G) has a higher LD (linkage disequilibrium) with the two key SNPs (1765751, T/G; 1768006, A/C), which could produce different Wx alleles and influence AC, as reported previously. Further study showed that the Wx1764178 allele (A/G) is functional and influences the expression of Wx positively. Editing the A allele using CRISPR‒Cas9 produced 36 and 3 bp deletions and caused a decrease in the expression of Wx. The apparent amylose content (AAC) in the edited lines was decreased by 7.09% and 11.50% compared with that of the wild type, which was the japonica variety Nipponbare with Wxb and the A allele at 1764178, while a complementary line with the G allele showed a lower AAC than the A allele with no effect on other agronomic traits. The AAC of the edited lines showed a higher increase than that of the wild type (Nipponbare, Wxb) in low-nitrogen conditions relative to high-nitrogen conditions. We also developed a dCAPS marker to identify the allele and found that the G allele has widely been used (82.95%) in japonica-bred varieties from Jiangsu Province, China. Overall, we found a functional allele (Wx1764178, A/G) in the Wx promoter that could affect AAC in japonica cultivars and be developed as markers for quality improvement in rice breeding programs.
Collapse
Affiliation(s)
- Weijie Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Haiyuan Chen
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Suobing Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Jun Tang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Jing Lin
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Xianwen Fang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Chen N, Ma T, Xia S, Li C, Liu Y, Wang J, Qu G, Liu H, Zheng H, Yang L, Zou D, Wang J, Xin W. Mapping of Candidate Genes for Nitrogen Uptake and Utilization in Japonica Rice at Seedling Stage. Genes (Basel) 2024; 15:327. [PMID: 38540386 PMCID: PMC10970145 DOI: 10.3390/genes15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitrogen (N) is one of the essential nutrients for the growth and development of crops. The adequate application of N not only increases the yield of crops but also improves the quality of agricultural products, but the excessive application of N can cause many adverse effects on ecology and the environment. In this study, genome-wide association analysis (GWAS) was performed under low- and high-N conditions based on 788,396 SNPs and phenotypic traits relevant to N uptake and utilization (N content and N accumulation). A total of 75 QTLs were obtained using GWAS, which contained 811 genes. Of 811 genes, 281 genes showed different haplotypes, and 40 genes had significant phenotypic differences among different haplotypes. Of these 40 genes, 5 differentially expressed genes (Os01g0159250, Os02g0618200, Os02g0618400, Os02g0630300, and Os06g0619000) were finally identified as the more valuable candidate genes based on the transcriptome data sequenced from Longjing31 (low-N-tolerant variety) and Songjing 10 (low-N-sensitive variety) under low- and high-N treatments. These new findings enrich the genetic resources for N uptake and utilization in rice, as well as lay a theoretical foundation for improving the efficiency of N uptake and utilization in rice.
Collapse
Affiliation(s)
- Ning Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Tianze Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Sijia Xia
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Chengxin Li
- Harbin Academy of Agricultural Sciences, Harbin 150030, China;
| | - Yinuo Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jiaqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Guize Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Li G, Guo X, Sun W, Hou L, Wang G, Tian R, Wang X, Qu C, Zhao C. Nitrogen application in pod zone improves yield and quality of two peanut cultivars by modulating nitrogen accumulation and metabolism. BMC PLANT BIOLOGY 2024; 24:48. [PMID: 38216909 PMCID: PMC10787501 DOI: 10.1186/s12870-024-04725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Cultivated peanut (Arachis hypogaea L.) represents one of the most important oil and cash crops world-widely. Unlike many other legumes, peanuts absorb nitrogen through their underground pods. Despite this unique feature, the relationship between yield and nitrogen uptake within the pod zone remains poorly understood. In our pot experiment, we divided the underground peanut part into two zones-pod and root-and investigated the physiological and agronomic traits of two peanut cultivars, SH11 (large seeds, LS) and HY23 (small seeds, SS), at 10 (S1), 20 (S2), and 30 (S3) days after gynophores penetrated the soil, with nitrogen application in the pod zone. Results indicated that nitrogen application increased pod yield, kernel protein content, and nitrogen accumulation in plants. For both LS and SS peanut cultivars, optimal nitrogen content was 60 kg·hm- 2, leading to maximum yield. LS cultivar exhibited higher yield and nitrogen accumulation increases than SS cultivar. Nitrogen application up-regulated the expression of nitrogen metabolism-related genes in the pod, including nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), ATP binding cassette (ABC), and nitrate transporter (NRT2). Additionally, nitrogen application increased enzyme activity in the pod, including NR, GS, and GOGAT, consistent with gene expression levels. These nitrogen metabolism traits exhibited higher up-regulations in the large-seeded cultivar than in the small-seeded one and showed a significant correlation with yield in the large-seeded cultivar at S2 and S3. Our findings offer a scientific basis for the judicious application and efficient utilization of nitrogen fertilization in peanuts, laying the groundwork for further elucidating the molecular mechanisms of peanut nitrogen utilization.
Collapse
Affiliation(s)
- Guanghui Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xin Guo
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Sun
- Linyi Academy of Agricultural Sciences, Linyi, 276012, China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Guanghao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Ruizheng Tian
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Qingdao, 266100, China.
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
32
|
Li Y, Zhao L, Guo C, Tang M, Lian W, Chen S, Pan Y, Xu X, Luo C, Yi Y, Cui Y, Chen L. OsNAC103, an NAC transcription factor negatively regulates plant height in rice. PLANTA 2024; 259:35. [PMID: 38193994 PMCID: PMC10776745 DOI: 10.1007/s00425-023-04309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
MAIN CONCLUSION OsNAC103 negatively regulates rice plant height by influencing the cell cycle and crosstalk of phytohormones. Plant height is an important characteristic of rice farming and is directly related to agricultural yield. Although there has been great progress in research on plant growth regulation, numerous genes remain to be elucidated. NAC transcription factors are widespread in plants and have a vital function in plant growth. Here, we observed that the overexpression of OsNAC103 resulted in a dwarf phenotype, whereas RNA interference (RNAi) plants and osnac103 mutants showed no significant difference. Further investigation revealed that the cell length did not change, indicating that the dwarfing of plants was caused by a decrease in cell number due to cell cycle arrest. The content of the bioactive cytokinin N6-Δ2-isopentenyladenine (iP) decreased as a result of the cytokinin synthesis gene being downregulated and the enhanced degradation of cytokinin oxidase. OsNAC103 overexpression also inhibited cell cycle progression and regulated the activity of the cell cyclin OsCYCP2;1 to arrest the cell cycle. We propose that OsNAC103 may further influence rice development and gibberellin-cytokinin crosstalk by regulating the Oryza sativa homeobox 71 (OSH71). Collectively, these results offer novel perspectives on the role of OsNAC103 in controlling plant architecture.
Collapse
Affiliation(s)
- Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Liming Zhao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chiming Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, 361006, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Wenli Lian
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Siyu Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuehan Pan
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Chengke Luo
- Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration On Biodiversity Conservation in Karst Mountainous Areas of Southwestern, School of Life Science, Guizhou Normal University, Guiyang, 550025, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
33
|
Zhang Z, Peng C, Xu W, Li Y, Qi X, Zhao M. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat. BMC Genomics 2024; 25:7. [PMID: 38166525 PMCID: PMC10759698 DOI: 10.1186/s12864-023-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Nitrogen use efficiency (NUE) is closely related to crop yield and nitrogen fertilizer application rate. Although NUE is susceptible to environments, quantitative trait nucleotides (QTNs) for NUE in wheat germplasm populations have been rarely reported in genome-wide associated study. RESULTS In this study, 244 wheat accessions were phenotyped by three NUE-related traits in three environments and genotyped by 203,224 SNPs. All the phenotypes for each trait were used to associate with all the genotypes of these SNP markers for identifying QTNs and QTN-by-environment interactions via 3VmrMLM. Among 279 QTNs and one QTN-by-environment interaction for low nitrogen tolerance, 33 were stably identified, especially, one large QTN (r2 > 10%), qPHR3A.2, was newly identified for plant height ratio in one environment and multi-environment joint analysis. Among 52 genes around qPHR3A.2, four genes (TraesCS3A01G101900, TraesCS3A01G102200, TraesCS3A01G104100, and TraesCS3A01G105400) were found to be differentially expressed in low-nitrogen-tolerant wheat genotypes, while TaCLH2 (TraesCS3A01G101900) was putatively involved in porphyrin metabolism in KEGG enrichment analyses. CONCLUSIONS This study identified valuable candidate gene for low-N-tolerant wheat breeding and provides new insights into the genetic basis of low N tolerance in wheat.
Collapse
Affiliation(s)
- Zaicheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Chaojun Peng
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Weigang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China.
| | - Yan Li
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Mingzhong Zhao
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
34
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
35
|
Zhang K, Gao W, Zhou Y, Zhao H, Xia Y, Zhang M, Bo Y, Lyu X, Hu Z, Yang J, Zhang M. Allelic variations of ClACO gene improve nitrogen uptake via ethylene-mediated root architecture in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:199. [PMID: 37624448 DOI: 10.1007/s00122-023-04448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
KEY MESSAGE The ClACO gene encoding 1-aminocyclopropane-1-carboxylate oxidase enabled highly efficient 15N uptake in watermelon. Nitrogen is one of the most essential nutrient elements that play a pivotal role in regulating plant growth and development for crop productivity. Elucidating the genetic basis of high nitrogen uptake is the key to improve nitrogen use efficiency for sustainable agricultural productivity. Whereas previous researches on nitrogen absorption process are mainly focused on a few model plants or crops. To date, the causal genes that determine the efficient nitrogen uptake of watermelon have not been mapped and remains largely unknown. Here, we fine-mapped the 1-aminocyclopropane-1-carboxylate oxidase (ClACO) gene associated with nitrogen uptake efficiency in watermelon via bulked segregant analysis (BSA). The variations in the ClACO gene led to the changes of gene expression levels between two watermelon accessions with different nitrogen uptake efficiencies. Intriguingly, in terms of the transcript abundance of ClACO, it was concomitant with significant differences in ethylene evolutions in roots and root architectures between the two accessions and among the different genotypic offsprings of the recombinant BC2F1(ZJU132)-18. These findings suggest that ethylene as a negative regulator altered nitrogen uptake efficiency in watermelon by controlling root development. In conclusion, our current study will provide valuable target gene for precise breeding of 'green' watermelon varieties with high-nitrogen uptake efficiencies.
Collapse
Affiliation(s)
- Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Gao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuelin Xia
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyi Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
36
|
Jia L, Hu D, Wang J, Liang Y, Li F, Wang Y, Han Y. Genome-Wide Identification and Functional Analysis of Nitrate Transporter Genes ( NPF, NRT2 and NRT3) in Maize. Int J Mol Sci 2023; 24:12941. [PMID: 37629121 PMCID: PMC10454388 DOI: 10.3390/ijms241612941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitrate is the primary form of nitrogen uptake in plants, mainly transported by nitrate transporters (NRTs), including NPF (NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY), NRT2 and NRT3. In this study, we identified a total of 78 NPF, seven NRT2, and two NRT3 genes in maize. Phylogenetic analysis divided the NPF family into eight subgroups (NPF1-NPF8), consistent with the results in Arabidopsis thaliana and rice. The NRT2 family appears to have evolved more conservatively than the NPF family, as NRT2 genes contain fewer introns. The promoters of all NRTs are rich in cis-acting elements responding to biotic and abiotic stresses. The expression of NRTs varies in different tissues and developmental stages, with some NRTs only expressed in specific tissues or developmental stages. RNA-seq analysis using Xu178 revealed differential expression of NRTs in response to nitrogen starvation and nitrate resupply. Moreover, the expression patterns of six key NRTs genes (NPF6.6, NPF6.8, NRT2.1, NRT2.5 and NRT3.1A/B) varied in response to alterations in nitrogen levels across distinct maize inbred lines with different nitrogen uptake rates. This work enhances our understanding of the structure and expression of NRTs genes, and their roles in nitrate response, paving the way for improving maize nitrogen efficiency through molecular breeding.
Collapse
Affiliation(s)
- Lihua Jia
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Desheng Hu
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Junbo Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yuanyuan Liang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Fang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| | - Yanlai Han
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China; (L.J.); (D.H.); (J.W.); (Y.L.); (F.L.)
| |
Collapse
|
37
|
Xu Y, Bai L, Liu M, Liu Y, Peng S, Hu P, Wang D, Liu Q, Yan S, Gao L, Wang X, Ning Y, Zuo S, Zheng W, Liu S, Xiang W, Wang G, Kang H. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1628-1641. [PMID: 37154202 PMCID: PMC10363757 DOI: 10.1111/pbi.14064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023]
Abstract
Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.
Collapse
Affiliation(s)
- Yuchen Xu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Lu Bai
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Minghao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shasha Peng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Pei Hu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of AgronomyHunan Agricultural UniversityChangshaHunanChina
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic BreedingTianjin Crop Research Institute, Tianjin Academy of Agriculture SciencesTianjinChina
| | - Lijun Gao
- Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Wenjing Zheng
- Rice Research Institute of Liaoning Province, Liaoning Academy of Agricultural SciencesShenyangChina
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guo‐Liang Wang
- Department of Plant PathologyOhio State UniversityColumbusOhioUSA
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
38
|
Phan NTH, Draye X, Pham CV, Bertin P. Identification of quantitative trait loci controlling nitrogen use efficiency-related traits in rice at the seedling stage under salt condition by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1197271. [PMID: 37575915 PMCID: PMC10415682 DOI: 10.3389/fpls.2023.1197271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023]
Abstract
Rice cultivation is facing both salt intrusion and overuse of nitrogen fertilizers. Hence, breeding new varieties aiming to improve nitrogen use efficiency (NUE), especially under salt conditions, is indispensable. We selected 2,391 rice accessions from the 3K Rice Genomes Project to evaluate the dry weight under two N concentrations [2.86 mM - standard N (SN), and 0.36 mM - low N (LN)] crossed with two NaCl concentrations [0 (0Na) and 60 mM (60Na)] at the seedling stage. Genome-wide association studies for shoot, root, and plant dry weight (DW) were carried out. A total of 55 QTLs - 32, 16, and 7 in the whole, indica, and japonica panel - associated with one of the tested traits were identified. Among these, 27 QTLs co-localized with previously identified QTLs for DW-related traits while the other 28 were newly detected; 24, 8, 11, and 4 QTLs were detected in SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively, and the remaining 8 QTLs were for the relative plant DW between treatments. Three of the 11 QTLs in SN-60Na were close to the regions containing three QTLs detected in SN-0Na. Eleven candidate genes for eight important QTLs were identified. Only one of them was detected in both SN-0Na and SN-60Na, while 5, 0, 3, and 2 candidate genes were identified only once under SN-0Na, LN-0Na, SN-60Na, and LN-60Na, respectively. The identified QTLs and genes provide useful materials and genetic information for future functional characterization and genetic improvement of NUE in rice, especially under salt conditions.
Collapse
Affiliation(s)
- Nhung Thi Hong Phan
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Agronomy Faculty, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Xavier Draye
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cuong Van Pham
- Agronomy Faculty, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Pierre Bertin
- Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
39
|
Liao Z, Xia X, Zhang Z, Nong B, Guo H, Feng R, Chen C, Xiong F, Qiu Y, Li D, Yang X. Genome-wide association study using specific-locus amplified fragment sequencing identifies new genes influencing nitrogen use efficiency in rice landraces. FRONTIERS IN PLANT SCIENCE 2023; 14:1126254. [PMID: 37521918 PMCID: PMC10375723 DOI: 10.3389/fpls.2023.1126254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/28/2023] [Indexed: 08/01/2023]
Abstract
Nitrogen is essential for crop production. It is a critical macronutrient for plant growth and development. However, excessive application of nitrogen fertilizer is not only a waste of resources but also pollutes the environment. An effective approach to solving this problem is to breed rice varieties with high nitrogen use efficiency (NUE). In this study, we performed a genome-wide association study (GWAS) on 419 rice landraces using 208,993 single nucleotide polymorphisms (SNPs). With the mixed linear model (MLM) in the Tassel software, we identified 834 SNPs associated with root surface area (RSA), root length (RL), root branch number (RBN), root number (RN), plant dry weight (PDW), plant height (PH), root volume (RL), plant fresh weight (PFW), root fractal dimension (RFD), number of root nodes (NRN), and average root diameter (ARD), with a significant level of p < 2.39×10-7. In addition, we found 49 SNPs that were correlated with RL, RBN, RN, PDW, PH, PFW, RFD, and NRN using genome-wide efficient mixed-model association (GEMMA), with a significant level of p < 1×10-6. Additionally, the final results for eight traits associated with 193 significant SNPs by using multi-locus random-SNP-effect mixed linear model (mrMLM) model and 272 significant SNPs associated with 11 traits by using IIIVmrMLM. Within the linkage intervals of significantly associated SNP, we identified eight known related genes to NUE in rice, namely, OsAMT2;3, OsGS1, OsNR2, OsNPF7.4, OsPTR9, OsNRT1.1B, OsNRT2.3, and OsNRT2.2. According to the linkage disequilibrium (LD) decay value of this population, there were 75 candidate genes within the 150-kb regions upstream and downstream of the most significantly associated SNP (Chr5_29804690, Chr5_29956584, and Chr10_17540654). These candidate genes included 22 transposon genes, 25 expressed genes, and 28 putative functional genes. The expression levels of these candidate genes were measured by real-time quantitative PCR (RT-qPCR), and the expression levels of LOC_Os05g51700 and LOC_Os05g51710 in C347 were significantly lower than that in C117; the expression levels of LOC_Os05g51740, LOC_Os05g51780, LOC_Os05g51960, LOC_Os05g51970, and LOC_Os10g33210 were significantly higher in C347 than C117. Among them, LOC_Os10g33210 encodes a peptide transporter, and LOC_Os05g51690 encodes a CCT domain protein and responds to NUE in rice. This study identified new loci related to NUE in rice, providing new genetic resources for the molecular breeding of rice landraces with high NUE.
Collapse
Affiliation(s)
- Zuyu Liao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiuzhong Xia
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zongqiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Hui Guo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Feng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Can Chen
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Faqian Xiong
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongfu Qiu
- College of Agriculture, Guangxi University, Nanning, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xinghai Yang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
40
|
Yu J, Zhu C, Xuan W, An H, Tian Y, Wang B, Chi W, Chen G, Ge Y, Li J, Dai Z, Liu Y, Sun Z, Xu D, Wang C, Wan J. Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice. Nat Commun 2023; 14:3550. [PMID: 37321989 PMCID: PMC10272163 DOI: 10.1038/s41467-023-39167-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Salinity stress progressively reduces plant growth and productivity, while plant has developed complex signaling pathways to confront salt stress. However, only a few genetic variants have been identified to mediate salt tolerance in the major crop rice, and the molecular mechanism remains poorly understood. Here, we identify ten candidate genes associated with salt-tolerance (ST) traits by performing a genome-wide association analysis in rice landraces. We characterize two ST-related genes, encoding transcriptional factor OsWRKY53 and Mitogen-activated protein Kinase Kinase OsMKK10.2, that mediate root Na+ flux and Na+ homeostasis. We further find that OsWRKY53 acts as a negative modulator regulating expression of OsMKK10.2 in promoting ion homeostasis. Furthermore, OsWRKY53 trans-represses OsHKT1;5 (high-affinity K+ transporter 1;5), encoding a sodium transport protein in roots. We show that the OsWRKY53-OsMKK10.2 and OsWRKY53-OsHKT1;5 module coordinate defenses against ionic stress. The results shed light on the regulatory mechanisms underlying plant salt tolerance.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Chengsong Zhu
- Department of Immunology, The University of Texas Southwestern Medical Centre, Dallas, TX, 75390, USA
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongzhou An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yuwei Ge
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Jin Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Zhaoyang Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China
| | - Yan Liu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Dayong Xu
- Lianyungang Academy of Agricultural Science, Lianyungang, Jiangsu, 222006, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
- Southern Japonica Rice R&D Corporation Ltd, Key Laboratory of Biology, Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River, Ministry of Agriculture, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Qin X, Li X, Xiao J, Wu Q, Li Y, Li C, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Transcriptomic and Physiological Analyses of Two Rice Restorer Lines under Different Nitrogen Supplies Provide Novel Insights into Hybrid Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2276. [PMID: 37375901 DOI: 10.3390/plants12122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Improving plant nitrogen-use efficiency (NUE) has great significance for various crops, particularly in hybrid breeding. Reducing nitrogen inputs is key to achieving sustainable rice production and mitigating environmental problems. In this study, we analyzed the transcriptomic and physiological changes in two indica restorer lines (Nanhui511 [NH511] and Minghui23 [MH23]) under high nitrogen (HN) and low nitrogen (LN) conditions. Compared to MH23, NH511 was more sensitive to different nitrogen supplies and exhibited higher nitrogen uptake and NUE under HN conditions by increasing lateral root and tiller numbers in the seedling and maturation stages, respectively. NH511 also exhibited a lower survival rate than MH23 when planted in a chlorate-containing hydroponic solution, indicating its HN uptake ability under different nitrogen-supply conditions. Transcriptomic analysis showed that NH511 has 2456 differentially expressed genes, whereas MH23 had only 266. Furthermore, these genes related to nitrogen utilization showed differential expression in NH511 under HN conditions, while the opposite was observed in MH23. Our findings revealed that NH511 could be regarded as elite rice and used for breeding high-NUE restorer lines by regulating and integrating nitrogen-utilization genes, which provides novel insights for the cultivation of high-NUE hybrid rice.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Juan Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
42
|
Siddiqui MN, Pandey K, Bhadhury SK, Sadeqi B, Schneider M, Sanchez-Garcia M, Stich B, Schaaf G, Léon J, Ballvora A. Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. THE NEW PHYTOLOGIST 2023; 238:2175-2193. [PMID: 36808608 DOI: 10.1111/nph.18820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
Understanding the genetic and molecular function of nitrate sensing and acquisition across crop species will accelerate breeding of cultivars with improved nitrogen use efficiency (NUE). Here, we performed a genome-wide scan using wheat and barley accessions characterized under low and high N inputs that uncovered the NPF2.12 gene, encoding a homolog of the Arabidopsis nitrate transceptor NRT1.6 and other low-affinity nitrate transporters that belong to the MAJOR FACILITATOR SUPERFAMILY. Next, it is shown that variations in the NPF2.12 promoter correlated with altered NPF2.12 transcript levels where decreased gene expression was measured under low nitrate availability. Multiple field trials revealed a significantly enhanced N content in leaves and grains and NUE in the presence of the elite allele TaNPF2.12TT grown under low N conditions. Furthermore, the nitrate reductase encoding gene NIA1 was up-regulated in npf2.12 mutant upon low nitrate concentrations, thereby resulting in elevated levels of nitric oxide (NO) production. This increase in NO correlated with the higher root growth, nitrate uptake, and N translocation observed in the mutant when compared to wild-type. The presented data indicate that the elite haplotype alleles of NPF2.12 are convergently selected in wheat and barley that by inactivation indirectly contribute to root growth and NUE by activating NO signaling under low nitrate conditions.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Kailash Pandey
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Suzan Kumer Bhadhury
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Bahman Sadeqi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Michael Schneider
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Miguel Sanchez-Garcia
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, 10101, Morocco
| | - Benjamin Stich
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, D-53115, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, Rheinbach, 53359, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| |
Collapse
|
43
|
Sharma N, Jaiswal DK, Kumari S, Dash GK, Panda S, Anandan A, Raghuram N. Genome-Wide Urea Response in Rice Genotypes Contrasting for Nitrogen Use Efficiency. Int J Mol Sci 2023; 24:6080. [PMID: 37047052 PMCID: PMC10093866 DOI: 10.3390/ijms24076080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 04/14/2023] Open
Abstract
Rice is an ideal crop for improvement of nitrogen use efficiency (NUE), especially with urea, its predominant fertilizer. There is a paucity of studies on rice genotypes contrasting for NUE. We compared low urea-responsive transcriptomes of contrasting rice genotypes, namely Nidhi (low NUE) and Panvel1 (high NUE). Transcriptomes of whole plants grown with media containing normal (15 mM) and low urea (1.5 mM) revealed 1497 and 2819 differentially expressed genes (DEGs) in Nidhi and Panvel1, respectively, of which 271 were common. Though 1226 DEGs were genotype-specific in Nidhi and 2548 in Panvel1, there was far higher commonality in underlying processes. High NUE is associated with the urea-responsive regulation of other nutrient transporters, miRNAs, transcription factors (TFs) and better photosynthesis, water use efficiency and post-translational modifications. Many of their genes co-localized to NUE-QTLs on chromosomes 1, 3 and 9. A field evaluation under different doses of urea revealed better agronomic performance including grain yield, transport/uptake efficiencies and NUE of Panvel1. Comparison of our urea-based transcriptomes with our previous nitrate-based transcriptomes revealed many common processes despite large differences in their expression profiles. Our model proposes that differential involvement of transporters and TFs, among others, contributes to better urea uptake, translocation, utilization, flower development and yield for high NUE.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Dinesh Kumar Jaiswal
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Supriya Kumari
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Institute of Agricultural Sciences, SOA (DU), Bhubaneswar 751003, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Regional Station, Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science, Bengaluru 560065, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| |
Collapse
|
44
|
Li B, Wei A, Tong X, Han Y, Liu N, Chen Z, Yang H, Wu H, Lv M, Wang NN, Du S. A Genome-Wide Association Study to Identify Novel Candidate Genes Related to Low-Nitrogen Tolerance in Cucumber (Cucumis sativus L.). Genes (Basel) 2023; 14:genes14030662. [PMID: 36980933 PMCID: PMC10048605 DOI: 10.3390/genes14030662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Cucumber is one of the most important vegetables, and nitrogen is essential for the growth and fruit production of cucumbers. It is crucial to develop cultivars with nitrogen limitation tolerance or high nitrogen efficiency for green and efficient development in cucumber industry. To reveal the genetic basis of cucumber response to nitrogen starvation, a genome-wide association study (GWAS) was conducted on a collection of a genetically diverse population of cucumber (Cucumis sativus L.) comprising 88 inbred and DH accessions including the North China type, the Eurasian type, the Japanese and South China type mixed subtype, and the South China type subtype. Phenotypic evaluation of six traits under control (14 mM) and treatment (3.5 mM) N conditions depicted the presence of broad natural variation in the studied population. The GWAS results showed that there were significant differences in the population for nitrogen limitation treatment. Nine significant loci were identified corresponding to six LD blocks, three of which overlapped. Sixteen genes were selected by GO annotation associated with nitrogen. Five low-nitrogen stress tolerance genes were finally identified by gene haplotype analysis: CsaV3_3G003630 (CsNRPD1), CsaV3_3G002970 (CsNRT1.1), CsaV3_4G030260 (CsSnRK2.5), CsaV3_4G026940, and CsaV3_3G011820 (CsNPF5.2). Taken together, the experimental data and identification of candidate genes presented in this study offer valuable insights and serve as a useful reference for the genetic enhancement of nitrogen limitation tolerance in cucumbers.
Collapse
Affiliation(s)
- Bowen Li
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Xueqiang Tong
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Hongyu Yang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Huaxiang Wu
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Mingjie Lv
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300061, China
| | - Ning Ning Wang
- College of Life Science, Nankai University, Tianjin 300071, China
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
- Correspondence:
| |
Collapse
|
45
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
46
|
Liu Y, Hu B, Chu C. Toward improving nitrogen use efficiency in rice: Utilization, coordination, and availability. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102327. [PMID: 36525788 DOI: 10.1016/j.pbi.2022.102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nitrogen (N) fertilizer drives crop productivity and underlies intensive agriculture, but overuse of fertilizers also causes detrimental effects to ecosystem. To cope with this challenge while meeting the ever-growing demand for food, it is critical and urgent to improve nitrogen use efficiency (NUE) of crops. To date, numerous efforts have been made in developing strategies for NUE improvement with different disciplines. Given the intricate and interconnected route of N for delivering its effect, it is necessary to comprehensively understand various procedures and their interplays in determining NUE. In this review, we expand the scope of NUE improvement, not only the N utilization by plants, but also the N coordination with other resources as well as the N availability in the soil, which represent the major dimensions in manipulating NUE. Moreover, both agronomic practices and genetic improvement in facilitating NUE are also included and discussed. Lastly, we provide our perspective in improving the NUE in the future, particularly highlighting the integration of various agronomic and genetic approaches for NUE improvement underlying the sustainable agriculture.
Collapse
Affiliation(s)
- Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
47
|
Crop germplasm: Current challenges, physiological-molecular perspective, and advance strategies towards development of climate-resilient crops. Heliyon 2023; 9:e12973. [PMID: 36711267 PMCID: PMC9880400 DOI: 10.1016/j.heliyon.2023.e12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Germplasm is a long-term resource management mission and investment for civilization. An estimated ∼7.4 million accessions are held in 1750 plant germplasm centres around the world; yet, only 2% of these assets have been utilized as plant genetic resources (PGRs). According to recent studies, the current food yield trajectory will be insufficient to feed the world's population in 2050. Additionally, possible negative effects in terms of crop failure because of climate change are already being experienced across the world. Therefore, it is necessary to reconciliation of research advancement and innovation of practices for further exploration of the potential of crop germplasm especially for the complex traits associated with yield such as water- and nitrogen use efficiency. In this review, we tried to address current challenges, research gaps, physiological and molecular aspects of two broad spectrum complex traits such as water- and nitrogen-use efficiency, and advanced integrated strategies that could provide a platform for combined stress management for climate-smart crop development. Additionally, recent development in technologies that are directly related to germplasm characterization was highlighted for further molecular utilization towards the development of elite varieties.
Collapse
|
48
|
Hu B, Wang W, Chen J, Liu Y, Chu C. Genetic improvement toward nitrogen-use efficiency in rice: Lessons and perspectives. MOLECULAR PLANT 2023; 16:64-74. [PMID: 36380584 DOI: 10.1016/j.molp.2022.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The indispensable role of nitrogen fertilizer in ensuring world food security together with the severe threats it poses to the ecosystem makes the usage of nitrogen fertilizer a major challenge for sustainable agriculture. Genetic improvement of crops with high nitrogen-use efficiency (NUE) is one of the most feasible solutions for tackling this challenge. In the last two decades, extensive efforts toward dissecting the variation of NUE-related traits and the underlying genetic basis in different germplasms have been made, and a series of achievements have been obtained in crops, especially in rice. Here, we summarize the approaches used for genetic dissection of NUE and the functions of the causal genes in modulating NUE as well as their applications in NUE improvement in rice. Strategies for exploring the variants controlling NUE and breeding future crops with "less-input-more-output" for sustainable agriculture are also proposed.
Collapse
Affiliation(s)
- Bin Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China
| | - Jiajun Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yongqiang Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
49
|
Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, Maity A, Halli HM, G. K. S, Vadivel R, T. K. D, Raj R, Pooniya V, Babu S, Rathore SS, L. M, Tiwari G. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1121073. [PMID: 37143873 PMCID: PMC10151540 DOI: 10.3389/fpls.2023.1121073] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) is an essential element required for the growth and development of all plants. On a global scale, N is agriculture's most widely used fertilizer nutrient. Studies have shown that crops use only 50% of the applied N effectively, while the rest is lost through various pathways to the surrounding environment. Furthermore, lost N negatively impacts the farmer's return on investment and pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE) is critical in crop improvement programs and agronomic management systems. The major processes responsible for low N use are the volatilization, surface runoff, leaching, and denitrification of N. Improving NUE through agronomic management practices and high-throughput technologies would reduce the need for intensive N application and minimize the negative impact of N on the environment. The harmonization of agronomic, genetic, and biotechnological tools will improve the efficiency of N assimilation in crops and align agricultural systems with global needs to protect environmental functions and resources. Therefore, this review summarizes the literature on nitrogen loss, factors affecting NUE, and agronomic and genetic approaches for improving NUE in various crops and proposes a pathway to bring together agronomic and environmental needs.
Collapse
Affiliation(s)
- Prabhu Govindasamy
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Senthilkumar K. Muthusamy
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Muthukumar Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Jake Mowrer
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Aniruddha Maity
- Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hanamant M. Halli
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Sujayananad G. K.
- Crop Protection, Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulse Research, Kanpur, India
| | - Rajagopal Vadivel
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Das T. K.
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rishi Raj
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Pooniya
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Subhash Babu
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Singh Rathore
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Muralikrishnan L.
- Division of Agricultural Extension, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gopal Tiwari
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
50
|
Kasemsap P, Bloom AJ. Breeding for Higher Yields of Wheat and Rice through Modifying Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 12:85. [PMID: 36616214 PMCID: PMC9823454 DOI: 10.3390/plants12010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice produce nutritious grains that provide 32% of the protein in the human diet globally. Here, we examine how genetic modifications to improve assimilation of the inorganic nitrogen forms ammonium and nitrate into protein influence grain yield of these crops. Successful breeding for modified nitrogen metabolism has focused on genes that coordinate nitrogen and carbon metabolism, including those that regulate tillering, heading date, and ammonium assimilation. Gaps in our current understanding include (1) species differences among candidate genes in nitrogen metabolism pathways, (2) the extent to which relative abundance of these nitrogen forms across natural soil environments shape crop responses, and (3) natural variation and genetic architecture of nitrogen-mediated yield improvement. Despite extensive research on the genetics of nitrogen metabolism since the rise of synthetic fertilizers, only a few projects targeting nitrogen pathways have resulted in development of cultivars with higher yields. To continue improving grain yield and quality, breeding strategies need to focus concurrently on both carbon and nitrogen assimilation and consider manipulating genes with smaller effects or that underlie regulatory networks as well as genes directly associated with nitrogen metabolism.
Collapse
Affiliation(s)
- Pornpipat Kasemsap
- Department of Plant Sciences, University of California at Davis, Mailstop 3, Davis, CA 95616, USA
| | | |
Collapse
|