1
|
Zhang X, Sang W, Hong X, Qu H, Tong J, Yi Q. Effect of Dendritic Cells Injection After Radical Prostatectomy on Prostate Cancer in Mice. Prostate 2025; 85:860-868. [PMID: 40171974 PMCID: PMC12068033 DOI: 10.1002/pros.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND To explore the therapeutic and preventive effect of dendritic cells injection combined with radical prostatectomy on prostate cancer in mice. METHODS We extracted antigens from mouse prostate cancer cells RM-1 and cocultured them with dendritic cells to induce maturation. We constructed in situ carcinoma and subcutaneous tumor models of the mouse prostate. The efficacy of dendritic cell injection combined with radical prostatectomy was evaluated in the carcinoma in situ model, and the ability of dendritic cells to prevent prostate cancer was evaluated in the subcutaneous tumor model. Means of assessment included ultrasonography, flow cytometry analysis, and Elisa. RESULTS Dendritic cell injection combined with radical prostatectomy effectively inhibited the growth of prostate carcinoma in situ in mice, as well as the growth of subcutaneous tumors of prostate cancer in mice. After dendritic cell injection, the levels of CD4 + T cells and Treg cells in the spleens of mice were significantly increased, and the levels of IL-2 and TNF-γ in the peripheral serum were significantly increased. CONCLUSIONS Injection of mature dendritic cells induced by mouse prostate cancer cell RM-1 antigen can inhibit the growth of prostate cancer. Radical prostatectomy combined with dendritic cell injection might be a potential treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Urology, Shanghai Pudong HospitalFudan University Pudong Medical CenterPudongShanghaiChina
| | - Weicong Sang
- Shanghai Jiao Tong University Medical CollegeShanghaiChina
| | - Xiaoping Hong
- Department of Nursing, Shanghai Pudong HospitalFudan University Pudong Medical CenterPudongShanghaiChina
| | - Haihong Qu
- Department of Nursing, Shanghai Pudong HospitalFudan University Pudong Medical CenterPudongShanghaiChina
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong HospitalFudan University Pudong Medical CenterPudongShanghaiChina
| | - Qingtong Yi
- Department of Urology, Shanghai Pudong HospitalFudan University Pudong Medical CenterPudongShanghaiChina
| |
Collapse
|
2
|
Wang ZL, Qiu SY, Sun YQ, Du XJ, Xu CF, Cao ZY, Lu ZD. An injectable oncolytic hydrogel platform for in situ dendritic cell vaccination to boost antitumor immunity. Biomater Sci 2025; 13:3016-3029. [PMID: 40243662 DOI: 10.1039/d5bm00284b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Dendritic cell (DC) vaccines hold significant promise in cancer therapy due to their ability to induce durable anti-tumor immune responses. However, traditional ex vivo DC vaccines face considerable challenges, including complex preparation, limited DC persistence post-reinfusion, and variable efficacy. To overcome these limitations, we developed an injectable thermosensitive hydrogel (LC-Gel) that incorporates the oncolytic peptide LTX-315 and the chemokine CCL21 to generate in situ DC vaccines aimed at enhancing anti-tumor immunity. Our findings show that LC-Gel facilitates the intratumoral release of LTX-315, triggering the immunogenic cell death (ICD) of tumor cells and exposing tumor antigens. Simultaneously, the sustained release of CCL21 from LC-Gel efficiently recruits DCs to capture these antigens, leading to robust T cell activation. Consequently, intratumoral injection of LC-Gel generates a potent in situ DC vaccine, enhancing anti-tumor T cell immunity and inhibiting the growth of orthotopic breast tumors. Moreover, LC-Gel is shown to trigger long-term immune memory for eliciting a distant anti-tumor effect. In summary, our study introduces an innovative in situ DC vaccination strategy using an injectable oncolytic hydrogel platform for cancer immunotherapy.
Collapse
Affiliation(s)
- Zi-Lu Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Si-Yu Qiu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Yi-Qun Sun
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Zi-Yang Cao
- Department of General Surgery, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, P. R. China.
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
3
|
Chao CJ, Zhang E, Trinh DN, Udofa E, Lin H, Silvers C, Huo J, He S, Zheng J, Cai X, Bao Q, Zhang L, Phan P, Elgendy SM, Shi X, Burdette JE, Lee SSY, Gao Y, Zhang P, Zhao Z. Integrating antigen capturing nanoparticles and type 1 conventional dendritic cell therapy for in situ cancer immunization. Nat Commun 2025; 16:4578. [PMID: 40379691 DOI: 10.1038/s41467-025-59840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Eliciting a robust immune response against tumors is often hampered by the inadequate presence of effective antigen presenting cells and their suboptimal ability to present antigens within the immunosuppressive tumor microenvironment. Here, we report a cascade antigen relay strategy integrating antigen capturing nanoparticles (AC-NPs) and migratory type 1 conventional dendritic cells (cDC1s), named Antigen Capturing nanoparticle Transformed Dendritic Cell therapy (ACT-DC), to facilitate in situ immunization. AC-NPs are engineered to capture antigens directly from the tumor and facilitate their delivery to adoptively transferred migratory cDC1s, enhancing antigen presentation to the lymph nodes and reshaping the tumor microenvironment. Our findings suggest that ACT-DC improves in situ antigen collection, triggers a robust systemic immune response without the need for exogenous antigens, and transforms the tumor environment into a more "immune-hot" state. In multiple tumor models including colon cancer, melanoma, and glioma, ACT-DC in combination with immune checkpoint inhibitors eliminates primary tumors in 50-100% of treated mice and effectively rejects two separate tumor rechallenges. Collectively, ACT-DC could provide a broadly effective approach for in situ cancer immunization and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Duong N Trinh
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Edidiong Udofa
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiawei Huo
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shan He
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Qing Bao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Luyu Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sara M Elgendy
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiangqian Shi
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Liu Q, Song M, Wang Y, Zhang P, Zhang H. CCL20-CCR6 signaling in tumor microenvironment: Functional roles, mechanisms, and immunotherapy targeting. Biochim Biophys Acta Rev Cancer 2025; 1880:189341. [PMID: 40348067 DOI: 10.1016/j.bbcan.2025.189341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Chemokine CC motif ligand 20 (CCL20) is a molecule with immunomodulatory properties that is involved in the regulation of diseases such as chronic inflammation, autoimmune diseases, and cancer. It operates by binding to its specific receptor, CC chemokine receptor type 6 (CCR6), and activating a complex intracellular signaling network. Building on its established role in inflammatory diseases, recent research has expanded our understanding of CCL20 to encompass its critical contributions to the tumor microenvironment (TME), highlighting its significance in cancer progression. Numerous studies have emphasized its prominent role in regulating immune responses. Consequently, Monoclonal antibodies against CCL20 and inhibitors of CCR6 have been successfully developed to block downstream signaling, making the CCL20-CCR6 axis a promising and critical target in the TME. This offers potential immunotherapeutic strategies for cancers. In this review, we summarize the biological consequences of CCL20-CCR6 mediated signaling, its role and mechanisms in the TME, and its potential applications. We suggest that the CCL20-CCR6 axis may be a novel biomarker for tumor diagnosis and prognosis, as well as a therapeutic target in various cancers.
Collapse
Affiliation(s)
- Qi Liu
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mingyuan Song
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Qin S, Na J, Yang Q, Tang J, Deng Y, Zhong L. Advances in dendritic cell-based therapeutic tumor vaccines. Mol Immunol 2025; 181:113-128. [PMID: 40120558 DOI: 10.1016/j.molimm.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Dendritic cell-based therapeutic tumor vaccines are an active immunotherapy that has been commonly tried in the clinic,traditional treatment modalities for malignant tumors, such as surgery, radiotherapy and chemotherapy, have the disadvantages of high recurrence rates and side effects. The dendritic cell vaccination destroys cells from tumors by means of the patient's own system of immunity, a very promising treatment. However, due to the suppression of the tumor immune microenvironment, the difficulty of screening for optimal specific antigens, and the high technical difficulty of vaccine production. Most tumor vaccines currently available in the clinic have failed to produce significant clinical therapeutic effects. In this review, the fundamentals of therapeutic dendritic cells vaccine therapy are briefly outlined, with a focus on the progress of therapeutic Dendritic cells vaccine research in the clinic and the initiatives undertaken to enhance dendritic cell vaccinations' anti-tumor effectiveness. It is believed that through the continuous exploration of novel therapeutic strategies, therapeutic dendritic cells vaccines can play a greater role in improving tumor treatment for tumor patients.
Collapse
Affiliation(s)
- Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Therangstics, Guangxi Key Laboratory of Bio-targeting Therangstics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Kret ZS, Sweder RJ, Pollock R, Tinoco G. Potential Mechanisms for Immunotherapy Resistance in Adult Soft-Tissue Sarcoma. Target Oncol 2025; 20:485-502. [PMID: 40289241 DOI: 10.1007/s11523-025-01145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 04/30/2025]
Abstract
Soft-tissue sarcomas represent a diverse group of rare malignancies originating from mesenchymal tissue, accounting for less than 1% of adult cancers in the USA. With over 13,000 new cases and around 5350 deaths annually, patients with metastatic soft-tissue sarcomas face limited therapeutic options and an estimated median overall survival of 18 months. While immunotherapy has demonstrated effectiveness in several cancers, its application in soft-tissue sarcomas remains challenging owing to the tumors' largely "cold" immunological environment, characterized by low levels of tumor-infiltrating lymphocytes and a lack of soft-tissue sarcoma-specific biomarkers. This review examines potential mechanisms underlying immunotherapy resistance in soft-tissue sarcomas, including the complex interplay between innate and adaptive immunity, the tumor microenvironment, and the role of immune-related genes. Despite preliminary findings suggesting correlations between immune profiles and histological subtypes, consistent biomarkers for predicting immunotherapeutic responses across soft-tissue sarcoma types are absent. Emerging strategies focus on converting "cold" tumors to "hot" tumors, enhancing their susceptibility to immunologic activation. While research is ongoing, personalized treatment approaches may offer hope for overcoming the inherent heterogeneity and resistance seen in soft-tissue sarcomas, ultimately aiming to improve outcomes for affected patients.
Collapse
Affiliation(s)
- Zaina S Kret
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ryan J Sweder
- The Ohio State University College of Arts and Sciences and College of Medicine, Columbus, OH, USA
| | - Raphael Pollock
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gabriel Tinoco
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1240 Lincoln Tower, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Sofianidi AA, Syrigos NK, Blyth KG, Charpidou A, Vathiotis IA. Breaking Through: Immunotherapy Innovations in Pleural Mesothelioma. Clin Lung Cancer 2025:S1525-7304(25)00079-8. [PMID: 40382268 DOI: 10.1016/j.cllc.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/17/2025] [Accepted: 04/18/2025] [Indexed: 05/20/2025]
Abstract
The prognosis of pleural mesothelioma (PM) is poor and conventional chemotherapy regimens have shown limited antitumor activity. Recent use of immune checkpoint inhibitors (ICIs) has shown promise, with CheckMate-743 trial establishing nivolumab plus ipilimumab as first line treatment in unresectable PM. Nevertheless, real-world applicability as well as differential benefit of immunotherapy according to histologic are areas of active debate. In addition, increased incidence of immune-related adverse events (IRAEs) and high discontinuation rates highlight the need for careful patient selection. While ICIs represent a significant advancement in PM treatment, ongoing research is necessary to refine their use, potentially through biomarker-informed approaches, and manage associated toxicities. This review highlights the evolving landscape of immunotherapy and associated controversies in PM.
Collapse
Affiliation(s)
- Amalia A Sofianidi
- Third Department of Internal Medicine, Sotiria Thoracic Diseases Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos K Syrigos
- Third Department of Internal Medicine, Sotiria Thoracic Diseases Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Kevin G Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Glasgow Pleural Disease Unit, Queen Elizabeth University Hospital, Glasgow, UK; Cancer Research UK Scotland Institute, Glasgow UK
| | - Andriani Charpidou
- Third Department of Internal Medicine, Sotiria Thoracic Diseases Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis A Vathiotis
- Third Department of Internal Medicine, Sotiria Thoracic Diseases Hospital of Athens, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
8
|
Choi Y, Tan J, Lin D, Lee JS, Yuan Y. Immunotherapy in Breast Cancer: Beyond Immune Checkpoint Inhibitors. Int J Mol Sci 2025; 26:3920. [PMID: 40332761 PMCID: PMC12027891 DOI: 10.3390/ijms26083920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
The systemic treatment of breast cancer has evolved remarkably over the past decades. With the introduction of immune checkpoint inhibitors (ICIs), clinical outcomes for solid tumor malignancies have significantly improved. However, in breast cancer, the indication for ICIs is currently limited to triple-negative breast cancer (TNBC) only. In high-risk luminal B hormone receptor-positive (HR+) breast cancer (BC) and HER2-positive (HER2+) BC, modest efficacy of ICI and chemotherapy combinations were identified in the neoadjuvant setting. To address the unmet need, several novel immunotherapy strategies are being tested in ongoing clinical trials as summarized in the current review: bispecific antibodies, chimeric antigen receptor T-cell therapy (CAR-T), T-cell receptors (TCRs), tumor-infiltrating lymphocytes (TILs), tumor vaccines, and oncolytic virus therapy.
Collapse
Affiliation(s)
| | | | | | | | - Yuan Yuan
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; (Y.C.); (J.T.); (D.L.); (J.S.L.)
| |
Collapse
|
9
|
Han M, Zhou S, Liao Z, Zishan C, Yi X, Wu C, Zhang D, He Y, Leong KW, Zhong Y. Bimetallic peroxide-based nanotherapeutics for immunometabolic intervention and induction of immunogenic cell death to augment cancer immunotherapy. Biomaterials 2025; 315:122934. [PMID: 39509856 DOI: 10.1016/j.biomaterials.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Immunotherapy has transformed cancer treatment, but its efficacy is often limited by the immunosuppressive characteristics of the tumor microenvironment (TME), which are predominantly influenced by the metabolism of cancer cells. Among these metabolic pathways, the indoleamine 2,3-dioxygenase (IDO) pathway is particularly crucial, as it significantly contributes to TME suppression and influences immune cell activity. Additionally, inducing immunogenic cell death (ICD) in tumor cells can reverse the immunosuppressive TME, thereby enhancing the efficacy of immunotherapy. Herein, we develop CGDMRR, a novel bimetallic peroxide-based nanodrug based on copper-cerium peroxide nanoparticles. These nanotherapeutics are engineered to mitigate tumor hypoxia and deliver therapeutics such as 1-methyltryptophan (1MT), glucose oxidase (GOx), and doxorubicin (Dox) in a targeted manner. The design aims to alleviate tumor hypoxia, reduce the immunosuppressive effects of the IDO pathway, and promote ICD. CGDMRR effectively inhibits the growth of 4T1 tumors and elicits antitumor immune responses by leveraging immunometabolic interventions and therapies that induce ICD. Furthermore, when CGDMRR is combined with a clinically certified anti-PD-L1 antibody, its efficacy in inhibiting tumor growth is enhanced. This improved efficacy extends beyond unilateral tumor models, also affecting bilateral tumors and lung metastases, due to the activation of systemic antitumor immunity. This study underscores CGDMRR's potential to augment the efficacy of PD-L1 blockade in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Min Han
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Shiying Zhou
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Zunde Liao
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chen Zishan
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Xiangting Yi
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Dongmei Zhang
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China.
| | - Yao He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| | - Yiling Zhong
- College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 511443, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States.
| |
Collapse
|
10
|
Erasha AM, EL-Gendy H, Aly AS, Fernández-Ortiz M, Sayed RKA. The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes. Int J Mol Sci 2025; 26:2716. [PMID: 40141358 PMCID: PMC11942452 DOI: 10.3390/ijms26062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates.
Collapse
Affiliation(s)
- Atef M. Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Hanem EL-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Ahmed S. Aly
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Marisol Fernández-Ortiz
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
11
|
Jin X, Zhang H, Xie X, Zhang M, Wang R, Liu H, Wang X, Wang J, Li D, Li Y, Xue W, Li J, He J, Liu Y, Yao J. From Traditional Efficacy to Drug Design: A Review of Astragali Radix. Pharmaceuticals (Basel) 2025; 18:413. [PMID: 40143189 PMCID: PMC11945149 DOI: 10.3390/ph18030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine (TCM) theory, AR is believed to tonify qi, elevate yang, consolidate the body's surface to reduce sweating, promote diuresis and reduce swelling, generate body fluids, and nourish the blood. It has been widely used to treat general weakness and chronic illnesses and to improve overall vitality. Extensive research has identified various medicinal properties of AR, including anti-tumor, antioxidant, cardiovascular-protective, immunomodulatory, anti-inflammatory, anti-diabetic, and neuroprotective effects. With advancements in technology, methods such as computer-aided drug design (CADD) and artificial intelligence (AI) are increasingly being applied to the development of TCM. This review summarizes the progress of research on AR over the past decades, providing a comprehensive overview of its traditional efficacy, botanical characteristics, drug design and distribution, chemical constituents, and phytochemistry. This review aims to enhance researchers' understanding of AR and its pharmaceutical potential, thereby facilitating further development and utilization.
Collapse
Affiliation(s)
- Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xiaorong Xie
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Ruifeng Wang
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Hao Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xinyu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Jiao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Dangui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Yaling Li
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Weiwei Xue
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 404100, China;
| | - Jintian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Jianxin He
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| |
Collapse
|
12
|
Cui R, Luo Z, Zhang X, Yu X, Yuan G, Li X, Xie F, Jiang O. Targeting PI3K Signaling to Overcome Tumor Immunosuppression: Synergistic Strategies to Enhance Cancer Vaccine Efficacy. Vaccines (Basel) 2025; 13:292. [PMID: 40266213 PMCID: PMC11946485 DOI: 10.3390/vaccines13030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks), members of the lipid kinase family, play a significant role in modulating immune cell functions, including activation, proliferation, and differentiation. Recent studies have identified the PI3K signaling pathway as a key regulator in tumor biology and the immune microenvironment. This pathway enhances the activity of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), contributing to an immunosuppressive tumor microenvironment that impairs the effectiveness of cancer vaccines and immunotherapies. The present study explores PI3K isoforms, particularly p110γ and p110δ, and their associated signaling pathways. The therapeutic potential of selective PI3K inhibitors and their capacity to act synergistically with immunization strategies are analyzed. Targeting the PI3K signaling pathway represents a promising approach to counteract tumor-induced immune suppression and improve the efficacy of immune checkpoint inhibitors and vaccines, ultimately leading to better clinical outcomes.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Zhongxiang Luo
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Xialin Zhang
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Xinlin Yu
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu 610000, China;
| | - Gang Yuan
- Department of Interventional & Vascular, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xingming Li
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
| | - Fei Xie
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
| | - Ou Jiang
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| |
Collapse
|
13
|
Sheykhhasan M, Ahmadieh-Yazdi A, Heidari R, Chamanara M, Akbari M, Poondla N, Yang P, Malih S, Manoochehri H, Tanzadehpanah H, Mahaki H, Fayazi Hosseini N, Dirbaziyan A, Al-Musawi S, Kalhor N. Revolutionizing cancer treatment: The power of dendritic cell-based vaccines in immunotherapy. Biomed Pharmacother 2025; 184:117858. [PMID: 39955851 DOI: 10.1016/j.biopha.2025.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
In the modern time, cancer immunotherapies have increasingly become vital treatment options, joining long-established methods like surgery, chemotherapy, and radiotherapy treatment. Central to this emerging approach are dendritic cells (DCs), which boast a remarkable ability for antigen presentation. This ability is being leveraged to modulate T and B cell immunity, offering a groundbreaking strategy for tackling cancer. However, the percentage of patients experiencing meaningful benefits from this treatment remains relatively low, underscoring the ongoing necessity for further research and development in this field. This review offers a comprehensive analysis of the present-day progress in dendritic cell (DC)-based vaccines and recent efforts to enhance their efficacy. We explore the intricacies of DC function, from antigen capture to T cell stimulation, and discuss the outcomes of both preclinical and clinical trials across various cancer types. While the results are promising, the real-world application of DC-based vaccines is still nascent, posing multiple challenges that need to be overcome. These obstacles include optimizing the methods for DC generation and antigen loading, overcoming the immunosuppressive nature of the tumor microenvironment, and enhancing specificities of the immunologic response through personalized vaccines. The review concludes by emphasizing prospective opportunities for future research and emphasizing the critical need for extensive clinical trials. These trials are essential to validate the effectivity of DC-based vaccines and solidify their role in the broader spectrum of cancer immunotherapy options.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| | - Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Heidari
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran; Cancer Epidemiology Research Center, AJA University of Medical Sciences, Tehran, Iran; Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran; Student research committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Medical School, Faculty of Medical Sciences, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Naresh Poondla
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Global Health Research, Saveetha Medical College & Hospital, Chennai, India
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Basic Science Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Dirbaziyan
- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
14
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Oh MS, Dumitras C, Salehi-Rad R, Tran LM, Krysan K, Lim RJ, Jing Z, Tappuni S, Lisberg A, Garon EB, Dubinett SM, Liu B. Characteristics of a CCL21 Gene-Modified Dendritic Cell Vaccine Utilized for a Clinical Trial in Non-Small Cell Lung Cancer. Mol Cancer Ther 2025; 24:286-298. [PMID: 39559833 PMCID: PMC11813162 DOI: 10.1158/1535-7163.mct-24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The treatment of non-small cell lung cancer has made major strides with the use of immune checkpoint inhibitors; however, there remains a significant need for therapies that can overcome immunotherapy resistance. Dendritic cell (DC) vaccines have been proposed as a therapy that can potentially enhance the antitumor immune response. We have embarked on a phase I clinical trial of a vaccine consisting of monocyte-derived DCs (moDC) modified to express the chemokine C-C motif chemokine ligand 21 (CCL21-DC) given in combination with pembrolizumab. In this study, we report a comprehensive characterization of this CCL21-DC vaccine and interrogate the effects of multiple factors in the manufacturing process. We show that the cellular makeup of the CCL21-DC vaccine is heterogeneous because of the presence of passenger lymphocytes at a proportion that is highly variable among patients. Single-cell RNA sequencing of vaccines revealed further heterogeneity within the moDC compartment, with cells spanning a spectrum of DC phenotypes. Transduction with a CCL21-containing adenoviral vector augmented CCL21 secretion by moDCs, but otherwise had a minimal effect on vaccine characteristics. A single freeze-thaw cycle for stored vaccines was associated with minor alterations to the DC phenotype, as was the use of healthy donors rather than patient autologous blood. Our results highlight important considerations for the production of DC vaccines and identify underexplored factors that may affect their efficacy and immunologic impact.
Collapse
Affiliation(s)
- Michael S. Oh
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Camelia Dumitras
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ramin Salehi-Rad
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Linh M. Tran
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Kostyantyn Krysan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Raymond J. Lim
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zhe Jing
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shahed Tappuni
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Aaron Lisberg
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Edward B. Garon
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Steven M. Dubinett
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Bin Liu
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Ruzzi F, Riccardo F, Conti L, Tarone L, Semprini MS, Bolli E, Barutello G, Quaglino E, Lollini PL, Cavallo F. Cancer vaccines: Target antigens, vaccine platforms and preclinical models. Mol Aspects Med 2025; 101:101324. [PMID: 39631227 DOI: 10.1016/j.mam.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
This review provides a comprehensive overview of the evolving landscape of cancer vaccines, highlighting their potential to revolutionize tumor prevention. Building on the success of vaccines against virus-related cancers, such as HPV- and HBV-associated cervical and liver cancers, the current challenge is to extend these achievements to the prevention of non-viral tumors and the treatment of preneoplastic or early neoplastic lesions. This review analyzes the critical aspects of preventive anti-cancer vaccination, focusing on the choice of target antigens, the development of effective vaccine platforms and technologies, and the use of various model systems for preclinical testing, from laboratory rodents to companion animals.
Collapse
Affiliation(s)
- Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Federica Riccardo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Laura Conti
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Lidia Tarone
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Maria Sofia Semprini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elisabetta Bolli
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Giuseppina Barutello
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Elena Quaglino
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy; IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138, Bologna, Italy.
| | - Federica Cavallo
- Laboratory of OncoImmunology, Department of Molecular Biotechnology and Health Sciences (DMBSS), University of Torino, 10126, Torino, Italy.
| |
Collapse
|
17
|
Sebastião AI, Simões G, Oliveira F, Mateus D, Falcão A, Carrascal MA, Gomes C, Neves B, Cruz MT. Dendritic cells in triple-negative breast cancer: From pathophysiology to therapeutic applications. Cancer Treat Rev 2025; 133:102884. [PMID: 39837068 DOI: 10.1016/j.ctrv.2025.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is the second most commonly diagnosed cancer in women and the fifth leading cause of cancer-related deaths worldwide. It is a highly heterogeneous disease, consisting of multiple subtypes that vary significantly in clinical characteristics and survival outcomes. Triple-negative breast cancer (TNBC) is a particularly aggressive and challenging subtype of breast cancer. Several immunotherapeutic approaches have been tested in patients with TNBC to improve disease outcomes, including the administration of dendritic cell (DC)-based vaccines. DCs are a heterogeneous cell population that play a crucial role in bridging the innate and adaptive immune systems. Therefore, DCs have been increasingly used in cancer vaccines due to their ability to prime and boost antigen specific T-cell immune responses. This review aims to provide a comprehensive overview of TNBC, including potential targets and pharmacological strategies, as well as an overview of DCs and their relevance in TNBC. In addition, we review ongoing clinical trials and shed light on the evolving landscape of DC-based immunotherapy for TNBC.
Collapse
Affiliation(s)
- Ana Isabel Sebastião
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gonçalo Simões
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filomena Oliveira
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Mateus
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; BioMark@UC/CEB-LABBELS, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
| | | | - Célia Gomes
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research - iCBR, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Neves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Coimbra, 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
18
|
Li YR, Lyu Z, Shen X, Fang Y, Yang L. Boosting CAR-T cell therapy through vaccine synergy. Trends Pharmacol Sci 2025; 46:180-199. [PMID: 39755457 DOI: 10.1016/j.tips.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has transformed the treatment landscape for hematological cancers. However, achieving comparable success in solid tumors remains challenging. Factors contributing to these limitations include the scarcity of tumor-specific antigens (TSAs), insufficient CAR-T cell infiltration, and the immunosuppressive tumor microenvironment (TME). Vaccine-based strategies are emerging as potential approaches to address these challenges, enhancing CAR-T cell expansion, persistence, and antitumor efficacy. In this review, we explore diverse vaccine modalities, including mRNA, peptide, viral vector, and dendritic cell (DC)-based vaccines, and their roles in augmenting CAR-T cell responses. Special focus is given to recent clinical advancements combining mRNA-based vaccines with CAR-T therapy for the treatment of genitourinary cancers. In addition, we discuss crucial considerations for optimizing vaccine dosing, scheduling, and delivery to maximize CAR-T synergy, aiming to refine this combination strategy to improve treatment efficacy and safety.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Doan VTH, Imai T, Kawazoe N, Chen G, Yoshitomi T. Regulation of antigen presentation and interleukin 10 production in murine dendritic cells via the oxidative stimulation of cell membrane using a polycation-porphyrin-conjugate-immobilized cell culture dish. Acta Biomater 2025; 193:231-241. [PMID: 39788307 DOI: 10.1016/j.actbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface. When iDCs were cultured on the PA-HP-G surface, moderate light irradiation generated lipid radicals without excessive generation of reactive oxygen species in the cytoplasm and nucleus, which led to the oxidative stimulation of the iDC cell membrane without cell death. Light irradiation changed the morphology of dendritic cells on the PA-HP-G surface to a tree-like structure with dendrites, accelerated their maturation, and enhanced the antigen-presenting ability for the ovalbumin peptide via major histocompatibility complex class I molecules. Additionally, the antigen-presenting dendritic cells on the PA-HP-G surface produced the anti-inflammatory cytokine interleukin 10 upon light irradiation. These results indicated that upon moderate light irradiation, the PA-HP-G surface regulated the maturation of iDCs into tolerogenic dendritic cells. STATEMENT OF SIGNIFICANCE: • Cell culture dish is developed for selective oxidative stimulus of cell membrane. • 1O2 is generated from polycation/porphyrin-immobilized glass by light irradiation. • Lipid radicals are generated without generation of ROS in cytoplasm and nuclei. • Immature dendritic cells are maturated by oxidative stimulation of cell membrane. • Oxidative membrane stimulus enhances antigen-presentation and IL-10 secretion.
Collapse
Affiliation(s)
- Van Thi Hong Doan
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Takashi Imai
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640 Japan; Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan; Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
20
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
21
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress. MOLECULAR BIOMEDICINE 2025; 6:3. [PMID: 39789208 PMCID: PMC11717780 DOI: 10.1186/s43556-024-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Kumbhojkar N, Mitragotri S. Activated neutrophils: A next generation cellular immunotherapy. Bioeng Transl Med 2025; 10:e10704. [PMID: 39801751 PMCID: PMC11711228 DOI: 10.1002/btm2.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 01/16/2025] Open
Abstract
Cell therapies are at the forefront of novel therapeutics. Neutrophils, despite being the most populous immune cells in human blood circulation, are not considered a viable option for cellular therapies because of their short lifespan and poor understanding of their role in the pathophysiology of various diseases. In inflammatory conditions, neutrophils exhibit an activated phenotype. Activation brings about significant changes to neutrophil biology such as increased lifespan, inflammatory cytokine secretion, and enhanced effector functions. Activated neutrophils also possess the potential to stimulate the downstream immune response and are described as essential effectors in the immune response to tumors. This makes activated neutrophils an interesting candidate for cell therapies. Here, we review the biology of activated neutrophils in detail. We discuss the different ways neutrophils can be activated and the effect they have on other immune cells for stimulation of downstream immune response. We review the conditions where activated neutrophil therapy can be therapeutically beneficial and discuss the challenges associated with their eventual translation. Overall, this review summarizes the current state of understanding of neutrophil-based immunotherapies and their clinical potential.
Collapse
Affiliation(s)
- Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied SciencesAllstonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
23
|
Das R, Ge X, Fei F, Parvanian S, Weissleder R, Garris CS. Lipid Nanoparticle-mRNA Engineered Dendritic Cell Based Adoptive Cell Therapy Enhances Cancer Immune Response. SMALL METHODS 2025; 9:e2400633. [PMID: 39039995 PMCID: PMC11740962 DOI: 10.1002/smtd.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Indexed: 07/24/2024]
Abstract
Lipid nanoparticles encapsulating mRNA (LNP-mRNA) revolutionized medicine over the past several years. While clinically approved indications currently focus on infectious disease vaccination, LNP-mRNA based treatments also hold promise for cancer immunotherapy. However, the route of dosing may impact treatment efficacy, safety, and dose. To minimize adverse effects, it is hypothesized that LNP-mRNA can be used to activate and engineer dendritic cells (DC) ex vivo before re-administration of these cells. Here, it is shown that LNP-mRNA engineered DCs can indeed vaccinate recipient mice. Vaccinated mice showed strong anti-tumor T cell responses, rejected tumor challenge, and displayed no evidence of toxicity. Further, it is found that DC specific ablation of the immune activating kinase NFkB inducing kinase (NIK) abrogated vaccination efficacy, demonstrating that adoptively transferred DCs can be functionally modified in addition to their antigen presentation capacity. Collectively, these studies show that ex vivo LNP-mRNA engineering of DCs is a feasible and robust therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Riddha Das
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Xinying Ge
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Master's Program in ImmunologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Fan Fei
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Master's Program in ImmunologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Sepideh Parvanian
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
- Department of RadiologyMassachusetts General Brigham32 Fruit StBostonMA02114USA
| | - Christopher S. Garris
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of PathologyMassachusetts General Hospital55 Fruit StBostonMA02114USA
| |
Collapse
|
24
|
Han Y, Liu C, Yin S, Cui J, Sun Y, Xue B, Jiang C, Gu X, Qin M, Wang W, Xu H, Cao Y. Dynamic Diselenide Hydrogels for Controlled Tumor Organoid Culture and Dendritic Cell Vaccination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69114-69124. [PMID: 39631374 DOI: 10.1021/acsami.4c18728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se•) reduce cross-linking density, leading to controlled degradation. We demonstrate a 2D to 3D growth strategy, where tumor cells inoculate on the hydrogel surface, expand, and gradually form spherical organoids within the 3D hydrogel. These tumor organoids show significantly higher drug resistance compared to 2D-cultured cells. High-density light irradiation enhances diselenide exchange, inducing hydrogel degradation, tumor cell death, and release of functional antigens. This system serves as a dynamic platform for tumor organoid culture and antigen release, offering significantly advanced approaches for in vitro tumor modeling and immunological research. Our findings position diselenide-cross-linked hydrogels as versatile materials for precision cellular engineering, with broad applications in cancer research and beyond.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Cheng Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yang Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
25
|
Zhao J, Zhang H, Zhao Y, Lin Z, Lin F, Wang Z, Mo Q, Lu G, Zhao G, Wang G. Exploratory Research for HIF-1α Overexpression Tumor Antigen in the Activation of Dendritic Cells and the Potent Anti-Tumor Immune Response. Cancer Manag Res 2024; 16:1813-1822. [PMID: 39713567 PMCID: PMC11662640 DOI: 10.2147/cmar.s482363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/24/2024] [Indexed: 12/24/2024] Open
Abstract
Background Tumor-specific antigens play an important role in dendritic cell (DC)-based immunotherapy. The acquisition of tumor-specific antigens, which are essential for DC-based immunotherapy, poses a significant challenge. This study aimed to explore the efficacy of hypoxia inducible factor-1α (HIF-1α) overexpression tumor antigens in DC-based immunotherapy. Methods An HIF-1α over-expression cell line was constructed to prepare HIF-1α overexpression tumor antigens. The expression of CD14, CD40, CD80, CD86, and HLA-DR on the surface of dendritic cells derived from monocytes was assessed using flow cytometry after stimulation with tumor antigens enriched in HIF-1α. T cell proliferation was analyzed by CFSE division following incubation with mature DCs. The apoptotic tumor cells were detected through annexin V/PI staining following coculture with dendritic cells (DCs) stimulated by HIF-1α enriched antigens. The detection of damage-associated molecular pattern molecules (DAMPs) HMGB1 and calreticulin (CALR) was performed using Western blotting. Results The results demonstrated that HIF-1α-enriched tumor antigens significantly upregulated the expression of CD40, CD80, CD86, and HLA-DR in DCs compared to normal tumor antigens. Furthermore, co-incubation with HIF-1α-enriched tumor antigen-activated DCs enhanced T cell proliferation and stimulated the T cell-mediated cytotoxicity. Notably, the expression of DAMPs, such as HMGB1 and CALR, was elevated in HIF-1α-enriched tumor antigens. Conclusion Our findings demonstrate that tumor antigens enriched with HIF-1α may encompass tumor-specific antigens capable of stimulating DC activation, thereby enhancing T cell proliferation and cytotoxicity. These results provide support for the further advancement of HIF-1α enriched tumor antigens in preclinical and clinical investigations pertaining to tumor treatment.
Collapse
Affiliation(s)
- Jinjin Zhao
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Key Laboratory of Nano-Drug Delivery System Construction and Application in Xinxiang City, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Haiguang Zhang
- Department of Gynecology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Yilin Zhao
- Department of Cardiology, the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiqiang Lin
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fei Lin
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Zhiyin Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Qingjiang Mo
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guangjian Lu
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoan Zhao
- Department of Cardiology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
- Cardiovascular Repair Engineering Technology Research Center, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Guoqiang Wang
- Clinical Laboratory, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
26
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
28
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
29
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
30
|
Granato AM, Pancisi E, Piccinini C, Stefanelli M, Pignatta S, Soldati V, Carloni S, Fanini F, Arienti C, Bulgarelli J, Tazzari M, Scarpi E, Passardi A, Tauceri F, La Barba G, Maimone G, Baravelli S, de Rosa F, Ridolfi L, Petrini M. Dendritic cell vaccines as cancer treatment: focus on 13 years of manufacturing and quality control experience in advanced therapy medicinal products. Cytotherapy 2024; 26:1547-1555. [PMID: 39046388 DOI: 10.1016/j.jcyt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AIMS Dendritic cells (DCs) are professional antigen-presenting cells of the mammalian immune system. Ex vivo differentiated DCs represent a unique Advanced Therapy Medicinal Product (ATMP), used in several clinical trials as personalized cancer immunotherapy. The therapy's reliability depends on its capacity to produce high-quality mature DCs (mDCs) in compliance with Good Manufacturing Practices. AIMS From March 2010 to December 2023, 103 patients were enrolled in multiple clinical trials at the Immuno-Gene Therapy Factory at IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori". Six hundred forty-two doses were produced, and the manufacturing process was implemented to optimize production. Our study is a retrospective analysis focusing on the quality control results. METHODS We retrospectively analyzed the results of the quality control tests carried out on each produced batch, evaluating viability, purity and phenotype of mDCs and their quality in terms of microbiological safety. The data obtained are given with median and interquartile range. RESULTS The batches were found to be microbiologically safe in terms of sterility, mycoplasma, and endotoxins. An increase in DC maturation markers was found. The release criteria checks showed a high percentage of viability and purity was maintained during the production process. CONCLUSIONS Our findings have confirmed that the measures implemented have ensured the safety of the products and have contributed to the establishing a robust "Pharmaceutical Quality System." This has enabled many safe mDCs to be produced for clinical trials.
Collapse
Affiliation(s)
- Anna Maria Granato
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Elena Pancisi
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Claudia Piccinini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Monica Stefanelli
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Pignatta
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Valentina Soldati
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Silvia Carloni
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesca Fanini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Arienti
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jenny Bulgarelli
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Marcella Tazzari
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Francesca Tauceri
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Giuliano La Barba
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | | | - Stefano Baravelli
- Unit of Immunohematology and Transfusion Medicine, GB Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Francesco de Rosa
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Laura Ridolfi
- Experimental and Clinical Oncology Unit of Immunotherapy and Rare Cancers, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Massimiliano Petrini
- Immuno-Gene Therapy Factory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
31
|
Alobaid MA, Richards SJ, Alexander MR, Gibson MI, Ghaemmaghami AM. Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells. Mater Today Bio 2024; 29:101371. [PMID: 39698001 PMCID: PMC11652954 DOI: 10.1016/j.mtbio.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug delivery due to their biocompatibility, low toxicity and precise control over size, morphology and surface functionalization. Our investigation aimed to elucidate the intracellular uptake and trafficking of AuNPs coated with different combinations of monosaccharides (mannose, galactose, and fucose) in DCs. We used 30 unique polymer-tethered monosaccharide combinations to coat 16 nm diameter spherical gold nanoparticles and investigated their effect on DCs phenotype, uptake, and intracellular trafficking. DCs internalized AuNPs coated with 100 % fucose, 100 % mannose, 90 % mannose +10 % galactose, and 80 % mannose +20 % galactose with highest efficiency. Flow cytometry analysis indicated that 100 % fucose-coated AuNPs showed increased lysosomal and endosomal contents compared to other conditions and uncoated AuNPs. Imaging flow cytometry further demonstrated that 100 % fucose-coated AuNPs had enhanced co-localization with lysosomes, while 100 % mannose-coated AuNPs exhibited higher co-localization with endosomes. Furthermore, our data showed that the uptake of carbohydrate-coated AuNPs predominantly occurred through receptor-mediated endocytosis, as evidenced by a marked reduction of uptake upon treatment of DCs with methyl-β-cyclodextrins, known to disrupt receptor-mediated endocytosis. These findings highlight the utility of carbohydrate coatings to enable more targeted delivery of nanoparticles and their payload to distinct intracellular compartments in immune cells with potential applications in drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Meshal A. Alobaid
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Biology, Immunology, American International University, Al-Jahra, Saad Al Abdullah, Kuwait
| | - Sarah-Jane Richards
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Matthew I. Gibson
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
32
|
Ušaj M, Pavlin M, Kandušer M. Feasibility Study for the Use of Gene Electrotransfer and Cell Electrofusion as a Single-Step Technique for the Generation of Activated Cancer Cell Vaccines. J Membr Biol 2024; 257:377-389. [PMID: 39133276 PMCID: PMC11584437 DOI: 10.1007/s00232-024-00320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
Cell-based therapies hold great potential for cancer immunotherapy. This approach is based on manipulation of dendritic cells to activate immune system against specific cancer antigens. For the development of an effective cell vaccine platform, gene transfer, and cell fusion have been used for modification of dendritic or tumor cells to express immune (co)stimulatory signals and to load dendritic cells with tumor antigens. Both, gene transfer and cell fusion can be achieved by single technique, a cell membrane electroporation. The cell membrane exposed to external electric field becomes temporarily permeable, enabling introduction of genetic material, and also fusogenic, enabling the fusion of cells in the close contact. We tested the feasability of combining gene electrotransfer and electrofusion into a single-step technique and evaluated the effects of electroporation buffer, pulse parameters, and cell membrane fluidity for single or combined method of gene delivery or cell fusdion. We determined the percentage of fused cells expressing green fluorescence protein (GFP) in a murine cell model of melanoma B16F1, cell line used in our previous studies. Our results suggest that gene electrotransfer and cell electrofusion can be applied in a single step. The percentage of viable hybrid cells expressing GFP depends on electric pulse parameters and the composition of the electroporation buffer. Furthermore, our results suggest that cell membrane fluidity is not related to the efficiency of the gene electrotransfer and electrofusion. The protocol is compatible with microfluidic devices, however further optimization of electric pulse parameters and buffers is still needed.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
- Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute for Pharmacy, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Zhang W, Guan J, Wang W, Chen G, Fan L, Lu Z. Neoantigen-specific mRNA/DC vaccines for effective anticancer immunotherapy. Genes Immun 2024; 25:514-524. [PMID: 39592852 DOI: 10.1038/s41435-024-00305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
The development of personalized anticancer vaccines based on neoantigens represents a new direction in cancer immunotherapy. The latest advancement in dendritic cell (DC) tumor vaccine construction involves loading DC with mRNA-encoding neoantigens, which allows for rapid production and is suitable for personalized preparation. Cell-penetrating peptides (CPPs) are emerging as biological delivery systems in which negatively charged nucleic acids can be wound onto the cationic CPP backbone to form nanoscale complexes. This preparation method facilitates standardization. If DC can express and present neoantigen mRNA at high levels, it holds promising application potential. In this study, we developed a neoantigen-mRNA/DC vaccine using candidate neoantigens from mouse colon cancer (MC38) and examined its immune and antitumor effects. The results demonstrated that neoantigen-mRNA/DC vaccines induced strong T cell immune responses and exhibited significant antitumor effects, effectively preventing tumor growth. Our study provides an experimental basis for further optimizing the preparation of DC vaccines and reducing their costs.
Collapse
Affiliation(s)
- Wenli Zhang
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jiahao Guan
- Medical Laboratory Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenwen Wang
- Department of Military Preventive Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Guo Chen
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Li Fan
- Traditional Chinese Medicine of Shouguang Hospital, Shouguang, 262700, China
| | - Zifan Lu
- Translational Medicine Center of Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
34
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
35
|
Feng T, Hu J, Wen J, Qian Z, Che G, Zhou Q, Zhu L. Personalized nanovaccines for treating solid cancer metastases. J Hematol Oncol 2024; 17:115. [PMID: 39609851 PMCID: PMC11603676 DOI: 10.1186/s13045-024-01628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Cancer vaccines have garnered attention as a potential treatment for cancer metastases. Nevertheless, the clinical response rate to vaccines remains < 30%. Nanoparticles stabilize vaccines and improve antigen recognition and presentation, resulting in high tumor penetration or accumulation, effective co-distribution of drugs to the secondary lymphatic system, and adaptable antigen or adjuvant administration. Such vaccine-like nanomedicines have the ability to eradicate the primary tumors as well as to prevent or eliminate metastases. This review examines state-of-the-art nanocarriers developed to deliver tumor vaccines to metastases, including synthetic, semi-biogenic, and biogenic nanosystems. Moreover, it highlights the physical and pharmacological properties that enhance their anti-metastasis efficiency. This review also addresses the combination of nanovaccines with cancer immunotherapy to target various steps in the metastatic cascade, drawing insights from preclinical and clinical studies. The review concludes with a critical analysis of the challenges and frameworks linked to the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Tang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Hu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qinghua Zhou
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
36
|
Sengupta R, Topiwala IS, Shakthi A M, Dhar R, Devi A. Immune Cell-Derived Exosomes: A Cell-Free Cutting-Edge Tumor Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:7076-7087. [PMID: 39495624 DOI: 10.1021/acsabm.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Extracellular vesicles (EVs) are cellular communication molecules and are classified into three major subpopulations, such as microvesicles, apoptotic bodies, and exosomes. Among these, exosomes-based cancer research is a cutting-edge investigation approach to cancer understanding. During cancer progression , tumor-derived exosomes can reprogram the cellular system and promote cancer. Circulating exosomes in the body fluids such as blood, plasma, serum, saliva, CSF, sweat, and tears play a key role in identifying diagnostic and prognostic cancer biomarkers. Diverse therapeutic sources of exosomes including stem cells, plants, and immune cells, etc. exhibit significant cancer-healing properties. Although cancer-targeting immunotherapy is an effective strategy, it has limitations such as toxicity, and high costs. In comparison, immune cell-derived exosomes-based immunotherapy is a cell-free approach for cancer treatment and has advantages like less toxicity, biocompatibility, reduced immunogenicity, and efficient, target-specific cancer therapeutic development. This review highlights the therapeutic signature of immune cell-derived exosomes for cancer treatment.
Collapse
Affiliation(s)
- Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, TamilNadu 603203, India
| |
Collapse
|
37
|
Fiore G, Weckwarth W, Paetzold K, Albertí Servera L, Gies M, Rosenhauer J, Antoniolli M, Nassiri S, Schmeing S, Dettling S, Soni B, Majety M, Krug AB, Hoves S, Wolf MJ. Human CD34 +-derived plasmacytoid dendritic cells as surrogates for primary pDCs and potential cancer immunotherapy. Front Immunol 2024; 15:1433119. [PMID: 39575246 PMCID: PMC11578708 DOI: 10.3389/fimmu.2024.1433119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/09/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Plasmacytoid dendritic cells (pDCs) are capable of triggering broad immune responses, yet, their scarcity in blood coupled to their reduced functionality in cancer, makes their therapeutic use for in situ activation or vaccination challenging. Methods We designed an in vitro differentiation protocol tailored for human pDCs from cord blood (CB) hematopoietic stem cells (HSCs) with StemRegenin 1 (SR-1) and GM-CSF supplementation. Next, we evaluated the identity and function of CB-pDCs compared to human primary pDCs. Furthermore, we tested the potential of CB-pDCs to support anti-tumor immune responses in co-culture with tumor explants from CRC patients. Results Here, we report an in vitro differentiation protocol enabling the generation of 200 pDCs per HSC and highlight the role of GM-CSF and SR-1 in CB-pDC differentiation and function. CB-pDCs exhibited a robust resemblance to primary pDCs phenotypically and functionally. Transcriptomic analysis confirmed strong homology at both, baseline and upon TLR9 or TLR7 stimulation. Further, we could confirm the potential of CB-pDCs to promote inflammation in the tumor microenvironment by eliciting cytokines associated with NK and T cell recruitment and function upon TLR7 stimulation ex vivo in patient tumor explants. Discussion This study highlights CB-pDCs as surrogates for primary pDCs to investigate their biology and for their potential use as cell therapy in cancer.
Collapse
Affiliation(s)
- Giovanna Fiore
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Wolfgang Weckwarth
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Kerstin Paetzold
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Llucia Albertí Servera
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Manuela Gies
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Jakob Rosenhauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Martina Antoniolli
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Sina Nassiri
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Stephan Schmeing
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Steffen Dettling
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Bhavesh Soni
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Switzerland
| | - Meher Majety
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Anne B. Krug
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sabine Hoves
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Monika Julia Wolf
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
38
|
Chen L, Rao W, Chen Y, Xie J. In vitro induction of anti‑lung cancer immune response by the A549 lung cancer stem cell lysate‑sensitized dendritic cell vaccine. Oncol Lett 2024; 28:550. [PMID: 39328277 PMCID: PMC11425031 DOI: 10.3892/ol.2024.14683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lung adenocarcinoma is one of the most fatal types of cancer worldwide, with non-small cell lung cancer being the most common subtype. Therefore, there is need for improved treatment approaches. Tumor growth results from the proliferation of a very small number of tumor stem cells, giving rise to the theory of cancer stem cells (CSCs). Lung CSCs are associated with lung cancer development, and although chemotherapy drugs can inhibit the proliferation of lung cancer cells, they have difficulty acting on lung CSCs. Even if the tumor appears to have disappeared after chemotherapy, the presence of a small number of residual tumor stem cells can lead to cancer recurrence and metastasis. Hence, targeting and eliminating lung CSCs is of significant therapeutic importance. In this study, we cultured A549 cells in sphere-forming conditions using B27, EGF, and bFGF, isolated peripheral blood mononuclear cells (PBMCs), and induced and characterized dendritic cells (DCs). We also isolated and expanded T lymphocytes. DC vaccines were prepared using A549 stem cell lysate or A549 cell lysate for sensitization and compared with non-sensitized DC vaccines. The content of IFN-γ in the supernatant of cultures with vaccines and T cells was measured by ELISA. The cytotoxic effects of the vaccines on A549 cells and stem cells were assessed using the Cytotox96 assay, and the impact of the vaccines on A549 cell migration and apoptosis was evaluated using Transwell assays and flow cytometry. DC vaccines sensitized with human lung CSC lysates induced significant in vitro cytotoxic effects on A549 lung cancer cells and CSCs by T lymphocytes, while not producing immune cytotoxic effects on human airway epithelial cells. Moreover, the immune-killing effect induced by DC vaccines sensitized with lung CSC lysates was superior to that of DC vaccines sensitized with lung cancer cells.
Collapse
Affiliation(s)
- Letian Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Wei Rao
- Department of Urology, Yingtan People's Hospital, Yingtan, Jiangxi 335000, P.R. China
| | - Yujuan Chen
- Department of Pulmonary and Critical Care Medicine, Gaoan People's Hospital, Yichun, Jiangxi 336000, P.R. China
| | - Junping Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
39
|
Luo J, Mo F, Zhang Z, Hong W, Lan T, Cheng Y, Fang C, Bi Z, Qin F, Yang J, Zhang Z, Li X, Que H, Wang J, Chen S, Wu Y, Yang L, Li J, Wang W, Chen C, Wei X. Engineered mitochondria exert potent antitumor immunity as a cancer vaccine platform. Cell Mol Immunol 2024; 21:1251-1265. [PMID: 39164536 PMCID: PMC11528120 DOI: 10.1038/s41423-024-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
The preferable antigen delivery profile accompanied by sufficient adjuvants favors vaccine efficiency. Mitochondria, which feature prokaryotic characteristics and contain various damage-associated molecular patterns (DAMPs), are easily taken up by phagocytes and simultaneously activate innate immunity. In the current study, we established a mitochondria engineering platform for generating antigen-enriched mitochondria as cancer vaccine. Ovalbumin (OVA) and tyrosinase-related protein 2 (TRP2) were used as model antigens to synthesize fusion proteins with mitochondria-localized signal peptides. The lentiviral infection system was then employed to produce mitochondrial vaccines containing either OVA or TRP2. Engineered OVA- and TRP2-containing mitochondria (OVA-MITO and TRP2-MITO) were extracted and evaluated as potential cancer vaccines. Impressively, the engineered mitochondria vaccine demonstrated efficient antitumor effects when used as both prophylactic and therapeutic vaccines in murine tumor models. Mechanistically, OVA-MITO and TRP2-MITO potently recruited and activated dendritic cells (DCs) and induced a tumor-specific cell-mediated immunity. Moreover, DC activation by mitochondria vaccine critically involves TLR2 pathway and its lipid agonist, namely, cardiolipin derived from the mitochondrial membrane. The results demonstrated that engineered mitochondria are natively well-orchestrated carriers full of immune stimulants for antigen delivery, which could preferably target local dendritic cells and exert strong adaptive cellular immunity. This proof-of-concept study established a universal platform for vaccine construction with engineered mitochondria bearing alterable antigens for cancers as well as other diseases.
Collapse
Affiliation(s)
- Jingwen Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunju Fang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Furong Qin
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayu Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiming Wu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
40
|
Zhang H, Grippin A, Sun M, Ma Y, Kim BYS, Teng L, Jiang W, Yang Z. New avenues for cancer immunotherapy: Cell-mediated drug delivery systems. J Control Release 2024; 375:712-732. [PMID: 39326499 DOI: 10.1016/j.jconrel.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Cancer research has become increasingly complex over the past few decades as knowledge of the heterogeneity of cancer cells, their proliferative ability, and their tumor microenvironments has become available. Although conventional therapies remain the most compelling option for cancer treatment to date, immunotherapy is a promising way to harness natural immune defenses to target and kill cancer cells. Cell-mediated drug delivery systems (CDDSs) have been an active line of research for enhancing the therapeutic efficacy and specificity of cancer immunotherapy. These systems can be tailored to different types of immune cells, allowing immune evasion and accumulation in the tumor microenvironment. By enabling the targeted delivery of therapeutic agents such as immune stimulants, cytokines, antibodies, and antigens, CDDSs have improved the survival of some patients with cancer. This review summarizes the research status of CDDSs, with a focus on their underlying mechanisms of action, biology, and clinical applications. We also discuss opportunities and challenges for implementation of CDDSs into mainstream cancer immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Adam Grippin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yifan Ma
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
41
|
Wong CE, Chang Y, Chen PW, Huang YT, Chang YC, Chiang CH, Wang LC, Lee PH, Huang CC, Hsu HJ, Lee JS. Dendritic cell vaccine for glioblastoma: an updated meta-analysis and trial sequential analysis. J Neurooncol 2024; 170:253-263. [PMID: 39167243 DOI: 10.1007/s11060-024-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Dendritic cell (DC) vaccine is an emerging immunotherapy that could potentially improve glioblastoma survival. The first phase III clinical trial of DC vaccine was recently published. This meta-analysis aims to update and reappraise existing evidence on the efficacy of DC vaccine in patients with glioblastoma. METHODS We searched PubMed, Embase, and Cochrane Library for clinical trials of DC vaccine for glioblastoma. The quality of the studies was assessed using the RoB 2.0 and ROBINS-I tools. The results of overall survival (OS) and progression-free survival (PFS) were pooled using hazard ratios (HRs) with corresponding 95% confidence intervals (CI). Summary effects were evaluated using random effects models. Trial sequential analysis (TSA) was performed. RESULTS Seven clinical trials involving 3,619 patients were included. DC vaccine plus standard care was associated with significantly improved OS (HR = 0.71; 95% CI, 0.57 - 0.88) and PFS (HR = 0.65; 95% CI, 0.43 - 0.98). In the subgroup of newly diagnosed glioblastoma, DC vaccine was associated with improved PFS (HR = 0.59; 95% CI, 0.39 - 0.90). TSA of OS showed that the cumulative z-score line for the DC vaccine crossed the benefit boundary and reached the required sample size. TSA of PFS and subgroup analysis of newly diagnosed glioblastoma showed that the required sample size was not reached. CONCLUSIONS This updated meta-analysis, which included the first phase III trial of a DC vaccine for glioblastoma, demonstrated that the DC vaccine was associated with improved OS. Moreover, TSA showed that the required sample size was reached, indicating a true-positive result. Future studies are required for patient subgroups with newly diagnosed and recurrent glioblastoma.
Collapse
Affiliation(s)
- Chia-En Wong
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu Chang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Ta Huang
- Surgical Intensive Care Unit, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Liang-Chao Wang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsuan Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), No. 670, Chongde Road, Tainan, 701, Taiwan.
| | - Jung-Shun Lee
- Department of Neurosurgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Neurosurgery, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 138, Sheng-Li Road, Tainan, 70428, Taiwan.
| |
Collapse
|
42
|
Zhou H, Wu L. Reprogramming tumor cells to fight cancer. Science 2024; 386:274-275. [PMID: 39418388 DOI: 10.1126/science.ads6228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cancer cells reprogrammed into dendritic cells in vivo promote antitumor immunity.
Collapse
Affiliation(s)
- Haibo Zhou
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wu
- Institute for Immunology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Amhis N, Carignan J, Tai LH. Transforming pancreaticobiliary cancer treatment: Exploring the frontiers of adoptive cell therapy and cancer vaccines. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200825. [PMID: 39006944 PMCID: PMC11246060 DOI: 10.1016/j.omton.2024.200825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreaticobiliary cancer, encompassing malignancies of both the pancreatic and biliary tract, presents a formidable clinical challenge marked by a uniformly bleak prognosis. The asymptomatic nature of its early stages often leads to delayed detection, contributing to an unfavorable 5-year overall survival rate. Conventional treatment modalities have shown limited efficacy, underscoring the urgent need for alternative therapeutic approaches. In recent years, immunotherapy has emerged as a promising avenue in the fight against pancreaticobiliary cancer. Strategies such as therapeutic vaccines and the use of tumor-infiltrating lymphocytes have garnered attention for their potential to elicit more robust and durable responses. This review seeks to illuminate the landscape of emerging immunotherapeutic interventions, offering insights from both clinical and research perspectives. By deepening our understanding of pancreaticobiliary cancer and exploring innovative treatment modalities, we aim to catalyze improvements in patient outcomes and quality of life.
Collapse
Affiliation(s)
- Nawal Amhis
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Department of Surgery, Division of General Surgery, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Julie Carignan
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Lee-Hwa Tai
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
45
|
Araujo AE, Bentler M, Perez Garmendia X, Kaleem A, Fabian C, Morgan M, Hacker UT, Büning H. Adeno-Associated Virus Vectors-a Target of Cellular and Humoral Immunity-are Expanding Their Reach Toward Hematopoietic Stem Cell Modification and Immunotherapies. Hum Gene Ther 2024; 35:586-603. [PMID: 39193633 DOI: 10.1089/hum.2024.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
All current market-approved gene therapy medical products for in vivo gene therapy of monogenic diseases rely on adeno-associated virus (AAV) vectors. Advances in gene editing technologies and vector engineering have expanded the spectrum of target cells and, thus, diseases that can be addressed. Consequently, AAV vectors are now being explored to modify cells of the hematopoietic system, including hematopoietic stem and progenitor cells (HSPCs), to develop novel strategies to treat monogenic diseases, but also to generate cell- and vaccine-based immunotherapies. However, the cell types that represent important new targets for the AAV vector system are centrally involved in immune responses against the vector and its transgene product as discussed briefly in the first part of this review. In the second part, studies exploring AAV vectors for genetic engineering of HSPCs, T and B lymphocytes, and beyond are presented.
Collapse
Affiliation(s)
- Angela E Araujo
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Bentler
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Asma Kaleem
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Claire Fabian
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Ulrich T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Laboratory for Vector based immunotherapy, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Cancer Center Central Germany, Leipzig, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
46
|
Lv L, Zhang J, Wang Y, Liang H, Liu Q, Hu F, Li H, Su W, Zhang J, Chen R, Chen Z, Wang Z, Li J, Yan R, Yang M, Chang Y, Li J, Liang T, Xing G, Chen K. Boron Neutron Capture Therapy-Derived Extracellular Vesicles via DNA Accumulation Boost Antitumor Dendritic Cell Vaccine Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405158. [PMID: 39021327 PMCID: PMC11425286 DOI: 10.1002/advs.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Radiated tumor cell-derived extracellular vesicles (RT-EVs) encapsulate abundant DNA fragments from irradiated tumor cells, in addition to acting as integrators of multiple tumor antigens. Accumulating evidence indicates these DNA fragments from damaged cells are involved in downstream immune responses, but most of them are degraded in cells before incorporation into derived RT-EVs, thus the low abundance of DNA fragments limits immune responses of RT-EVs. Here, this study found that different radiations affected fates of DNA fragments in RT-EVs. Boron neutron capture therapy (BNCT) induced DNA accumulation in RT-EVs (BEVs) by causing more DNA breaks and DNA oxidation resisting nuclease degradation. This is attributed to the high-linear energy transfer (LET) properties of alpha particles from the neutron capture reaction of 10B. When being internalized by dendritic cells (DCs), BEVs activated the DNA sensing pathway, resulting in functional enhancements including antigen presentation, migration capacity, and cytokine secretion. After vaccination of the BEVs-educated DCs (BEV@BMDCs), the effector T cells significantly expanded and infiltrated into tumors, suggesting robust anti-tumor immune activation. BEV@BMDCs not only effectively inhibited the primary tumor growth and metastasis formation but also elicited long-term immune memory. In conclusion, a successful DC vaccine is provided as a promising candidate for tumor vaccine.
Collapse
Affiliation(s)
- Linwen Lv
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di HerbsArtemisinin Research Centerand Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Yujiao Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Haojun Liang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Qiuyang Liu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Fan Hu
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Hao Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Wenxi Su
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Junhui Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ranran Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ziteng Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Zhijie Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Jiacheng Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ruyu Yan
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Mingxin Yang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Ya‐nan Chang
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Juan Li
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Tianjiao Liang
- Guangdong‐Hong Kong‐Macao Joint Laboratory for Neutron Scattering Science and TechnologySpallation Neutron Source Science CenterDongguan523803China
| | - Gengmei Xing
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| | - Kui Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and NanosafetyInstitute of High Energy PhysicsChinese Academy of Sciences19B YuquanLu, Shijingshan DistrictBeijing100049China
| |
Collapse
|
47
|
Zheng J, Wang M, Pang L, Wang S, Kong Y, Zhu X, Zhou X, Wang X, Chen C, Ning H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. J Control Release 2024; 373:568-582. [PMID: 39067792 DOI: 10.1016/j.jconrel.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
48
|
Maccagno M, Tapparo M, Saccu G, Rumiano L, Kholia S, Silengo L, Herrera Sanchez MB. Emerging Cancer Immunotherapies: Cutting-Edge Advances and Innovations in Development. Med Sci (Basel) 2024; 12:43. [PMID: 39311156 PMCID: PMC11417735 DOI: 10.3390/medsci12030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
The rise in biological therapies has revolutionized oncology, with immunotherapy leading the charge through breakthroughs such as CAR-T cell therapy for melanoma and B-ALL. Modified bispecific antibodies and CAR-T cells are being developed to enhance their effectiveness further. However, CAR-T cell therapy currently relies on a costly ex vivo manufacturing process, necessitating alternative strategies to overcome this bottleneck. Targeted in vivo viral transduction offers a promising avenue but remains under-optimized. Additionally, novel approaches are emerging, such as in vivo vaccine boosting of CAR-T cells to strengthen the immune response against tumors, and dendritic cell-based vaccines are under investigation. Beyond CAR-T cells, mRNA therapeutics represent another promising avenue. Targeted delivery of DNA/RNA using lipid nanoparticles (LNPs) shows potential, as LNPs can be directed to T cells. Moreover, CRISPR editing has demonstrated the ability to precisely edit the genome, enhancing the effector function and persistence of synthetic T cells. Enveloped delivery vehicles packaging Cas9 directed to modified T cells offer a virus-free method for safe and effective molecule release. While this platform still relies on ex vivo transduction, using cells from healthy donors or induced pluripotent stem cells can reduce costs, simplify manufacturing, and expand treatment to patients with low-quality T cells. The use of allogeneic CAR-T cells in cancer has gained attraction for its potential to lower costs and broaden accessibility. This review emphasizes critical strategies for improving the selectivity and efficacy of immunotherapies, paving the way for a more targeted and successful fight against cancer.
Collapse
Affiliation(s)
- Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, 10126 Turin, Italy;
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Marta Tapparo
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Gabriele Saccu
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Letizia Rumiano
- Department of Molecular Biotechnology and Health Sciences, 10126 Turin, Italy;
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Sharad Kholia
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, 10126 Turin, Italy; (M.T.); (G.S.); (S.K.); (L.S.)
- 2i3T, Società per la Gestione dell’incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Turin, Italy
| |
Collapse
|
49
|
Ye Z, Zhang Y, Xu J, Li K, Zhang J, Ivanova D, Zhang X, Liao S, Duan L, Li F, Chen X, Wang Y, Wang M, Xie B. Integrating Bulk and Single-Cell RNA-Seq Data to Identify Prognostic Features Related to Activated Dendritic Cells in Clear-Cell Renal-Cell Carcinoma. Int J Mol Sci 2024; 25:9235. [PMID: 39273185 PMCID: PMC11395106 DOI: 10.3390/ijms25179235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Dendritic cells (DCs) serve as key regulators in tumor immunity, with activated DCs potentiating antitumor responses through the secretion of pro-inflammatory cytokines and the expression of co-stimulatory molecules. Most current studies focus on the relationship between DC subgroups and clear-cell renal-cell carcinoma (ccRCC), but there is limited research on the connection between DCs and ccRCC from the perspective of immune activation. In this study, activated DC genes were identified in both bulk and single-cell RNA-seq data. A prognostic model related to activated DCs was constructed using univariate, multivariate Cox regression and LASSO regression. The prognostic model was validated in three external validation sets: GSE167573, ICGC, and E-MTAB-1980. The prognostic model consists of five genes, PLCB2, XCR1, IFNG, HLA-DQB2, and SMIM24. The expression of these genes was validated in tissue samples using qRT-PCR. Stratified analysis revealed that the prognostic model was able to better predict outcomes in advanced ccRCC patients. The risk scores were associated with tumor progression, tumor mutation burden, immune cell infiltration, and adverse outcomes of immunotherapy. Notably, there was a strong correlation between the expression of the five genes and the sensitivity to JQ1, a BET inhibitor. Molecular docking indicated high-affinity binding of the proteins encoded by these genes with JQ1. In conclusion, our study reveals the crucial role of activated DCs in ccRCC, offering new insights into predicting immune response, targeted therapy effectiveness, and prognosis for ccRCC patients.
Collapse
Affiliation(s)
- Zijian Ye
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Yifan Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jialiang Xu
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Kun Li
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jianning Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Deyana Ivanova
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Zhang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Siqi Liao
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Liqi Duan
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Meijiao Wang
- Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Biao Xie
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
50
|
He G, Li Y, Zeng Y, Zhang Y, Jiang Q, Zhang Q, Zhu J, Gong J. Advancements in melanoma immunotherapy: the emergence of Extracellular Vesicle Vaccines. Cell Death Discov 2024; 10:374. [PMID: 39174509 PMCID: PMC11341806 DOI: 10.1038/s41420-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Malignant melanoma represents a particularly aggressive type of skin cancer, originating from the pathological transformation of melanocytes. While conventional interventions such as surgical resection, chemotherapy, and radiation therapy are available, their non-specificity and collateral damage to normal cells has shifted the focus towards immunotherapy as a notable approach. Extracellular vesicles (EVs) are naturally occurring transporters, and are capable of delivering tumor-specific antigens and directly engaging in the immune response. Multiple types of EVs have emerged as promising platforms for melanoma vaccination. The effectiveness of EV-based melanoma vaccines manifests their ability to potentiate the immune response, particularly by activating dendritic cells (DCs) and CD8+ T lymphocytes, through engineering a synergy of antigen presentation and targeted delivery. Here, this review mainly focuses on the construction strategies for EV vaccines from various sources, their effects, and immunological mechanisms in treating melanoma, as well as the shortcomings and future perspectives in this field. These findings will provide novel insights into the innovative exploitation of EV-based vaccines for melanoma immune therapy.
Collapse
Affiliation(s)
- Guijuan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuyang Zeng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Jiang
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, China.
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|