1
|
Maruta J. The utility of artificial vestibular stimulation in decoding the pathophysiology of mal de débarquement syndrome. Front Neurol 2025; 16:1560787. [PMID: 40196864 PMCID: PMC11973082 DOI: 10.3389/fneur.2025.1560787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Affiliation(s)
- Jun Maruta
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Xiao S, Zhao T, Liu W, Peng Z, Chen F. Semicircular Canals Input Can Modify the Fast-Phase Nystagmus in Off-Vertical Axis Rotation of Mice. eNeuro 2025; 12:ENEURO.0461-24.2025. [PMID: 39993844 PMCID: PMC11963835 DOI: 10.1523/eneuro.0461-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Vestibular research is essential for understanding and treating disorders such as vertigo and Meniere's disease. The vestibulo-ocular reflex (VOR) is a key method for assessing vestibular function and an essential tool for diagnosing vertigo. Traditionally, the VOR comprises angular VOR (aVOR) and translational VOR (tVOR), which originate from the vestibular semicircular canals (SCCs) and otolith organs, respectively. VOR consists of both fast-phase and slow-phase eye movements, which functionally interact to contribute to gaze control. However, to calculate the gain and phase parameters of the VOR, it is common practice to exclude fast-phase information superimposed on slow-phase eye movements. As a result, the information contained in the fast phase has not been fully utilized. OVAR is primarily used to evaluate otolith function, as there is no SCC input during its steady state. It is widely accepted that fast-phase nystagmus (FPN) during OVAR is generated by periodic otolith inputs via the central vestibular velocity storage mechanism. Surprisingly, we discovered in this study that SCC input can modify the generation of FPN in mouse OVAR test, as demonstrated by testing Zpld1 (Zona pellucida-like domain containing 1 protein) mutant mice with SCC deficits. This finding was further confirmed using both unilateral and bilateral semicircular canals dehiscence surgical models. In addition to revealing the dependence of FPN on SCC input, we demonstrated that FPN can be used to evaluate vestibular function, particularly in conditions that are difficult to assess using slow-phase eye movements, such as unilateral vestibular lesions and central modulation via baclofen treatment.
Collapse
Affiliation(s)
- Shijie Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tong Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenda Liu
- Giant Technologies Co., Ltd, Shenzhen 518055, China
| | - Zihao Peng
- Giant Technologies Co., Ltd, Shenzhen 518055, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang X, Yi Z, Shi M, Sun Y. The Diverse Functions of the Calcium- and Integrin-Binding Protein Family. Int J Mol Sci 2025; 26:2223. [PMID: 40076845 PMCID: PMC11900603 DOI: 10.3390/ijms26052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The calcium- and integrin-binding protein (CIB) family, comprising four evolutionarily conserved members (CIB1, CIB2, CIB3, and CIB4), is characterized by canonical EF-hand motifs. The functions of CIBs in the inner ear have been investigated, although further research is still necessary to gain a comprehensive understanding of them. Among the CIB family members, CIB2 is essential for auditory function. CIB3 and CIB2 jointly participate in the regulation of balance. Beyond their sensory roles, CIBs exhibit multifunctionality through calcium-dependent interactions with diverse molecular partners, contributing to the pathogenesis of various conditions, including neurological disorders, cardiovascular diseases, cancer, and male infertility. In this review, we discuss the conserved structure of the CIB family, highlighting its contributions to various biological functions. We also summarize the distribution and function of the CIB family, emphasizing the pivotal roles of CIB2 and CIB3 in hearing and balance.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangyi Yi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinic Research Center for Deafness and Vertigo, Wuhan 430022, China
| |
Collapse
|
4
|
Heffer A, Lee C, Mayernik JP, Holt JC, Kiernan AE. Notch1 is Required to Maintain Supporting Cell Identity and Vestibular Function during Maturation of the Mammalian Balance Organs. J Neurosci 2025; 45:e1365242024. [PMID: 39779370 PMCID: PMC11867012 DOI: 10.1523/jneurosci.1365-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The inner ear houses both hearing and balance sensory modalities. The hearing and balance organs consist of similar cell types, including sensory hair cells and associated supporting cells. Previously we showed that Notch1 is required for maintaining supporting cell survival during cochlear maturation. To understand the role of Notch during vestibular maturation, we deleted Notch1 from the vestibular organs of both male and female mice at birth. Histological analyses showed a reduction of supporting cells accompanied by an increase in type II hair cells, indicating a conversion of supporting cells to hair cells. Analysis of mature sensory organs indicate the converted hair cells survive, despite a severe reduction of supporting cells. Vestibular sensory evoked potentials (VsEPs), thought to be generated within the striola regions of the maculae, were absent, indicating that NOTCH1 is critical for striolar function. Specialized type I hair cells in the striola failed to develop the complex calyces typical of these cells. Notch1 mutants did not exhibit vestibular behaviors such as circling and head shaking but showed difficulties with tests of balance and swimming. These results indicate that, unlike the cochlea, supporting cells in balance organs retain the plasticity to convert to hair cells which can survive into adulthood. Despite hair cell survival, vestibular function is compromised likely due to the loss of supporting cells and altered innervation.
Collapse
MESH Headings
- Animals
- Receptor, Notch1/genetics
- Receptor, Notch1/physiology
- Receptor, Notch1/deficiency
- Receptor, Notch1/metabolism
- Mice
- Female
- Male
- Postural Balance/physiology
- Vestibule, Labyrinth/growth & development
- Vestibule, Labyrinth/physiology
- Vestibule, Labyrinth/cytology
- Hair Cells, Auditory/physiology
- Hair Cells, Vestibular/physiology
- Mice, Knockout
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| | - Choongheon Lee
- Departments of Otolaryngology, University of Rochester, Rochester, New York 14642
- Mechanical Engineering, University of Rochester, Rochester, New York 14642
| | - Joseph P Mayernik
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| | - Joseph C Holt
- Departments of Otolaryngology, University of Rochester, Rochester, New York 14642
- Neuroscience, University of Rochester, Rochester, New York 14642
| | - Amy E Kiernan
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
5
|
Curthoys IS, Zee DS, Dumas G, Pastras CJ, Dlugaiczyk J. Skull vibration induced nystagmus, velocity storage and self-stability. Front Neurol 2025; 16:1533842. [PMID: 39968451 PMCID: PMC11832403 DOI: 10.3389/fneur.2025.1533842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
In this paper we give an introduction to the area, followed by brief reviews of the neural response to sound and vibration, and then the velocity storage integrator, before putting forward our hypothesis about the neural input to the velocity storage integrator. Finally we discuss some of the implications of our hypothesis. There are two pathways conveying neural information from the vestibular periphery (the semicircular canals and the otoliths) to central neural mechanisms-a direct and an indirect pathway. Within the indirect pathway there is a unique neural mechanism called the velocity storage integrator (VSI) which is part of a neural network generating prolonged nystagmus, afternystagmus and the sensation of self-motion and its converse self-stability. It is our hypothesis that only neural input from primary afferent neurons with irregular resting discharge projects in the direct pathway, whereas the primary afferent input in the indirect pathway consists of neurons with regular resting discharge. The basis for this hypothesis is that vibration is a selective stimulus for vestibular neurons with irregular resting discharge. 100 Hz mastoid vibration, while capable of generating nystagmus (skull vibration induced nystagmus SVIN), is ineffective in generating afternystagmus (in the condition of an encased labyrinth) which is a marker of the action of the VSI, leading to the conclusion that irregular afferents bypass the indirect pathway and the VSI. In order to present this hypothesis we review the evidence that irregular neurons are selectively activated by sound and vibration, whereas regular neurons are not so activated. There are close similarities between the temporal characteristics of the irregular afferent neural response to vibration and the temporal characteristics of SVIN. SVIN is a simple clinical indicator of whether a patient has an imbalance between the two vestibular labyrinths and our hypothesis ties SVIN to irregular primary vestibular neurons.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - David S. Zee
- Departments of Neurology, Neuroscience, Ophthalmology, Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, MD, United States
| | - Georges Dumas
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, University Hospital, Grenoble, France
- Research Unit DevAH — Development, Adaptation and Handicap, Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Christopher J. Pastras
- Faculty of Science and Engineering, School of Engineering, Macquarie University, Sydney, NSW, Australia
| | - Julia Dlugaiczyk
- Department of Otorhinolaryngology, Head and Neck Surgery & Interdisciplinary Center for Vertigo, Balance and Ocular Motor Disorders, University Hospital Zurich (USZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
6
|
Martin HR, Verdone BM, López-Ramírez O, Green M, Silvian D, Scott E, Cullen KE, Eatock RA. K V1.8 ( Kcna10) potassium channels enhance fast, linear signaling in vestibular hair cells and facilitate vestibulomotor reflexes and balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.634388. [PMID: 39975259 PMCID: PMC11838376 DOI: 10.1101/2025.01.28.634388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Vestibular hair cells (HCs) faithfully and rapidly detect head motions and gravity, driving motor reflexes that stabilize balance and gaze during locomotion. With the transition from water to land, the amniote vestibular inner ear added type I HCs, which differ from amniote type II HCs and anamniote HCs by their large calyx afferent synapse, non-quantal afferent transmission, and a large, low-voltage-activated K+ conductance (gK,L). We recently showed that both gK,L and the major type II K+ conductances (A-type and delayed rectifier) require KV1.8 (Kcna10) subunits. Here we compared KV1.8-null (Kcna10 -/-) and control animals to see how KV1.8 affects function as measured by receptor potentials and nonquantal postsynaptic potentials evoked by direct hair bundle motions, and by vestibulomotor behaviors. Recordings were taken from extrastriolar zones of the utricle. In both HC types, KV1.8 affected receptor potentials by reducing response time and gain, increasing dampening, and expanding the frequency bandwidth toward high frequencies. Effects are most prominent in type I HCs: lowpass corner frequencies of receptor potentials in Kcna10 -/- HCs of both types were ~20 Hz, vs. ~400 Hz in control type I and ~70 Hz in control type II. We recorded nonquantal postsynaptic potentials from extrastriolar calyces, and found that the synaptic transfer function had lower gain and greater phase lag in Kcna10 -/- mice. In behavioral tests, Kcna10 -/- mice had vestibular-ocular reflexes with different response dynamics at low frequencies, impaired performance on a narrow balance beam, abnormal body posture and abnormal head motions in water and on land, and also rarely assumed bipedal stances. These vestibulomotor deficits in Kcna10 -/- mice likely reflect the changes noted in HCs, where KV1.8 expression is concentrated; that is, slower signaling of high-frequency head motions by Kcna10 -/- HCs fails to fully stabilize body and head position during locomotion. Thus, gK,L (KV1.8) contributes to fast signal transmission in the amniote vestibular inner ear and supports improved performance on challenging vestibulomotor tasks.
Collapse
Affiliation(s)
| | | | | | - Merrill Green
- Johns Hopkins University, Department of Biomedical Engineering
| | - Dana Silvian
- University of Chicago, Department of Neurobiology
| | - Emily Scott
- University of Chicago, Department of Neurobiology
| | | | | |
Collapse
|
7
|
Yang Y, Zhao T, Mi F, Li H, Huang P, Chen F. Photodynamic therapy-induced precise attenuation of light-targeted semicircular canals for treating intractable vertigo. SMART MEDICINE 2024; 3:e20230044. [PMID: 39776590 PMCID: PMC11669792 DOI: 10.1002/smmd.20230044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/09/2024] [Indexed: 01/11/2025]
Abstract
Vertigo is a common symptom of various diseases that affects a large number of people worldwide. Current leading treatments for intractable peripheral vertigo are to intratympanically inject ototoxic drugs such as gentamicin to attenuate the semicircular canal function but inevitably cause hearing injury. Photodynamic therapy (PDT) is a noninvasive therapeutic approach by precisely targeting the diseased tissue. Here, we developed a PDT-based method for treating intractable peripheral vertigo in a mouse model using a polymer-coated photosensitizer chlorin e6 excited by red light. We found that a high dose of PDT attenuated the function of both semicircular canals and otolith organs and damaged their hair cells. Conversely, the PDT exerted no effect on hearing function or cochlear hair-cell viability. These results suggest the therapeutic potential of PDT for treating intractable peripheral vertigo without hurting hearing. Besides, the attenuation level and affected area can be precisely controlled by adjusting the light exposure time. Furthermore, we demonstrated the potential of this therapeutic approach to be minimally invasive with light irradiation through bone results. Thus, our PDT-based approach for attenuating the function of the semicircular canals offers a basis for developing a less-invasive and targeted therapeutic option for treating vertigo.
Collapse
Affiliation(s)
- Yingkun Yang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
- Division of Life ScienceHong Kong University of Science and TechnologyHong KongChina
- Department of Otolaryngology‐Head and Neck SurgeryStanford UniversityStanfordCaliforniaUSA
| | - Tong Zhao
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Feixue Mi
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Hongzhe Li
- Research ServiceVA Loma Linda Healthcare SystemLoma LindaCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryLoma Linda University HealthLoma LindaCaliforniaUSA
| | - Pingbo Huang
- Division of Life ScienceHong Kong University of Science and TechnologyHong KongChina
- State Key Laboratory of Molecular NeuroscienceHong Kong University of Science and TechnologyHong KongChina
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou)Hong Kong University of Science and TechnologyHong KongChina
| | - Fangyi Chen
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdongChina
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
8
|
Hughes NC, Roberts DC, Tarchini B, Cullen KE. Instrumented swim test for quantifying motor impairment in rodents. Sci Rep 2024; 14:29270. [PMID: 39587238 PMCID: PMC11589839 DOI: 10.1038/s41598-024-80344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Swim tests are highly effective for identifying vestibular deficits in rodents by offering significant vestibular motor challenges with reduced proprioceptive input, unlike rotarod and balance beam tests. Traditional swim tests rely on subjective assessments, limiting objective quantification and reproducibility. We present a novel instrumented swim test using a miniature motion sensor with a 3D accelerometer and 3D gyroscope affixed to the rodent's head. This setup robustly quantifies six-dimensional motion-three translational and three rotational axes-during swimming with high temporal resolution. We demonstrate the test's capabilities by comparing head movements of Gpr156-/- mutant mice, which have impaired otolith organ development, to their heterozygous littermates. Our results show axis-specific differences in head movement probability distribution functions and dynamics that identify mice with the Gpr156 mutation. Axis-specific power spectrum analyses reveal selective movement alterations within distinct frequency ranges. Additionally, our spherical visualization and 3D analysis quantifies swimming performance based on head vector distance from upright. We use this analysis to generate a single classifier metric-a weighted average of an animal's head deviation from upright during swimming. This metric effectively distinguishes animals with vestibular dysfunction from those with normal vestibular function. Overall, this instrumented swim test provides quantitative metrics for assessing performance and identifying subtle, axis- and frequency-specific deficits not captured by existing systems. This novel quantitative approach can enhance understanding of rodent sensorimotor function including enabling more selective and reproducible studies of vestibular-motor deficits.
Collapse
Affiliation(s)
- Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dale C Roberts
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Regalado Núñez K, Bronson D, Chang R, Kalluri R. Vestibular afferent neurons develop normally in the absence of quantal/glutamatergic input. Front Neurol 2024; 15:1441964. [PMID: 39655160 PMCID: PMC11625666 DOI: 10.3389/fneur.2024.1441964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The vestibular nerve is comprised of neuron sub-groups with diverse functions related to their intrinsic biophysical properties. This diversity is partly due to differences in the types and numbers of low-voltage-gated potassium channels found in the neurons' membranes. Expression for some low-voltage gated ion channels like KCNQ4 is upregulated during early post-natal development; suggesting that ion channel composition and neuronal diversity may be shaped by hair cell activity. This idea is consistent with recent work showing that glutamatergic input from hair cells is necessary for the normal diversification auditory neurons. Methods To test if biophysical diversity is similarly dependent on glutamatergic input in vestibular neurons, we examined vestibular function and the maturation of the vestibular epithelium and ganglion neurons by immunohistochemistry and patch-clamp electrophysiology in Vglut3-ko mice whose hair cell synapses lack glutamate. Results The knockout mice showed no obvious balance deficits and crossed challenging balance beams with little difficulty. Immunolabeling of the Vglut3-ko vestibular epithelia showed normal development as indicated by an identifiable striolar zone with calyceal terminals labeled by molecular marker calretinin, and normal expression of KCNQ4 by the end of the second post-natal week. We found similar numbers of Type I and Type II hair cells in the knockout and wild-type animals, regardless of epithelial zone. Thus, the presumably quiescent Type II hair cells are not cleared from the epithelium. Patch-clamp recordings showed that biophysical diversity of vestibular ganglion neurons in the Vglut3-ko mice is comparable to that found in wild-type controls, with a similar range firing patterns at both immature and juvenile ages. However, our results suggest a subtle biophysical alteration to the largest ganglion cells (putative somata of central zone afferents); those in the knockout had smaller net conductance and were more excitable than those in the wild type. Discussion Thus, unlike in the auditory nerve, glutamatergic signaling is unnecessary for producing biophysical diversity in vestibular ganglion neurons. And yet, because the input signals from vestibular hair cells are complex and not solely reliant on quantal release of glutamate, whether diversity of vestibular ganglion neurons is simply hardwired or regulated by a more complex set of input signals remains to be determined.
Collapse
Affiliation(s)
- Katherine Regalado Núñez
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Daniel Bronson
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chang
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Zilkha Neurogenetic Institute, Department of Otolaryngology, University of Southern California, Los Angeles, CA, United States
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
Baeza-Loya S, Eatock RA. Effects of transient, persistent, and resurgent sodium currents on excitability and spike regularity in vestibular ganglion neurons. Front Neurol 2024; 15:1471118. [PMID: 39624672 PMCID: PMC11608953 DOI: 10.3389/fneur.2024.1471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 12/11/2024] Open
Abstract
Vestibular afferent neurons occur as two populations with differences in spike timing regularity that are independent of rate. The more excitable regular afferents have lower current thresholds and sustained spiking responses to injected currents, while irregular afferent neurons have higher thresholds and transient responses. Differences in expression of low-voltage-activated potassium (KLV) channels are emphasized in models of spiking regularity and excitability in these neurons, leaving open the potential contributions of the voltage-gated sodium (NaV) channels responsible for the spike upstroke. We investigated the impact of different NaV current modes (transient, persistent, and resurgent) with whole-cell patch clamp experiments in mouse vestibular ganglion neurons (VGNs), the cultured and dissociated cell bodies of afferents. All VGNs had transient NaV current, many had a small persistent (non-inactivating) NaV current, and a few had resurgent current, which flows after the spike when NaV channels that were blocked are unblocked. A known NaV1.6 channel blocker decreased spike rate and altered spike waveforms in both sustained and transient VGNs and affected all three modes of NaV current. A NaV channel agonist enhanced persistent current and increased spike rate and regularity. We hypothesized that persistent and resurgent currents have different effects on sustained (regular) VGNs vs. transient (irregular) VGNs. Lacking blockers specific for the different current modes, we used modeling to isolate their effects on spiking of simulated transient and sustained VGNs, driven by simulated current steps and noisy trains of simulated EPSCs. In all simulated neurons, increasing transient NaV current increased spike rate and rate-independent regularity. In simulated sustained VGNs, adding persistent current increased both rate and rate-independent regularity, while adding resurgent current had limited impact. In transient VGNs, adding persistent current had little impact, while adding resurgent current increased both rate and rate-independent irregularity by enhancing sensitivity to synaptic noise. These experiments show that the small NaV current modes may enhance the differentiation of afferent populations, with persistent currents selectively making regular afferents more regular and resurgent currents selectively making irregular afferents more irregular.
Collapse
Affiliation(s)
- Selina Baeza-Loya
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Ono K, Jarysta A, Hughes NC, Jukic A, Chang HHV, Deans MR, Eatock RA, Cullen KE, Kindt KS, Tarchini B. Contributions of mirror-image hair cell orientation to mouse otolith organ and zebrafish neuromast function. eLife 2024; 13:RP97674. [PMID: 39531034 PMCID: PMC11556791 DOI: 10.7554/elife.97674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
Collapse
Affiliation(s)
- Kazuya Ono
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | | | - Natasha C Hughes
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Hui Ho Vanessa Chang
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of UtahSalt Lake CityUnited States
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of UtahSalt Lake CityUnited States
| | - Ruth Anne Eatock
- Department of Neurobiology, University of ChicagoChicagoUnited States
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Basile Tarchini
- The Jackson LaboratoryBar HarborUnited States
- Tufts University School of MedicineBostonUnited States
| |
Collapse
|
12
|
Wang T, Yang T, Kedaigle A, Pregernig G, McCarthy R, Holmes B, Wu X, Becker L, Pan N, So K, Chen L, He J, Mahmoudi A, Negi S, Kowalczyk M, Gibson T, Druckenbrod N, Cheng AG, Burns J. Precise genetic control of ATOH1 enhances maturation of regenerated hair cells in the mature mouse utricle. Nat Commun 2024; 15:9166. [PMID: 39448563 PMCID: PMC11502789 DOI: 10.1038/s41467-024-53153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Vestibular hair cells are mechanoreceptors critical for detecting head position and motion. In mammals, hair cell loss causes vestibular dysfunction as spontaneous regeneration is nearly absent. Constitutive expression of exogenous ATOH1, a hair cell transcription factor, increases hair cell regeneration, however, these cells fail to fully mature. Here, we profiled mouse utricles at 14 time points, and defined transcriptomes of developing and mature vestibular hair cells. To mimic native hair cells which downregulate endogenous ATOH1 as they mature, we engineered viral vectors carrying the supporting cell promoters GFAP and RLBP1. In utricles damaged ex vivo, both CMV-ATOH1 and GFAP-ATOH1 increased regeneration more effectively than RLBP1-ATOH1, while GFAP-ATOH1 and RLBP1-ATOH1 induced hair cells with more mature transcriptomes. In utricles damaged in vivo, GFAP-ATOH1 induced regeneration of hair cells expressing genes indicative of maturing type II hair cells, and more hair cells with bundles and synapses than untreated organs. Together our results demonstrate the efficacy of spatiotemporal control of ATOH1 overexpression in inner ear hair cell regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Tian Yang
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | - Gabriela Pregernig
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ryan McCarthy
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ben Holmes
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Xudong Wu
- Decibel Therapeutics, Boston, MA, 02215, USA
| | - Lars Becker
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Ning Pan
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Kathy So
- Decibel Therapeutics, Boston, MA, 02215, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Jun He
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ahmad Mahmoudi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Soumya Negi
- Decibel Therapeutics, Boston, MA, 02215, USA
| | | | | | | | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| | | |
Collapse
|
13
|
Ueda K, Imai T, Ito T, Okayasu T, Harada S, Kamakura T, Ono K, Katsuno T, Tanaka T, Tatsumi K, Hibino H, Wanaka A, Kitahara T. Effects of aging on otolith morphology and functions in mice. Front Neurosci 2024; 18:1466514. [PMID: 39479359 PMCID: PMC11521974 DOI: 10.3389/fnins.2024.1466514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Increased fall risk caused by vestibular system impairment is a significant problem associated with aging. A vestibule is composed of linear acceleration-sensing otoliths and rotation-sensing semicircular canals. Otoliths, composed of utricle and saccule, detect linear accelerations. Otolithic organs partially play a role in falls due to aging. Aging possibly changes the morphology and functions of otoliths. However, the specific associations between aging and otolith changes remain unknown. Therefore, this study aimed to clarify these associations in mice. Methods Young C56BL/6 N (8 week old) and old (108-117 weeks old) mice were used in a micro-computed tomography (μCT) experiment for morphological analysis and a linear acceleration experiment for functional analysis. Young C56BL/6 N (8 week old) and middle-aged (50 week old) mice were used in electron microscopy experiments for morphological analysis. Results μCT revealed no significant differences in the otolith volume (p = 0.11) but significant differences in the otolith density (p = 0.001) between young and old mice. μCT and electron microscopy revealed significant differences in the structure of striola at the center of the otolith (μCT; p = 0.029, electron microscopy; p = 0.017). Significant differences were also observed in the amplitude of the eye movement during the vestibulo-ocular reflex induced by linear acceleration (maximum amplitude of stimulation = 1.3G [p = 0.014]; maximum amplitude of stimulation = 0.7G [p = 0.015]), indicating that the otolith function was worse in old mice than in young mice. Discussion This study demonstrated the decline in otolith function with age caused by age-related morphological changes. Specifically, when otolith density decreased, inertial force acting on the hair cells decreased, and when the structure of striola collapsed, the function of cross-striolar inhibition decreased, thereby causing a decline in the overall otolith function.
Collapse
Affiliation(s)
- Keita Ueda
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Takao Imai
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Taeko Ito
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Tadao Okayasu
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Shotaro Harada
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuya Ono
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Katsuno
- Electron Microscopy Facility, Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuhide Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Hiroshi Hibino
- Division of Glocal Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
- AMED-CREST, AMED, Osaka, Japan
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Nara Medical University, Nara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| |
Collapse
|
14
|
Stanley OR, Swaminathan A, Wojahn E, Bao C, Ahmed ZM, Cullen KE. An open-source tool for automated human-level circling behavior detection. Sci Rep 2024; 14:20914. [PMID: 39245735 PMCID: PMC11381541 DOI: 10.1038/s41598-024-71665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Quantitatively relating behavior to underlying biology is crucial in life science. Although progress in keypoint tracking tools has reduced barriers to recording postural data, identifying specific behaviors from this data remains challenging. Manual behavior coding is labor-intensive and inconsistent, while automatic methods struggle to explicitly define complex behaviors, even when they seem obvious to the human eye. Here, we demonstrate an effective technique for detecting circling in mice, a form of locomotion characterized by stereotyped spinning. Despite circling's extensive history as a behavioral marker, there currently exists no standard automated detection method. We developed a circling detection technique using simple postprocessing of keypoint data obtained from videos of freely-exploring (Cib2-/-;Cib3-/-) mutant mice, a strain previously found to exhibit circling behavior. Our technique achieves statistical parity with independent human observers in matching occurrence times based on human consensus, and it accurately distinguishes between videos of wild type mice and mutants. Our pipeline provides a convenient, noninvasive, quantitative tool for analyzing circling mouse models without the need for software engineering experience. Additionally, as the concepts underlying our approach are agnostic to the behavior being analyzed, and indeed to the modality of the recorded data, our results support the feasibility of algorithmically detecting specific research-relevant behaviors using readily-interpretable parameters tuned on the basis of human consensus.
Collapse
Affiliation(s)
- O R Stanley
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - A Swaminathan
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - E Wojahn
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - C Bao
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - Z M Ahmed
- Departments of Otorhinolaryngology-Head and Neck Surgery, Biochemistry and Molecular Biology, Ophthalmology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA.
- Departments of Neuroscience, Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Ono K, Jarysta A, Hughes NC, Jukic A, Chang HHV, Deans MR, Eatock RA, Cullen KE, Kindt K, Tarchini B. Contributions of mirror-image hair cell orientation to mouse otolith organ and zebrafish neuromast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586740. [PMID: 39282410 PMCID: PMC11398332 DOI: 10.1101/2024.03.26.586740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Otolith organs in the inner ear and neuromasts in the fish lateral-line harbor two populations of hair cells oriented to detect stimuli in opposing directions. The underlying mechanism is highly conserved: the transcription factor EMX2 is regionally expressed in just one hair cell population and acts through the receptor GPR156 to reverse cell orientation relative to the other population. In mouse and zebrafish, loss of Emx2 results in sensory organs that harbor only one hair cell orientation and are not innervated properly. In zebrafish, Emx2 also confers hair cells with reduced mechanosensory properties. Here, we leverage mouse and zebrafish models lacking GPR156 to determine how detecting stimuli of opposing directions serves vestibular function, and whether GPR156 has other roles besides orienting hair cells. We find that otolith organs in Gpr156 mouse mutants have normal zonal organization and normal type I-II hair cell distribution and mechano-electrical transduction properties. In contrast, gpr156 zebrafish mutants lack the smaller mechanically-evoked signals that characterize Emx2-positive hair cells. Loss of GPR156 does not affect orientation-selectivity of afferents in mouse utricle or zebrafish neuromasts. Consistent with normal otolith organ anatomy and afferent selectivity, Gpr156 mutant mice do not show overt vestibular dysfunction. Instead, performance on two tests that engage otolith organs is significantly altered - swimming and off-vertical-axis rotation. We conclude that GPR156 relays hair cell orientation and transduction information downstream of EMX2, but not selectivity for direction-specific afferents. These results clarify how molecular mechanisms that confer bi-directionality to sensory organs contribute to function, from single hair cell physiology to animal behavior.
Collapse
Affiliation(s)
- Kazuya Ono
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | | | - Natasha C Hughes
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
| | - Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MA, USA
| | - Hui Ho Vanessa Chang
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
| | - Michael R Deans
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Otolaryngology - Head & Neck Surgery, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah, USA
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Kathleen E Cullen
- Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205 MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore 21205 MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore 21205 MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore 21205 MD, USA
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MA, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
16
|
Heffer A, Lee C, Holt JC, Kiernan AE. Notch1 is required to maintain supporting cell identity and vestibular function during maturation of the mammalian balance organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600098. [PMID: 38948821 PMCID: PMC11212955 DOI: 10.1101/2024.06.21.600098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The inner ear houses two sensory modalities: the hearing organ, located in the cochlea, and the balance organs, located throughout the vestibular regions of the ear. Both hearing and vestibular sensory regions are composed of similar cell types, including hair cells and associated supporting cells. Recently, we showed that Notch1 is required for maintaining supporting cell survival postnatally during cochlear maturation. However, it is not known whether Notch1 plays a similar role in the balance organs of the inner ear. To characterize the role of Notch during vestibular maturation, we conditionally deleted Notch1 from Sox2-expressing cells of the vestibular organs in the mouse at P0/P1. Histological analyses showed a dramatic loss of supporting cells accompanied by an increase in type II hair cells without cell death, indicating the supporting cells are converting to hair cells in the maturing vestibular regions. Analysis of 6-week old animals indicate that the converted hair cells survive, despite the reduction of supporting cells. Interestingly, measurements of vestibular sensory evoked potentials (VsEPs), known to be generated in the striolar regions of the vestibular afferents in the maculae, failed to show a response, indicating that NOTCH1 expression is critical for striolar function postnatally. Consistent with this, we find that the specialized type I hair cells in the striola fail to develop the complex calyces typical of these cells. These defects are likely due to the reduction in supporting cells, which have previously been shown to express factors critical for the striolar region. Similar to other mutants that lack proper striolar development, Notch1 mutants do not exhibit typical vestibular behaviors such as circling and head shaking, but do show difficulties in some vestibular tests, including the balance beam and forced swim test. These results indicate that, unlike the hearing organ in which the supporting cells undergo cell death, supporting cells in the balance regions retain the ability to convert to hair cells during maturation, which survive into adulthood despite the reduction in supporting cells.
Collapse
Affiliation(s)
- Alison Heffer
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| | - Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, 14642, USA
- Dept. of Neuroscience, University of Rochester, Rochester, New York 14642, USA
| | - Amy E. Kiernan
- Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, 14642, USA
| |
Collapse
|
17
|
Wang S, Chakraborty S, Fu Y, Lee MP, Liu J, Waldhaus J. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification. Dev Cell 2024; 59:1538-1552.e6. [PMID: 38593801 PMCID: PMC11187690 DOI: 10.1016/j.devcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/03/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
In the mammalian auditory system, frequency discrimination depends on numerous morphological and physiological properties of the organ of Corti, which gradually change along the apex-to-base (tonotopic) axis of the organ. For example, the basilar membrane stiffness changes tonotopically, thus affecting the tuning properties of individual hair cells. At the molecular level, those frequency-specific characteristics are mirrored by gene expression gradients; however, the molecular mechanisms controlling tonotopic gene expression in the mouse cochlea remain elusive. Through analyzing single-cell RNA sequencing (scRNA-seq) data from E12.5 and E14.5 time points, we predicted that morphogens, rather than a cell division-associated mechanism, confer spatial identity in the extending cochlea. Subsequently, we reconstructed the developing cochlea in 3D space from scRNA-seq data to investigate the molecular pathways mediating positional information. The retinoic acid (RA) and hedgehog pathways were found to form opposing apex-to-base gradients, and functional interrogation using mouse cochlear explants suggested that both pathways jointly specify the longitudinal axis.
Collapse
Affiliation(s)
- Shuze Wang
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saikat Chakraborty
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujuan Fu
- Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| | - Mary P Lee
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joerg Waldhaus
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Niwa M, Bauer D, Anderson M, Kanicki A, Altschuler RA, Stewart CE, King WM. Wavelet transform of single-trial vestibular short-latency evoked potential reveals temporary reduction in signal detectability and temporal precision following noise exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.596660. [PMID: 38915602 PMCID: PMC11195091 DOI: 10.1101/2024.06.10.596660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The vestibular short-latency evoked potential (VsEP) reflects the activity of irregular vestibular afferents and their target neurons in the brain stem. Attenuation of trial-averaged VsEP waveforms is widely accepted as an indicator of vestibular dysfunction, however, more quantitative analyses of VsEP waveforms could reveal underlying neural properties of VsEP waveforms. Here, we present a time-frequency analysis of the VsEP with a wavelet transform on a single-trial basis, which allows us to examine trial-by-trial variability in the strength of VsEP waves as well as their temporal coherence across trials. Using this method, we examined changes in the VsEP following 110 dB SPL noise exposure in rats. We found detectability of head jerks based on the power of wavelet transform coefficients was significantly reduced 1 day after noise exposure but recovered nearly to pre-exposure level in 3 - 7 days and completely by 28 days after exposure. Temporal coherence of VsEP waves across trials was also significantly reduced on 1 day after exposure but recovered with a similar time course. Additionally, we found a significant reduction in the number of calretinin-positive calyces in the sacculi collected 28 days after noise exposure. Furthermore, the number of calretinin-positive calyces was significantly correlated with the degree of reduction in temporal coherence and/or signal detectability of the smallest-amplitude jerks. This new analysis of the VsEP provides more quantitative descriptions of noise-induced changes as well as new insights into potential mechanisms underlying noise-induced vestibular dysfunction. Significance Statement Our study presents a new method of VsEP quantification using wavelet transform on a single-trial basis. It also describes a novel approach to determine the stimulus threshold of the VsEP based on signal-detection theory and Rayleigh statistics. The present analysis could also be applied to analysis of auditory brain stem response (ABR). Thus, it has the potential to provide new insights into the physiological properties that underlie peripheral vestibular and auditory dysfunction.
Collapse
|
19
|
Wang T, Ling AH, Billings SE, Hosseini DK, Vaisbuch Y, Kim GS, Atkinson PJ, Sayyid ZN, Aaron KA, Wagh D, Pham N, Scheibinger M, Zhou R, Ishiyama A, Moore LS, Maria PS, Blevins NH, Jackler RK, Alyono JC, Kveton J, Navaratnam D, Heller S, Lopez IA, Grillet N, Jan TA, Cheng AG. Single-cell transcriptomic atlas reveals increased regeneration in diseased human inner ear balance organs. Nat Commun 2024; 15:4833. [PMID: 38844821 PMCID: PMC11156867 DOI: 10.1038/s41467-024-48491-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Mammalian inner ear hair cell loss leads to permanent hearing and balance dysfunction. In contrast to the cochlea, vestibular hair cells of the murine utricle have some regenerative capacity. Whether human utricular hair cells regenerate in vivo remains unknown. Here we procured live, mature utricles from organ donors and vestibular schwannoma patients, and present a validated single-cell transcriptomic atlas at unprecedented resolution. We describe markers of 13 sensory and non-sensory cell types, with partial overlap and correlation between transcriptomes of human and mouse hair cells and supporting cells. We further uncover transcriptomes unique to hair cell precursors, which are unexpectedly 14-fold more abundant in vestibular schwannoma utricles, demonstrating the existence of ongoing regeneration in humans. Lastly, supporting cell-to-hair cell trajectory analysis revealed 5 distinct patterns of dynamic gene expression and associated pathways, including Wnt and IGF-1 signaling. Our dataset constitutes a foundational resource, accessible via a web-based interface, serving to advance knowledge of the normal and diseased human inner ear.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, PR China
| | - Angela H Ling
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sara E Billings
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Davood K Hosseini
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yona Vaisbuch
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Grace S Kim
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Zahra N Sayyid
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ksenia A Aaron
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Akira Ishiyama
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lindsay S Moore
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Peter Santa Maria
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nikolas H Blevins
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Robert K Jackler
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jennifer C Alyono
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - John Kveton
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Dhasakumar Navaratnam
- Department of Surgery, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ivan A Lopez
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicolas Grillet
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Ratzan EM, Lee J, Madison MA, Zhu H, Zhou W, Géléoc GSG, Holt JR. TMC function, dysfunction, and restoration in mouse vestibular organs. Front Neurol 2024; 15:1356614. [PMID: 38638308 PMCID: PMC11024474 DOI: 10.3389/fneur.2024.1356614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization - hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection.
Collapse
Affiliation(s)
- Evan M. Ratzan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - John Lee
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Margot A. Madison
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Hong Zhu
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Wu Zhou
- Department of Otolaryngology - Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| | - Gwenaëlle S. G. Géléoc
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeffrey R. Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Waldhaus J, Jiang L, Liu L, Liu J, Duncan RK. Mapping the developmental potential of mouse inner ear organoids at single-cell resolution. iScience 2024; 27:109069. [PMID: 38375227 PMCID: PMC10875570 DOI: 10.1016/j.isci.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
Inner ear organoids recapitulate development and are intended to generate cell types of the otic lineage for applications such as basic science research and cell replacement strategies. Here, we use single-cell sequencing to study the cellular heterogeneity of late-stage mouse inner ear organoid sensory epithelia, which we validated by comparison with datasets of the mouse cochlea and vestibular epithelia. We resolved supporting cell sub-types, cochlear-like hair cells, and vestibular type I and type II-like hair cells. While cochlear-like hair cells aligned best with an outer hair cell trajectory, vestibular-like hair cells followed developmental trajectories similar to in vivo programs branching into type II and then type I extrastriolar hair cells. These results highlight the transcriptional accuracy of the organoid developmental program but will also inform future strategies to improve synaptic connectivity and regional specification.
Collapse
Affiliation(s)
- Joerg Waldhaus
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Linghua Jiang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Liqian Liu
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Robert Keith Duncan
- Department of Otolaryngology–Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Department of Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Sinha AK, Lee C, Holt JC. KCNQ2/3 regulates efferent mediated slow excitation of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573731. [PMID: 38260489 PMCID: PMC10802244 DOI: 10.1101/2023.12.30.573731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary vestibular afferents transmit information from hair cells about head position and movement to the CNS, which is critical for maintaining balance, gaze stability and spatial navigation. The CNS, in turn, modulates hair cells and afferents via the efferent vestibular system (EVS) and its activation of several cholinergic signaling mechanisms. Electrical stimulation of EVS neurons gives rise to three kinetically- and mechanistically-distinct afferent responses including a slow excitation, a fast excitation, and a fast inhibition. EVS-mediated slow excitation is attributed to odd-numbered muscarinic acetylcholine receptors (mAChRs) on the afferent whose activation leads to the closure of a potassium conductance and increased afferent discharge. Likely effector candidates include low-threshold, voltage-gated potassium channels belonging to the KCNQ (Kv7.X) family, which are involved in neuronal excitability across the nervous system and are subject to mAChR modulation. Specifically, KCNQ2/3 heteromeric channels may be the molecular correlates for the M-current, a potassium current that is blocked following the activation of odd-numbered mAChRs. To this end, multiple members of the KCNQ channel family, including KCNQ2 and KCNQ3, are localized to several microdomains within vestibular afferent endings, where they influence afferent excitability and could be targeted by EVS neurons. Additionally, the relative expression of KCNQ subunits appears to vary across the sensory epithelia and among different afferent types. However, it is unclear which KCNQ channel subunits are targeted by mAChR activation and whether that also varies among different afferent classes. Here we show that EVS-mediated slow excitation is blocked and enhanced by the non-selective KCNQ channel blocker XE991 and opener retigabine, respectively. Using KCNQ subunit-selective drugs, we observed that a KCNQ2 blocker blocks the slow response in irregular afferents, while a KCNQ2/3 opener enhances slow responses in regular afferents. The KCNQ2 blockers did not appear to affect resting afferent discharge rates, while KCNQ2/3 or KCNQ2/4 openers decreased afferent excitability. Here, we show pharmacological evidence that KCNQ2/3 subunits are likely targeted by mAChR activation in mammalian vestibular afferents. Additionally, we show that KCNQ3 KO mice have altered resting discharge rate as well as EVS-mediated slow response. These data together suggest that KCNQ channels play a role in slow response and discharge rate of vestibular afferents, which can be modulated by EVS in mammals.
Collapse
|
23
|
You D, Ni W, Huang Y, Zhou Q, Zhang Y, Jiang T, Chen Y, Li W. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. Cell Mol Life Sci 2023; 80:349. [PMID: 37930405 PMCID: PMC10628023 DOI: 10.1007/s00018-023-04947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/07/2023]
Abstract
Atoh1 overexpression is essential for hair cell (HC) regeneration in the sensory epithelium of mammalian auditory and vestibular organs. However, Atoh1 overexpression alone cannot induce fully mature and functional HCs in the mammalian inner ear. In the current study, we investigated the effect of Atoh1 constitutive overexpression in native HCs by manipulating Atoh1 expression at different developmental stages. We demonstrated that constitutive overexpression of Atoh1 in native vestibular HCs did not affect cell survival but did impair vestibular function by interfering with the subtype differentiation of HCs and hair bundle development. In contrast, Atoh1 overexpression in cochlear HCs impeded their maturation, eventually leading to gradual HC loss in the cochlea and hearing dysfunction. Our study suggests that time-restricted Atoh1 expression is essential for the differentiation and survival of HCs in the inner ear, and this is pivotal for both hearing and vestibular function re-establishment through Atoh1 overexpression-induced HC regeneration strategies.
Collapse
Affiliation(s)
- Dan You
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Wenli Ni
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yikang Huang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Qin Zhou
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yanping Zhang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Tao Jiang
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China
| | - Yan Chen
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| | - Wenyan Li
- ENT Institute, Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200031, People's Republic of China.
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
24
|
Paplou VG, Schubert NMA, van Tuinen M, Vijayakumar S, Pyott SJ. Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss. Biomolecules 2023; 13:1429. [PMID: 37759828 PMCID: PMC10526133 DOI: 10.3390/biom13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Georgia Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Nick M. A. Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marcel van Tuinen
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Sonja J. Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
25
|
Manno FAM, Cheung P, Basnet V, Khan MS, Mao Y, Pan L, Ma V, Cho WC, Tian S, An Z, Feng Y, Cai YL, Pienkowski M, Lau C. Subtle alterations of vestibulomotor functioning in conductive hearing loss. Front Neurosci 2023; 17:1057551. [PMID: 37706156 PMCID: PMC10495589 DOI: 10.3389/fnins.2023.1057551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/08/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.
Collapse
Affiliation(s)
- Francis A. M. Manno
- Department of Physics, East Carolina University, Greenville, NC, United States
- Department of Biomedical Engineering, Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pikting Cheung
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Vardhan Basnet
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Yuqi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Shile Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Ling Cai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA, United States
| | - Condon Lau
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Luo P, Zheng L, Zou J, Chen T, Zou J, Li W, Chen Q, Qian B. Insights into vitamin A in bladder cancer, lack of attention to gut microbiota? Front Immunol 2023; 14:1252616. [PMID: 37711628 PMCID: PMC10497765 DOI: 10.3389/fimmu.2023.1252616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Vitamin A has long been associated with bladder cancer, and many exogenous vitamin A supplements, vitamin A derivatives, and synthetic drugs have been investigated over the years. However, the effectiveness of these strategies in clinical practice has not met expectations, and they have not been widely adopted. Recent medical research on intestinal flora has revealed that bladder cancer patients exhibit reduced serum vitamin A levels and an imbalance of gut microbiota. In light of the close relationship between gut microbiota and vitamin A, one can speculate that a complex regulatory mechanism exists between the two in the development and occurrence of bladder cancer. As such, further exploration of their interaction in bladder cancer may help guide the use of vitamin A for preventive purposes. During the course of this review, attention is paid to the influence of intestinal microbiota on the vitamin A metabolism and the RA signaling pathway, as well as the mutual promotion relationships between them in the prevention of bladder cancer, In addition, it emphasizes the importance of intestinal microbiota for bladder cancer prevention and treatment.
Collapse
Affiliation(s)
- Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
27
|
Sinha AK, Lee C, Holt JC. Elucidating the role of muscarinic acetylcholine receptor (mAChR) signaling in efferent mediated responses of vestibular afferents in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.549902. [PMID: 37577578 PMCID: PMC10418111 DOI: 10.1101/2023.07.31.549902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The peripheral vestibular system detects head position and movement through activation of vestibular hair cells (HCs) in vestibular end organs. HCs transmit this information to the CNS by way of primary vestibular afferent neurons. The CNS, in turn, modulates HCs and afferents via the efferent vestibular system (EVS) through activation of cholinergic signaling mechanisms. In mice, we previously demonstrated that activation of muscarinic acetylcholine receptors (mAChRs), during EVS stimulation, gives rise to a slow excitation that takes seconds to peak and tens of seconds to decay back to baseline. This slow excitation is mimicked by muscarine and ablated by the non-selective mAChR blockers scopolamine, atropine, and glycopyrrolate. While five distinct mAChRs (M1-M5) exist, the subtype(s) driving EVS-mediated slow excitation remain unidentified and details on how these mAChRs alter vestibular function is not well understood. The objective of this study is to characterize which mAChR subtypes drive the EVS-mediated slow excitation, and how their activation impacts vestibular physiology and behavior. In C57Bl/6J mice, M3mAChR antagonists were more potent at blocking slow excitation than M1mAChR antagonists, while M2/M4 blockers were ineffective. While unchanged in M2/M4mAChR double KO mice, EVS-mediated slow excitation in M3 mAChR-KO animals were reduced or absent in irregular afferents but appeared unchanged in regular afferents. In agreement, vestibular sensory-evoked potentials (VsEP), known to be predominantly generated from irregular afferents, were significantly less enhanced by mAChR activation in M3mAChR-KO mice compared to controls. Finally, M3mAChR-KO mice display distinct behavioral phenotypes in open field activity, and thermal profiles, and balance beam and forced swim test. M3mAChRs mediate efferent-mediated slow excitation in irregular afferents, while M1mAChRs may drive the same process in regular afferents.
Collapse
|
28
|
Bartikofsky D, Hertz MJ, Bauer DS, Altschuler R, King WM, Stewart CE. Balance beam crossing times are slower after noise exposure in rats. Front Integr Neurosci 2023; 17:1196477. [PMID: 37497526 PMCID: PMC10368468 DOI: 10.3389/fnint.2023.1196477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction The vestibular system integrates signals related to vision, head position, gravity, motion, and body position to provide stability during motion through the environment. Disruption in any of these systems can reduce agility and lead to changes in ability to safely navigate one's environment. Causes of vestibular decline are diverse; however, excessive noise exposure can lead to otolith organ dysfunction. Specifically, 120 decibel (dB) sound pressure level (SPL) 1.5 kHz-centered 3-octave band noise (1.5 kHz 3OBN) causes peripheral vestibular dysfunction in rats, measured by vestibular short-latency evoked potential (VsEP) and reduced calretinin-immunolabeling of calyx-only afferent terminals in the striolar region of the saccule. The present study examined the functional impact of this noise exposure condition, examining changes in motor performance after noise exposure with a balance beam crossing task. Methods Balance beam crossing time in rats was assessed for 19 weeks before and 5 weeks after noise exposure. Balance beam crossings were scored to assess proficiency in the task. When animals were proficient, they received a single exposure to 120 dB SPL 3-octave band noise. Results During the initial training phase slower crossing times and higher scores, including multiple failures were observed. This was followed by a period of significant improvement leading to proficiency, characterized by fast and stable crossing times and consistently low scores. After noise exposure, crossing times were significantly elevated from baseline for 4-weeks. A total of 5 weeks after noise exposure, crossing times improved, and though still trending higher than baseline, they were no longer significantly different from baseline. Discussion These findings show that the noise-induced peripheral vestibular changes we previously observed at cellular and electro-physiological levels also have an impact at a functional level. It has been previously shown that imbalance is associated with slower walking speed in older adults and aged rats. These findings in noise-exposed rats may have implications for people who experience noisy environments and for seniors with a history of noise exposure who also experience balance disorders and may be at increased fall risk.
Collapse
Affiliation(s)
- Dylan Bartikofsky
- Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| | - Mikayla Jade Hertz
- Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| | - David S. Bauer
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Richard Altschuler
- Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - W. Michael King
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
29
|
Meredith FL, Vu TA, Gehrke B, Benke TA, Dondzillo A, Rennie KJ. Expression of hyperpolarization-activated current ( Ih) in zonally defined vestibular calyx terminals of the crista. J Neurophysiol 2023; 129:1468-1481. [PMID: 37198134 PMCID: PMC10259860 DOI: 10.1152/jn.00135.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.
Collapse
Affiliation(s)
- Frances L Meredith
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Tiffany A Vu
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandon Gehrke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Timothy A Benke
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anna Dondzillo
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Katherine J Rennie
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
30
|
Stanley OR, Swaminathan A, Wojahn E, Ahmed ZM, Cullen KE. An Open-Source Tool for Automated Human-Level Circling Behavior Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.540066. [PMID: 37398316 PMCID: PMC10312579 DOI: 10.1101/2023.05.30.540066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Quantifying behavior and relating it to underlying biological states is of paramount importance in many life science fields. Although barriers to recording postural data have been reduced by progress in deep-learning-based computer vision tools for keypoint tracking, extracting specific behaviors from this data remains challenging. Manual behavior coding, the present gold standard, is labor-intensive and subject to intra- and inter-observer variability. Automatic methods are stymied by the difficulty of explicitly defining complex behaviors, even ones which appear obvious to the human eye. Here, we demonstrate an effective technique for detecting one such behavior, a form of locomotion characterized by stereotyped spinning, termed 'circling'. Though circling has an extensive history as a behavioral marker, at present there exists no standard automated detection method. Accordingly, we developed a technique to identify instances of the behavior by applying simple postprocessing to markerless keypoint data from videos of freely-exploring (Cib2-/-;Cib3-/-) mutant mice, a strain we previously found to exhibit circling. Our technique agrees with human consensus at the same level as do individual observers, and it achieves >90% accuracy in discriminating videos of wild type mice from videos of mutants. As using this technique requires no experience writing or modifying code, it also provides a convenient, noninvasive, quantitative tool for analyzing circling mouse models. Additionally, as our approach was agnostic to the underlying behavior, these results support the feasibility of algorithmically detecting specific, research-relevant behaviors using readily-interpretable parameters tuned on the basis of human consensus.
Collapse
Affiliation(s)
- O R Stanley
- Dept. Biomedical Engineering; Johns Hopkins University
| | - A Swaminathan
- Dept. Biomedical Engineering; Johns Hopkins University
| | - E Wojahn
- Dept. Biomedical Engineering; Johns Hopkins University
| | - Z M Ahmed
- Depts. Otorhinolaryngology-Head & Neck Surgery, Biochemistry & Molecular Biology, Ophthalmology; University of Maryland School of Medicine
| | - K E Cullen
- Dept. Biomedical Engineering; Johns Hopkins University
- Depts. Neuroscience, Otolaryngology-Head & Neck Surgery, Johns Hopkins University
| |
Collapse
|
31
|
Wang X, Liu S, Cheng Q, Qu C, Ren R, Du H, Li N, Yan K, Wang Y, Xiong W, Xu Z. CIB2 and CIB3 Regulate Stereocilia Maintenance and Mechanoelectrical Transduction in Mouse Vestibular Hair Cells. J Neurosci 2023; 43:3219-3231. [PMID: 37001993 PMCID: PMC10162464 DOI: 10.1523/jneurosci.1807-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanoelectrical transduction (MET) protein complex in the inner-ear hair cells is essential for hearing and balance perception. Calcium and integrin-binding protein 2 (CIB2) has been reported to be a component of MET complex, and loss of CIB2 completely abolishes MET currents in auditory hair cells, causing profound congenital hearing loss. However, loss of CIB2 does not affect MET currents in vestibular hair cells (VHCs) as well as general balance function. Here, we show that CIB2 and CIB3 act redundantly to regulate MET in VHCs, as MET currents are completely abolished in the VHCs of Cib2/Cib3 double knock-out mice of either sex. Furthermore, we show that Cib2 and Cib3 transcripts have complementary expression patterns in the vestibular maculae, and that they play different roles in stereocilia maintenance in VHCs. Cib2 transcripts are highly expressed in the striolar region, and knock-out of Cib2 affects stereocilia maintenance in striolar VHCs. In contrast, Cib3 transcripts are highly expressed in the extrastriolar region, and knock-out of Cib3 mainly affects stereocilia maintenance in extrastriolar VHCs. Simultaneous knock-out of Cib2 and Cib3 affects stereocilia maintenance in all VHCs and leads to severe balance deficits. Taken together, our present work reveals that CIB2 and CIB3 are important for stereocilia maintenance as well as MET in mouse VHCs.SIGNIFICANCE STATEMENT Calcium and integrin-binding protein 2 (CIB2) is an important component of mechanoelectrical transduction (MET) complex, and loss of CIB2 completely abolishes MET in auditory hair cells. However, MET is unaffected in Cib2 knock-out vestibular hair cells (VHCs). In the present work, we show that CIB3 could compensate for the loss of CIB2 in VHCs, and Cib2/Cib3 double knock-out completely abolishes MET in VHCs. Interestingly, CIB2 and CIB3 could also regulate VHC stereocilia maintenance in a nonredundant way. Cib2 and Cib3 transcripts are highly expressed in the striolar and extrastriolar regions, respectively. Stereocilia maintenance and balance function are differently affected in Cib2 or Cib3 knock-out mice. In conclusion, our data suggest that CIB2 and CIB3 are important for stereocilia maintenance and MET in mouse VHCs.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China
- Chinese Institute for Brain Research, Beijing 102206, People's Republic of China
| | - Qi Cheng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Chengli Qu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Rui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Keji Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China
- Chinese Institute for Brain Research, Beijing 102206, People's Republic of China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong 250014, People's Republic of China
| |
Collapse
|
32
|
Combined space stressors induce independent behavioral deficits predicted by early peripheral blood monocytes. Sci Rep 2023; 13:1749. [PMID: 36720960 PMCID: PMC9889764 DOI: 10.1038/s41598-023-28508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023] Open
Abstract
Interplanetary space travel poses many hazards to the human body. To protect astronaut health and performance on critical missions, there is first a need to understand the effects of deep space hazards, including ionizing radiation, confinement, and altered gravity. Previous studies of rodents exposed to a single such stressor document significant deficits, but our study is the first to investigate possible cumulative and synergistic impacts of simultaneous ionizing radiation, confinement, and altered gravity on behavior and cognition. Our cohort was divided between 6-month-old female and male mice in group, social isolation, or hindlimb unloading housing, exposed to 0 or 50 cGy of 5 ion simplified simulated galactic cosmic radiation (GCRsim). We report interactions and independent effects of GCRsim exposure and housing conditions on behavioral and cognitive performance. Exposure to GCRsim drove changes in immune cell populations in peripheral blood collected early after irradiation, while housing conditions drove changes in blood collected at a later point. Female mice were largely resilient to deficits observed in male mice. Finally, we used principal component analysis to represent total deficits as principal component scores, which were predicted by general linear models using GCR exposure, housing condition, and early blood biomarkers.
Collapse
|
33
|
Ji YR, Tona Y, Wafa T, Christman ME, Tourney ED, Jiang T, Ohta S, Cheng H, Fitzgerald T, Fritzsch B, Jones SM, Cullen KE, Wu DK. Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2. Nat Commun 2022; 13:6330. [PMID: 36280667 PMCID: PMC9592604 DOI: 10.1038/s41467-022-33819-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
Otolith organs of the inner ear are innervated by two parallel afferent projections to the brainstem and cerebellum. These innervations were proposed to segregate across the line of polarity reversal (LPR) within each otolith organ, which divides the organ into two regions of hair cells (HC) with opposite stereociliary orientation. The relationship and functional significance of these anatomical features are not known. Here, we show regional expression of Emx2 in otolith organs, which establishes LPR, mediates the neuronal segregation across LPR and constitutes the bidirectional sensitivity function. Conditional knockout (cKO) of Emx2 in HCs lacks LPR. Tmie cKO, in which mechanotransduction was abolished selectively in HCs within the Emx2 expression domain also lacks bidirectional sensitivity. Analyses of both mutants indicate that LPR is specifically required for mice to swim comfortably and to traverse a balance beam efficiently, but LPR is not required for mice to stay on a rotating rod.
Collapse
Affiliation(s)
- Young Rae Ji
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Sensory & Motor Systems Research Group, Korea Brain Research Institute (KBRI), 61 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Yosuke Tona
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- Otolaryngology/Head and Neck Surgery, Kyoto University Hospital, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto City, Kyoto, 606-8507, Japan
| | - Talah Wafa
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew E Christman
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Edward D Tourney
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tao Jiang
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Sho Ohta
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tracy Fitzgerald
- Mouse Auditory Testing Core Facility, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, 301 Barkley Memorial Center, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
35
|
Mukhopadhyay M, Pangrsic T. Synaptic transmission at the vestibular hair cells of amniotes. Mol Cell Neurosci 2022; 121:103749. [PMID: 35667549 DOI: 10.1016/j.mcn.2022.103749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
A harmonized interplay between the central nervous system and the five peripheral end organs is how the vestibular system helps organisms feel a sense of balance and motion in three-dimensional space. The receptor cells of this system, much like their cochlear equivalents, are the specialized hair cells. However, research over the years has shown that the vestibular endorgans and hair cells evolved very differently from their cochlear counterparts. The structurally unique calyceal synapse, which appeared much later in the evolutionary time scale, and continues to intrigue researchers, is now known to support several forms of synaptic neurotransmission. The conventional quantal transmission is believed to employ the ribbon structures, which carry several tethered vesicles filled with neurotransmitters. However, the field of vestibular hair cell synaptic molecular anatomy is still at a nascent stage and needs further work. In this review, we will touch upon the basic structure and function of the peripheral vestibular system, with the focus on the various modes of neurotransmission at the type I vestibular hair cells. We will also shed light on the current knowledge about the molecular anatomy of the vestibular hair cell synapses and vestibular synaptopathy.
Collapse
Affiliation(s)
- Mohona Mukhopadhyay
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany
| | - Tina Pangrsic
- Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, and Institute for Auditory Neuroscience, 37075 Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
36
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
37
|
Jiang W, Wang Z, Xiao S, Zeng D, Wu Z, Peng C, Chen F. Pulsed infrared stimulation evoked electrical potential in mouse vestibular system. Neurosci Lett 2022; 775:136510. [DOI: 10.1016/j.neulet.2022.136510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/17/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
38
|
Chang HHV, Morley BJ, Cullen KE. Loss of α-9 Nicotinic Acetylcholine Receptor Subunit Predominantly Results in Impaired Postural Stability Rather Than Gaze Stability. Front Cell Neurosci 2022; 15:799752. [PMID: 35095424 PMCID: PMC8792779 DOI: 10.3389/fncel.2021.799752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
The functional role of the mammalian efferent vestibular system (EVS) is not fully understood. One proposal is that the mammalian EVS plays a role in the long-term calibration of central vestibular pathways, for example during development. Here to test this possibility, we studied vestibular function in mice lacking a functional α9 subunit of the nicotinic acetylcholine receptor (nAChR) gene family, which mediates efferent activation of the vestibular periphery. We focused on an α9 (−/−) model with a deletion in exons 1 and 2. First, we quantified gaze stability by testing vestibulo-ocular reflex (VOR, 0.2–3 Hz) responses of both α9 (−/−) mouse models in dark and light conditions. VOR gains and phases were comparable for both α9 (−/−) mutants and wild-type controls. Second, we confirmed the lack of an effect from the α9 (−/−) mutation on central visuo-motor pathways/eye movement pathways via analyses of the optokinetic reflex (OKR) and quick phases of the VOR. We found no differences between α9 (−/−) mutants and wild-type controls. Third and finally, we investigated postural abilities during instrumented rotarod and balance beam tasks. Head movements were quantified using a 6D microelectromechanical systems (MEMS) module fixed to the mouse’s head. Compared to wild-type controls, we found head movements were strikingly altered in α9 (−/−) mice, most notably in the pitch axis. We confirmed these later results in another α9 (−/−) model, with a deletion in the exon 4 region. Overall, we conclude that the absence of the α9 subunit of nAChRs predominately results in an impairment of posture rather than gaze.
Collapse
Affiliation(s)
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Kathleen E. Cullen,
| |
Collapse
|
39
|
Schönberger K, Obier N, Romero-Mulero MC, Cauchy P, Mess J, Pavlovich PV, Zhang YW, Mitterer M, Rettkowski J, Lalioti ME, Jäcklein K, Curtis JD, Féret B, Sommerkamp P, Morganti C, Ito K, Ghyselinck NB, Trompouki E, Buescher JM, Pearce EL, Cabezas-Wallscheid N. Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity. Cell Stem Cell 2022; 29:131-148.e10. [PMID: 34706256 PMCID: PMC9093043 DOI: 10.1016/j.stem.2021.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.
Collapse
Affiliation(s)
- Katharina Schönberger
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Julian Mess
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany
| | - Polina V Pavlovich
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Yu Wei Zhang
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jasmin Rettkowski
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Maria-Eleni Lalioti
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Karin Jäcklein
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Pia Sommerkamp
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), UMR 7104 Centre National de la Recherche Scientifique (CNRS) et Université de Strasbourg (UNISTRA), U1258 Institut National de la Santé et de la Recherche Médicale (INSERM), Illkirch, France
| | - Eirini Trompouki
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg, Germany.
| |
Collapse
|
40
|
Sung CYW, Barzik M, Costain T, Wang L, Cunningham LL. Semi-automated Quantification of Hair Cells in the Mature Mouse Utricle. Hear Res 2022; 416:108429. [PMID: 35081508 PMCID: PMC9034969 DOI: 10.1016/j.heares.2021.108429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/19/2021] [Accepted: 12/28/2021] [Indexed: 02/09/2023]
Abstract
The mouse utricle model system is the best-characterized ex vivo preparation for studies of mature mammalian hair cells (HCs). Despite the many advantages of this model system, efficient and reliable quantification of HCs from cultured utricles has been a persistent challenge with this model system. Utricular HCs are commonly quantified by counting immunolabeled HCs in regions of interest (ROIs) placed over an image of the utricle. Our data indicate that the accuracy of HC counts obtained using this method can be impacted by variability in HC density across different regions of the utricle. In addition, the commonly used HC marker myosin 7a results in a diffuse cytoplasmic stain that is not conducive to automated quantification and must be quantified manually, a labor-intensive task. Furthermore, myosin 7a immunoreactivity is retained in dead HCs, resulting in inaccurate quantification of live HCs using this marker. Here we have developed a method for semi-automated quantification of surviving HCs that combines immunoreactivity for the HC-specific transcription factor Pou4f3 with labeling of activated caspase 3/7 (AC3/7) to detect apoptotic HCs. The discrete nuclear Pou4f3 signal allowed us to utilize the binary or threshold function within ImageJ to automate HC quantification. To further streamline this process, we created an ImageJ macro that automates the process from raw image loading to a final quantified image that can be immediately evaluated for accuracy. Within this quantified image, the user can manually correct the quantification via an image overlay indicating the counted HC nuclei. Pou4f3-positive HCs that also express AC3/7 are subtracted to yield accurate counts of surviving HCs. Overall, we present a semi-automated method that is faster than manual HC quantification and identifies surviving HCs with high accuracy.
Collapse
|
41
|
Baguia H, Evano G. Copper-Catalyzed Direct Perfluoroalkylation of Heteroarenes. Chemistry 2021; 28:e202103599. [PMID: 34842313 DOI: 10.1002/chem.202103599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 02/04/2023]
Abstract
An efficient and broadly applicable process is reported for the copper-catalyzed direct perfluoroalkylation of C-H bonds in heteroarenes with commercially available perfluoroalkyl iodides. This reaction is based on a simple combination of copper(I) iodide and 1,10-phenanthroline enabling the easy reduction of perfluoroalkyl iodides to the corresponding radical species that add to a wide range of heteroarenes including benzofurans, benzothiophenes, (aza)indoles, furans and pyrroles. High levels of regioselectivity were obtained in all cases and the efficiency and robustness of this process was highlighted by the direct perfluoroalkylation of furan-containing peptides.
Collapse
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physic Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06 1050, Brussels, Belgium
| |
Collapse
|
42
|
Flook M, Escalera-Balsera A, Gallego-Martinez A, Espinosa-Sanchez JM, Aran I, Soto-Varela A, Lopez-Escamez JA. DNA Methylation Signature in Mononuclear Cells and Proinflammatory Cytokines May Define Molecular Subtypes in Sporadic Meniere Disease. Biomedicines 2021; 9:1530. [PMID: 34829759 PMCID: PMC8615058 DOI: 10.3390/biomedicines9111530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Meniere Disease (MD) is a multifactorial disorder of the inner ear characterized by vertigo attacks associated with sensorineural hearing loss and tinnitus with a significant heritability. Although MD has been associated with several genes, no epigenetic studies have been performed on MD. Here we performed whole-genome bisulfite sequencing in 14 MD patients and six healthy controls, with the aim of identifying an MD methylation signature and potential disease mechanisms. We observed a high number of differentially methylated CpGs (DMC) when comparing MD patients to controls (n= 9545), several of them in hearing loss genes, such as PCDH15, ADGRV1 and CDH23. Bioinformatic analyses of DMCs and cis-regulatory regions predicted phenotypes related to abnormal excitatory postsynaptic currents, abnormal NMDA-mediated receptor currents and abnormal glutamate-mediated receptor currents when comparing MD to controls. Moreover, we identified various DMCs in genes previously associated with cochleovestibular phenotypes in mice. We have also found 12 undermethylated regions (UMR) that were exclusive to MD, including two UMR in an inter CpG island in the PHB gene. We suggest that the DNA methylation signature allows distinguishing between MD patients and controls. The enrichment analysis confirms previous findings of a chronic inflammatory process underlying MD.
Collapse
Affiliation(s)
- Marisa Flook
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
| | - Ismael Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, 36071 Pontevedra, Spain;
| | - Andres Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, 15706 Santiago de Compostela, Spain;
| | - Jose Antonio Lopez-Escamez
- Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer University of Granada Andalusian Regional Government, PTS, 18016 Granada, Spain; (M.F.); (A.E.-B.); (A.G.-M.); (J.M.E.-S.)
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, 28029 Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.Granada, Hospital Universitario Virgen de las Nieves, Universidad de Granada, 18014 Granada, Spain
- Division of Otolaryngology, Department of Surgery, University of Granada, 18011 Granada, Spain
| |
Collapse
|
43
|
Boyle R, Varelas J. Otoconia Structure After Short- and Long-Duration Exposure to Altered Gravity. J Assoc Res Otolaryngol 2021; 22:509-525. [PMID: 34008038 PMCID: PMC8476704 DOI: 10.1007/s10162-021-00791-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/09/2021] [Indexed: 10/21/2022] Open
Abstract
Vertebrates use weight-lending otoconia in the inner ear otolith organs to enable detection of their translation during self or imposed movements and a change in their orientation with respect to gravity. In spaceflight, otoconia are near weightless. It has been hypothesized that otoconia undergo structural remodeling after exposure to weightlessness to restore normal sensation. A structural remodeling is reasoned to occur for hypergravity but in the opposite sense. We explored these hypotheses in several strains of mice within a Biospecimen Sharing Program in separate space- and ground-based projects. Mice were housed 90 days on the International Space Station, 13 days on two Shuttle Orbiter missions, or exposed to 90 days of hindlimb unloading or net 2.38 g via centrifugation. Corresponding flight habitat and standard cage vivarium controls were used. Utricular otoliths were visually analyzed using scanning electron microscopy and in selected samples before and after focused ion beam (FIB) milling. Results suggest a possible mass addition to the otoconia outer shell might occur after exposure to longer-duration spaceflight, but not short ones or hindlimb unloading. A destructive process is clearly seen after centrifugation: an ablation or thinning of the outer shell and cavitation of the inner core. This study provides a purely descriptive account of otoconia remodeling after exposures to altered gravity. The mechanism(s) underlying these processes must be identified and quantitatively validated to develop countermeasures to altered gravity levels during exploration missions.
Collapse
Affiliation(s)
- Richard Boyle
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA, 94035, USA.
| | - Joseph Varelas
- National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA, 94035, USA
- Science & Technology Innovation Labs, Universities Space Research Association, Ames Research Center, Moffett Field, CA, 94035, USA
| |
Collapse
|
44
|
González-Garrido A, Pujol R, López-Ramírez O, Finkbeiner C, Eatock RA, Stone JS. The Differentiation Status of Hair Cells That Regenerate Naturally in the Vestibular Inner Ear of the Adult Mouse. J Neurosci 2021; 41:7779-7796. [PMID: 34301830 PMCID: PMC8445055 DOI: 10.1523/jneurosci.3127-20.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022] Open
Abstract
Aging, disease, and trauma can lead to loss of vestibular hair cells and permanent vestibular dysfunction. Previous work showed that, following acute destruction of ∼95% of vestibular hair cells in adult mice, ∼20% regenerate naturally (without exogenous factors) through supporting cell transdifferentiation. There is, however, no evidence for the recovery of vestibular function. To gain insight into the lack of functional recovery, we assessed functional differentiation in regenerated hair cells for up to 15 months, focusing on key stages in stimulus transduction and transmission: hair bundles, voltage-gated conductances, and synaptic contacts. Regenerated hair cells had many features of mature type II vestibular hair cells, including polarized mechanosensitive hair bundles with zone-appropriate stereocilia heights, large voltage-gated potassium currents, basolateral processes, and afferent and efferent synapses. Regeneration failed, however, to recapture the full range of properties of normal populations, and many regenerated hair cells had some properties of immature hair cells, including small transduction currents, voltage-gated sodium currents, and small or absent HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Furthermore, although mouse vestibular epithelia normally have slightly more type I hair cells than type II hair cells, regenerated hair cells acquired neither the low-voltage-activated potassium channels nor the afferent synaptic calyces that distinguish mature type I hair cells from type II hair cells and confer distinctive physiology. Thus, natural regeneration of vestibular hair cells in adult mice is limited in total cell number, cell type diversity, and extent of cellular differentiation, suggesting that manipulations are needed to promote full regeneration with the potential for recovery of vestibular function.SIGNIFICANCE STATEMENT Death of inner ear hair cells in adult mammals causes permanent loss of hearing and balance. In adult mice, the sudden death of most vestibular hair cells stimulates the production of new hair cells but does not restore balance. We investigated whether the lack of systems-level function reflects functional deficiencies in the regenerated hair cells. The regenerated population acquired mechanosensitivity, voltage-gated channels, and afferent synapses, but did not reproduce the full range of hair cell types. Notably, no regenerated cells acquired the distinctive properties of type I hair cells, a major functional class in amniote vestibular organs. To recover vestibular system function in adults, we may need to solve how to regenerate the normal variety of mature hair cells.
Collapse
Affiliation(s)
| | - Rémy Pujol
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
- Institute for Neurosciences of Montpellier-Institut National de la Santé et de la Recherche Médicale Unit 1052, University of Montpellier, 34091 Montpellier, France
| | - Omar López-Ramírez
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Connor Finkbeiner
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
| | - Ruth Anne Eatock
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Jennifer S Stone
- The Virginia Merrill Bloedel Hearing Research Center and the Department of Otolaryngology Head and Neck Surgery, University of Washington, Seattle, Washington 98195
| |
Collapse
|
45
|
Maroto AF, Barrallo-Gimeno A, Llorens J. Relationship between vestibular hair cell loss and deficits in two anti-gravity reflexes in the rat. Hear Res 2021; 410:108336. [PMID: 34481267 DOI: 10.1016/j.heares.2021.108336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
The tail-lift reflex and the air-righting reflex in rats are anti-gravity reflexes that depend on vestibular function. To begin identifying their cellular basis, this study examined the relationship between reflex loss and the graded lesions caused in the vestibular sensory epithelia by varying doses of an ototoxic compound. After ototoxic exposure, we recorded these reflexes using high speed video. The movies were used to obtain objective measures of the reflexes: the minimum angle formed by the nose, the back of the neck and the base of the tail during the tail-lift maneuver and the time to right in the air-righting test. The vestibular sensory epithelia were then collected from the rats and used to estimate the loss of type I (HCI), type II (HCII) and all hair cells (HC) in both central and peripheral parts of the crista, utricle, and saccule. As expected, tail-lift angles decreased, and air-righting times increased, while the numbers of HCs remaining in the epithelia decreased in a dose-dependent manner. The results demonstrated greater sensitivity of HCI compared to HCII to the IDPN ototoxicity, as well as a relative resiliency of the saccule compared to the crista and utricle. Comparing the functional measures with the cell counts, we observed that loss of the tail-lift reflex associates better with HCI than with HCII loss. In contrast, most HCI in the crista and utricle were lost before air-righting times increased. These data suggest that these reflexes depend on the function of non-identical populations of vestibular HCs.
Collapse
Affiliation(s)
- Alberto F Maroto
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| | - Alejandro Barrallo-Gimeno
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Catalunya, Spain; Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
46
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
47
|
Jan TA, Eltawil Y, Ling AH, Chen L, Ellwanger DC, Heller S, Cheng AG. Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics. Cell Rep 2021; 36:109358. [PMID: 34260939 PMCID: PMC8378666 DOI: 10.1016/j.celrep.2021.109358] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
The utricle is a vestibular sensory organ that requires mechanosensitive hair cells to detect linear acceleration. In neonatal mice, new hair cells are derived from non-sensory supporting cells, yet cell type diversity and mechanisms of cell addition remain poorly characterized. Here, we perform computational analyses on single-cell transcriptomes to categorize cell types and resolve 14 individual sensory and non-sensory subtypes. Along the periphery of the sensory epithelium, we uncover distinct groups of transitional epithelial cells, marked by Islr, Cnmd, and Enpep expression. By reconstructing de novo trajectories and gene dynamics, we show that as the utricle expands, Islr+ transitional epithelial cells exhibit a dynamic and proliferative phase to generate new supporting cells, followed by coordinated differentiation into hair cells. Taken together, our study reveals a sequential and coordinated process by which non-sensory epithelial cells contribute to growth of the postnatal mouse sensory epithelium. The postnatal mouse utricle expands by more than 35% and doubles its number of hair cells during the first 8 days. Using single-cell transcriptomics, Jan et al. show that the surrounding transitional epithelial cells proliferate and contribute to the expansion of the sensory epithelium through a stepwise differentiation mechanism.
Collapse
Affiliation(s)
- Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Yasmin Eltawil
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Leon Chen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Daniel C Ellwanger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Genome Analysis Unit, Amgen Research, Amgen Inc., South San Francisco, CA 94080, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
48
|
Wilkerson BA, Zebroski HL, Finkbeiner CR, Chitsazan AD, Beach KE, Sen N, Zhang RC, Bermingham-McDonogh O. Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris. eLife 2021; 10:e60108. [PMID: 34003106 PMCID: PMC8189719 DOI: 10.7554/elife.60108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
This study provides transcriptomic characterization of the cells of the crista ampullaris, sensory structures at the base of the semicircular canals that are critical for vestibular function. We performed single-cell RNA-seq on ampullae microdissected from E16, E18, P3, and P7 mice. Cluster analysis identified the hair cells, support cells and glia of the crista as well as dark cells and other nonsensory epithelial cells of the ampulla, mesenchymal cells, vascular cells, macrophages, and melanocytes. Cluster-specific expression of genes predicted their spatially restricted domains of gene expression in the crista and ampulla. Analysis of cellular proportions across developmental time showed dynamics in cellular composition. The new cell types revealed by single-cell RNA-seq could be important for understanding crista function and the markers identified in this study will enable the examination of their dynamics during development and disease.
Collapse
Affiliation(s)
- Brent A Wilkerson
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Heather L Zebroski
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Connor R Finkbeiner
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Alex D Chitsazan
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Kylie E Beach
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| | - Nilasha Sen
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Renee C Zhang
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Olivia Bermingham-McDonogh
- Department of Biological Structure, University of WashingtonSeattleUnited States
- Institute for Stem Cells and Regenerative Medicine, University of WashingtonSeattleUnited States
| |
Collapse
|
49
|
Ayas M, AlAmadi A. Emerging and distinct video head impulse test responses in elderly with vestibular symptoms. Braz J Otorhinolaryngol 2021; 88 Suppl 1:S18-S23. [PMID: 33775614 PMCID: PMC9734266 DOI: 10.1016/j.bjorl.2021.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Dizziness has been reported to be the most common symptom in elderly population. Video head impulse test, VHIT, allows clinicians to assess the vestibular function in elderly individuals, during their initial stages of vestibular symptoms. Inferences from VHIT responses were traditionally low vestibulo-ocular reflex gain or a normal vestibulo-ocular reflex gain. However, the possibility of a third and new variant of the vestibulo-ocular reflex gain has not been clinically explored yet. OBJECTIVES To determine and report distinct patterns of vestibulo-ocular reflex gain using VHIT in elderly individuals with vestibular symptoms. METHODS Retrospective cross-sectional study was done on a group of elderly patients who were above 70 years of age. These individuals were subjected to VHIT during their symptomatic phase. A vestibulo-ocular reflex gain value between 0.80-01.20 (Horizontal plane) was considered normal. The gain above and below this cutoff range was considered abnormal. RESULTS 39 elderly patients (15 males and 24 females) whose mean age range was 74.71 years were evaluated for the VHIT response. Vestibulo-ocular reflex gain obtained was categorized into three distinct patterns: (i) normal vestibulo-ocular reflex gain, (ii) reduced vestibulo- ocular reflex gain and (iii) increased vestibulo-ocular reflex gain. The mean vestibulo- ocular reflex gain for both left and right horizontal canals varied significantly between the three groups (p < 0.05). No significant effect of age and vestibulo-ocular reflex gain was noted, though vestibulo-ocular reflex gain was higher in 80 years and above age (p > 0.05). CONCLUSION Elderly individuals with dizziness may show varying responses with vestibulo-ocular reflex gain during the symptomatic period. The third type of hyperactive vestibule-ocular reflex responses that emerged from the current study were potential indicators of fluid dynamic changes in the inner ear. These responses need to be explored further as it relates to new clinical markers for both peripheral and central vestibular disorders.
Collapse
Affiliation(s)
- Muhammed Ayas
- University Hospital Sharjah, Audiology Unit, Sharjah, United Arab Emirates; University of Sharjah, College of Medicine, Sharjah, United Arab Emirates.
| | - Ahmad AlAmadi
- University of Sharjah, College of Medicine, Sharjah, United Arab Emirates; Advanced Hearing and Balance Center, Dubai, United Arab Emirates
| |
Collapse
|
50
|
Dubey A, Yu J, Liu T, Kane MA, Saint-Jeannet JP. Retinoic acid production, regulation and containment through Zic1, Pitx2c and Cyp26c1 control cranial placode specification. Development 2021; 148:dev193227. [PMID: 33531433 PMCID: PMC7903997 DOI: 10.1242/dev.193227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022]
Abstract
All paired sensory organs arise from a common precursor domain called the pre-placodal region (PPR). In Xenopus, Zic1 non-cell autonomously regulates PPR formation by activating retinoic acid (RA) production. Here, we have identified two Zic1 targets, the RA catabolizing enzyme Cyp26c1 and the transcription factor Pitx2c, expressed in the vicinity of the PPR as being crucially required for maintaining low RA levels in a spatially restricted, PPR-adjacent domain. Morpholino- or CRISPR/Cas9-mediated Cyp26c1 knockdown abrogated PPR gene expression, yielding defective cranial placodes. Direct measurement of RA levels revealed that this is mediated by a mechanism involving excess RA accumulation. Furthermore, we show that pitx2c is activated by RA and required for Cyp26c1 expression in a domain-specific manner through induction of FGF8. We propose that Zic1 anteriorly establishes a program of RA containment and regulation through activation of Cyp26c1 and Pitx2c that cooperates to promote PPR specification in a spatially restricted domain.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Tian Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|