1
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
2
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Xu CCY, Fugère V, Barbosa da Costa N, Beisner BE, Bell G, Cristescu ME, Fussmann GF, Gonzalez A, Shapiro BJ, Barrett RDH. Pre-exposure to stress reduces loss of community and genetic diversity following severe environmental disturbance. Curr Biol 2025; 35:1061-1073.e4. [PMID: 39933522 DOI: 10.1016/j.cub.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/10/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Environmental stress caused by anthropogenic impacts is increasing worldwide. Understanding the ecological and evolutionary consequences for biodiversity will be crucial for our ability to respond effectively. Historical exposure to environmental stress is expected to select for resistant species, shifting community composition toward more stress-tolerant taxa. Concurrent with this species sorting process, genotypes within resistant taxa that have the highest relative fitness under severe stress are expected to increase in frequency, leading to evolutionary adaptation. However, empirical demonstrations of these dual ecological and evolutionary processes in natural communities are rare. Here, we provide evidence for simultaneous species sorting and evolutionary adaptation across multiple species within a natural freshwater bacterial community. Using a two-phase stressor experimental design (acidification pre-exposure followed by severe acidification) in aquatic mesocosms, we show that pre-exposed communities were more resistant than naive communities to taxonomic loss when faced with severe acid stress. However, after sustained severe acidification, taxonomic richness of both pre-exposed and naive communities eventually converged. All communities experiencing severe acidification became dominated by an acidophilic bacterium, Acidiphilium rubrum, but this species retained greater genetic diversity and followed distinct evolutionary trajectories in pre-exposed relative to naive communities. These patterns were shared across other acidophilic species, providing repeated evidence for the impact of pre-exposure on evolutionary outcomes despite the convergence of community profiles. Our results underscore the need to consider both ecological and evolutionary processes to accurately predict the responses of natural communities to environmental change.
Collapse
Affiliation(s)
- Charles C Y Xu
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada.
| | - Vincent Fugère
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Biological Sciences, University of Québec at Montreal, Montreal, QC H2V 0B3, Canada; Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Naíla Barbosa da Costa
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Département des Sciences Biologiques, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Biological Sciences, University of Québec at Montreal, Montreal, QC H2V 0B3, Canada
| | - Graham Bell
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada
| | - Gregor F Fussmann
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada; Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montreal, QC H3C 3J7, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC H3A 2B4, Canada; McGill Genome Centre, McGill University Montreal, Montreal, QC H3A 0G1, Canada
| | - Rowan D H Barrett
- Department of Biology, McGill University Montreal, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
4
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY confer tolerance to an interspecies redox-active antimicrobial. PLoS Genet 2025; 21:e1011610. [PMID: 40053555 PMCID: PMC11918324 DOI: 10.1371/journal.pgen.1011610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been described, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. A pyocyanin tolerant CodY mutant also had a survival advantage in co-culture with P. aeruginosa, likely through tolerance specifically to pyocyanin. The transcriptional response of the CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. First, the CodY mutant strongly suppressed metabolism by downregulating core metabolic pathways , especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Second, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways upon pyocyanin exposure, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain against purified pyocyanin and in co-culture with WT P. aeruginosa. Together, these results suggest that both transcriptional responses of reduced metabolism and an increased oxidative stress response likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Cairns J, Hogle S, Alitupa E, Mustonen V, Hiltunen T. Pre-exposure of abundant species to disturbance improves resilience in microbial metacommunities. Nat Ecol Evol 2025; 9:395-405. [PMID: 39825086 DOI: 10.1038/s41559-024-02624-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025]
Abstract
Understanding factors influencing community resilience to disturbance is critical for mitigating harm at various scales, including harm from medication to gut microbiota and harm from human activity to global biodiversity, yet there is a lack of data from large-scale controlled experiments. Factors expected to boost resilience include prior exposure to the same disturbance and dispersal from undisturbed patches. Here we set up an in vitro system to test the effect of disturbance pre-exposure and dispersal represented by community mixing. We performed a serial passage experiment on a 23-species bacterial model community, varying pre-exposure history and dispersal rate between three metacommunity patches subjected to different levels of disturbance by the antibiotic streptomycin. As expected, pre-exposure caused evolution of resistance, which prevented decrease in species abundance. The more abundant the pre-exposed species had been in the undisturbed community, the less the entire community changed. Pre-exposure of the most dominant species also decreased abundance change in off-target species. In the absence of pre-exposure, increasing dispersal rates caused increasing spread of the disturbance across the metacommunity. However, pre-exposure kept the metacommunity close to the undisturbed state regardless of dispersal rate. Our findings demonstrate that pre-exposure is an important modifier of ecological resilience in a metacommunity setting.
Collapse
Affiliation(s)
- Johannes Cairns
- Department of Biology, University of Turku, Turku, Finland
- Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland
- Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Sustainability Science (HELSUS), University of Helsinki, Helsinki, Finland
| | - Shane Hogle
- Department of Biology, University of Turku, Turku, Finland
| | | | - Ville Mustonen
- Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Teppo Hiltunen
- Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Briddon CL, Estevens R, Ghedini G. Evolution Under Competition Increases Population Production by Reducing the Density-Dependence of Net Energy Fluxes and Growth. Ecol Evol 2025; 15:e71071. [PMID: 40099212 PMCID: PMC11913549 DOI: 10.1002/ece3.71071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Competition can drive rapid evolution, but forecasting how species evolve in communities remains difficult. Life history theory predicts that evolution in crowded environments should maximize population production, with intra- and inter-specific competition producing similar outcomes if species compete for similar resources. Despite its appeal, this prediction has rarely been tested in communities. To test its generality and identify its physiological basis, we used experimental evolution to maintain four species of marine phytoplankton alone or together in a community for 4.5 months. We then quantified changes in their metabolism, demography, and competitive ability at two timepoints (~60 and 120 generations) in common garden experiments. One species was outcompeted during the evolution experiment. For the other three, we found the same evolutionary outcome: species evolved greater biovolume production regardless of competition treatment but did so either by increasing max. population size or individual cell size. Biovolume production increased because of the differential evolution of photosynthesis and respiration under intense competition. These metabolic changes meant that intraspecific competition decreased, and cells maintained higher rates of net energy production and growth as populations neared the stationary phase. Overall, these results show that intra- and inter-specific competition influence physiological and population parameters similarly in species that compete for essential resources. Life history theory thus provides a valuable base for predicting how species evolve in communities, and our results show how these predictions relate to the evolution of metabolism and competitive ability.
Collapse
Affiliation(s)
- Charlotte L. Briddon
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
| | - Ricardo Estevens
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
| | - Giulia Ghedini
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
- School of Biological SciencesMonash UniversityClaytonAustralia
| |
Collapse
|
7
|
Zhang D, Bao Y, Wang Y, Feng J, Li R, Du Y, Wang D, Chen F, Li S, Wen J, Chen Z. Coalescence characteristics of free-living and particle-attached bacteria in a cascade river-reservoir system: A case study of the Jinsha River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124088. [PMID: 39805160 DOI: 10.1016/j.jenvman.2025.124088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Microbial coalescence plays a crucial role in shaping aquatic ecosystems by facilitating the merging of neighboring microbial communities, thereby influencing ecosystem structure. Although this phenomenon is commonly observed in natural environments, comprehensive quantitative comparative studies on different lifestyle bacteria involved in this process are still lacking. The study focuses on 16S rRNA Amplicon Sequence Variants (ASVs) at the Jinsha River hydropower stations (Wudongde [WDD], Baihetan [BHT], Xiluodu [XLD], Xiangjiaba [XJB]), specifically examining free-living (FL) and particle-attached (PA) bacteria. Minimal differences in microbial composition were observed across water layers (surface, middle, and bottom). Analyses of overlapping ASVs, Bray-Curtis dissimilarity, and the SourceTracker algorithm revealed a significant difference in the coalescence ability of FL and PA bacteria, particularly in the surface water of XJB (FL: 31.1% ± 2.0%, PA: 27.6% ± 2.5%, p < 0.05). The coalescence of FL bacteria was primarily influenced by the mixing of adjacent water layers, while PA bacteria exhibited significant geographical variations across water layers (p < 0.05), displaying lower coalescence compared to FL bacteria. Using a cohesion metric, 12 keystone species in PA bacteria were identified and 7 in FL bacteria. Proteobacteria and Bacteroidetes were the most abundant phyla at the keystone species in PA and FL bacteria, respectively. The abundance of keystone ASVs decreased with distance in PA bacteria, whereas FL bacteria showed the opposite trend. At the genus level, Brevundimonas and Chryseobacterium were identified as keystone species in both lifestyles. Moreover, the impact of community coalescence on the stability tends to exhibit differences downstream in cascade stations. This study provides novel insights into the dynamic variations of microbial communities with diverse lifestyles in stratified aquatic environments and assesses the impact of dam construction on microbial coalescence and the alteration of keystone species.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Yufei Bao
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Yuchun Wang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jingjie Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanliang Du
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Dianchang Wang
- Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Fei Chen
- Ecological Environment Engineering Research Center of the Yangtze River, China Three Gorges Corporation, Wuhan, 430014, China
| | - Shanze Li
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Jie Wen
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhuo Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Xu J, Abe K, Kodama T, Sultana M, Chac D, Markiewicz SM, Matsunami H, Kuba E, Tsunoda S, Alam M, Weil AA, Nakamura S, Yamashiro T. The role of morphological adaptability in Vibrio cholerae's motility. mBio 2025; 16:e0246924. [PMID: 39611848 PMCID: PMC11708025 DOI: 10.1128/mbio.02469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Vibrio cholerae, the causative agent of cholera, displays remarkable adaptability to diverse environmental conditions through morphological changes that enhance its pathogenicity and influence the global epidemiology of the disease. This study examines the motility differences between filamentous and comma-shaped forms of the V. cholerae O1 strain under various viscosity conditions. Utilizing the El Tor strain, we induced filamentous transformation and conducted a comparative analysis with the canonical comma-shaped morphology. Our methodology involved assessing motility patterns, swimming speeds, rotation rates, kinematics, and reversal frequencies using dark-field microscopy and high-speed imaging techniques. The results show that filamentous V. cholerae cells retain enhanced motility in viscous environments, indicating an evolutionary adaptation for survival in varied habitats, particularly the human gastrointestinal tract. Filamentous forms exhibited increased reversal behavior at mucin interfaces, suggesting an advantage in penetrating the mucus layer. Furthermore, the presence of filamentous cells in bile-supplemented medium underscores their relevance in natural infection scenarios. IMPORTANCE This study highlights the enhanced motility of filamentous Vibrio cholerae in viscous environments, an adaptation that may provide a survival advantage in the human gastrointestinal tract. By demonstrating increased reversal behavior at mucin interfaces, filamentous V. cholerae cells exhibit a superior ability to penetrate the mucus layer, which is crucial for effective colonization and infection. Filamentous cells in bile-supplemented media further underscores their potential role in disease pathogenesis. These findings offer critical insights into the morphological flexibility of V. cholerae and its potential implications for infection dynamics, paving the way for more effective strategies in managing and preventing cholera outbreaks.
Collapse
Affiliation(s)
- Jun Xu
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marzia Sultana
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hideyuki Matsunami
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erika Kuba
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shiyu Tsunoda
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Munirul Alam
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
9
|
Sulaiman JE, Thompson J, Cheung PLK, Qian Y, Mill J, James I, Im H, Vivas EI, Simcox J, Venturelli OS. Phocaeicola vulgatus shapes the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile. Cell Host Microbe 2025; 33:42-58.e10. [PMID: 39730002 PMCID: PMC11852276 DOI: 10.1016/j.chom.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk for infections. This colonization is influenced by complex molecular and ecological interactions with the human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentrations shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, two key mutations in C. difficile altered its metabolic niche from proline to glucose utilization. These metabolic changes in C. difficile substantially impacted gut microbiota inter-species interactions and reduced disease severity in mice. In sum, interactions with P. vulgatus are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pak Lun Kevin Cheung
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hanhyeok Im
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia S Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Cui M, Cai W, Yu P, Chen W, Shan C, Zhuang G, Wang Y. Characterization and Correlation Analysis of Bacterial Composition and Physicochemical Quality in High- and Medium-Temperature Daqu from China's Binzhou Region. Curr Microbiol 2025; 82:72. [PMID: 39762575 DOI: 10.1007/s00284-024-04037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025]
Abstract
To investigate the bacterial community structure and physicochemical characteristics of different types of Daqu in the Binzhou region, this study employed traditional pure culture methods, high-throughput sequencing technology, and conventional physicochemical assays for analysis. The research results indicate that Enterococcus faecium and Bacillus licheniformis emerged as the main LAB and Bacillus species in Daqu from Binzhou region, respectively. In addition, high-throughput sequencing revealed significant differences in bacterial community structure between the two types of Daqu (P < 0.01). Compostibacillus and Sebaldella were identified as the biomarkers and potential key strains of high- and medium-temperature Daqu, respectively, and high-temperature Daqu demonstrated higher microbial complexity and stability than medium-temperature Daqu. Physicochemical assays demonstrated that the a* value, Daqu skin hardness, Daqu core hardness, density, starch content, and aminophenol content being significantly higher in high-temperature Daqu (P < 0.05), meanwhile, the L* value, water activity, water content, protein content, liquefaction power, and saccharification power were found to be significantly lower in high-temperature Daqu (P < 0.05). And there was significant association between dominant genera and the physicochemical indexes of Daqu (P = 0.001). It can thus be seen that there were significant differences between the microbial communities and physicochemical indicators of different types of Daqu in the Binzhou region. The results of this study are of great significance for further analyzing the differences between different types of Daqu and improving their quality.
Collapse
Affiliation(s)
- Mengjun Cui
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei, China
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenchao Cai
- The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Peirong Yu
- Xinjiang Wuwu Liquor Industry Co., Ltd, Huyanghe, Xinjiang, China
| | - Wei Chen
- Xinjiang Wuwu Liquor Industry Co., Ltd, Huyanghe, Xinjiang, China
| | - Chunhui Shan
- The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Guo Zhuang
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei, China
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yurong Wang
- Brewing Technology Industrial College, Hubei University of Arts and Sciences, Xiangyang, Hubei, China.
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
11
|
Bouskill NJ, Chacon SS, Cusack DF, Dietterich LH, Chen L, Khurram A, Voříšková J, Holman HYN. Climate history modulates stress responses of common soil bacteria under experimental drought. THE ISME JOURNAL 2025; 19:wraf075. [PMID: 40247716 DOI: 10.1093/ismejo/wraf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/06/2025] [Accepted: 04/16/2025] [Indexed: 04/19/2025]
Abstract
Soil drying challenges microbial viability and survival, with bacteria employing various mechanisms to respond to shifts in osmolarity, including dormancy or metabolic upregulation of osmoprotectants. However, the extent to which these responses are shaped by an organism's phylogeny, or the climate history of a given environment is poorly understood. This study examines the responses of phylogenetically similar bacteria from semi-arid and humid tropical forest soils to osmotic and matric stress using synchrotron radiation-based Fourier Transform Infrared spectromicroscopy. This non-destructive approach depicts the biochemical phenotype for whole cells under control and stress conditions. We observed that, under osmotic stress, bacteria upregulated cell-signaling pathways, rapidly turned over lipid-storage compounds, and increased osmolyte production. In contrast, matric stress induced a more muted response, typically elevating the production of carbohydrate stress compounds, such as glycine betaine and trehalose. Whereas phylogenetically similar bacteria showed comparable biochemistry under control conditions, climate history played an important role in regulating responses to stress, whereby a stronger metabolic response was observed from semi-arid relative to tropical forest isolates. We conclude that bacterial stress response to drought can be more diverse than previously observed and regulated by both phylogeny and climate history.
Collapse
Affiliation(s)
- Nicholas J Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97330, United States
| | - Stephany S Chacon
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Life and Environmental Science Department, University of California Merced, Merced, CA 95343, United States
| | - Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Colorado State University, Campus Delivery 1476, Fort Collins, CO 80523, United States
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Ancon, Panamá, República de Panamá
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Colorado State University, Campus Delivery 1476, Fort Collins, CO 80523, United States
- Department of Biology, Haverford College, Haverford, PA 19041, United States
| | - Liang Chen
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aizah Khurram
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jana Voříšková
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083142 20 Prague 4, Czechia
| | - Hoi-Ying N Holman
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
12
|
Wang M, Xing X, Zhang Y, Sui X, Zheng C. Geographic Distribution Pattern Determines Soil Microbial Community Assembly Process in Acanthopanax senticosus Rhizosphere Soil. Microorganisms 2024; 12:2506. [PMID: 39770709 PMCID: PMC11728389 DOI: 10.3390/microorganisms12122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
The geographic distribution patterns of soil microbial communities associated with cultivated Acanthopanax senticosus plants in Northeast China were investigated. High-throughput sequencing revealed that the diversity and community assembly of bacterial and fungal communities in the inter-root soil varied significantly with geographic location. The study found that bacterial communities were predominantly assembled through stochastic processes at most sites, while fungal communities showed greater variation, with both stochastic and deterministic processes involved. The complexity of bacterial-fungal co-occurrence networks also varied with longitude and latitude, demonstrating both positive and negative interactions. PICRUSt 2.0 and FUNGuild were used to predict the potential functions of soil bacterial and fungal microbiota, respectively, during different land use patterns. The average taxonomic distinctness (AVD) index indicated varying degrees of community stability across sites. Key microbial taxa contributing to community variability were identified through Random Forest modeling, with Bacteriap25 and Sutterellaceae standing out among bacteria, and Archaeorhizomyces and Clavaria among fungi. Soil chemical properties, including pH, TN, TP, EC, and SOC, significantly correlated with microbial diversity, composition, and co-occurrence networks. Structural equation modeling revealed that geographic distribution patterns directly and indirectly influenced soil chemical properties and microbial communities. Overall, the study provides insights into the geographic distribution patterns of soil microbial communities associated with A. senticosus and highlights the need for further research into the underlying mechanisms shaping these patterns.
Collapse
Affiliation(s)
| | | | | | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| | - Chunying Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| |
Collapse
|
13
|
Mougi A. pH Adaptation stabilizes bacterial communities. NPJ BIODIVERSITY 2024; 3:32. [PMID: 39420145 PMCID: PMC11487260 DOI: 10.1038/s44185-024-00063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
Diverse microbes in nature play an important role in ecosystem functioning and human health. Nevertheless, it remains unclear how microbial communities are maintained. This study proposes that evolutionary changes in the pH niche of bacteria can promote bacterial coexistence. Bacteria modify the pH environment and also react to it. The optimal environmental pH level for a given species or pH niche can adaptively change in response to the changes in environmental pH caused by the bacteria themselves. Theory shows that the evolutionary changes in the pH niche can stabilize otherwise unstable large bacterial communities, particularly when the evolution occurs rapidly and diverse bacteria modifying pH in different directions coexist in balance. The stabilization is sufficiently strong to mitigate the inherent instability of system complexity with many species and interactions. This model can show a relationship between pH and diversity in natural bacterial systems.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504, Japan.
| |
Collapse
|
14
|
Meroz N, Livny T, Toledano G, Sorokin Y, Tovi N, Friedman J. Evolution in microbial microcosms is highly parallel, regardless of the presence of interacting species. Cell Syst 2024; 15:930-940.e5. [PMID: 39419002 DOI: 10.1016/j.cels.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/29/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Evolution often follows similar trajectories in replicate populations, suggesting that it may be predictable. However, populations are naturally embedded in multispecies communities, and the extent to which evolution is contingent on the specific species interacting with the focal population is still largely unexplored. Here, we study adaptations in strains of 11 different species, experimentally evolved both in isolation and in various pairwise co-cultures. Although partner-specific effects are detectable, evolution was mostly shared between strains evolved with different partners; similar changes occurred in strains' growth abilities, in community properties, and in about half of the repeatedly mutated genes. This pattern persisted even in species pre-adapted to the abiotic conditions. These findings indicate that evolution may not always depend strongly on the biotic environment, making predictions regarding coevolutionary dynamics less challenging than previously thought. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Nittay Meroz
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel.
| | - Tal Livny
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Gal Toledano
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel; The Rachel and Selim Benin School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Yael Sorokin
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Nesli Tovi
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Jonathan Friedman
- Institute of Environmental Sciences, Hebrew University, Rehovot, Israel.
| |
Collapse
|
15
|
McEnany J, Good BH. Predicting the first steps of evolution in randomly assembled communities. Nat Commun 2024; 15:8495. [PMID: 39353888 PMCID: PMC11445446 DOI: 10.1038/s41467-024-52467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Microbial communities can self-assemble into highly diverse states with predictable statistical properties. However, these initial states can be disrupted by rapid evolution of the resident strains. When a new mutation arises, it competes for resources with its parent strain and with the other species in the community. This interplay between ecology and evolution is difficult to capture with existing community assembly theory. Here, we introduce a mathematical framework for predicting the first steps of evolution in large randomly assembled communities that compete for substitutable resources. We show how the fitness effects of new mutations and the probability that they coexist with their parent depends on the size of the community, the saturation of its niches, and the metabolic overlap between its members. We find that successful mutations are often able to coexist with their parent strains, even in saturated communities with low niche availability. At the same time, these invading mutants often cause extinctions of metabolically distant species. Our results suggest that even small amounts of evolution can produce distinct genetic signatures in natural microbial communities.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
16
|
Crow JC, Geng H, Sullivan TJ, Soucy SM, Schultz D. Dynamics of drug delivery determines course of evolution of antibiotic responses in bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569327. [PMID: 38076825 PMCID: PMC10705423 DOI: 10.1101/2023.11.29.569327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
To adjust to sudden shifts in conditions, microbes possess regulated genetic mechanisms that sense environmental challenges and induce the appropriate responses. The initial evolution of microbes in new environments is thought to be driven by regulatory mutations, but it is not clear how this evolution is affected by how quickly conditions change (i.e. dynamics). Here, we perform experimental evolution on continuous cultures of tetracycline resistant E. coli in different dynamical regimens of drug administration. We find that cultures evolved under gradually increasing drug concentrations acquire fine-tuning mutations adapting an alternative efflux pump to tetracycline. However, cultures that are instead periodically exposed to large drug doses evolve transposon insertions resulting in loss of regulation of the main mechanism of tetracycline resistance. A mathematical model shows that sudden drug exposures overwhelm regulated responses, which cannot induce resistance fast enough. These results help explain the frequent loss of regulation of resistance in clinical pathogens.
Collapse
Affiliation(s)
- John C. Crow
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Hao Geng
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Timothy J. Sullivan
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Shannon M. Soucy
- Department of Biomedical Data Science, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology & Immunology, Dartmouth – Geisel School of Medicine, Hanover, NH 03755, USA
| |
Collapse
|
17
|
Hesse E, Luján AM, O'Brien S, Newbury A, McAvoy T, Soria Pascual J, Bayer F, Hodgson DJ, Buckling A. Parallel ecological and evolutionary responses to selection in a natural bacterial community. Proc Natl Acad Sci U S A 2024; 121:e2403577121. [PMID: 39190353 PMCID: PMC11388356 DOI: 10.1073/pnas.2403577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community. We focused on the production of siderophores; bacteria use these costly secreted metabolites to scavenge poorly soluble iron and to detoxify environments polluted with toxic nonferrous metals. We found that responses to copper-imposed selection within and between species were ultimately the same-intermediate siderophore levels were favored-and occurred over similar timescales. Despite being a social trait, this level of siderophore production was selected regardless of whether species evolved in isolation or in a community context. Our study suggests that evolutionary selection can play a pivotal role in shaping community trait distributions within natural, highly complex, bacterial communities. Furthermore, trait evolution may not always be qualitatively affected by interactions with other community members.
Collapse
Affiliation(s)
- Elze Hesse
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Adela M Luján
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Católica de Córdoba, Córdoba X5016DHK, Argentina
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba (UCC), Córdoba X5004ASK, Argentina
| | - Siobhan O'Brien
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Arthur Newbury
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Terence McAvoy
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Jesica Soria Pascual
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Florian Bayer
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - David J Hodgson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation & Environment and Sustainability Institute, Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
18
|
Sulaiman JE, Thompson J, Cheung PLK, Qian Y, Mill J, James I, Vivas EI, Simcox J, Venturelli O. Human gut microbiota interactions shape the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603560. [PMID: 39071283 PMCID: PMC11275832 DOI: 10.1101/2024.07.15.603560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, C. difficile adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaron Thompson
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jericha Mill
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabella James
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I. Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Gnotobiotic Animal Core Facility, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Simcox
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ophelia Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Martini AM, Alexander SA, Khare A. Mutations in the Staphylococcus aureus Global Regulator CodY Confer Tolerance to an Interspecies Redox-Active Antimicrobial. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601769. [PMID: 39040146 PMCID: PMC11261909 DOI: 10.1101/2024.07.02.601769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Bacteria often exist in multispecies communities where interactions among different species can modify individual fitness and behavior. Although many competitive interactions have been characterized, molecular adaptations that can counter this antagonism and preserve or increase fitness remain underexplored. Here, we characterize the adaptation of Staphylococcus aureus to pyocyanin, a redox-active interspecies antimicrobial produced by Pseudomonas aeruginosa, a co-infecting pathogen frequently isolated from wound and chronic lung infections with S. aureus. Using experimental evolution, we identified mutations in a conserved global transcriptional regulator, CodY, that confer tolerance to pyocyanin and thereby enhance survival of S. aureus. The transcriptional response of a pyocyanin tolerant CodY mutant to pyocyanin indicated a two-pronged defensive response compared to the wild type. Firstly, the CodY mutant strongly suppressed metabolism, by downregulating pathways associated with core metabolism, especially translation-associated genes, upon exposure to pyocyanin. Metabolic suppression via ATP depletion was sufficient to provide comparable protection against pyocyanin to the wild-type strain. Secondly, while both the wild-type and CodY mutant strains upregulated oxidative stress response pathways, the CodY mutant overexpressed multiple stress response genes compared to the wild type. We determined that catalase overexpression was critical to pyocyanin tolerance as its absence eliminated tolerance in the CodY mutant and overexpression of catalase was sufficient to impart tolerance to the wild-type strain. Together, these results suggest that both transcriptional responses likely contribute to pyocyanin tolerance in the CodY mutant. Our data thus provide new mechanistic insight into adaptation toward interbacterial antagonism via altered regulation that facilitates multifaceted protective cellular responses.
Collapse
Affiliation(s)
- Anthony M. Martini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sara A. Alexander
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
McEnany J, Good BH. Predicting the First Steps of Evolution in Randomly Assembled Communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571925. [PMID: 38168431 PMCID: PMC10760118 DOI: 10.1101/2023.12.15.571925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Microbial communities can self-assemble into highly diverse states with predictable statistical properties. However, these initial states can be disrupted by rapid evolution of the resident strains. When a new mutation arises, it competes for resources with its parent strain and with the other species in the community. This interplay between ecology and evolution is difficult to capture with existing community assembly theory. Here, we introduce a mathematical framework for predicting the first steps of evolution in large randomly assembled communities that compete for substitutable resources. We show how the fitness effects of new mutations and the probability that they coexist with their parent depends on the size of the community, the saturation of its niches, and the metabolic overlap between its members. We find that successful mutations are often able to coexist with their parent strains, even in saturated communities with low niche availability. At the same time, these invading mutants often cause extinctions of metabolically distant species. Our results suggest that even small amounts of evolution can produce distinct genetic signatures in natural microbial communities.
Collapse
Affiliation(s)
- John McEnany
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Yan X, Li S, Abdullah Al M, Mo Y, Zuo J, Grossart HP, Zhang H, Yang Y, Jeppesen E, Yang J. Community stability of free-living and particle-attached bacteria in a subtropical reservoir with salinity fluctuations over 3 years. WATER RESEARCH 2024; 254:121344. [PMID: 38430754 DOI: 10.1016/j.watres.2024.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Changes in salinity have a profound influence on ecological services and functions of inland freshwater ecosystems, as well as on the shaping of microbial communities. Bacterioplankton, generally classified into free-living (FL) and particle-attached (PA) forms, are main components of freshwater ecosystems and play key functional roles for biogeochemical cycling and ecological stability. However, there is limited knowledge about the responses of community stability of both FL and PA bacteria to salinity fluctuations. Here, we systematically explored changes in community stability of both forms of bacteria based on high-frequency sampling in a shallow urban reservoir (Xinglinwan Reservoir) in subtropical China for 3 years. Our results indicated that (1) salinity was the strongest environmental factor determining FL and PA bacterial community compositions - rising salinity increased the compositional stability of both bacterial communities but decreased their α-diversity. (2) The community stability of PA bacteria was significantly higher than that of FL at high salinity level with low salinity variance scenarios, while the opposite was found for FL bacteria, i.e., their stability was higher than PA bacteria at low salinity level with high variance scenarios. (3) Both bacterial traits (e.g., bacterial genome size and interaction strength of rare taxa) and precipitation-induced factors (e.g., changes in salinity and particle) likely contributed collectively to differences in community stability of FL and PA bacteria under different salinity scenarios. Our study provides additional scientific basis for ecological management, protection and restoration of urban reservoirs under changing climatic and environmental conditions.
Collapse
Affiliation(s)
- Xue Yan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Mamun Abdullah Al
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Mo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam 14469, Germany
| | - Hongteng Zhang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yigang Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing 100049, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Institute of Marine Sciences, Middle East Technical University, Erdemli, Mersin 33731, Turkey
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
22
|
Martin-Pozas T, Cuezva S, Fernandez-Cortes A, Gonzalez-Pumariega M, Elez J, Duarte E, de la Rasilla M, Canaveras JC, Saiz-Jimenez C, Sanchez-Moral S. Adaptive response of prokaryotic communities to extreme pollution flooding in a Paleolithic rock art cave (Pindal Cave, northern Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171137. [PMID: 38401719 DOI: 10.1016/j.scitotenv.2024.171137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
A flood event affecting Pindal Cave, a UNESCO World Heritage site, introduced a substantial amount of external sediments and waste into the cave. This event led to the burial of preexisting sediments, altering the biogeochemical characteristics of the cave ecosystem by introducing heightened levels of organic matter, nitrogen compounds, phosphorus, and heavy metals. The sediments included particulate matter and waste from a cattle farm located within the water catchment area of the cavity, along with diverse microorganisms, reshaping the cave microbial community. This study addresses the ongoing influence of a cattle farm on the cave ecosystem and aims to understand the adaptive responses of the underground microbial community to the sudden influx of waste allochthonous material. Here, we show that the flood event had an immediate and profound effect on the cave microbial community, marked by a significant increase in methanogenic archaea, denitrifying bacteria, and other microorganisms commonly associated with mammalian intestinal tracts. Furthermore, our findings reveal that one year after the flood, microorganisms related to the flood decreased, while the increase in inorganic forms of ammonium and nitrate suggests potential nitrification, aligning with increased abundances of corresponding functional genes involved in nitrogen cycling. The results reveal that the impact of pollution was neither recent nor isolated, and it was decisive in stopping livestock activity near the cave. The influence of the cattle farm has persisted since its establishment over the impluvium area, and this influence endures even a year after the flood. Our study emphasizes the dynamic interplay between natural events, anthropogenic activities, and microbial communities, offering insights into the resilience of cave ecosystems. Understanding microbial adaptation in response to environmental disturbances, as demonstrated in this cave ecosystem, has implications for broader ecological studies and underscores the importance of considering temporal dynamics in conservation efforts.
Collapse
Affiliation(s)
- Tamara Martin-Pozas
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| | - Soledad Cuezva
- Spanish Geological Survey (IGME-CSIC), 28003 Madrid, Spain.
| | | | | | - Javier Elez
- Department of Geology, University of Salamanca, 37008 Salamanca, Spain.
| | - Elsa Duarte
- Department of History, University of Oviedo, 33011 Oviedo, Spain
| | | | - Juan Carlos Canaveras
- Department of Environmental and Earth Sciences, University of Alicante, Campus San Vicente del Raspeig, 03690 Alicante, Spain.
| | - Cesareo Saiz-Jimenez
- Department of Agrochemistry, Environmental Microbiology and Soil and Water Protection, Institute of Natural Resources and Agricultural Biology (IRNAS-CSIC), 41012 Seville, Spain.
| | - Sergio Sanchez-Moral
- Department of Geology, National Museum of Natural Sciences (MNCN-CSIC), 28006 Madrid, Spain.
| |
Collapse
|
23
|
del Arco A, Fischer MG, Becks L. Evolution of exploitation and replication of giant viruses and virophages. Virus Evol 2024; 10:veae021. [PMID: 38562952 PMCID: PMC10984621 DOI: 10.1093/ve/veae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite biotic interactions are inherently complex, and the strong interdependence of species and often one-sided exploitation can make these systems vulnerable to extinction. The persistence of species depends then on the balance between exploitation and avoidance of exploitation beyond the point where sustainable resource use is no longer possible. We used this general prediction to test the potential role of trait evolution for persistence in a tripartite microbial system consisting of a marine heterotrophic flagellate preyed upon by a giant virus, which in turn is parasitized by a virophage. Host and virophage may benefit from this interaction because the virophage reduces the harmful effects of the giant virus on the host population and the virophage can persist integrated into the host genome when giant viruses are scarce. We grew hosts and virus in the presence and absence of the virophage over ∼280 host generations and tested whether levels of exploitation and replication in the giant virus and/or virophage population evolved over the course of the experiment, and whether the changes were such that they could avoid overexploitation and extinction. We found that the giant virus evolved toward lower levels of replication and the virophage evolved toward increased replication but decreased exploitation of the giant virus. These changes reduced overall host exploitation by the virus and virus exploitation by the virophage and are predicted to facilitate persistence.
Collapse
Affiliation(s)
- Ana del Arco
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Lutz Becks
- Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Mainaustraße 252, Konstanz/Egg 78464, Germany
| |
Collapse
|
24
|
Xing W, Gai X, Xue L, Chen G. Evaluating the role of rhizosphere microbial home-field advantage in Betula luminifera adaptation to antimony mining areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169009. [PMID: 38040368 DOI: 10.1016/j.scitotenv.2023.169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
It has been established that the coevolution of plants and the rhizosphere microbiome in response to abiotic stress can result in the recruitment of specific functional microbiomes. However, the potential of inoculated rhizosphere microbiomes to enhance plant fitness and the inheritance of adaptive traits in subsequent generations remains unclear. In this study, cross-inoculation trials were conducted using seeds, rhizosphere microbiome, and in situ soil collected from areas of Betula luminifera grown in both antimony mining and control sites. Compared to the control site, plants originating from mining areas exhibited stronger adaptive traits, specifically manifested as significant increases in hundred-seed weight, specific surface area, and germination rate, as well as markedly enhanced seedling survival rate and biomass. Inoculation with mining microbiomes could enhance the fitness of plants in mining sites through a "home-field advantage" while also improving the fitness of plants originating from control sites. During the initial phase of seedling development, bacteria play a crucial role in promoting growth, primarily due to their mechanisms of metal resistance and nutrient cycling. This study provided evidence that the outcomes of long-term coevolution between plants and the rhizosphere microbiome in mining areas can be passed on to future generations. Moreover, it has been demonstrated that transgenerational inheritance and rhizosphere microbiome inoculation are important factors in improving the adaptability of plants in mining areas. The findings have important implications for vegetation restoration and ecological environment improvement in mining areas.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; Nanjing Forestry University, Nanjing 210037, China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Liang Xue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
25
|
Decaestecker E, Van de Moortel B, Mukherjee S, Gurung A, Stoks R, De Meester L. Hierarchical eco-evo dynamics mediated by the gut microbiome. Trends Ecol Evol 2024; 39:165-174. [PMID: 37863775 DOI: 10.1016/j.tree.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
The concept of eco-evolutionary (eco-evo) dynamics, stating that ecological and evolutionary processes occur at similar time scales and influence each other, has contributed to our understanding of responses of populations, communities, and ecosystems to environmental change. Phenotypes, central to these eco-evo processes, can be strongly impacted by the gut microbiome. The gut microbiome shapes eco-evo dynamics in the host community through its effects on the host phenotype. Complex eco-evo feedback loops between the gut microbiome and the host communities might thus be common. Bottom-up dynamics occur when eco-evo interactions shaping the gut microbiome affect host phenotypes with consequences at population, community, and ecosystem levels. Top-down dynamics occur when eco-evo dynamics shaping the host community structure the gut microbiome.
Collapse
Affiliation(s)
- Ellen Decaestecker
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium.
| | - Broos Van de Moortel
- Laboratory of Aquatic Biology, Interdisciplinary Research Facility Life Sciences, KU Leuven, KULAK, Campus Kortrijk, B-8500 Kortrijk, Belgium
| | - Shinjini Mukherjee
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Laboratory of Reproductive Genomics, KU Leuven, B-3000 Leuven, Belgium
| | - Aditi Gurung
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, B-3000 Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution, and Conservation, KU Leuven, B-3000 Leuven, Belgium; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), D-12587 Berlin, Germany; Institute of Biology, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Hesse E, O’Brien S. Ecological dependencies and the illusion of cooperation in microbial communities. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001442. [PMID: 38385784 PMCID: PMC10924460 DOI: 10.1099/mic.0.001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.
Collapse
Affiliation(s)
- Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O’Brien
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
27
|
Wang Z, Ruan X, Li R, Zhang Y. Microbial interaction patterns and nitrogen cycling regularities in lake sediments under different trophic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167926. [PMID: 37863216 DOI: 10.1016/j.scitotenv.2023.167926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Exploring how nitrogen (N) cycling microbes interact in eutrophic lake sediments and how biogenic elements influence the nitrogen cycle is crucial for understanding biogeochemical cycles and nitrogen accumulation mechanisms. In this study, sediment samples were collected from various areas of Taihu Lake with different trophic conditions in all four seasons from 2015 to 2017. Using high-throughput sequencing and molecular ecological network analysis, we investigated the microbial interaction patterns and the role of nitrogen cycling in sediments from lakes with different trophic conditions. The results showed distinct structures of sediment microbial networks between lake areas with different trophic conditions. In the more eutrophic region, network indices indicate higher transfer efficiency of energy, material, and information, more significant competition, and weaker niche differentiation of the microbial community. The sedimentary environment in the moderately eutrophic area exhibited greater potential for denitrification, nitrification, and anammox compared to the mesotrophic area, but the inhibition between N functional microbes and limitations in N removal processes were also more likely to occur. The topological structure of the networks showed that the carbon (C), sulfur (S), and iron (Fe) cycles had a strong influence on the nitrogen cycle in both lake areas. In the moderately eutrophic lake area, C- and S-cycling functional bacteria facilitated a closed cycle of the coupled N fixation-nitrification-DNRA (dissimilatory nitrate reduction to ammonium) process and reduced N removal. In the mesotrophic lake area, C- and S-cycling functional bacteria promoted both N fixation and mineralization, and Fe-cycling functional bacteria coupled with denitrifiers enhanced the nitrogen removal process of products from nitrogen fixation and mineralization. This study improved the understanding of the nitrogen cycling mechanism in lake sediments under different trophic conditions.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Xiaohong Ruan
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China.
| | - Rongfu Li
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| | - Yaping Zhang
- Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China; MOE Key Laboratory of Surficial Geochemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Jacquiod S, Olsen NMC, Blouin M, Røder HL, Burmølle M. Genotypic variations and interspecific interactions modify gene expression and biofilm formation of Xanthomonas retroflexus. Environ Microbiol 2023; 25:3225-3238. [PMID: 37740256 DOI: 10.1111/1462-2920.16503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
Multispecies biofilms are important models for studying the evolution of microbial interactions. Co-cultivation of Xanthomonas retroflexus (XR) and Paenibacillus amylolyticus (PA) systemically leads to the appearance of an XR wrinkled mutant (XRW), increasing biofilm production. The nature of this new interaction and the role of each partner remain unclear. We tested the involvement of secreted molecular cues in this interaction by exposing XR and XRW to PA or its supernatant and analysing the response using RNA-seq, colony-forming unit (CFU) estimates, biofilm quantification, and microscopy. Compared to wild type, the mutations in XRW altered its gene expression and increased its CFU number. These changes matched the reported effects for one of the mutated genes: a response regulator part of a two-component system involved in environmental sensing. When XRW was co-cultured with PA or its supernatant, the mutations effects on XRW gene expression were masked, except for genes involved in sedentary lifestyle, being consistent with the higher biofilm production. It appears that the higher biofilm production was the result of the interaction between the genetic context (mutations) and the biotic environment (PA signals). Regulatory genes involved in environmental sensing need to be considered to shed further light on microbial interactions.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Nanna Mee Coops Olsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Manuel Blouin
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, University Bourgogne Franche-Comté, Dijon, France
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Section of Microbiology and Fermentation, Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Rajapitamahuni S, Lyou ES, Kang BR, Lee TK. Microbial interaction-induced siderophore dynamics lead to phenotypic differentiation of Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1277176. [PMID: 38045757 PMCID: PMC10690949 DOI: 10.3389/fcimb.2023.1277176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
This study investigated the impact of microbial interactions on siderophore dynamics and phenotypic differentiation of Staphylococcus aureus under iron-deficient conditions. Optimization of media demonstrated that the glycerol alanine salts medium was best suited for analyzing the dynamics of siderophore production because of its stable production of diverse siderophore types. The effects of pH and iron concentration on siderophore yield revealed a maximum yield at neutral pH and low iron concentration (10 µg). Microbial interaction studies have highlighted variations in siderophore production when different strains (Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli) are co-cultured with S. aureus. Co-culture of S. aureus with P. aeruginosa eliminated siderophore production in S. aureus, while co-culture of S. aureus with E. coli and S. epidermidis produced one or two siderophores, respectively. Raman spectroscopy revealed that microbial interactions and siderophore dynamics play a crucial role in directing the phenotypic differentiation of S. aureus, especially under iron-deficient conditions. Our results suggest that microbial interactions profoundly influence siderophore dynamics and phenotypic differentiation and that the study of these interactions could provide valuable insights for understanding microbial survival strategies in iron-limited environments.
Collapse
Affiliation(s)
| | | | | | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
30
|
Good BH, Rosenfeld LB. Eco-evolutionary feedbacks in the human gut microbiome. Nat Commun 2023; 14:7146. [PMID: 37932275 PMCID: PMC10628149 DOI: 10.1038/s41467-023-42769-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
Gut microbiota can evolve within their hosts on human-relevant timescales, but little is known about how these changes influence (or are influenced by) the composition of their local community. Here, by combining ecological and evolutionary analyses of a large cohort of human gut metagenomes, we show that the short-term evolution of the microbiota is linked with shifts in its ecological structure. These correlations are not simply explained by expansions of the evolving species, and often involve additional fluctuations in distantly related taxa. We show that similar feedbacks naturally emerge in simple resource competition models, even in the absence of cross-feeding or predation. These results suggest that the structure and function of host microbiota may be shaped by their local evolutionary history, which could have important implications for personalized medicine and microbiome engineering.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, 94158, USA.
| | - Layton B Rosenfeld
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
31
|
Huang Q, Zhang H, Zhang L, Xu B. Bacterial microbiota in different types of processed meat products: diversity, adaptation, and co-occurrence. Crit Rev Food Sci Nutr 2023; 65:287-302. [PMID: 37905560 DOI: 10.1080/10408398.2023.2272770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
As a double-edged sword, some bacterial microbes can improve the quality and shelf life of meat products, but others mainly responsible for deterioration of the safety and quality of meat products. This review aims to present a landscape of the bacterial microbiota in different types of processed meat products. After demonstrating a panoramic view of the bacterial genera in meat products, the diversity of bacterial microbiota was evaluated in two dimensions, namely different types of processed meat products and different meats. Then, the influence of environmental factors on bacterial communities was evaluated according to the storage temperature, packaging conditions, and sterilization methods. Furthermore, microbes are not independent. To explore interactions among those genera, co-occurrence patterns were examined. In these respects, this review highlighted the recent advances in fundamental principles that underlie the environmental adaption tricks and why some species tend to occur together frequently, such as metabolic cross-feeding, co-aggregate at microscale, and the intercellular signaling system. Further investigations are required to unveil the underlying molecular mechanisms that govern microbial community systems, ultimately contributing to developing new strategies to harness beneficial microorganisms and control harmful microorganisms.
Collapse
Affiliation(s)
- Qianli Huang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huijuan Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
32
|
Pai YC, Li YH, Turner JR, Yu LCH. Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation. J Crohns Colitis 2023; 17:1471-1488. [PMID: 37004200 PMCID: PMC10588795 DOI: 10.1093/ecco-jcc/jjad064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Factors that contribute to inflammatory bowel disease [IBD] pathogenesis include genetic polymorphisms, barrier loss, and microbial dysbiosis. A major knowledge gap exists in the origins of the colitogenic microbiome and its relationship with barrier impairment. Epithelial myosin light chain kinase [MLCK] is a critical regulator of the paracellular barrier, but the effects of MLCK activation on the intraepithelial bacteria [IEB] and dysbiosis are incompletely understood. We hypothesise that MLCK-dependent bacterial endocytosis promotes pathobiont conversion and shapes a colitogenic microbiome. METHODS To explore this, transgenic [Tg] mice with barrier loss induced by intestinal epithelium-specific expression of a constitutively active MLCK were compared with wild-type [WT] mice. RESULTS When progeny of homozygous MLCK-Tg mice were separated after weaning by genotype [Tg/Tg, Tg/WT, WT/WT], increased IEB numbers associated with dysbiosis and more severe colitis were present in Tg/Tg and Tg/WT mice, relative to WT/WT mice. Cohousing with MLCK-Tg mice induced dysbiosis, increased IEB abundance, and exacerbated colitis in WT mice. Conversely, MLCK-Tg mice colonised with WT microbiota at birth displayed increased Escherichia abundance and greater colitis severity by 6 weeks of age. Microarray analysis revealed circadian rhythm disruption in WT mice co-housed with MLCK-Tg mice relative to WT mice housed only with WT mice. This circadian disruption required Rac1/STAT3-dependent microbial invasion but not MLCK activity, and resulted in increased proinflammatory cytokines and glucocorticoid downregulation. CONCLUSIONS The data demonstrate that barrier dysfunction induces dysbiosis and expansion of invasive microbes that lead to circadian disruption and mucosal inflammation. These results suggest that barrier-protective or bacterium-targeted precision medicine approaches may be of benefit to IBD patients.
Collapse
Affiliation(s)
- Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Jerrold R Turner
- Brigham's Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| |
Collapse
|
33
|
Sessitsch A, Wakelin S, Schloter M, Maguin E, Cernava T, Champomier-Verges MC, Charles TC, Cotter PD, Ferrocino I, Kriaa A, Lebre P, Cowan D, Lange L, Kiran S, Markiewicz L, Meisner A, Olivares M, Sarand I, Schelkle B, Selvin J, Smidt H, van Overbeek L, Berg G, Cocolin L, Sanz Y, Fernandes WL, Liu SJ, Ryan M, Singh B, Kostic T. Microbiome Interconnectedness throughout Environments with Major Consequences for Healthy People and a Healthy Planet. Microbiol Mol Biol Rev 2023; 87:e0021222. [PMID: 37367231 PMCID: PMC10521359 DOI: 10.1128/mmbr.00212-22] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.
Collapse
Affiliation(s)
| | | | | | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Tomislav Cernava
- University of Southampton, Faculty of Environmental and Life Sciences, Southampton, United Kingdom
| | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | | | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pedro Lebre
- University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- University of Pretoria, Pretoria, South Africa
| | - Lene Lange
- LL-BioEconomy, Valby, Copenhagen, Denmark
| | | | - Lidia Markiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Department of Immunology and Food Microbiology, Olsztyn, Poland
| | - Annelein Meisner
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Inga Sarand
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Tallinn, Estonia
| | | | | | - Hauke Smidt
- Wageningen University and Research, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Leo van Overbeek
- Wageningen University and Research, Wageningen Research, Wageningen, The Netherlands
| | | | | | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Excellence Center Severo Ochoa – Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | - S. J. Liu
- Chinese Academy of Sciences, Institute of Microbiology, Beijing, China
| | - Matthew Ryan
- Genetic Resources Collection, CABI, Egham, United Kingdom
| | - Brajesh Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Tanja Kostic
- AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
34
|
Cosetta CM, Niccum B, Kamkari N, Dente M, Podniesinski M, Wolfe BE. Bacterial-fungal interactions promote parallel evolution of global transcriptional regulators in a widespread Staphylococcus species. THE ISME JOURNAL 2023; 17:1504-1516. [PMID: 37524910 PMCID: PMC10432416 DOI: 10.1038/s41396-023-01462-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023]
Abstract
Experimental studies of microbial evolution have largely focused on monocultures of model organisms, but most microbes live in communities where interactions with other species may impact rates and modes of evolution. Using the cheese rind model microbial community, we determined how species interactions shape the evolution of the widespread food- and animal-associated bacterium Staphylococcus xylosus. We evolved S. xylosus for 450 generations alone or in co-culture with one of three microbes: the yeast Debaryomyces hansenii, the bacterium Brevibacterium aurantiacum, and the mold Penicillium solitum. We used the frequency of colony morphology mutants (pigment and colony texture phenotypes) and whole-genome sequencing of isolates to quantify phenotypic and genomic evolution. The yeast D. hansenii strongly promoted diversification of S. xylosus. By the end of the experiment, all populations co-cultured with the yeast were dominated by pigment and colony morphology mutant phenotypes. Populations of S. xylosus grown alone, with B. aurantiacum, or with P. solitum did not evolve novel phenotypic diversity. Whole-genome sequencing of individual mutant isolates across all four treatments identified numerous unique mutations in the operons for the SigB, Agr, and WalRK global regulators, but only in the D. hansenii treatment. Phenotyping and RNA-seq experiments highlighted altered pigment and biofilm production, spreading, stress tolerance, and metabolism of S. xylosus mutants. Fitness experiments revealed antagonistic pleiotropy, where beneficial mutations that evolved in the presence of the yeast had strong negative fitness effects in other biotic environments. This work demonstrates that bacterial-fungal interactions can have long-term evolutionary consequences within multispecies microbiomes by facilitating the evolution of strain diversity.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Brittany Niccum
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Nick Kamkari
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | - Michael Dente
- Department of Biology, Tufts University, Medford, MA, 02155, USA
| | | | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
35
|
Abstract
A massive number of microorganisms, belonging to different species, continuously divide inside the guts of animals and humans. The large size of these communities and their rapid division times imply that we should be able to watch microbial evolution in the gut in real time, in a similar manner to what has been done in vitro. Here, we review recent findings on how natural selection shapes intrahost evolution (also known as within-host evolution), with a focus on the intestines of mice and humans. The microbiota of a healthy host is not as static as initially thought from the information measured at only one genomic marker. Rather, the genomes of each gut-colonizing species can be highly dynamic, and such dynamism seems to be related to the microbiota species diversity. Genetic and bioinformatic tools, and analysis of time series data, allow quantification of the selection strength on emerging mutations and horizontal transfer events in gut ecosystems. The drivers and functional consequences of gut evolution can now begin to be grasped. The rules of this intrahost microbiota evolution, and how they depend on the biology of each species, need to be understood for more effective development of microbiota therapies to help maintain or restore host health.
Collapse
Affiliation(s)
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
36
|
Martiny JBH, Martiny AC, Brodie E, Chase AB, Rodríguez-Verdugo A, Treseder KK, Allison SD. Investigating the eco-evolutionary response of microbiomes to environmental change. Ecol Lett 2023; 26 Suppl 1:S81-S90. [PMID: 36965002 DOI: 10.1111/ele.14209] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Microorganisms are the primary engines of biogeochemical processes and foundational to the provisioning of ecosystem services to human society. Free-living microbial communities (microbiomes) and their functioning are now known to be highly sensitive to environmental change. Given microorganisms' capacity for rapid evolution, evolutionary processes could play a role in this response. Currently, however, few models of biogeochemical processes explicitly consider how microbial evolution will affect biogeochemical responses to environmental change. Here, we propose a conceptual framework for explicitly integrating evolution into microbiome-functioning relationships. We consider how microbiomes respond simultaneously to environmental change via four interrelated processes that affect overall microbiome functioning (physiological acclimation, demography, dispersal and evolution). Recent evidence in both the laboratory and the field suggests that ecological and evolutionary dynamics occur simultaneously within microbiomes; however, the implications for biogeochemistry under environmental change will depend on the timescales over which these processes contribute to a microbiome's response. Over the long term, evolution may play an increasingly important role for microbially driven biogeochemical responses to environmental change, particularly to conditions without recent historical precedent.
Collapse
Affiliation(s)
- Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| | - Eoin Brodie
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, Texas, USA
| | | | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
- Department of Earth System Science, University of California, Irvine, California, USA
| |
Collapse
|
37
|
Zhou M, Guan X, Deng T, Hu R, Qian L, Yang X, Wu B, Li J, He Q, Shu L, Yan Q, He Z. Synthetic phylogenetically diverse communities promote denitrification and stability. ENVIRONMENTAL RESEARCH 2023; 231:116184. [PMID: 37207729 DOI: 10.1016/j.envres.2023.116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.
Collapse
Affiliation(s)
- Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
38
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
39
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
40
|
Ghedini G, Marshall DJ. Metabolic evolution in response to interspecific competition in a eukaryote. Curr Biol 2023:S0960-9822(23)00777-7. [PMID: 37392743 DOI: 10.1016/j.cub.2023.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
Competition drives rapid evolution, which, in turn, alters the trajectory of ecological communities. These eco-evolutionary dynamics are increasingly well-appreciated, but we lack a mechanistic framework for identifying the types of traits that will evolve and their trajectories. Metabolic theory offers explicit predictions for how competition should shape the (co)evolution of metabolism and size, but these are untested, particularly in eukaryotes. We use experimental evolution of a eukaryotic microalga to examine how metabolism, size, and demography coevolve under inter- and intraspecific competition. We find that the focal species evolves in accordance with the predictions of metabolic theory, reducing metabolic costs and maximizing population carrying capacity via changes in cell size. The smaller-evolved cells initially had lower population growth rates, as expected from their hyper-allometric metabolic scaling, but longer-term evolution yielded important departures from theory: we observed improvements in both population growth rate and carrying capacity. The evasion of this trade-off arose due to the rapid evolution of metabolic plasticity. Lineages exposed to competition evolved more labile metabolisms that tracked resource availability more effectively than lineages that were competition-free. That metabolic evolution can occur is unsurprising, but our finding that metabolic plasticity also co-evolves rapidly is new. Metabolic theory provides a powerful theoretical basis for predicting the eco-evolutionary responses to changing resource regimes driven by global change. Metabolic theory needs also to be updated to incorporate the effects of metabolic plasticity on the link between metabolism and demography, as this likely plays an underappreciated role in mediating eco-evolutionary dynamics of competition.
Collapse
Affiliation(s)
- Giulia Ghedini
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
41
|
Wu B, Guan X, Deng T, Yang X, Li J, Zhou M, Wang C, Wang S, Yan Q, Shu L, He Q, He Z. Synthetic Denitrifying Communities Reveal a Positive and Dynamic Biodiversity-Ecosystem Functioning Relationship during Experimental Evolution. Microbiol Spectr 2023; 11:e0452822. [PMID: 37154752 PMCID: PMC10269844 DOI: 10.1128/spectrum.04528-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Biodiversity is vital for ecosystem functions and services, and many studies have reported positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships in plant and animal systems. However, if the BEF relationship exists and how it evolves remains elusive in microbial systems. Here, we selected 12 Shewanella denitrifiers to construct synthetic denitrifying communities (SDCs) with a richness gradient spanning 1 to 12 species, which were subjected to approximately 180 days (with 60 transfers) of experimental evolution with generational changes in community functions continuously tracked. A significant positive correlation was observed between community richness and functions, represented by productivity (biomass) and denitrification rate, however, such a positive correlation was transient, only significant in earlier days (0 to 60) during the evolution experiment (180 days). Also, we found that community functions generally increased throughout the evolution experiment. Furthermore, microbial community functions with lower richness exhibited greater increases than those with higher richness. Biodiversity effect analysis revealed positive BEF relationships largely attributable to complementary effects, which were more pronounced in communities with lower richness than those with higher richness. This study is one of the first studies that advances our understanding of BEF relationships and their evolutionary mechanisms in microbial systems, highlighting the crucial role of evolution in predicting the BEF relationship in microbial systems. IMPORTANCE Despite the consensus that biodiversity supports ecosystem functioning, not all experimental models of macro-organisms support this notion with positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships reported. The fast-growing, metabolically versatile, and easy manipulation nature of microbial communities allows us to explore well the BEF relationship and further interrogate if the BEF relationship remains constant during long-term community evolution. Here, we constructed multiple synthetic denitrifying communities (SDCs) by randomly selecting species from a candidate pool of 12 Shewanella denitrifiers. These SDCs differ in species richness, spanning 1 to 12 species, and were monitored continuously for community functional shifts during approximately 180-day parallel cultivation. We demonstrated that the BEF relationship was dynamic with initially (day 0 to 60) greater productivity and denitrification among SDCs of higher richness. However, such pattern was reversed thereafter with greater productivity and denitrification increments in lower-richness SDCs, likely due to a greater accumulation of beneficial mutations during the experimental evolution.
Collapse
Affiliation(s)
- Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
42
|
Markowicz A. The significance of metallic nanoparticles in the emerging, development and spread of antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162029. [PMID: 36740055 DOI: 10.1016/j.scitotenv.2023.162029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
An ever-increasing number of newly synthesised nanoparticles have a constantly expanding range of applications. The large-scale implementation of nanoparticles will inevitably lead to intentional or accidental contamination of various environments. Since the major benefit of using several metallic nanoparticles is antimicrobial activity, these emerging contaminants may have a potentially hazardous impact on the development and spread of antibiotic resistance - a challenge that threats infection therapy worldwide. Few studies underline that metallic nanoparticles may affect the emergence and evolution of resistance via mutations and horizontal transfer between different bacterial species. Due to the complexity of factors and mechanisms involved in disseminating antibiotic resistance, it is crucial to investigate if metallic nanoparticles play a significant role in this process through co-selection ability and pressure exerted on bacteria. The aim of this review is to summarise the current research on mutations and three main horizontal gene transfer modes facilitated by nanoparticles. Here, the current results in the field are presented, major knowledge gaps and the necessity for more environmentally relevant studies are discussed.
Collapse
Affiliation(s)
- Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
43
|
Guerra CA, Costa LM, de Oliveira VS, de Paula BP, Junior WJFL, Luchese RH, Corich V, Giacomini A, Guerra AF. Correlation between natural microbial load and formation of ropy slime affecting the superficial color of vacuum-packaged cooked sausage. Meat Sci 2023; 201:109197. [PMID: 37116267 DOI: 10.1016/j.meatsci.2023.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/19/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
The present study outlines a comprehensive correlation between the natural microbial load, which is predominantly composed of heat-resistant sporous-forming Bacillus, and the changes in the original properties related to the superficial color of vacuum-packaged cooked sausages. For this purpose, microbial growth curves were plotted by stimulating the growth of the natural microbiota in sausage packages at different temperatures. The correlations were investigated during sample incubation by the instrumental evaluation of color and the ropy slime detection on the sausage surface. The entrance of the natural microbiota into the stationary phase (ca. 9.3 log cfu/g) resulted in changes in the superficial color, which was demonstrated by the discoloration of vacuum-packaged cooked sausages. Therefore, it seems to be a suitable borderline for predictive models applied in durability studies that aim to estimate the period in which vacuum-packaged cooked sausages keep their typical superficial color, anticipating product refusal in markets.
Collapse
Affiliation(s)
- Carlos Alberto Guerra
- Guerra e Castro Engenharia Ltda (G&C), 25870 000 Comendador Levy Gasparian, Rio de Janeiro, Brazil; BRC Ingredientes Ltda, 13505-600 Rio Claro, São Paulo, Brazil
| | | | - Vanessa Sales de Oliveira
- Post Graduate Program in Food Science and Technology, Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, 23897 970 Seropédica, RJ, Brazil
| | - Breno Pereira de Paula
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), 27600 000 Valença, Rio de Janeiro, Brazil
| | | | - Rosa Helena Luchese
- Post Graduate Program in Food Science and Technology, Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, 23897 970 Seropédica, RJ, Brazil
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padua, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padua, Italy
| | - André Fioravante Guerra
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), 27600 000 Valença, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Marasco R, Fusi M, Coscolín C, Barozzi A, Almendral D, Bargiela R, Nutschel CGN, Pfleger C, Dittrich J, Gohlke H, Matesanz R, Sanchez-Carrillo S, Mapelli F, Chernikova TN, Golyshin PN, Ferrer M, Daffonchio D. Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes. Nat Commun 2023; 14:1045. [PMID: 36828822 PMCID: PMC9958047 DOI: 10.1038/s41467-023-36610-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, Edinburgh Napier University Sighthill Campus, Edinburgh, UK
| | | | - Alan Barozzi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - David Almendral
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | | | - Christopher Pfleger
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jonas Dittrich
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ruth Matesanz
- Spectroscopy Laboratory, Centro de Investigaciones Biologicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, Madrid, Spain
| | - Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Tatyana N Chernikova
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Deiniol Rd, Bangor, UK
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain.
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
45
|
Liu Y, Ji M, Wang W, Xing T, Yan Q, Ferrari B, Liu Y. Plant colonization mediates the microbial community dynamics in glacier forelands of the Tibetan Plateau. IMETA 2023; 2:e91. [PMID: 38868348 PMCID: PMC10989783 DOI: 10.1002/imt2.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 06/14/2024]
Abstract
It has long been recognized that pH mediates community structure changes in glacier foreland soils. Here, we showed that pH changes resulted from plant colonization. Plant colonization reduced pH and increased soil organic carbon, which increased bacterial diversity, changed the community structure of both bacteria and fungi, enhanced environmental filtering, and improved microbial network disturbance resistance.
Collapse
Affiliation(s)
- Yang Liu
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Mukan Ji
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Wenqiang Wang
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Tingting Xing
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qi Yan
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular SciencesAustralian Centre for AstrobiologyUNSW SydneyRandwickNew South WalesAustralia
| | - Yongqin Liu
- Center for Pan‐third Pole EnvironmentLanzhou UniversityLanzhouChina
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
46
|
Dapa T, Wong DP, Vasquez KS, Xavier KB, Huang KC, Good BH. Within-host evolution of the gut microbiome. Curr Opin Microbiol 2023; 71:102258. [PMID: 36608574 PMCID: PMC9993085 DOI: 10.1016/j.mib.2022.102258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Gut bacteria inhabit a complex environment that is shaped by interactions with their host and the other members of the community. While these ecological interactions have evolved over millions of years, mounting evidence suggests that gut commensals can evolve on much shorter timescales as well, by acquiring new mutations within individual hosts. In this review, we highlight recent progress in understanding the causes and consequences of short-term evolution in the mammalian gut, from experimental evolution in murine hosts to longitudinal tracking of human cohorts. We also discuss new opportunities for future progress by expanding the repertoire of focal species, hosts, and surrounding communities, and by combining deep-sequencing technologies with quantitative frameworks from population genetics.
Collapse
Affiliation(s)
- Tanja Dapa
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Daniel Pgh Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Kimberly S Vasquez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Kim J, Cha IT, Lee KE, Son YK, Yu J, Seol D. Characteristics and adaptability of Flavobacterium panici BSSL-CR3 in tidal flat revealed by comparative genomic and enzymatic analysis. Arch Microbiol 2022; 205:22. [PMID: 36495352 DOI: 10.1007/s00203-022-03359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Tidal flat microbes play an important ecological role by removing organic pollutants and providing an energy source. However, bacteria isolated from tidal flats and their genomes have been scarcely reported, making it difficult to elucidate which genes and pathways are potentially involved in the above roles. In this study, strain BSSL-CR3, the third reported species among the tidal flat Flavobacterium was analyzed using whole-genome sequencing to investigate its adaptability and functionality in tidal flats. BSSL-CR3 is comprised of a circular chromosome of 5,972,859 bp with a GC content of 33.84%. Genome annotation and API ZYM results showed that BSSL-CR3 has a variety of secondary metabolic gene clusters and enzyme activities including α-galactosidase. BSSL-CR3 had more proteins with a low isoelectric point (pI) than terrestrial Flavobacterium strains, and several genes related to osmotic regulation were found in the genomic island (GI). Comparative genomic analysis with other tidal flat bacteria also revealed that BSSL-CR3 had the largest number of genes encoding Carbohydrate Active EnZymes (CAZymes) which are related to algae degradation. This study will provide insight into the adaptability of BSSL-CR3 to the tidal flats and contribute to facilitating future comparative analysis of bacteria in tidal flats.
Collapse
Affiliation(s)
- Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Youn Kyoung Son
- Microorganism Resources Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Jaewoong Yu
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea.
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
48
|
Smith TP, Mombrikotb S, Ransome E, Kontopoulos DG, Pawar S, Bell T. Latent functional diversity may accelerate microbial community responses to temperature fluctuations. eLife 2022; 11:e80867. [PMID: 36444646 PMCID: PMC9708066 DOI: 10.7554/elife.80867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to 'switch on' at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Shorok Mombrikotb
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | | | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| |
Collapse
|
49
|
Raynaud T, Blouin M, Devers‐Lamrani M, Garmyn D, Spor A. Assessing the importance of interspecific interactions in the evolution of microbial communities. Ecol Evol 2022; 12:e9494. [PMID: 36407906 PMCID: PMC9666711 DOI: 10.1002/ece3.9494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Interspecific interactions play an important role in the establishment of a community phenotype. Furthermore, the evolution of a community can both occur through an independent evolution of the species composing the community and the interactions among them. In this study, we investigated how important the evolution of interspecific interactions was in the evolutionary response of eight two-bacterial species communities regarding productivity. We found evidence for an evolution of the interactions in half of the studied communities, which gave rise to a mean change of 15% in community productivity as compared to what was expected from the individual responses. Even when the interactions did not evolve themselves, they influenced the evolutionary responses of the bacterial strains within the communities, which further affected community response. We found that evolution within a community often promoted the adaptation of the bacterial strains to the abiotic environment, especially for the dominant strain in a community. Overall, this study suggested that the evolution of the interspecific interactions was frequent and that it could increase community response to evolution.
Collapse
Affiliation(s)
- Tiffany Raynaud
- Agroécologie, Institut Agro, INRAEUniv. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| | - Manuel Blouin
- Agroécologie, Institut Agro, INRAEUniv. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| | - Marion Devers‐Lamrani
- Agroécologie, Institut Agro, INRAEUniv. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| | - Dominique Garmyn
- Agroécologie, Institut Agro, INRAEUniv. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| | - Aymé Spor
- Agroécologie, Institut Agro, INRAEUniv. Bourgogne, Univ. Bourgogne Franche‐ComtéDijonFrance
| |
Collapse
|
50
|
Quinn AM, Bottery MJ, Thompson H, Friman VP. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. THE ISME JOURNAL 2022; 16:2433-2447. [PMID: 35859161 PMCID: PMC9477885 DOI: 10.1038/s41396-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022]
Abstract
Antibiotic degrading bacteria can reduce the efficacy of drug treatments by providing antibiotic exposure protection to pathogens. While this has been demonstrated at the ecological timescale, it is unclear how exposure protection might alter and be affected by pathogen antibiotic resistance evolution. Here, we utilised a two-species model cystic fibrosis (CF) community where we evolved the bacterial pathogen Pseudomonas aeruginosa in a range of imipenem concentrations in the absence or presence of Stenotrophomonas maltophilia, which can detoxify the environment by hydrolysing β-lactam antibiotics. We found that P. aeruginosa quickly evolved resistance to imipenem via parallel loss of function mutations in the oprD porin gene. While the level of resistance did not differ between mono- and co-culture treatments, the presence of S. maltophilia increased the rate of imipenem resistance evolution in the four μg/ml imipenem concentration. Unexpectedly, imipenem resistance evolution coincided with the extinction of S. maltophilia due to increased production of pyocyanin, which was cytotoxic to S. maltophilia. Together, our results show that pathogen resistance evolution can disrupt antibiotic exposure protection due to competitive exclusion of the protective species. Such eco-evolutionary feedbacks may help explain changes in the relative abundance of bacterial species within CF communities despite intrinsic resistance to anti-pseudomonal drugs.
Collapse
|