1
|
Kell DB, Pretorius E, Zhao H. A Direct Relationship Between 'Blood Stasis' and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment. Pharmaceuticals (Basel) 2025; 18:712. [PMID: 40430532 PMCID: PMC12114700 DOI: 10.3390/ph18050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
'Blood stasis' (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (). Similar concepts exist in Traditional Korean Medicine ('Eohyul') and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down ('stasis') of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1, Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Søltofts Plads 200, 2800 Kongens Lyngby, Denmark
| | - Huihui Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100026, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 100026, China
| |
Collapse
|
2
|
Kumar D, Gayen A, Chandra M. Deciphering the Dilemma of Community Behavior Promotion and Inhibition by Cationic Bactericide-coated Nanoparticles in Gram-Negative Bacteria. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22308-22321. [PMID: 40197012 DOI: 10.1021/acsami.5c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cationic bactericidal-coated gold nanoparticles are known to effectively prevent Gram-negative bacterial initial adhesion and community behavior development by strongly binding to bacterial surfaces and disrupting the cell membranes. However, such nanoparticles have been recently shown to unintentionally promote community behavior in Gram-negative bacteria because of the bacterial stress response. To find whether these contradictory findings are due to emerging stress response or poorly understood nanoparticle interactions of Gram-negative bacteria, in this work, we treated high population curli-producing Gram-negative Escherichia coli with cationic antibiotic/antiseptic-coated gold nanoparticles and followed the consequences in details using a variety of physical methods and controls. Parallelly, we employed standard biological assays commonly used to detect community behavior in bacteria. Biological assays yielded contradictory results some inferring promotion while others inferring inhibition. However, physical methods revealed that promotion and inhibition observations resulted from physical interactions without any bacterial response being involved. Using physical methods, we further demonstrated that macromolecules of cationic antibiotics and antiseptics exhibit similar consequences as nanoparticles, independent of inhibitory concentration. Overall, the results emphasize the need to consider physical interactions, rather than relying solely on standard biological assays, when evaluating the inhibition or promotion of community behavior by cationic antibiotic/antiseptic-coated nanoparticles or free cationic antibiotics/antiseptics against Gram-negative bacteria.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang J, Zhang D, Chen Y, Gong Y, Yuan B, Mo Z, Tang H, Tao J, Xu Z. Antibacterial and antibiofilm activities of star anise-cinnamon essential oil against multidrug-resistant Salmonella Thompson. Front Cell Infect Microbiol 2025; 14:1463551. [PMID: 40098709 PMCID: PMC11911814 DOI: 10.3389/fcimb.2024.1463551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/26/2024] [Indexed: 03/19/2025] Open
Abstract
Introduction The emergence of foodborne multidrug-resistant (MDR) Salmonella has attracted considerable global attention. Given that food is the primary transmission route, our study focuses on Bellamya quadrata, a freshwater snail that is commonly consumed as a specialty food in Guangxi, China. Methods Eight MDR Salmonella strains were isolated from Bellamya quadrata samples collected across various markets. Previous animal experiments have confirmed their lethality in mice. We determined the minimum inhibitory concentrations (MICs) and fractional inhibitory concentration (FIC) indices of cinnamon essential oil (CEO) and star anise essential oil (SAEO) using the microdilution plate and checkerboard methods. The time-kill curve method was employed to assess the antibacterial activity of the cinnamon-star anise essential oil (SCEO) against planktonic MDR Salmonella. The alkaline phosphatase assay and fluorescence microscopy demonstrated that SCEO causes damage to bacterial cell walls and membranes. Crystal violet staining and scanning electron microscopy (SEM) were used to observe changes in biofilms after SCEO treatment. Quantitative real-time PCR was utilized to analyze the expression of genes related to biofilm formation following SCEO treatment. Results The MIC of SAEO was determined to be 25 mg/mL, whereas that of CEO was significantly lower at 0.62 mg/mL. The FIC index calculated was 0.375, which suggests a synergistic interaction between the two. When SCEO was used in combination at specific ratios, it demonstrated enhanced antibacterial and anti-biofilm capabilities compared to the individual effects of CEO or SAEO, potentially through the disruption of bacterial cell membranes and cell walls. However, in Salmonella treated with SCEO, an upregulation in the expression of biofilm-associated genes was observed, including csgA, adrA, bcsA, and csgD. This increase may be attributed to stress-induced transcriptional responses within the bacteria. Discussion SCEO significantly impacts cell wall integrity, suggesting its crucial role in reducing biofilm formation. These findings indicate that SCEO holds potential as an alternative to traditional antibiotics and merits further scientific investigation and development.
Collapse
Affiliation(s)
- Jie Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dapei Zhang
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yanhua Chen
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yongyu Gong
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Binfang Yuan
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhiyuan Mo
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Haibo Tang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Junyu Tao
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ziheng Xu
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Dzalamidze E, Gorzynski M, Vande Voorde R, Nelson D, Danelishvili L. Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals (Basel) 2025; 18:225. [PMID: 40006039 PMCID: PMC11859778 DOI: 10.3390/ph18020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Mycobacterium abscessus (MAB) is a highly resilient pathogen that causes difficult-to-treat pulmonary infections, particularly in individuals with cystic fibrosis (CF) and other underlying conditions. Its ability to form robust biofilms within the CF lung environment is a major factor contributing to its resistance to antibiotics and evasion of the host immune response, making conventional treatments largely ineffective. These biofilms, encased in an extracellular matrix, enhance drug tolerance and facilitate metabolic adaptations in hypoxic conditions, driving the bacteria into a persistent, non-replicative state that further exacerbates antimicrobial resistance. Treatment options remain limited, with multidrug regimens showing low success rates, highlighting the urgent need for more effective therapeutic strategies. Methods: In this study, we employed artificial sputum media to simulate the CF lung environment and conducted high-throughput screening of 24,000 compounds from diverse chemical libraries to identify inhibitors of MAB biofilm formation, using the Crystal Violet (CV) assay. Results: The screen established 17 hits with ≥30% biofilm inhibitory activity in mycobacteria. Six of these compounds inhibited MAB biofilm formation by over 60%, disrupted established biofilms by ≥40%, and significantly impaired bacterial viability within the biofilms, as confirmed by reduced CFU counts. In conformational assays, select compounds showed potent inhibitory activity in biofilms formed by clinical isolates of both MAB and Mycobacterium avium subsp. hominissuis (MAH). Key compounds, including ethacridine, phenothiazine, and fluorene derivatives, demonstrated potent activity against pre- and post-biofilm conditions, enhanced antibiotic efficacy, and reduced intracellular bacterial loads in macrophages. Conclusions: This study results underscore the potential of these compounds to target biofilm-associated resistance mechanisms, making them valuable candidates for use as adjuncts to existing therapies. These findings also emphasize the need for further investigations, including the initiation of a medicinal chemistry campaign to leverage structure-activity relationship studies and optimize the biological activity of these underexplored class of compounds against nontuberculous mycobacterial (NTM) strains.
Collapse
Affiliation(s)
- Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Rebecca Vande Voorde
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Yin L, Guo Y, Xv X, Dai Y, Li L, Sun F, Lv X, Shu G, Liang X, He C, Xu Z, Ouyang P. Cinnamaldehyde nanoemulsion decorated with rhamnolipid for inhibition of methicillin-resistant Staphylococcus aureus biofilm formation: in vitro and in vivo assessment. Front Microbiol 2024; 15:1514659. [PMID: 39777149 PMCID: PMC11703839 DOI: 10.3389/fmicb.2024.1514659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Background Staphylococcus aureus (S. aureus) biofilm associated infections are prevalent and persistent, posing a serious threat to human health and causing significant economic losses in animal husbandry. Nanoemulsions demonstrate significant potential in the treatment of bacterial biofilm associated infections due to their unique physical, chemical and biological properties. In this study, a novel cinnamaldehyde nanoemulsion with the ability to penetrate biofilm structures and eliminate biofilms was developed. Methods The formulation of cinnamaldehyde nanoemulsion (Cin-NE) combined with rhamnolipid (RHL) was developed by self-assembly, and the efficacies of this formulation in inhibiting S. aureus biofilm associated infections were assessed through in vitro assays and in vivo experiments by a mouse skin wound healing model. Results The particle size of the selected Cin-NE formulation was 13.66 ± 0.08 nm, and the Cin-RHL-NE formulation was 20.45 ± 0.25 nm. The selected Cin-RHL-NE formulation was stable at 4, 25, and 37°C. Furthermore, the Minimum Inhibitory Concentration (MIC) value of Cin-RHL-NE against MRSA was two-fold lower than drug solution. Confocal laser scanning microscopy (CLSM) revealed the superior efficacy of Cin-RHL-NE in eradicating MRSA biofilms while maintaining the Cin's inherent functional properties. The efficacy of Cin-RHL-NE in the mouse skin wound healing model was superior to other formulation. Conclusion These findings highlight the potential of the formulation Cin-RHL-NE for eradicating biofilms, and effective in treating notoriously persistent bacterial infections. The Cin-RHL-NE can used as a dosage form of Cin application to bacterial biofilm associated infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
6
|
Qin H, Niu H, Guo Y, Wang X, Liu T, Zhao C. Blue light-activated 5,10,15,20-tetrakis(4-bromophenyl)porphyrin for photodynamic eradication of drug-resistant Staphylococcus aureus. RSC Adv 2024; 14:39779-39786. [PMID: 39697839 PMCID: PMC11653106 DOI: 10.1039/d4ra07666d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Photodynamic therapy (PDT) has emerged as an effective way to deal with drug-resistant bacterial infections. Especially, blue light (BL) mediated PDT (BL-PDT) presents unique advantages in the treatments of skin infection due to the strong light absorption of superficial skin, weak penetration of BL and little damage to deep tissues. However, the photosensitizers used for BL-PDT are very limited, and the ongoing development of novel BL photosensitizers is indispensable. Porphyrins are good sources for developing efficient photosensitizers. Herein, for developing more effective BL photosensitizers, five porphyrin derivatives that can be excited by BL [5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(4-bromophenyl)porphyrin (TBPP), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (TCPP), 5,10,15,20-tetrakis(4-fluorophenyl)porphyrin (TFPP), 5,10,15,20-tetrakis(4-iodophenyl)porphyrin (TIPP)] are subjected to the investigation of PDT against MRSA (methicillin resistant Staphylococcus aureus). The results reveal that TBPP-mediated BL-PDT shows outstanding bactericidal effects. Mechanism studies show that TBPP + BL can induce reactive oxygen species (ROS) up-regulated in MRSA, rupture cell membrane, inhibit ATP (adenosine triphosphate) production and virulence factor expression. Furthermore, TBPP + BL effectively eliminates MRSA form biofilms, inhibits biofilm formation and disintegrates mature biofilms. More importantly, TBPP-PDT significantly accelerate mouse skin wound healing in a biofilm infection model. Our work offers new insights into the development of novel BL photosensitizers.
Collapse
Affiliation(s)
- Hongshuang Qin
- Department of Biological and Food Engineering, Lyuliang University Lvliang Shanxi 033001 China
| | - Huaying Niu
- Department of Biological and Food Engineering, Lyuliang University Lvliang Shanxi 033001 China
| | - Yanxiang Guo
- Department of Biological and Food Engineering, Lyuliang University Lvliang Shanxi 033001 China
| | - Xiaoting Wang
- Department of Biological and Food Engineering, Lyuliang University Lvliang Shanxi 033001 China
| | - Tao Liu
- Department of Chemistry and Chemical Engineering, Lyuliang University Lvliang Shanxi 033001 China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
7
|
Lyu X, Wu H, Chen Y, Sun Y, Cai X, Li S, Lin Y. A Multifunctional Nanocomplex as miRNA/Antibiotic Co-Delivery System Based on Tetrahedral Framework DNA: Application to Infected Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406629. [PMID: 39279370 DOI: 10.1002/smll.202406629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Infected wounds are a complex disease involving bacterial infections and dysregulated inflammation. However, current research has mostly focused on bacterial inhibition rather than on inflammation. Thus, combined therapeutic strategies with anti-bacterial and anti-inflammation efficacies are urgently needed. Antibiotics are the main treatment strategy for infections. However, the excessive use of antibiotics throughout the body can cause serious side effects. In addition, miRNA-based therapeutics are superior for the treatment of wounds, but their rapid degradation and poor cellular uptake limit their clinical application. Tetrahedral framework DNA (tFNA) is an ideal drug delivery system owing to its excellent stability and remarkable transport ability. Herein, a novel multi-functional miRNA and antibiotic co-delivery system based on tFNA is presented for the first time, called B/L. B/L has heightened resistance to serum and excellent codelivery ability. After transdermal administration, B/L can specifically target TNF receptor-associated factor 6(TRAF6) and IL-1receptor-associated kinase 1(IRAK1), thereby regulating nuclear factor kappa-B (NF-𝜿B) and thus effectively reducing inflammation and promoting the healing of infected wounds. This novel multi-functional co-delivery system provides a versatile, simple, biocompatible, and powerful platform for the personalized and combined treatment of multiple diseases.
Collapse
Affiliation(s)
- Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Sun
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Zhang Q, Jiang Y, Zhang X, Wang Y, Ju R, Wei G. Injectable and Near-Infrared Light-Controllable Fibrin Hydrogels with Antimicrobial and Immunomodulating Properties for Infected Wound Healing. Biomater Res 2024; 28:0019. [PMID: 38938648 PMCID: PMC11210386 DOI: 10.34133/bmr.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 06/29/2024] Open
Abstract
The management of infected wounds poses a significant challenge due to the growing issue of antibiotic resistance, underscoring the urgent necessity to innovate and implement alternative therapeutic strategies. These strategies should be capable of eliminating bacterial infections in infected wounds while circumventing the induction of multi-drug resistance. In the current study, we developed an easily prepared and injectable fibrin gel (FG) loaded with nanoparticles (NPs) that exhibit antibacterial and immunomodulatory properties to facilitate the healing of infected wounds. Initially, a novel type of NP was generated through the electrostatic interaction between the photothermal agent, mPEG-modified polydopamine (MPDA), and the nitric oxide (NO) donor, S-nitrosocysteamine (SNO). This interaction resulted in the formation of NPs referred to as SNO-loaded MPDA (SMPDA). Subsequently, the SMPDA was encapsulated into the FG using a double-barreled syringe, thereby producing the SMPDA-loaded FG (SMPDA/G). Experimental results revealed that SMPDA/G could effectively eliminate bacterial infections and alter the immune microenvironment. This efficacy is attributed to the synergistic combination of NO therapy and photothermal therapy, along with the role of SMPDA in facilitating M2 macrophage polarization within the gel. Accordingly, these findings suggest that the SMPDA/G holds substantial promise for clinical application in infected wound healing.
Collapse
Affiliation(s)
- Qing Zhang
- School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, China
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yongxian Jiang
- Sichuan Provincial Maternity and Child Health Care Hospital, the Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu 610041, China
| | - Xiaolong Zhang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Wang
- School of Life Science and Engineering,
Southwest Jiaotong University, Chengdu 610031, China
| | - Rong Ju
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoqing Wei
- Chengdu Women’s and Children’s Central Hospital, School of Medicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
10
|
Li Q, Ye H, Zhao F, Li Y, Zhang Z, Yan Q, Sun Y. Recent advances in combatting bacterial infections via well-designed metallacycles/metallacages. Dalton Trans 2024; 53:3434-3444. [PMID: 38224466 DOI: 10.1039/d3dt03966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Bacterial infections can lead to the development of large-scale outbreaks of diseases that pose a serious threat to human life and health. Also, conventional antibiotics are prone to producing resistance and allergic reactions, and their therapeutic effect is dramatically diminished when bacterial communities form biofilms. Fortunately, well-designed supramolecular coordination complexes (SCCs) have been used as antibacterials or anti-biofilms in recent years. SCCs can kill bacteria by directly engaging with the bacterial surface through electrostatic interactions or by penetrating the bacterial membrane through the auxiliary effect of cell-penetrating peptides. Furthermore, scientists have engineered fluorescent SCCs that can produce reactive oxygen species (ROS) to eliminate bacteria when exposed to laser irradiation, and they also demonstrate outstanding performance in in vivo imaging, enabling integrated diagnosis and treatment. In this review, we summarize the design strategy and applications of SCCs in antibacterials or anti-biofilms and provide an outlook on future research.
Collapse
Affiliation(s)
- Qian Li
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Huan Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Fang Zhao
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yuntao Li
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
| | - Zhipeng Zhang
- Xianning Medical College, College of Pharmacy, Hubei University of Science & Technology, Xianning 437100, China.
| | - Qiang Yan
- Department of General Surgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou 313000, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
11
|
Gallucci S. DNA at the center of mammalian innate immune recognition of bacterial biofilms. Trends Immunol 2024; 45:103-112. [PMID: 38281884 PMCID: PMC11032746 DOI: 10.1016/j.it.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Historically, the study of innate immune detection of bacterial infections has focused on the recognition of pathogen-associated molecular patterns (PAMPs) from bacteria growing as single cells in planktonic phase. However, over the past two decades, studies have highlighted an adaptive advantage of bacteria: the formation of biofilms. These structures are complex fortresses that stand against a hostile environment, including antibiotics and immune responses. Extracellular DNA (eDNA) is a crucial component of the matrix of most known biofilms. In this opinion article, I propose that eDNA is a universal PAMP that the immune system uses to recognize biofilms. Outstanding questions concern the discrimination between biofilm-associated eDNA and DNA from planktonic bacteria, the innate receptors involved, and the immune response to biofilms.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
12
|
Zhao Y, Liu Y, Liao R, Ran P, Liu Y, Li Z, Shao J, Zhao L. Biofilm Microenvironment-Sensitive Piezoelectric Nanomotors for Enhanced Penetration and ROS/NO Synergistic Bacterial Elimination. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3147-3161. [PMID: 38212273 DOI: 10.1021/acsami.3c15689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Sonodynamic therapy offers a highly accurate treatment for bacterial infections; however, its antibacterial efficacy is hindered by bacterial biofilms that limit the penetration of sonosensitizers. Herein, a nitric oxide (NO)-driven mushroom-like Janus nanomotor (BT@PDA-La) based on the unilateral coating of polydopamine (PDA) on piezoelectric tetragonal barium titanate (BT) and further modified with l-arginine (l-Arg) on the PDA side is fabricated. In the infected microenvironment with high levels of H2O2, NO is produced unilaterally from BT@PDA-La, thus leading to its self-propelled movement and facilitating its permeability in the biofilm. Under ultrasonic vibrations, the piezoelectric effect of BT@PDA-La is triggered by the exogenous mechanical wave, and toxic reactive oxygen species (ROS) are efficiently generated via an in situ catalytic reaction. The synergistic treatment with ROS/NO achieved the destruction of biofilms and embedded drug-resistant bacteria in vitro. Importantly, BT@PDA-La exhibits excellent biofilm penetration capacity, effectively eliminating biofilm infection while accelerating the healing of infected muscles by alleviating oxidative stress, regulating inflammatory factors, and accelerating angiogenesis. Collectively, this study provides a promising strategy for enhancing the penetration of pathological environment-driven nanomaterials through biofilms and advances the application of nanomotors for the therapy of bacterial infections in clinical medicine.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Yao Liu
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
- Development and Regeneration Key Laboratory of Sichuan Province, School of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, PR China
| | - Ran Liao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China
| | - Pan Ran
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
| | - Yuan Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zixuan Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China
| | - Jichun Shao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China
| | - Long Zhao
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, PR China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu Medical College, Chengdu 610051, China
| |
Collapse
|
13
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
Ban GH, Kim SH, Kang DH, Park SH. Comparison of the efficacy of physical and chemical strategies for the inactivation of biofilm cells of foodborne pathogens. Food Sci Biotechnol 2023; 32:1679-1702. [PMID: 37780592 PMCID: PMC10533464 DOI: 10.1007/s10068-023-01312-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilm formation is a strategy in which microorganisms generate a matrix of extracellular polymeric substances to increase survival under harsh conditions. The efficacy of sanitization processes is lowered when biofilms form, in particular on industrial devices. While various traditional and emerging technologies have been explored for the eradication of biofilms, cell resistance under a range of environmental conditions renders evaluation of the efficacy of control challenging. This review aimed to: (1) classify biofilm control measures into chemical, physical, and combination methods, (2) discuss mechanisms underlying inactivation by each method, and (3) summarize the reduction of biofilm cells after each treatment. The review is expected to be useful for future experimental studies and help to guide the establishment of biofilm control strategies in the food industry.
Collapse
Affiliation(s)
- Ga-Hee Ban
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
15
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
16
|
Singh A, Amod A, Mulpuru V, Mishra N, Sahoo AK, Samanta SK. Finding Novel AMPs Secreted from the Human Microbiome as Potent Antibacterial and Antibiofilm Agents and Studying Their Synergistic Activity with Ag NCs. ACS APPLIED BIO MATERIALS 2023; 6:3674-3682. [PMID: 37603700 DOI: 10.1021/acsabm.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Due to the enhanced resistance of bacteria to antibiotics, researchers always try to find effective alternatives to treat drug-resistant bacterial infections. In this context, we have explored antimicrobial peptides (AMPs), which are a broad class of small peptide molecules, and investigated their efficacy as potent antibacterial and antibiofilm agents. AMPs can cause cell death either through disruption of the cell membrane or by inhibiting vital intracellular functions, by binding to RNA, DNA, or intracellular components upon transversion through the cell membrane. We attempted to find potent intracellular cationic AMPs that can demonstrate antibacterial activity through interaction with DNA. As a source of AMPs, we have utilized those that are secreted from the human microbiome with the anticipation that these will be non-toxic in nature. Out of the total 1087 AMPs, 27 were screened on the basis of amino acid length and efficacy to cross the cell membrane barrier. From the list of 27 peptides, 4 candidates were selected through the docking score of these peptides with the DNA binding domain of H2A proteins. Further, the molecular dynamics simulation analysis demonstrated that 2 AMPs, i.e., peptides 7 and 25, are having considerable membrane permeation and DNA binding ability. Further, the in vitro analysis indicated that both peptides 7 and 25 could exhibit potent antibacterial and antibiofilm activities. In order to further enhance the antibiofilm potency, the above AMPs were used as supplements to silver nanoclusters (Ag NCs) to get synergistic activity. The synergistic activity of Ag NCs was found to be significantly increased with both the above AMPs.
Collapse
Affiliation(s)
- Anirudh Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Viswajit Mulpuru
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211012, Uttar Pradesh, India
| |
Collapse
|
17
|
Sun H, Sun M, You Y, Xie J, Xu X, Li J. Recent progress of intelligent antibacterial nanoplatforms for treating bacterial infection. CHEMICAL ENGINEERING JOURNAL 2023; 471:144597. [DOI: 10.1016/j.cej.2023.144597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Yin Z, Liu Y, Anniwaer A, You Y, Guo J, Tang Y, Fu L, Yi L, Huang C. Rational Designs of Biomaterials for Combating Oral Biofilm Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305633. [PMID: 37566788 DOI: 10.1002/adma.202305633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Oral biofilms, which are also known as dental plaque, are the culprit of a wide range of oral diseases and systemic diseases, thus contributing to serious health risks. The manner of how to achieve good control of oral biofilms has been an increasing public concern. Novel antimicrobial biomaterials with highly controllable fabrication and functionalization have been proven to be promising candidates. However, previous reviews have generally emphasized the physicochemical properties, action mode, and application effectiveness of those biomaterials, whereas insufficient attention has been given to the design rationales tailored to different infection types and application scenarios. To offer guidance for better diversification and functionalization of anti-oral-biofilm biomaterials, this review details the up-to-date design rationales in three aspects: the core strategies in combating oral biofilm, as well as the biomaterials with advanced antibiofilm capacity and multiple functions based on the improvement or combination of the abovementioned antimicrobial strategies. Thereafter, insights on the existing challenges and future improvement of biomaterial-assisted oral biofilm treatments are proposed, hoping to provide a theoretical basis and reference for the subsequent design and application of antibiofilm biomaterials.
Collapse
Affiliation(s)
- Zhengrong Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yaxi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Annikaer Anniwaer
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yuan You
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingmei Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ying Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Renmin Hospital of Wuhan University, Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430072, China
| | - Luyao Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
19
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Vasicek EM, Gunn JS. Invasive Non-Typhoidal Salmonella Lineage Biofilm Formation and Gallbladder Colonization Vary But Do Not Correlate Directly with Known Biofilm-Related Mutations. Infect Immun 2023; 91:e0013523. [PMID: 37129526 PMCID: PMC10187132 DOI: 10.1128/iai.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars have a broad host range and cause gastroenteritis in humans. However, invasive NTS (iNTS) bloodstream infections have increased in the last decade, causing 60,000 deaths annually. Human-specific typhoidal Salmonella colonizes and forms biofilms on gallstones, resulting in chronic, asymptomatic infection. iNTS lineages are undergoing genomic reduction and may have adapted to person-to-person transmission via mutations in virulence, bile resistance, and biofilm formation. As such, we sought to determine the capacity of iNTS lineages for biofilm formation and the development of chronic infections in the gallbladder in our mouse model. Of the lineages tested (L1, L2, L3 and UK), only L2 and UK were defective for the rough, dry and red (RDAR) morphotype, correlating with the known bcsG (cellulose) mutation but not with csgD (curli) gene mutations. Biofilm-forming ability was assessed in vitro, which revealed a biofilm formation hierarchy of L3 > ST19 > UK > L1 = L2, which did not correlate directly with either the bcsG or the csgD mutation. By confocal microscopy, biofilms of L2 and UK had significantly less curli and cellulose, while L1 biofilms had significantly lower cellulose. All iNTS strains were able to colonize the mouse gallbladder, liver, and spleen in a similar manner, while L3 had a significantly higher bacterial load in the gallbladder and increased lethality. While there was iNTS lineage variability in biofilm formation, gallbladder colonization, and virulence in a chronic mouse model, all tested lineages were capable of colonization despite possessing biofilm-related mutations. Thus, iNTS strains may be unrecognized chronic pathogens in endemic settings.
Collapse
Affiliation(s)
- Erin M. Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
21
|
Li Y, Xing Z, Wang S, Wang Y, Wang Z, Dong L. Disruption of biofilms in periodontal disease through the induction of phase transition by cationic dextrans. Acta Biomater 2023; 158:759-768. [PMID: 36638945 DOI: 10.1016/j.actbio.2023.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Biofilm of oral pathogenic microorganisms induced by their multiplication and coaggregation would lead to periodontitis. In biofilms, the extracellular polymeric substances (EPS) as a protective shield encapsulates the individual bacteria, protecting them against attack. To alleviate periodontal disease, disrupting the EPS of pathogenic bacteria is crucial and challenging. Based on the sufficient capacity of disorganizing EPS of our designed cationic dextrans, we hypothesized that these polymers could be competent in relieving periodontitis. We validated that cationic dextrans could induce the phase transition of EPS in biofilms, especially the Porphyromonas gingivalis (P. gingivalis), a keystone periodontal pathogen, thus effectively destroying biofilm in vitro. More importantly, satisfactory in vivo treatment was achieved in a rat periodontal disease model. In summary, the study exploited a practical and effective strategy to treat periodontitis with cationic dextrans' powerful biofilm-controlling potential. STATEMENT OF SIGNIFICANCE: Periodontal disease is closely related to dental plaque biofilms on the tooth surface. The biofilm forms gel structures and shields the bacteria underneath, thus protecting oral pathogens from traditional anti-bacterial reagents. Due to limited penetration into gel, the efficacy of these reagents in biofilm elimination is restricted. Our designed cationic dextran could wipe out the coverage of gel-like EPS to disperse encapsulated bacteria. Such superior capacity endowed them with satisfactory effect in disrupting biofilm. Notably, in a rat periodontitis model, cationic dextrans dramatically suppressed alveolar bone loss and alleviated periodontal inflammation by controlling dental plaque. Given the increasing global concerns about periodontal disease, it's worth expanding the application of cationic dextrans both scientifically and clinically.
Collapse
Affiliation(s)
- Yurong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Shaocong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Yulian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China; Wuxi Xishan NJU Institute of Applied Biotechnology, Anzhen Street, Xishan District, Wuxi 214101, China.
| |
Collapse
|
22
|
Wang Y, Zhang D, Sun Y, Zeng Y, Qi P. Precise Localization and Simultaneous Bacterial Eradication of Biofilms Based on Nanocontainers with Successive Responsive Property toward pH and ATP. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8424-8435. [PMID: 36744696 DOI: 10.1021/acsami.2c22682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The bacterial colonization of surfaces and subsequent biofilm formation are a great threat in medical therapy and clinical diagnosis. The complex internal structure and composition sets an enormous obstacle for the localization and removal of biofilms. In this study, we proposed a novel biofilm-targeted nanocontainer with successive responsive property toward pH and ATP for precise localization and simultaneous bacterial eradication, with an acidic and adenosine triphosphate (ATP)-rich microenvironment within biofilms, formed due to the accumulation of fatty acids and ATP in the three-dimensional enclosed structure, integrated as two successive indicators to improve the precision of biofilm identification and removal. The biofilm-targeted nanocontainer was composed of a ATP-responsive zeolitic imidazolate framework-90 (ZIF-90) core loaded with Rho 6G and doxorubicin hydrochloride (DOX) encapsulated in the pH-responsive amorphous calcium carbonate/poly(acrylic acid) (ACC/PAA) shell. In the presence of biofilms, the ACC/PAA shell and ZIF-90 core were successively degraded by the accumulated H+ and ATP within biofilms, resulting in the release of fluorescence indicators and antimicrobial agents. On the other hand, to meet the application requirements of different biofilm scenarios, the pH response ability of the nanocontainers could be adjusted by changing the metallic ions (Ni2+, Zn2+, and Cu2+) doped into the structure of the ACC/PAA shell. Owing to excellent water dispersion of the pH/ATP double-responsive ZIF-90@Zn-ACC/PAA nanocontainer, precise localization and simultaneous bacterial eradication was successfully realized via a simple spray process. The successive pH/ATP two-step unlocking processes endowed the nanocontainers high precision for localization and simultaneous eradication of biofilms, which made the proposed nanocontainers high promising in food safety and medical treatment.
Collapse
Affiliation(s)
- Yingwen Wang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Dun Zhang
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Yan Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Yan Zeng
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| | - Peng Qi
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
23
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|
24
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
25
|
Farha AK, Sui Z, Corke H. Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Salmonella enterica Typhimurium-An Assessment of the Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020239. [PMID: 36830150 PMCID: PMC9952675 DOI: 10.3390/antibiotics12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica is an important foodborne pathogen that causes gastroenteritis and systemic infection in humans and livestock. Salmonella biofilms consist of two major components-amyloid curli and cellulose-which contribute to the prolonged persistence of Salmonella inside the host. Effective agents for inhibiting the formation of biofilms are urgently needed. We investigated the antibiofilm effect of Raspberry Ketone (RK) and its mechanism of action against Salmonella Typhimurium 14028 using the Congo red agar method, Calcofluor staining, crystal violet method, pellicle assay, and the TMT-labeled quantitative proteomic approach. RK suppressed the formation of different types of Salmonella biofilms, including pellicle formation, even at low concentrations (200 µg/mL). Furthermore, at higher concentrations (2 mg/mL), RK exhibited bacteriostatic effects. RK repressed cellulose deposition in Salmonella biofilm through an unknown mechanism. Swimming and swarming motility analyses demonstrated reduced motility in RK-treated S. typhimurium. Proteomics analysis revealed that pathways involved in amyloid curli production, bacterial invasion, flagellar motility, arginine biosynthesis, and carbohydrate metabolism, were targeted by RK to facilitate biofilm inhibition. Consistent with the proteomics data, the expressions of csgB and csgD genes were strongly down-regulated in RK-treated S. typhimurium. These findings clearly demonstrated the Salmonella biofilm inhibition capability of RK, justifying its further study for its efficacy assessment in clinical and industrial settings.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Z.S.); (H.C.)
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Z.S.); (H.C.)
| |
Collapse
|
26
|
Molecular Characterization of Community- and Hospital- Acquired Methicillin-Resistant Staphylococcus aureus Isolates during COVID-19 Pandemic. Antibiotics (Basel) 2023; 12:antibiotics12010157. [PMID: 36671358 PMCID: PMC9854722 DOI: 10.3390/antibiotics12010157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant superbug that causes various types of community- and hospital-acquired infectious diseases. The current study was aimed to see the genetic characteristics and gene expression of MRSA isolates of nosocomial origin. A total of 221 MRSA isolates were identified from 2965 clinical samples. To identify the bacterial isolates, the clinical samples were inoculated on blood agar media plates first and incubated at 37 °C for 18-24 h. For further identification, the Gram staining and various biochemical tests were performed once the colonies appeared on the inoculated agar plates. The phenotypic identification of antibiotic susceptibility patterns was carried out using Kirby-Bauer disk diffusion method by following the Clinical and Laboratory Standards Institute (CLSI) 2019 guidelines. The biofilm-producing potentials of MRSA were checked quantitatively using a spectrophotometric assay. All strains were characterized genotypically by SCCmec and agr typing using the specific gene primers. Furthermore, a total of twelve adhesion genes were amplified in all MRSA isolates. MRSA was a frequently isolated pathogen (44% community acquired (CA)-MRSA and 56% hospital acquired (HA)-MRSA), respectively. Most of the MRSA isolates were weak biofilm producers (78%), followed by moderate (25%) and strong (7%) biofilm producers, respectively. Prominent adhesion genes were clfB (100%), icaAD (91%), fib (91%), sdrC (91%) followed by eno (89%), fnbA (77%), sdrE (67%), icaBC (65%), clfA (65%), fnbB (57%), sdrD (57%), and cna (48%), respectively. The results of the current study will help to understand and manage the spectrum of biofilm-producing MRSA-associated hospital-acquired infections and to provide potential molecular candidates for the identification of biofilm-producing MRSA.
Collapse
|
27
|
Mohamad F, Alzahrani RR, Alsaadi A, Alrfaei BM, Yassin AEB, Alkhulaifi MM, Halwani M. An Explorative Review on Advanced Approaches to Overcome Bacterial Resistance by Curbing Bacterial Biofilm Formation. Infect Drug Resist 2023; 16:19-49. [PMID: 36636380 PMCID: PMC9830422 DOI: 10.2147/idr.s380883] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
The continuous emergence of multidrug-resistant pathogens evoked the development of innovative approaches targeting virulence factors unique to their pathogenic cascade. These approaches aimed to explore anti-virulence or anti-infective therapies. There are evident concerns regarding the bacterial ability to create a superstructure, the biofilm. Biofilm formation is a crucial virulence factor causing difficult-to-treat, localized, and systemic infections. The microenvironments of bacterial biofilm reduce the efficacy of antibiotics and evade the host's immunity. Producing a biofilm is not limited to a specific group of bacteria; however, Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus biofilms are exemplary models. This review discusses biofilm formation as a virulence factor and the link to antimicrobial resistance. In addition, it explores insights into innovative multi-targeted approaches and their physiological mechanisms to combat biofilms, including natural compounds, phages, antimicrobial photodynamic therapy (aPDT), CRISPR-Cas gene editing, and nano-mediated techniques.
Collapse
Affiliation(s)
- F Mohamad
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Raghad R Alzahrani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cells and Regenerative Medicine, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia,Manal M Alkhulaifi, P.O. Box 55670, Riyadh, 11544, Tel +966 (11) 805-1685, Email
| | - Majed Halwani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia,Correspondence: Majed Halwani, P.O. Box 3660, Mail Code 1515 (KAIMRC), Riyadh, 11481, Tel +966 (11) 429-4433, Fax +966 (11) 429-4440, Email ;
| |
Collapse
|
28
|
Bessho S, Grando KCM, Kyrylchuk K, Miller A, Klein-Szanto AJ, Zhu W, Gallucci S, Tam V, Tükel Ç. Systemic exposure to bacterial amyloid curli alters the gut mucosal immune response and the microbiome, exacerbating Salmonella-induced arthritis. Gut Microbes 2023; 15:2221813. [PMID: 37317012 PMCID: PMC10269392 DOI: 10.1080/19490976.2023.2221813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
The Salmonella biofilm-associated amyloid protein, curli, is a dominant instigator of systemic inflammation and autoimmune responses following Salmonella infection. Systemic curli injections or infection of mice with Salmonella Typhimurium induce the major features of reactive arthritis, an autoimmune disorder associated with Salmonella infection in humans. In this study, we investigated the link between inflammation and microbiota in exacerbating autoimmunity. We studied C57BL/6 mice from two sources, Taconic Farms and Jackson Labs. Mice from Taconic Farms have been reported to have higher basal levels of the inflammatory cytokine IL - 17 than do mice from Jackson Labs due to the differences in their microbiota. When we systemically injected mice with purified curli, we observed a significant increase in diversity in the microbiota of Jackson Labs mice but not in that of the Taconic mice. In Jackson Labs, mice, the most striking effect was the expansion of Prevotellaceae. Furthermore, there were increases in the relative abundance of the family Akkermansiaceae and decreases in families Clostridiaceae and Muribaculaceae in Jackson Labs mice. Curli treatment led to significantly aggravated immune responses in the Taconic mice compared to Jackson Labs counterparts. Expression and production of IL - 1β, a cytokine known to promote IL - 17 production, as well as expression of Tnfa increased in the gut mucosa of Taconic mice in the first 24 hours after curli injections, which correlated with significant increases in the number of neutrophils and macrophages in the mesenteric lymph nodes. A significant increase in the expression of Ccl3 in colon and cecum of Taconic mice injected with curli was detected. Taconic mice injected with curli also had elevated levels of inflammation in their knees. Overall, our data suggest that autoimmune responses to bacterial ligands, such as curli, are amplified in individuals with a microbiome that promote inflammation.
Collapse
Affiliation(s)
- Shingo Bessho
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kaitlyn C. M. Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Kathrine Kyrylchuk
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Amanda Miller
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | | | - Wenhan Zhu
- Department of Pathology Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stefania Gallucci
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Tam
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
29
|
Arshad R, Arshad MS, Tabish TA, Shah SNH, Afzal S, Shahnaz G. Amidated Pluronic Decorated Muco-Penetrating Self-Nano Emulsifying Drug Delivery System (SNEDDS) for Improved Anti- Salmonella typhi Potential. Pharmaceutics 2022; 14:2433. [PMID: 36365252 PMCID: PMC9694248 DOI: 10.3390/pharmaceutics14112433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 12/20/2023] Open
Abstract
The enteric system residing notorious Salmonella typhimurium (S. typhi) is an intracellular, food-borne, and zoonotic pathogen causing typhoid fever. Typhoid fever is one of the leading causes of mortality and morbidity in developing and underdeveloped countries. It also increased the prevalence of multidrug resistance globally. Currently, available anti-bacterial modalities are unable to penetrate into the intracellular compartments effectively for eradicating S. typhi infection. Therefore, in this study, we developed nanostructured lipid-based carriers in the form of a self-nanoemulsifying drug delivery system (SNEDDS) for targeted delivery of ciprofloxacin (CIP) into the S. typhi intracellular reservoirs. Capryol 90, Tween 80, and Span 20 were finalized as suitable oil, surfactant, and co-surfactant, respectively, according to the pseudoternary phase diagram emulsifying region. Targeting capability and mucopenetration of the SNEDDS was attributed to the inclusion of amidated pluronic (NH2-F127). Developed NH2-F127 SNEDDS were characterized via physicochemical, in vitro, ex vivo, and in vivo evaluation parameters. The size of the SNEDDS was found to be 250 nm, having positively charged zeta potential. In vitro dissolution of SNEDDS showed 80% sustained release of CIP in 72 h with maximum entrapment efficiency up to 90% as well as good hemocompatibility by showing less than 0.2% hemolysis and 90% biocompatibility. The survival rate of S. typhi in macrophages (RAW 264.7) was minimal, i.e., only 2% in the case of NH2-F127 SNEDDS. Macrophage uptake assay via nanostructures confirmed the maximum cellular uptake as evidenced by the highest fluorescence. Biofilm dispersion assay showed rapid eradication of developed resistant biofilms on the gall bladder. In vivo pharmacokinetics showed improved bioavailability by showing an increased area under the curve (AUC) value. Taken together, NH2-F127-SNEDDS can be utilized as an alternative and efficient delivery system for the sustained release of therapeutic amounts of CIP for the treatment of S. typhi.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Tanveer A. Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | | | - Saira Afzal
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Gul Shahnaz
- Department of Pharmacy, Quad-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
30
|
Gu K, Ouyang P, Hong Y, Dai Y, Tang T, He C, Shu G, Liang X, Tang H, Zhu L, Xu Z, Yin L. Geraniol inhibits biofilm formation of methicillin-resistant Staphylococcus aureus and increase the therapeutic effect of vancomycin in vivo. Front Microbiol 2022; 13:960728. [PMID: 36147840 PMCID: PMC9485828 DOI: 10.3389/fmicb.2022.960728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is among the common drug resistant bacteria, which has gained worldwide attention due to its high drug resistance and infection rates. Biofilms produced by S. aureus are known to increase antibiotic resistance, making the treatment of S. aureus infections even more challenging. Hence, inhibition of biofilm formation has become an alternative strategy for controlling persistent infections. In this study, we evaluated the efficacy of geraniol as a treatment for MRSA biofilm infection. The results of crystal violet staining indicated that 256 μg/mL concentration of geraniol inhibited USA300 biofilm formation by 86.13% and removed mature biofilms by 49.87%. Geraniol exerted its anti-biofilm effect by influencing the major components of the MRSA biofilm structure. We found that geraniol inhibited the synthesis of major virulence factors, including staphyloxanthin and autolysins. The colony count revealed that geraniol inhibited staphyloxanthin and sensitized USA300 cells to hydrogen peroxide. Interestingly, geraniol not only reduced the release of extracellular nucleic acids (eDNA) but also inhibited cell autolysis. Real-time polymerase chain reaction data revealed the downregulation of genes involved in biofilm formation, which verified the results of the phenotypic analysis. Geraniol increased the effect of vancomycin in eliminating USA300 biofilms in a mouse infection model. Our findings revealed that geraniol effectively inhibits biofilm formation in vitro. Furthermore, in combination with vancomycin, geraniol can reduce the biofilm adhesion to the implant in mice. This suggests the potential of geraniol as an anti-MRSA biofilm drug and can provide a solution for the clinical treatment of biofilm infection.
Collapse
|
31
|
Bawn M, Hernandez J, Trampari E, Thilliez G, Quince C, Webber MA, Kingsley RA, Hall N, Macaulay IC. Single-cell genomics reveals population structures from in vitro evolutionary studies of Salmonella. Microb Genom 2022; 8:mgen000871. [PMID: 36125951 PMCID: PMC9676037 DOI: 10.1099/mgen.0.000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
Abstract
Single-cell DNA sequencing has the potential to reveal detailed hierarchical structures in evolving populations of cells. Single cell approaches are increasingly used to study clonal evolution in human ageing and cancer but have not yet been deployed to study evolving clonal microbial populations. Here, we present an approach for single bacterial genomic analysis for in vitro evolution experiments using FACS isolation of individual bacteria followed by whole-genome amplification and sequencing. We apply this to the experimental evolution of a hypermutator strain of Salmonella in response to antibiotic stress (ciprofloxacin). By analysing sequence polymorphisms in individual cells from populations we identified the presence and prevalence of sub-populations which have acquired polymorphisms in genes previously demonstrated to be associated with ciprofloxacin susceptibility. We were also able to identify that the population exposed to antibiotic stress was able to develop resistance whilst maintaining diversity. This population structure could not be resolved from bulk sequence data, and our results show how high-throughput single-cell sequencing can enhance experimental studies of bacterial evolution.
Collapse
Affiliation(s)
- Matt Bawn
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | | | | | - Gaetan Thilliez
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Christopher Quince
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Mark A. Webber
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Robert A. Kingsley
- Quadram Institute, Norwich Research Park, Norwich, NR4 7UQ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR1 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| |
Collapse
|
32
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
33
|
Anti-Biofilms’ Activity of Garlic and Thyme Essential Oils against Salmonella typhimurium. Molecules 2022; 27:molecules27072182. [PMID: 35408576 PMCID: PMC9000680 DOI: 10.3390/molecules27072182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.
Collapse
|
34
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
35
|
de Vor L, van Dijk B, van Kessel K, Kavanaugh JS, de Haas C, Aerts PC, Viveen MC, Boel EC, Fluit AC, Kwiecinski JM, Krijger GC, Ramakers RM, Beekman FJ, Dadachova E, Lam MGEH, Vogely HC, van der Wal BCH, van Strijp JAG, Horswill AR, Weinans H, Rooijakkers SHM. Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. eLife 2022; 11:e67301. [PMID: 34989676 PMCID: PMC8751199 DOI: 10.7554/elife.67301] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.
Collapse
Affiliation(s)
- Lisanne de Vor
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Kok van Kessel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Carla de Haas
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Edwin C Boel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - Ruud M Ramakers
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Freek J Beekman
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of SaskatchewanSaskatoonCanada
| | - Marnix GEH Lam
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - H Charles Vogely
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Bart CH van der Wal
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Jos AG van Strijp
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
- Department of Veterans Affairs, Eastern Colorado Health Care SystemDenverUnited States
| | - Harrie Weinans
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
- Department of Biomechanical engineering, TU DelftDelftNetherlands
| | - Suzan HM Rooijakkers
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| |
Collapse
|
36
|
Kim SH, Jyung S, Kang DH. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Puligedda RD, Al-Saleem FH, Wirblich C, Kattala CD, Jović M, Geiszler L, Devabhaktuni H, Feuerstein GZ, Schnell MJ, Sack M, Livornese LL, Dessain SK. A Strategy to Detect Emerging Non-Delta SARS-CoV-2 Variants with a Monoclonal Antibody Specific for the N501 Spike Residue. Diagnostics (Basel) 2021; 11:2092. [PMID: 34829439 PMCID: PMC8625484 DOI: 10.3390/diagnostics11112092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Efforts to control SARS-CoV-2 have been challenged by the emergence of variant strains that have important implications for clinical and epidemiological decision making. Four variants of concern (VOCs) have been designated by the Centers for Disease Control and Prevention (CDC), namely, B.1.617.2 (delta), B.1.1.7 (alpha), B.1.351 (beta), and P.1 (gamma), although the last three have been downgraded to variants being monitored (VBMs). VOCs and VBMs have shown increased transmissibility and/or disease severity, resistance to convalescent SARS-CoV-2 immunity and antibody therapeutics, and the potential to evade diagnostic detection. Methods are needed for point-of-care (POC) testing to rapidly identify these variants, protect vulnerable populations, and improve surveillance. Antigen-detection rapid diagnostic tests (Ag-RDTs) are ideal for POC use, but Ag-RDTs that recognize specific variants have not yet been implemented. Here, we describe a mAb (2E8) that is specific for the SARS-CoV-2 spike protein N501 residue. The 2E8 mAb can distinguish the delta VOC from variants with the N501Y meta-signature, which is characterized by convergent mutations that contribute to increased virulence and evasion of host immunity. Among the N501Y-containing mutants formerly designated as VOCs (alpha, beta, and gamma), a previously described mAb, CB6, can distinguish beta from alpha and gamma. When used in a sandwich ELISA, these mAbs sort these important SARS-CoV-2 variants into three diagnostic categories, namely, (1) delta, (2) alpha or gamma, and (3) beta. As delta is currently the predominant variant globally, they will be useful for POC testing to identify N501Y meta-signature variants, protect individuals in high-risk settings, and help detect epidemiological shifts among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rama Devudu Puligedda
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Fetweh H. Al-Saleem
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Cristoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | - Chandana Devi Kattala
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | - Marko Jović
- Nicoya Lifesciences, Kitchener, ON N2G 2K4, Canada;
| | - Laura Geiszler
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Himani Devabhaktuni
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
| | | | - Matthias J. Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| | | | - Lawrence L. Livornese
- Department of Internal Medicine, Lankenau Medical Center, Wynnewood, PA 19096, USA; (L.G.); (L.L.L.J.)
| | - Scott K. Dessain
- Center for Human Antibody Technology, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA; (R.D.P.); (F.H.A.-S.); (C.D.K.); (H.D.)
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; (C.W.); (M.J.S.)
| |
Collapse
|
38
|
Effect of Essential Oils on the Inhibition of Biofilm and Quorum Sensing in Salmonella enteritidis 13076 and Salmonella typhimurium 14028. Antibiotics (Basel) 2021; 10:antibiotics10101191. [PMID: 34680772 PMCID: PMC8532617 DOI: 10.3390/antibiotics10101191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant microorganisms represents a global challenge that has led to a search for new antimicrobial compounds. Essential oils (EOs) from medicinal aromatic plants are a potential alternative for conventional antibiotics. In this study, the antimicrobial and anti-biofilm potential of 15 EOs was evaluated on planktonic and biofilm-associated cells of Salmonella enterica serovar Enteritidis ATCC 13076 (S. enteritidis) and Salmonella enterica serovar Typhimurium ATCC 14028 (S. typhimurium). In total, 4 out of 15 EOs showed antimicrobial activity and 6 EOs showed anti-biofilm activity against both strains. The EO from the Lippia origanoides chemotype thymol-carvacrol II (LTC II) presented the lowest minimum inhibitory concentration (MIC50 = 0.37 mg mL-1) and minimum bactericidal concentration (MBC = 0.75 mg mL-1) values. This EO also presented the highest percentage of biofilm inhibition (>65%) on both microorganisms, which could be confirmed by scanning electron microscopy (SEM) images. Transcriptional analysis showed significant changes in the expression of the genes related to quorum sensing and the formation of the biofilm. EOs could inhibit the expression of genes involved in the quorum sensing mechanism (luxR, luxS, qseB, sdiA) and biofilm formation (csgA, csgB, csgD, flhD, fliZ, and motB), indicating their potential use as anti-biofilm antimicrobial agents. However, further studies are needed to elucidate the action mechanisms of essential oils on the bacterial cells under study.
Collapse
|
39
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
40
|
Bai X, Nakatsu CH, Bhunia AK. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods 2021; 10:2117. [PMID: 34574227 PMCID: PMC8472614 DOI: 10.3390/foods10092117] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted.
Collapse
Affiliation(s)
- Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
The Abundance and Organization of Salmonella Extracellular Polymeric Substances in Gallbladder-Mimicking Environments and In Vivo. Infect Immun 2021; 89:e0031021. [PMID: 34398679 DOI: 10.1128/iai.00310-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) causes chronic infections by establishing biofilms on cholesterol gallstones. Production of extracellular polymeric substances (EPSs) is key to biofilm development and biofilm architecture depends on which EPSs are made. The presence and spatial distribution of Salmonella EPSs produced in vitro and in vivo were investigated in S. Typhimurium and S. Typhi biofilms by confocal microscopy. Comparisons between serovars and EPS-mutant bacteria were examined by growth on cholesterol-coated surfaces, with human gallstones in ox or human bile, and in mice with gallstones. On cholesterol-coated surfaces, major differences in EPS biomass were not found between serovars. Co-culture biofilms containing wild-type (WT) and EPS-mutant bacteria demonstrated WT compensation for EPS mutations. Biofilm EPS analysis from gallbladder-mimicking conditions found that culture in human bile more consistently replicated the relative abundance and spatial organization of each EPS on gallstones from the chronic mouse model than culture in ox bile. S. Typhimurium biofilms cultured in vitro on gallstones in ox bile exhibited co-localized pairings of curli fimbriae/lipopolysaccharide and O antigen capsule/cellulose while these associations were not present in S. Typhi biofilms or in mouse gallstone biofilms. In general, inclusion of human bile with gallstones in vitro replicated biofilm development on gallstones in vivo, demonstrating its strength as a model for studying biofilm parameters or EPS-directed therapeutic treatments.
Collapse
|
42
|
DiMuzio JM, Heimbach BC, Howanski RJ, Dowling JP, Patel NB, Henriquez N, Nicolescu C, Nath M, Polley A, Bingaman JL, Smith T, Harman BC, Robinson MK, Morin MJ, Nikitin PA. Unbiased interrogation of memory B cells from convalescent COVID-19 patients reveals a broad antiviral humoral response targeting SARS-CoV-2 antigens beyond the spike protein. Vaccine X 2021; 8:100098. [PMID: 33937741 PMCID: PMC8064894 DOI: 10.1016/j.jvacx.2021.100098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
Patients who recover from SARS-CoV-2 infections produce antibodies and antigen-specific T cells against multiple viral proteins. Here, an unbiased interrogation of the anti-viral memory B cell repertoire of convalescent patients has been performed by generating large, stable hybridoma libraries and screening thousands of monoclonal antibodies to identify specific, high-affinity immunoglobulins (Igs) directed at distinct viral components. As expected, a significant number of antibodies were directed at the Spike (S) protein, a majority of which recognized the full-length protein. These full-length Spike specific antibodies included a group of somatically hypermutated IgMs. Further, all but one of the six COVID-19 convalescent patients produced class-switched antibodies to a soluble form of the receptor-binding domain (RBD) of S protein. Functional properties of anti-Spike antibodies were confirmed in a pseudovirus neutralization assay. Importantly, more than half of all of the antibodies generated were directed at non-S viral proteins, including structural nucleocapsid (N) and membrane (M) proteins, as well as auxiliary open reading frame-encoded (ORF) proteins. The antibodies were generally characterized as having variable levels of somatic hypermutations (SHM) in all Ig classes and sub-types, and a diversity of VL and VH gene usage. These findings demonstrated that an unbiased, function-based approach towards interrogating the COVID-19 patient memory B cell response may have distinct advantages relative to genomics-based approaches when identifying highly effective anti-viral antibodies directed at SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - John P. Dowling
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | - Nirja B. Patel
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | | | - Chris Nicolescu
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | - Mitchell Nath
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | - Antonio Polley
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | | | - Todd Smith
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | | | | | - Michael J. Morin
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| | - Pavel A. Nikitin
- Immunome, Inc., 665 Stockton Drive, Suite 300, Exton, PA 19341, USA
| |
Collapse
|
43
|
da Silva RAG, Afonina I, Kline KA. Eradicating biofilm infections: an update on current and prospective approaches. Curr Opin Microbiol 2021; 63:117-125. [PMID: 34333239 DOI: 10.1016/j.mib.2021.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Biofilm formation is a multifactorial process and often a multi-species endeavour that involves complex signalling networks, chemical gradients, bacterial adhesion, and production or acquisition of matrix components. Antibiotics remain the main choice when treating bacterial biofilm-associated infections despite their intrinsic tolerance to antimicrobials, and propensity for acquisition and rapid dissemination of antimicrobial resistance within the biofilm. Eliminating hard to treat biofilm-associated infections that are antibiotic resistant will demand a holistic and multi-faceted approach, targeting multiple stages of biofilm formation, many of which are already in development. This mini review will highlight the current approaches that are employed to treat bacterial biofilm infections and discuss new approaches in development that have promise to reach clinical practice.
Collapse
Affiliation(s)
- Ronni A G da Silva
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore
| | - Irina Afonina
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore; Singapore Centre for Environmental Life Science Engineering, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
44
|
Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021; 10:antibiotics10070795. [PMID: 34210036 PMCID: PMC8300730 DOI: 10.3390/antibiotics10070795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.
Collapse
|
45
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
46
|
Nitrate Is an Environmental Cue in the Gut for Salmonella enterica Serovar Typhimurium Biofilm Dispersal through Curli Repression and Flagellum Activation via Cyclic-di-GMP Signaling. mBio 2021; 13:e0288621. [PMID: 35130730 PMCID: PMC8822344 DOI: 10.1128/mbio.02886-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Curli, a major component of the bacterial biofilms in the intestinal tract, activates pattern recognition receptors and triggers joint inflammation after infection with Salmonella enterica serovar Typhimurium. The factors that allow S. Typhimurium to disperse from biofilms and invade the epithelium to establish a successful infection during acute inflammation remain unknown. Here, we studied S. Typhimurium biofilms in vitro and in vivo to understand how the inflammatory environment regulates the switch between multicellular and motile S. Typhimurium in the gut. We discovered that nitrate generated by the host is an environmental cue that induces S. Typhimurium to disperse from the biofilm. Nitrate represses production of an important biofilm component, curli, and activates flagella via the modulation of intracellular cyclic-di-GMP levels. We conclude that nitrate plays a central role in pathogen fitness by regulating the sessile-to-motile lifestyle switch during infection. IMPORTANCE Recent studies provided important insight into our understanding of the role of c-di-GMP signaling and the regulation of enteric biofilms. Despite an improved understanding of how c-di-GMP signaling regulates S. Typhimurium biofilms, the processes that affect the intracellular c-di-GMP levels and the formation of multicellular communities in vivo during infections remain unknown. Here, we show that nitrate generated in the intestinal lumen during infection with S. Typhimurium is an important regulator of biofilm formation in vivo.
Collapse
|
47
|
Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics (Basel) 2021; 10:175. [PMID: 33578658 PMCID: PMC7916357 DOI: 10.3390/antibiotics10020175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to specific antibiotic resistance, the formation of bacterial biofilm causes another level of complications in attempts to eradicate pathogenic or harmful bacteria, including difficult penetration of drugs through biofilm structures to bacterial cells, impairment of immunological response of the host, and accumulation of various bioactive compounds (enzymes and others) affecting host physiology and changing local pH values, which further influence various biological functions. In this review article, we provide an overview on the formation of bacterial biofilm and its properties, and then we focus on the possible use of phage-derived depolymerases to combat bacterial cells included in this complex structure. On the basis of the literature review, we conclude that, although these bacteriophage-encoded enzymes may be effective in destroying specific compounds involved in the formation of biofilm, they are rarely sufficient to eradicate all bacterial cells. Nevertheless, a combined therapy, employing depolymerases together with antibiotics and/or other antibacterial agents or factors, may provide an effective approach to treat infections caused by bacteria able to form biofilms.
Collapse
Affiliation(s)
- Gracja Topka-Bielecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| |
Collapse
|
48
|
Luo Y, Yang Q, Zhang D, Yan W. Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms. J Microbiol Biotechnol 2021; 31:1-7. [PMID: 33323672 PMCID: PMC9706009 DOI: 10.4014/jmb.2010.10021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.
Collapse
Affiliation(s)
- Ying Luo
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Qianqian Yang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Dan Zhang
- Department of Pharmacy, Hangzhou Geriatric Hospital, Hangzhou 30022, P.R. China
| | - Wei Yan
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, P.R. China,Corresponding author Phone/Fax: +86-571-5600-7510 E-mail:
| |
Collapse
|
49
|
Emerging Roles of Functional Bacterial Amyloids in Gene Regulation, Toxicity, and Immunomodulation. Microbiol Mol Biol Rev 2020; 85:85/1/e00062-20. [PMID: 33239434 DOI: 10.1128/mmbr.00062-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria often reside in multicellular communities, called biofilms, held together by an extracellular matrix. In many bacteria, the major proteinaceous component of the biofilm are amyloid fibers. Amyloids are highly stable and structured protein aggregates which were known mostly to be associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases. In recent years, microbial amyloids were identified also in other species and shown to play major roles in microbial physiology and virulence. For example, amyloid fibers assemble on the bacterial cell surface as a part of the extracellular matrix and are extremely important to the scaffolding and structural integrity of biofilms, which contribute to microbial resilience and resistance. Furthermore, microbial amyloids play fundamental nonscaffold roles that contribute to the development of biofilms underlying numerous persistent infections. Here, we review several nonscaffold roles of bacterial amyloid proteins, including bridging cells during collective migration, acting as regulators of cell fate, as toxins against other bacteria or against host immune cells, and as modulators of the hosts' immune system. These overall points on the complexity of the amyloid fold in encoding numerous activities, which offer approaches for the development of a novel repertoire of antivirulence therapeutics.
Collapse
|
50
|
Mishra R, Panda AK, De Mandal S, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front Microbiol 2020; 11:566325. [PMID: 33193155 PMCID: PMC7658412 DOI: 10.3389/fmicb.2020.566325] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.
Collapse
Affiliation(s)
- Rojita Mishra
- Department of Botany, Polasara Science College, Polasara, India
| | | | - Surajit De Mandal
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Shakeel
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | | | - Junaid Khan
- Department of Pharmacy, Sant Gahira Guru University, Ambikapur, India
| |
Collapse
|