1
|
Zhang J, Dai W, Yang W, Luo W, Dong F, Hao J, Li RY, Xue C, Xie C, Sun L, Wang Y, Ding J, Song Z, Shen J, Ma Y, Ding Y, Zhang L, Zhang Z, Zhao Y, He X. Multimodal Profiling of Iron Heterogeneity at the Nanoscale. NANO LETTERS 2025; 25:5010-5018. [PMID: 40082277 DOI: 10.1021/acs.nanolett.5c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Life is inherently heterogeneous, and visualizing this heterogeneity in the spatial distribution of biometals offers valuable insights into various biological processes. While biometal mapping provides superior spatial resolution compared to other bioanalytical techniques, it alone cannot fully explain the functional roles of biometals in health and disease. In this study, we introduced a novel method using specially designed sample grids to facilitate beam-, X-ray-, and ion-beam-based imaging of biometals on the same tissue section. This innovative approach aligns and integrates nanoscale-resolved iron profiles across spatial, chemical, and isotopic dimensions. By combining these analyses, we achieved unprecedented spatial resolution and detail, revealing the complex regulatory framework of iron homeostasis in liver tissues following iron overload. These findings demonstrate that enhancing both the information content and spatial resolution of biometal analysis can overcome current limitations, providing new insights into the molecular mechanisms underlying biometal functions.
Collapse
Affiliation(s)
- Junzhe Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wanqin Dai
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenhe Luo
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengliang Dong
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Rui-Ying Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chaofan Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Changjian Xie
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yun Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhuda Song
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Shen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yayun Ding
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhiyong Zhang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- Nanofabrication Laboratory, CAS Key Laboratory for Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li G, Yuan C, Yan X. Peptide-mediated liquid-liquid phase separation and biomolecular condensates. SOFT MATTER 2025; 21:1781-1812. [PMID: 39964249 DOI: 10.1039/d4sm01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a cornerstone of cellular organization, driving the formation of biomolecular condensates that regulate diverse biological processes and inspire innovative applications. This review explores the molecular mechanisms underlying peptide-mediated LLPS, emphasizing the roles of intermolecular interactions such as hydrophobic effects, electrostatic interactions, and π-π stacking in phase separation. The influence of environmental factors, such as pH, temperature, ionic strength, and molecular crowding on the stability and dynamics of peptide coacervates is examined, highlighting their tunable properties. Additionally, the unique physicochemical properties of peptide coacervates, including their viscoelastic behavior, interfacial dynamics, and stimuli-responsiveness, are discussed in the context of their biological relevance and engineering potential. Peptide coacervates are emerging as versatile platforms in biotechnology and medicine, particularly in drug delivery, tissue engineering, and synthetic biology. By integrating fundamental insights with practical applications, this review underscores the potential of peptide-mediated LLPS as a transformative tool for advancing science and healthcare.
Collapse
Affiliation(s)
- Guangle Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
3
|
Yu K, Wang Y, Sun H, Lou Y, Bao H, Wang X, Zhang J, Shi J, Tang G, Wang Q, Bai H. Silk Fibroin-Based Lenvatinib Nanomedicine with Conformation Tunability for Systemic Treatment of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60070-60083. [PMID: 39436973 DOI: 10.1021/acsami.4c16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multitarget tyrosine kinase inhibitors (TKIs) serve as first-line therapeutics in the systemic treatment of hepatocellular carcinoma (HCC), yet their clinical effectiveness is hampered by suboptimal pharmacokinetics and bioavailability. There is a critical need to enhance the circulation, tumor targeting, and infiltration of TKIs. In this context, we developed a silk fibroin (SF)-based nanomedicine that exploits the chemical versatility and conformation tunability of SF. Folic acid (FA) with affinity toward HCC cells is utilized to functionalize SF, simultaneously aiding in the pH-sensitive β-sheet transitions of SF. This dynamic conformation behavior is key to improving the nanomedicine's circulation, biological adhesion, and tumor localization. By encapsulating Lenvatinib (Leva) TKI, the nanomedicine exhibits tumor-targeted accumulation and potent inhibition on HCC cell survival and angiogenesis, thereby amplifying Leva's bioavailability and therapeutic impact. Owing to SF's low immunogenicity and high reproducibility, this SF-based approach for TKI delivery holds substantial promise for advancing HCC systemic therapy.
Collapse
Affiliation(s)
- Kaxi Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yu Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Hong Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yijie Lou
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | | | - Jinguo Zhang
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Junhui Shi
- Zhejiang Lab. Hangzhou 311100, P. R. China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Qiwen Wang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
4
|
Aubrecht FJ, Orme K, Saul A, Cai H, Ranathunge TA, Silberstein MN, McDonald BR. Ion-Specific Interactions Engender Dynamic and Tailorable Properties in Biomimetic Cationic Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202408673. [PMID: 38981860 DOI: 10.1002/anie.202408673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
Biomaterials such as spider silk and mussel byssi are fabricated by the dynamic manipulation of intra- and intermolecular biopolymer interactions. Organisms modulate solution parameters, such as pH and ion co-solute concentration, to effect these processes. These biofabrication schemes provide a conceptual framework to develop new dynamic and responsive abiotic soft material systems. Towards these ends, the chemical diversity of readily available ionic compounds offers a broad palette to manipulate the physicochemical properties of polyelectrolytes via ion-specific interactions. In this study, we show for the first time that the ion-specific interactions of biomimetic polyelectrolytes engenders a variety of phase separation behaviors, creating dynamic thermal- and ion-responsive soft matter that exhibits a spectrum of physical properties, spanning viscous fluids to viscoelastic and viscoplastic solids. These ion-dependent characteristics are further rendered general by the merger of lysine and phenylalanine into a single, amphiphilic vinyl monomer. The unprecedented breadth, precision, and dynamicity in the reported ion-dependent phase behaviors thus introduce a broad array of opportunities for the future development of responsive soft matter; properties that are poised to drive developments in critical areas such as chemical sensing, soft robotics, and additive manufacturing.
Collapse
Affiliation(s)
- Filip J Aubrecht
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Kennalee Orme
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Aiden Saul
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Hongyi Cai
- Materials Science and Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Tharindu A Ranathunge
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| | - Meredith N Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin R McDonald
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI-02912, USA
| |
Collapse
|
5
|
Thoma A, Amstad E. Localized Ionic Reinforcement of Double Network Granular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311092. [PMID: 38747011 DOI: 10.1002/smll.202311092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Indexed: 10/01/2024]
Abstract
Nature produces soft materials with fascinating combinations of mechanical properties. For example, the mussel byssus embodies a combination of stiffness and toughness, a feature that is unmatched by synthetic hydrogels. Key to enabling these excellent mechanical properties are the well-defined structures of natural materials and their compositions controlled on lengths scales down to tens of nanometers. The composition of synthetic materials can be controlled on a micrometer length scale if processed into densely packed microgels. However, these microgels are typically soft. Microgels can be stiffened by enhancing interactions between particles, for example through the formation of covalent bonds between their surfaces or a second interpenetrating hydrogel network. Nonetheless, changes in the composition of these synthetic materials occur on a micrometer length scale. Here, 3D printable load-bearing granular hydrogels are introduced whose composition changes on the tens of nanometer length scale. The hydrogels are composed of jammed microgels encompassing tens of nm-sized ionically reinforced domains that increase the stiffness of double network granular hydrogels up to 18-fold. The printability of the ink and the local reinforcement of the resulting granular hydrogels are leveraged to 3D print a butterfly with composition and structural changes on a tens of nanometer length scale.
Collapse
Affiliation(s)
- Alexandra Thoma
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
6
|
Laakko T, Korkealaakso A, Yildirir BF, Batys P, Liljeström V, Hokkanen A, Nonappa, Penttilä M, Laukkanen A, Miserez A, Södergård C, Mohammadi P. Accelerated Engineering of ELP-Based Materials through Hybrid Biomimetic-De Novo Predictive Molecular Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312299. [PMID: 38710202 DOI: 10.1002/adma.202312299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/28/2024] [Indexed: 05/08/2024]
Abstract
Efforts to engineer high-performance protein-based materials inspired by nature have mostly focused on altering naturally occurring sequences to confer the desired functionalities, whereas de novo design lags significantly behind and calls for unconventional innovative approaches. Here, using partially disordered elastin-like polypeptides (ELPs) as initial building blocks this work shows that de novo engineering of protein materials can be accelerated through hybrid biomimetic design, which this work achieves by integrating computational modeling, deep neural network, and recombinant DNA technology. This generalizable approach involves incorporating a series of de novo-designed sequences with α-helical conformation and genetically encoding them into biologically inspired intrinsically disordered repeating motifs. The new ELP variants maintain structural conformation and showed tunable supramolecular self-assembly out of thermal equilibrium with phase behavior in vitro. This work illustrates the effective translation of the predicted molecular designs in structural and functional materials. The proposed methodology can be applied to a broad range of partially disordered biomacromolecules and potentially pave the way toward the discovery of novel structural proteins.
Collapse
Affiliation(s)
- Timo Laakko
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| | | | - Burcu Firatligil Yildirir
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere, FI-33720, Finland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow, PL-30239, Poland
| | - Ville Liljeström
- Department of Applied Physics, School of Science, Aalto University, Aalto, FI-00076, Finland
| | - Ari Hokkanen
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere, FI-33720, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| | - Anssi Laukkanen
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore, 637553, Singapore
- School of Biological Sciences, NTU, Singapore, 637551, Singapore
| | - Caj Södergård
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre of Finland Ltd., VTT, FI-02044, Finland
| |
Collapse
|
7
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
8
|
Zhang C, Peng H, Waite JH, Zhao Q. Coacervate Phase Evolution and Membrane Formation in Natural Seawater. J Am Chem Soc 2024; 146:2219-2226. [PMID: 38207218 DOI: 10.1021/jacs.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.
Collapse
Affiliation(s)
- Chongrui Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huawen Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - J Herbert Waite
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Qiang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Braunshtein O, Levavi L, Zlotnikov I, Bar-On B. Nanoscale dynamic mechanical analysis on interfaces of biological composites. J Mech Behav Biomed Mater 2023; 146:106091. [PMID: 37672957 DOI: 10.1016/j.jmbbm.2023.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Biological composites incorporate structural arrays of rigid-elastic reinforcements made of minerals or crystalline biopolymers, which are connected by thin, compliant, and viscoelastic macromolecular matrix material. The near-interface regions of these biological composites grant them energy dissipation capabilities against dynamic mechanical loadings, which promote various biomechanical functions such as impact adsorption, fracture toughness, and mechanical signal filtering. Here, we employ theoretical modeling and finite-element simulations to analyze the mechanical response of the near-interface in biological composites to nanoscale dynamic mechanical analysis (DMA). We identified the dominating load-bearing mechanisms of the near-interface region and employed these insights to introduce simple semi-empirical formulations for approaching the mechanical properties (storage and loss moduli) of the biological composite from the nanoscale DMA results. Our analysis paves the way for the nanomechanical characterization of biological composites in diverse natural materials systems, which can also be employed for bioinspired and biomedical configurations.
Collapse
Affiliation(s)
- Ofer Braunshtein
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel; Nuclear Research Center-Negev, P.O. Box 9001, Beer-Sheva, 84190, Israel
| | - Liat Levavi
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01307, Germany
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
10
|
Gao J, Zhang Q, Wu B, Gao X, Liu Z, Yang H, Yuan J, Huang J. Mussel-Inspired, Underwater Self-Healing Ionoelastomers Based on α-Lipoic Acid for Iontronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207334. [PMID: 36869411 DOI: 10.1002/smll.202207334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Indexed: 05/25/2023]
Abstract
Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of α-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N'-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 × 10-6 -2.7 × 10-5 S m-1 because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.
Collapse
Affiliation(s)
- Jiaxiang Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Zhang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Wu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodan Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengyuan Liu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyu Yang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikang Yuan
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, Zhejiang, 313000, P. R. China
| | - Jijun Huang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems. Nat Commun 2023; 14:2456. [PMID: 37117170 PMCID: PMC10147642 DOI: 10.1038/s41467-023-38236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Aqueous two-phase systems (ATPS) provide imperative interfaces and compartments in biology, but the sculpture and conversion of liquid structures to functional solids is challenging. Here, inspired by phase evolution of mussel foot proteins ATPS, we tackle this problem by designing poly(ionic liquids) capable of responsive condensation and phase-dependent curing. When mixed with poly(dimethyl diallyl ammonium chloride), the poly(ionic liquids) formed liquid condensates and ATPS, which were tuned into bicontinuous liquid phases under stirring. Selective, rapid curing of the poly(ionic liquids)-rich phase was facilitated under basic conditions (pH 11), leading to the liquid-to-gel conversion and structure sculpture, i.e., the evolution from ATPS to macroporous sponges featuring bead-and-string networks. This mechanism enabled the selective embedment of carbon nanotubes in the poly(ionic liquids)-rich phase, which showed exceptional stability in harsh conditions (10 wt% NaCl, 80 oC, 3 days) and high (2.5 kg/m2h) solar thermal desalination of concentrated salty water under 1-sun irradiation.
Collapse
Affiliation(s)
- Chongrui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
12
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
13
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
14
|
Bioinspired chemical design to control interfacial wet adhesion. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Renner-Rao M, Jehle F, Priemel T, Duthoo E, Fratzl P, Bertinetti L, Harrington MJ. Mussels Fabricate Porous Glues via Multiphase Liquid-Liquid Phase Separation of Multiprotein Condensates. ACS NANO 2022; 16:20877-20890. [PMID: 36413745 DOI: 10.1021/acsnano.2c08410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mussels (Mytilus edulis) adhere to hard surfaces in intertidal marine habitats with a porous underwater glue called the byssus plaque. The plaque is an established role model for bioinspired underwater glues and comprises at least six proteins, most of which are highly cationic and enriched in the post-translationally modified amino acid 3,4-dihydroxyphenylalanine (DOPA). While much is known about the chemistry of plaque adhesion, less is understood about the natural plaque formation process. Here, we investigated plaque structure and formation using 3D electron microscopic imaging, revealing that micro- and nanopores form spontaneously during secretion of protein-filled secretory vesicles. To better understand this process, we developed a method to purify intact secretory vesicles for in vitro assembly studies. We discovered that each vesicle contains a sulfate-associated fluid condensate consisting of ∼9 histidine- and/or DOPA-rich proteins, which are presumably the required ingredients for building a plaque. Rupturing vesicles under specific buffering conditions relevant for natural assembly led to controlled multiphase liquid-liquid phase separation (LLPS) of different proteins, resulting in formation of a continuous phase with coexisting droplets. Rapid coarsening of the droplet phase was arrested through pH-dependent cross-linking of the continuous phase, producing native-like solid porous "microplaques" with droplet proteins remaining as fluid condensates within the pores. Results indicate that histidine deprotonation and sulfates figure prominently in condensate cross-linking. Distilled concepts suggest that combining phase separation with tunable cross-linking kinetics could be effective for microfabricating hierarchically porous materials via self-assembly.
Collapse
Affiliation(s)
- Max Renner-Rao
- Dept. of Chemistry, McGill University, Montreal, Quebec H4A 0B8, Canada
| | - Franziska Jehle
- Dept. of Chemistry, McGill University, Montreal, Quebec H4A 0B8, Canada
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Tobias Priemel
- Dept. of Chemistry, McGill University, Montreal, Quebec H4A 0B8, Canada
| | - Emilie Duthoo
- Dept. of Chemistry, McGill University, Montreal, Quebec H4A 0B8, Canada
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, Mons 7000, Belgium
| | - Peter Fratzl
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Luca Bertinetti
- Dept. of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | | |
Collapse
|
16
|
Corrales-Ureña YR, Schwab F, Ochoa-Martínez E, Benavides-Acevedo M, Vega-Baudrit J, Pereira R, Rischka K, Noeske PLM, Gogos A, Vanhecke D, Rothen-Rutishauser B, Petri-Fink A. Encapsulated salts in velvet worm slime drive its hardening. Sci Rep 2022; 12:19261. [PMID: 36357497 PMCID: PMC9649676 DOI: 10.1038/s41598-022-23523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
Slime expelled by velvet worms entraps prey insects within seconds in a hardened biopolymer network that matches the mechanical strength of industrial polymers. While the mechanic stimuli-responsive nature and building blocks of the polymerization are known, it is still unclear how the velvet worms' slime hardens so fast. Here, we investigated the slime for the first time, not only after, but also before expulsion. Further, we investigated the slime's micro- and nanostructures in-depth. Besides the previously reported protein nanoglobules, carbohydrates, and lipids, we discovered abundant encapsulated phosphate and carbonate salts. We also detected CO2 bubbles during the hardening of the slime. These findings, along with further observations, suggest that the encapsulated salts in expelled slime rapidly dissolve and neutralize in a baking-powder-like reaction, which seems to accelerate the drying of the slime. The proteins' conformation and aggregation are thus influenced by shear stress and the salts' neutralization reaction, increasing the slime's pH and ionic strength. These insights into the drying process of the velvet worm's slime demonstrate how naturally evolved polymerizations can unwind in seconds, and could inspire new polymers that are stimuli-responsive or fast-drying under ambient conditions.
Collapse
Affiliation(s)
- Yendry Regina Corrales-Ureña
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland ,grid.7704.40000 0001 2297 4381Faculty of Production Engineering, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Fabienne Schwab
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland
| | - Efraín Ochoa-Martínez
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland
| | - Miguel Benavides-Acevedo
- National Laboratory of Nanotechnology LANOTEC - National Center of High Technology CeNAT, 1.3 Km North of the United States Embassy, San José, Costa Rica
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology LANOTEC - National Center of High Technology CeNAT, 1.3 Km North of the United States Embassy, San José, Costa Rica ,grid.10729.3d0000 0001 2166 3813School of Chemistry, National University, Heredia, Costa Rica
| | - Reinaldo Pereira
- National Laboratory of Nanotechnology LANOTEC - National Center of High Technology CeNAT, 1.3 Km North of the United States Embassy, San José, Costa Rica
| | - Klaus Rischka
- grid.461617.30000 0004 0494 8413Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
| | - Paul-Ludwig Michael Noeske
- grid.461617.30000 0004 0494 8413Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
| | - Alexander Gogos
- grid.7354.50000 0001 2331 3059EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Dimitri Vanhecke
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- grid.8534.a0000 0004 0478 1713Adolphe Merkle Institute, University of Fribourg, Chemin Des Verdiers 4, 1700 Fribourg, Switzerland ,grid.8534.a0000 0004 0478 1713Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
17
|
Kamal M, Tokmakjian L, Knox J, Mastrangelo P, Ji J, Cai H, Wojciechowski JW, Hughes MP, Takács K, Chu X, Pei J, Grolmusz V, Kotulska M, Forman-Kay JD, Roy PJ. A spatiotemporal reconstruction of the C. elegans pharyngeal cuticle reveals a structure rich in phase-separating proteins. eLife 2022; 11:e79396. [PMID: 36259463 PMCID: PMC9629831 DOI: 10.7554/elife.79396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
How the cuticles of the roughly 4.5 million species of ecdysozoan animals are constructed is not well understood. Here, we systematically mine gene expression datasets to uncover the spatiotemporal blueprint for how the chitin-based pharyngeal cuticle of the nematode Caenorhabditis elegans is built. We demonstrate that the blueprint correctly predicts expression patterns and functional relevance to cuticle development. We find that as larvae prepare to molt, catabolic enzymes are upregulated and the genes that encode chitin synthase, chitin cross-linkers, and homologs of amyloid regulators subsequently peak in expression. Forty-eight percent of the gene products secreted during the molt are predicted to be intrinsically disordered proteins (IDPs), many of which belong to four distinct families whose transcripts are expressed in overlapping waves. These include the IDPAs, IDPBs, and IDPCs, which are introduced for the first time here. All four families have sequence properties that drive phase separation and we demonstrate phase separation for one exemplar in vitro. This systematic analysis represents the first blueprint for cuticle construction and highlights the massive contribution that phase-separating materials make to the structure.
Collapse
Affiliation(s)
- Muntasir Kamal
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Levon Tokmakjian
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| | - Jessica Knox
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Peter Mastrangelo
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jingxiu Ji
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Hao Cai
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
| | - Jakub W Wojciechowski
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Michael P Hughes
- Department of Cell and Molecular Biology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Kristóf Takács
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Xiaoquan Chu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Jianfeng Pei
- Department of Computer Science and Technology, Tsinghua UniversityBeijingChina
| | - Vince Grolmusz
- PIT Bioinformatics Group, Institute of Mathematics, Eötvös UniversityBudapestHungary
| | - Malgorzata Kotulska
- Wroclaw University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical EngineeringWroclawPoland
| | - Julie Deborah Forman-Kay
- Molecular Medicine Program, The Hospital for Sick ChildrenTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Peter J Roy
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Pharmacology and Toxicology, University of TorontoTorontoCanada
| |
Collapse
|
18
|
Hou Y, Peng Y, Li P, Wu Q, Zhang J, Li W, Zhou G, Wu J. Bioinspired Design of High Vibration-Damping Supramolecular Elastomers Based on Multiple Energy-Dissipation Mechanisms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35097-35104. [PMID: 35858204 DOI: 10.1021/acsami.2c07604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suppressing vibrations and noises is essential for our automated society. Here, inspired by the hierarchical dynamic bonds and phase separation of mussel byssal threads, we synthesize high-damping supramolecular elastomers (HDEs) via simple one-pot radical polymerization of butyl acrylate (BA), acrylic acid (AA), and vinylimidazole (VI). Interestingly, AA and VI not only form hydrogen bonds and ionic bonds simultaneously but also segregate into aggregates of different sizes, thereby successfully mimicking the hierarchical structure of mussel byssal threads. When applying external forces, the weak hydrogen bonds are broken at first and then the ionic bonds and aggregates are disrupted progressively from small to large deformations. Such multiple energy-dissipation mechanisms lead to the outstanding damping property of the HDEs. Therefore, the HDEs outperform commercially available rubbers in terms of sound absorption and vibration damping. Furthermore, the multiple energy-dissipation mechanisms impart the HDEs with high toughness (41.1 MJ/m3), tensile strength (21.3 MPa), and self-healing ability.
Collapse
Affiliation(s)
- Yujia Hou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Peng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Qi Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junqi Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weihang Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Qiu Z, Zhang Y, Zhu X, Kamran MA, Chen B. Biochar-based asymmetric membrane for selective removal and oxidation of hydrophobic organic pollutants. CHEMOSPHERE 2022; 300:134509. [PMID: 35395267 DOI: 10.1016/j.chemosphere.2022.134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Hydrophobic organic pollutants (HOCs) in the complex groundwater and soil pose serious technical challenges for sustainable remediation. Herein, an asymmetric membrane (PCAM), inspired by the plant cuticle, was comprised of a top polydimethylsiloxane layer being selectively penetrable to HOCs from complex solution with humic acid, followed by transfer and catalyst layers with biochar pyrolyzed by 300 °C (BC300) and 700 °C (BC700). The PCAM triggered the advanced oxidation of the coming pollutant. The graphitized biochar layer of the PCAM acted as catalysts that induced HOC removal through a non-radical oxidation pathway. Compared to one type biochar membrane, the sequential multi-biochar composite membrane had a faster removal efficiency. The greater uptake and transport performance of multi-biochar composite membrane could be due to the larger pore size and distribution properties of PCAM physicochemical properties and oxidative degradation of peroxymonosulfate. The developed PCAM technology benefits from selective adsorption and catalytic oxidation and has the potential to be applied in complex environmental restoration.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Waite JH, Harrington MJ. Following the thread: Mytilus mussel byssus as an inspired multi-functional biomaterial. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last 15 years, the byssus of marine mussels (Mytilus spp.) has emerged as an important model system for the bio-inspired development and synthesis of advanced polymers and adhesives. But how did these seemingly inconsequential fibers that are routinely discarded in mussel hors d’oeuvres become the focus of intense international research. In the present review, we take a historical perspective to understand this phenomenon. Our purpose is not to review the sizeable literature of mussel-inspired materials, as there are numerous excellent reviews that cover this topic in great depth. Instead, we explore how the byssus became a magnet for bio-inspired materials science, with a focus on the specific breakthroughs in the understanding of composition, structure, function, and formation of the byssus achieved through fundamental scientific investigation. Extracted principles have led to bio-inspired design of novel materials with both biomedical and technical applications, including surgical adhesives, self-healing polymers, tunable hydrogels, and even actuated composites. Continued study into the byssus of Mytilid mussels and other species will provide a rich source of inspiration for years to come.
Collapse
Affiliation(s)
- J. Herbert Waite
- Marine Sciences Institute, Lagoon Road, University of California, Santa Barbara, CA 93106, USA
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
22
|
Priemel T, Palia G, Förste F, Jehle F, Sviben S, Mantouvalou I, Zaslansky P, Bertinetti L, Harrington MJ. Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels. Science 2021; 374:206-211. [PMID: 34618575 DOI: 10.1126/science.abi9702] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gurveer Palia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Frank Förste
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sanja Sviben
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ioanna Mantouvalou
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
23
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jonathan J Wilker
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
24
|
Mohammadi P, Gandier J, Nonappa, Wagermaier W, Miserez A, Penttilä M. Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102658. [PMID: 34467572 PMCID: PMC11469223 DOI: 10.1002/adma.202102658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact-resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self-assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self-assembly and engineering of its constitutive protein building blocks.
Collapse
Affiliation(s)
| | - Julie‐Anne Gandier
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16100EspooFI‐16100Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 6TampereFI‐33720Finland
| | - Wolfgang Wagermaier
- Department of BiomaterialsMax Planck Institute of Colloids and InterfacesAm Mühlenberg114476PotsdamGermany
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat)School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore639798Singapore
- School of Biological Sciences60 Nanyang Drive, NTUSingapore637551Singapore
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdVTTEspooFI‐02044Finland
| |
Collapse
|
25
|
Amstad E, Harrington MJ. From vesicles to materials: bioinspired strategies for fabricating hierarchically structured soft matter. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200338. [PMID: 34334030 DOI: 10.1098/rsta.2020.0338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Certain organisms including species of mollusks, polychaetes, onychophorans and arthropods produce exceptional polymeric materials outside their bodies under ambient conditions using concentrated fluid protein precursors. While much is understood about the structure-function relationships that define the properties of such materials, comparatively less is understood about how such materials are fabricated and specifically, how their defining hierarchical structures are achieved via bottom-up assembly. Yet this information holds great potential for inspiring sustainable manufacture of advanced polymeric materials with controlled multi-scale structure. In the present perspective, we first examine recent work elucidating the formation of the tough adhesive fibres of the mussel byssus via secretion of vesicles filled with condensed liquid protein phases (coacervates and liquid crystals)-highlighting which design principles are relevant for bio-inspiration. In the second part of the perspective, we examine the potential of recent advances in drops and additive manufacturing as a bioinspired platform for mimicking such processes to produce hierarchically structured materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matthew J Harrington
- Dept. of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
26
|
Lim J, Kumar A, Low K, Verma CS, Mu Y, Miserez A, Pervushin K. Liquid-Liquid Phase Separation of Short Histidine- and Tyrosine-Rich Peptides: Sequence Specificity and Molecular Topology. J Phys Chem B 2021; 125:6776-6790. [PMID: 34106723 DOI: 10.1021/acs.jpcb.0c11476] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The increasing realization of the prevalence of liquid-liquid phase separation (LLPS) across multiple length scales of biological constructs, from intracellular membraneless organelles to extracellular load-bearing tissues, has raised intriguing questions about intermolecular interactions regulating LLPS at the atomic level. Squid-beak derived histidine (His)- and tyrosine (Tyr)-rich peptides (HBpeps) have recently emerged as suitable short model peptides to precisely assess the roles of peptide motifs and single residues on the phase behavior and material properties of microdroplets obtained by LLPS. In this study, by systematically introducing single mutations in an HBpep, we have identified specific sticker residues that attract peptide chains together. We find that His and Tyr residues located near the sequence termini drive phase separation, forming interaction nodes that stabilize microdroplets. Combining quantum chemistry simulations with NMR studies, we predict atomic-level bond geometries and uncover inter-residue supramolecular interactions governing LLPS. These results are subsequently used to propose possible topological arrangements of the peptide chains, which upon expansion can help explain the three-dimensional network of microdroplets. The stability of the proposed topologies carried out through all-atom molecular dynamics simulations predicts chain topologies that are more likely to stabilize the microdroplets. Overall, this study provides useful guidelines for the de novo design of peptide coacervates with tunable phase behavior and material properties. In addition, the analysis of nanoscale topologies may pave the way to understand how client molecules can be trapped within microdroplets, with direct implications for the encapsulation and controlled release of therapeutics for drug delivery applications.
Collapse
Affiliation(s)
- Jessica Lim
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551
| | - Akshita Kumar
- Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, NTU, 50 Nanyang Avenue, Singapore 637 553.,Bioinformatics Institute, A*STAR, 30 Biopolis Street, 07-01 Matrix, Singapore 138 671
| | - Kimberly Low
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551.,Bioinformatics Institute, A*STAR, 30 Biopolis Street, 07-01 Matrix, Singapore 138 671.,Department of Biological Sciences, National University of Singapore (NUS), 16 Science Drive 4, Singapore 117 558
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551
| | - Ali Miserez
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551.,Biological and Biomimetic Material Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, NTU, 50 Nanyang Avenue, Singapore 637 553
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637 551
| |
Collapse
|
27
|
Jehle F, Priemel T, Strauss M, Fratzl P, Bertinetti L, Harrington MJ. Collagen Pentablock Copolymers Form Smectic Liquid Crystals as Precursors for Mussel Byssus Fabrication. ACS NANO 2021; 15:6829-6838. [PMID: 33793207 DOI: 10.1021/acsnano.0c10457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels (Mytilus spp.) fabricate hierarchically structured collagenous fibers known as byssal threads via bottom-up supramolecular assembly of fluid protein precursors. The high degree of structural organization in byssal threads is intimately linked to their exceptional toughness and self-healing capacity. Here, we investigated the hypothesis that multidomain collagen precursor proteins, known as preCols, are stored in secretory vesicles as a colloidal liquid crystal (LC) phase prior to thread self-assembly. Using advanced electron microscopy methods, including scanning TEM and FIB-SEM, we visualized the detailed smectic preCol LC nanostructure in 3D, including various LC defects, confirming this hypothesis and providing quantitative insights into the mesophase structure. In light of these findings, we performed an in-depth comparative analysis of preCol protein sequences from multiple Mytilid species revealing that the smectic organization arises from an evolutionarily conserved ABCBA pentablock copolymer-like primary structure based on demarcations in hydropathy and charge distribution as well as terminal pH-responsive domains that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for potential applications in engineering and biomedical applications.
Collapse
Affiliation(s)
- Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mike Strauss
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
- BCUBE Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
28
|
Arias S, Amini S, Krüger JM, Bangert LD, Börner HG. Implementing Zn 2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen. SOFT MATTER 2021; 17:2028-2033. [PMID: 33596288 DOI: 10.1039/d0sm02118k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A His-rich domain of preCollagen-D found in byssal threads is derivatized with Cys and Dopa flanks to allow for mussel-inspired polymerization. Artificial mussel glue proteins are accessed that combine cysteinyldopa for adhesion with sequences for pH or Zn2+ induced β-sheet formation. The artificial constructs show strong adsorption to Al2O3, the resulting coatings tolerate hypersaline conditions and cohesion is improved by activating the β-sheet formation, that enhances E-modulus up to 60%.
Collapse
Affiliation(s)
- Sandra Arias
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Potsdam 14424, Germany
| | - Jana M Krüger
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Lukas D Bangert
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| | - Hans G Börner
- Humboldt-Universität zu Berlin, Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Brook-Taylor-Str. 2, Berlin D-12489, Germany.
| |
Collapse
|
29
|
Davey PA, Power AM, Santos R, Bertemes P, Ladurner P, Palmowski P, Clarke J, Flammang P, Lengerer B, Hennebert E, Rothbächer U, Pjeta R, Wunderer J, Zurovec M, Aldred N. Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol Rev Camb Philos Soc 2021; 96:1051-1075. [PMID: 33594824 DOI: 10.1111/brv.12691] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Many aquatic invertebrates are associated with surfaces, using adhesives to attach to the substratum for locomotion, prey capture, reproduction, building or defence. Their intriguing and sophisticated biological glues have been the focus of study for decades. In all but a couple of specific taxa, however, the precise mechanisms by which the bioadhesives stick to surfaces underwater and (in many cases) harden have proved to be elusive. Since the bulk components are known to be based on proteins in most organisms, the opportunities provided by advancing 'omics technologies have revolutionised bioadhesion research. Time-consuming isolation and analysis of single molecules has been either replaced or augmented by the generation of massive data sets that describe the organism's translated genes and proteins. While these new approaches have provided resources and opportunities that have enabled physiological insights and taxonomic comparisons that were not previously possible, they do not provide the complete picture and continued multi-disciplinarity is essential. This review covers the various ways in which 'omics have contributed to our understanding of adhesion by aquatic invertebrates, with new data to illustrate key points. The associated challenges are highlighted and priorities are suggested for future research.
Collapse
Affiliation(s)
- Peter A Davey
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Anne Marie Power
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Room 226, Galway, H91 TK33, Ireland
| | - Romana Santos
- Departamento de Biologia Animal, Faculdade de Ciências, Centro de Ciências do Mar e do Ambiente (MARE), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | - Philip Bertemes
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Pawel Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Jessica Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Birgit Lengerer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 23, Mons, 7000, Belgium
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Robert Pjeta
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Julia Wunderer
- Institute of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K
| |
Collapse
|
30
|
Arias S, Amini S, Horsch J, Pretzler M, Rompel A, Melnyk I, Sychev D, Fery A, Börner HG. Toward Artificial Mussel-Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angew Chem Int Ed Engl 2020; 59:18495-18499. [PMID: 32596967 PMCID: PMC7590116 DOI: 10.1002/anie.202008515] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Artificial mussel-glue proteins with pH-triggered cohesion control were synthesized by extending the tyrosinase activated polymerization of peptides to sequences with specific modules for cohesion control. The high propensity of these sequence sections to adopt β-sheets is suppressed by switch defects. This allows enzymatic activation and polymerization to proceed undisturbed. The β-sheet formation is regained after polymerization by changing the pH from 5.5 to 6.8, thereby triggering O→N acyl transfer rearrangements that activate the cohesion mechanism. The resulting artificial mussel glue proteins exhibit rapid adsorption on alumina surfaces. The coatings resist harsh hypersaline conditions, and reach remarkable adhesive energies of 2.64 mJ m-2 on silica at pH 6.8. In in situ switch experiments, the minor pH change increases the adhesive properties of a coating by 300 % and nanoindentation confirms the cohesion mechanism to improve bulk stiffness by around 200 %.
Collapse
Affiliation(s)
- Sandra Arias
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and InterfacesDepartment of Biomaterials14424PotsdamGermany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| | - Matthias Pretzler
- Universität WienFakultät für Chemie Institut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für Chemie Institut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Dmitrii Sychev
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer PhysicsHohe Straße 601069DresdenGermany
- Technische Universität DresdenChair of Physical Chemistry of Polymeric MaterialsHohe Straße 601069DresdenGermany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Straße 212489BerlinGermany
| |
Collapse
|
31
|
Shi W, Guan X, Sun S, Han Y, Du X, Tang Y, Zhou W, Liu G. Nanoparticles decrease the byssal attachment strength of the thick shell mussel Mytilus coruscus. CHEMOSPHERE 2020; 257:127200. [PMID: 32473408 DOI: 10.1016/j.chemosphere.2020.127200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive application of nanoparticles (NPs) drives their release into the ocean, which may pose a potential threat to marine organisms. Although the byssus is important for the survival of mussels, the effects of NPs on byssal attachment and the underlying molecular byssal responses remain largely unknown. Therefore, the impacts of three metal oxide NPs (nTiO2, nZnO, and nFe2O3) on the production and mechanical properties of byssal thread in the thick shell mussel M. coruscus were investigated in this study. The results showed that both mechanical properties (such as strength and extensibility) and morphology (diameter and volume) of byssal thread newly produced by M. coruscus were significantly affected after NP exposure, which resulted in an approximately 60-66% decrease in mussel byssal attachment strength. Downregulated expression of genes encoding mussel foot proteins, precursor collagen proteins, and proximal thread matrix proteins was also detected in this study, and this alteration may be one of the reasons for the weakened mechanical properties of byssal threads after NP exposure. This study indicated that NP pollution may hamper byssal attachment of M. coruscus and thereby pose a severe threat to the health of mussel individuals and the stability of the intertidal ecosystem.
Collapse
Affiliation(s)
- Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaofan Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
32
|
Arias S, Amini S, Horsch J, Pretzler M, Rompel A, Melnyk I, Sychev D, Fery A, Börner HG. Toward Artificial Mussel‐Glue Proteins: Differentiating Sequence Modules for Adhesion and Switchable Cohesion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Arias
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Shahrouz Amini
- Max Planck Institute of Colloids and Interfaces Department of Biomaterials 14424 Potsdam Germany
| | - Justus Horsch
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Matthias Pretzler
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Austria
| | - Annette Rompel
- Universität Wien Fakultät für Chemie Institut für Biophysikalische Chemie Althanstraße 14 1090 Wien Austria
| | - Inga Melnyk
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
| | - Dmitrii Sychev
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. Institute of Physical Chemistry and Polymer Physics Hohe Straße 6 01069 Dresden Germany
- Technische Universität Dresden Chair of Physical Chemistry of Polymeric Materials Hohe Straße 6 01069 Dresden Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
33
|
Hamada NA, Gilpin C, Wilker JJ. Availability of Environmental Iron Influences the Performance of Biological Adhesives Produced by Blue Mussels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10254-10260. [PMID: 32806913 DOI: 10.1021/acs.est.0c02392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Animals incorporate metals within the materials they manufacture, such as protective armor and teeth. Iron is an element used for adding strength and self-healing properties to load-bearing materials. Incorporation of iron is found beyond hard, brittle materials, even within the soft adhesive produced by marine mussels. Such findings suggest that the bioavailability of iron may have an influence on the properties of a biological material. Experiments were conducted using live mussels in which seawater iron levels were deficient, normal, or in excess of typical concentrations. The weakest adhesive strengths were produced in iron-deficient waters. Increasing seawater iron brought about more robust bonding. Changes in strengths correlated with varied adhesive morphology, color, and microstructural features, likely a result of variations in the degree of iron-induced protein cross-linking. This study provides the first whole animal scale data on how the manipulation of bioavailable iron influences the performance of a biological material. Changing ocean chemistries will alter the iron bioavailability when a decrease in pH shifts elemental speciation from particulate to dissolved, hindering the ability of filtering organisms to capture nutrients. These results show future implications of changing ocean chemistry as well as of the resulting abilities of marine organisms to construct essential materials.
Collapse
Affiliation(s)
- Natalie A Hamada
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Christopher Gilpin
- Life Science Microscopy Facility, Purdue University, West Lafayette, Indiana 47907-2053, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, 701 West Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
34
|
Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proc Natl Acad Sci U S A 2020; 117:7613-7621. [PMID: 32209666 DOI: 10.1073/pnas.1919712117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inspired largely by the role of the posttranslationally modified amino acid dopa (DOPA) in mussel adhesion, catechol functional groups have become commonplace in medical adhesives, tissue scaffolds, and advanced smart polymers. Yet, the complex redox chemistry of catechol groups complicates cross-link regulation, hampering fabrication and the long-term stability/performance of mussel-inspired polymers. Here, we investigated the various fates of DOPA residues in proteins comprising mussel byssus fibers before, during, and after protein secretion. Utilizing a combination of histological staining and confocal Raman spectroscopy on native tissues, as well as peptide-based cross-linking studies, we have identified at least two distinct DOPA-based cross-linking pathways during byssus fabrication, achieved by oxidative covalent cross-linking or formation of metal coordination interactions under reducing conditions, respectively. We suggest that these end states are spatiotemporally regulated by the microenvironments in which the proteins are stored prior to secretion, which are retained after formation-in particular, due to the presence of reducing moieties. These findings provide physicochemical pathways toward greater control over properties of synthetic catechol-based polymers and adhesives.
Collapse
|