1
|
Varley TF, Sporns O, Stevenson NJ, Yrjölä P, Welch MG, Myers MM, Vanhatalo S, Tokariev A. Emergence of a synergistic scaffold in the brains of human infants. Commun Biol 2025; 8:743. [PMID: 40360743 PMCID: PMC12075868 DOI: 10.1038/s42003-025-08082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The human brain is a complex organ comprising billions of interconnected neurons, which enables interaction with both physical and social environments. Neural dynamics of the whole brain go far beyond just the sum of its individual elements; a property known as "synergy". Previously it has been shown that synergy is crucial for many complex brain functions and cognition, however, it remains unknown how and when the large number of discrete neurons evolve into the unified system able to support synergistic interactions. Here we analyzed high-density electroencephalography data from the late fetal period to one month after term age. We found that the human brain transitions from a redundancy-dominated to a synergy-dominated system around birth. Frontal regions lead the emergence of a synergistic scaffold comprised of overlapping subsystems, while the integration of sensory areas developed gradually, from occipital to central regions. Strikingly, early developmental trajectories of brain synergy were modulated by environmental enrichment associated with enhanced mother-infant interactions, and the level of synergy near term equivalent age was associated with later neurocognitive development.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Anton Tokariev
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA.
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.
- Early Brain Activity, Systems, and Health Group, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
2
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Zhao J, Zhang J, Yang C, Yin L, Hou L, Jiang L. Sodium butyrate aids brain injury repair in neonatal rats. Open Life Sci 2025; 20:20221046. [PMID: 40291783 PMCID: PMC12032984 DOI: 10.1515/biol-2022-1046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 04/30/2025] Open
Abstract
The aim of this study is to investigate the effects and mechanism of action of sodium butyrate (SB) on brain injury repair in neonatal rats. 126 neonatal SD rats were randomly allocated to 7 groups, and necrotizing enterocolitis (NEC) and hypoxic-ischemic brain injury (HIBI) rat models were established. Hematoxylin and eosin staining showed that SB intervention alleviated intestinal and brain injuries in the HIBI + SB, NEC + SB, and NEC + HIBI + SB groups. Compared to the NEC and NEC + HIBI groups, the NEC + SB and NEC + HIBI + SB groups had significantly higher interleukin (IL)-10 and lower IL-17 levels (P < 0.05). Immunohistochemistry revealed increased Bcl-2 expression and decreased Bax expression in the NEC + SB and NEC + HIBI + SB groups compared to the NEC and NEC + HIBI groups in intestinal and brain tissues (P < 0.05). Compared to the control group (CG), gut microbiota diversity decreased in the HIBI, NEC, and NEC + HIBI groups, and increased significantly in the HIBI + SB, NEC + SB, and NEC + HIBI + SB groups. SB may alleviate brain injury by modulating gut microbiota, affecting IL-10 and IL-17 levels, and regulating Bcl-2 and Bax expression in intestinal and brain tissues.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, No. 1, Mao Yuan South Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Jun Zhang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Can Yang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Linlin Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Li Hou
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lin Jiang
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
4
|
Kratimenos P, Sanidas G, Simonti G, Byrd C, Gallo V. The shifting landscape of the preterm brain. Neuron 2025:S0896-6273(25)00224-7. [PMID: 40239653 DOI: 10.1016/j.neuron.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/16/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
Preterm birth remains a significant global health concern despite advancements in neonatal care. While survival rates have increased, the long-term neurodevelopmental consequences of preterm birth persist. Notably, the profile of the preterm infant has shifted, with infants at earlier gestational ages surviving and decreased rates of gross structural injury secondary to intracranial hemorrhage. However, these infants are still vulnerable to insults, including hypoxia-ischemia, inflammation, and disrupted in utero development, impinging on critical developmental processes, which can lead to neuronal and oligodendrocyte injury and impaired brain function. Consequently, preterm infants often experience a range of neurodevelopmental disorders, such as cognitive impairment and behavioral problems. Here, we address mechanisms underlying preterm brain injury and explore existing and new investigational therapeutic strategies. We discuss how gestational age influences brain development and how interventions, including pharmacological and non-pharmacological approaches, mitigate the effects of preterm birth complications and improve the long-term outcomes of preterm infants.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Georgios Sanidas
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Gabriele Simonti
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chad Byrd
- Children's National Research Institute, Washington, DC, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Seattle Children's Research Institute, Seattle, WA, USA; The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Erdei C, Gallo V, Maitre NL, Spittle A, Inder TE. The Science of Neurohabilitation and Neurodevelopmental Care for Infants with High-Risk Neonatal Illnesses. J Pediatr 2025; 282:114582. [PMID: 40221018 DOI: 10.1016/j.jpeds.2025.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Carmina Erdei
- Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Vittorio Gallo
- Seattle Children's Research Institute and Seattle Children's Hospital, Seattle, WA
| | - Nathalie L Maitre
- Children's Healthcare of Atlanta, Atlanta, GA; Emory University School of Medicine, Atlanta, GA
| | - Alicia Spittle
- University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, Parkville, Australia
| | - Terrie E Inder
- Children's Hospital of Orange County, Irvine, CA; University of Irvine, Irvine, CA
| |
Collapse
|
6
|
Wang H, Li JT, Liu DN, Zhang XQ, Sun M, Zhang CC, Si TM, Su YA. Environmental enrichment improves deficits in hippocampal neuroplasticity and cognition in prenatally aripiprazole-exposed mouse offspring. Transl Psychiatry 2025; 15:102. [PMID: 40148276 PMCID: PMC11950651 DOI: 10.1038/s41398-025-03335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Aripiprazole has become one of the most commonly prescribed antipsychotics, including in pregnant women, owing to a broad range of indications for psychiatric disorders and relatively few metabolic side effects. Compared with that of other antipsychotics, data regarding the safety of gestational aripiprazole exposure for offspring neurodevelopment are limited. This study investigated how prenatal exposure to aripiprazole affects the hippocampal neuroplasticity of adult offspring and whether any such effect can be reversed by environmental enrichment. Aripiprazole was administered to pregnant C57BL/6 N mice from embryonic days 6-16. Key findings revealed that aripiprazole exposure (3.0 mg/kg) persistently impaired hippocampal plasticity and related cognitive function in adult male offspring, including reduced adult neurogenesis, dendrite retraction and spine loss of granule cells in the dentate gyrus and recognition memory deficits. The proteomics results revealed decreased hippocampal levels of dopamine and cAMP-regulated phosphoprotein 32 kDa (DARPP-32), a key regulatory molecule of dopamine signaling. In addition, lower concentrations of dopamine and higher concentrations of serotonin in the hippocampus were detected in aripiprazole-exposed mice via HPLC with electrochemical detection. Notably, environmental enrichment reversed the disruption of spatial memory function and partially improved impaired hippocampal neuronal plasticity in prenatally aripiprazole-exposed mouse offspring. Our results provide insight into the long-term negative effects of early-life exposure to aripiprazole on hippocampal plasticity and behavior, which may be related to disturbances in the dopamine and serotonin transmitter systems. As a relatively "natural" intervention, environmental enrichment has potential for future clinical application.
Collapse
Affiliation(s)
- Han Wang
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Ji-Tao Li
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - De-Nong Liu
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xian-Qiang Zhang
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Meng Sun
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Chen-Chen Zhang
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Tian-Mei Si
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Yun-Ai Su
- Peking University Sixth Hospital & Peking University Institute of Mental Health & Key Laboratory of Mental Health, Ministry of Health (Peking University) & National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
7
|
Zhang W, Jiang G, Kang H, Wang J, Liu Z, Wang Z, Huang D, Gao A. Environmental Enrichment Exposure Alleviates Geriatric Depressive-Like Symptoms through Regulating Neurogenesis and Neuroinflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:259-270. [PMID: 40144319 PMCID: PMC11934201 DOI: 10.1021/envhealth.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 03/28/2025]
Abstract
Environmental enrichment (EE) is a significant approach to influencing brain function by altering the environment and changing living conditions and has been shown to modulate mood-related diseases, including depression. Among the elderly, depression is particularly prevalent and is often linked to social isolation. However, the specific role of EE in social isolation-related geriatric depression remains imprecise. This study was intended to explore the status of EE exposure in geriatric depression and to uncover its underlying mechanisms. We utilized 19-month-old male C57BL/6J mice, which are equivalent to humans aged 50-60 years, and induced depression through social isolation. After 2 weeks of social isolation, mice were identified as depressive by using the sugar preference test and then classified into either standard or enrichment environment groups for 4 weeks. Subsequently, conventional indices associated with depression, including neurogenesis, neurotrophic factors, and neuroinflammation, were measured. Results display that EE alleviated the depressive-like symptoms in elderly mice and enriched their social activities. Concurrently, EE regulated levels of certain neurotransmitters in the hippocampus, including the systems of glutamate, tyrosine, and histamine. Moreover, the ability of neurogenesis also increased in the hippocampus of EE mice. At the neuroinflammation level, the activation of Natural Killer (NK) cells and ARG1+ microglia is considered a major contributor to mediating the effects of EE-regulated geriatric depression. Collectively, these results underline the importance of EE in the treatment of geriatric depression and partially elucidate its underlying mechanism, offering valuable suggestions for treating social isolation--related depression via environmental modulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guangyu Jiang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
8
|
Lin S, Wang CJ, Yang PK, Li B, Wu Y, Yu KW. Enriched environment improves memory function by promoting synaptic remodeling in vascular dementia rats. Brain Res Bull 2025; 222:111262. [PMID: 39978738 DOI: 10.1016/j.brainresbull.2025.111262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Vascular dementia (VaD), attributed to cerebrovascular pathology, is a leading cause of cognitive decline, characterized by memory loss, bradyphrenia, and affective lability, with memory deficits being particularly pronounced. The potential of enriched environment (EE) to ameliorate cognitive impairments by enhancing hippocampal synaptic plasticity, neurogenesis, and white matter remodeling has garnered considerable interest. In this study, we used a rat model for VaD through the procedure of bilateral common carotid artery ligation (BCCAO). We randomly assigned male Sprague-Dawley (SD) rats to three groups: the control sham-operated group (Sham group), the surgery-induced dementia group (BCCAO group), and the surgery-induced dementia group with enriched environment (EE group). The Sham and BCCAO groups were kept under standard lab conditions, whereas the EE group was housed in an enriched setting. Employing a behavioral assay battery, we observed that EE intervention significantly improved the spatial learning and memory performance in the Morris water maze. Subsequent neuromorphological assessments utilizing transmission electron microscopy disclosed an increase in synaptic density and postsynaptic density (PSD) thickness within the hippocampal CA1 region, indicative of structural synaptic modulation. Further probing into the molecular underpinnings revealed that EE upregulated the expression of PSD95, corroborating its role in enhancing cognitive faculties. Additionally, our investigation into the PGC-1α/FNDC5/BDNF pathway demonstrated that EE intervention elevated the expression of these neurotrophic factors, suggesting a mechanistic link to synaptic and cognitive restoration. In summation, our findings elucidate the neurorestorative potential of EE in a preclinical VaD model, presenting a non-pharmacological intervention that modulates synaptic architecture and activates neuroprotective pathways. The observed correlations between synaptic remodeling and cognitive enhancement underscore the therapeutic relevance of EE in VaD, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Shuang Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuan-Jie Wang
- Department of Rehabilitation Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng-Kun Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Norwood MF, Marsh CH, Pretty D, Hollins I, Shirota C, Chen B, Gustafsson L, Kendall E, Jones S, Zeeman H. The environment as an important component of neurorehabilitation: introducing the BEEhive - brain and enriched environment (BEE) lab (hive). Disabil Rehabil 2025:1-11. [PMID: 39937038 DOI: 10.1080/09638288.2025.2461266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Contemporary healthcare design often overlooks the environment as a resource for supporting patient well-being and rehabilitation, particularly in neurotrauma care. The prioritisation of safety and efficiency has created stressful spaces that negatively impact patient needs. This paper explores whether environmental enrichment can enhance rehabilitation outcomes for individuals recovering from neurotrauma. It also introduces the BEEhive laboratory, a multidisciplinary initiative integrating environmental enrichment principles into healthcare. METHODOLOGY This paper reviews literature on the role of environmental enrichment in neurotrauma rehabilitation, synthesising empirical evidence on its benefits, and highlighting its potential to improve various aspects of neurorehabilitation. The findings are applied to the BEEhive laboratory's objectives. RESULTS Environmental enrichment is shown to stimulate neurogenesis, increase rehabilitation engagement, reduce disruptive behaviours and depressive symptoms, facilitate social relationships, improve cognitive functioning, reduce stress, and alleviate boredom. Despite these benefits, its application in neurotrauma rehabilitation remains underexplored. The BEEhive laboratory aims to address this gap through multidisciplinary collaboration, implementing strategies to enhance patient outcomes. CONCLUSION To optimise rehabilitation outcomes, healthcare environments must holistically support well-being. Environmentally focused, sustainable interventions in neurotrauma care, exemplified by the BEEhive initiative, are crucial for bridging the gap between research and practice, fostering innovative approaches to neurotrauma rehabilitation.
Collapse
Affiliation(s)
| | - Chelsea H Marsh
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- School of Applied Psychology, Griffith University, Gold Coast, Australia
| | - Danielle Pretty
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- School of Health Sciences and Social Work, Griffith University, Queensland, Australia
| | - Izak Hollins
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| | - Camila Shirota
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| | - Ben Chen
- Clinical Director, Allied Health and Rehabilitation, Emergency and Specialty Services, Gold Coast Health, Southport, Australia
| | | | - Elizabeth Kendall
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- Inclusive Futures: Reimagining Disability, Griffith University, Southport, Australia
| | - Susan Jones
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
- Neurosciences Rehabilitation Unit, Gold Coast University Hospital, Gold Coast, Australia
| | - Heidi Zeeman
- The Hopkins Centre, Griffith University, Meadowbrook, Australia
| |
Collapse
|
10
|
Chen L, Jiao J, Lei F, Zhou B, Li H, Liao P, Li X, Kang Y, Liu J, Jiang R. Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice. Brain Behav Immun 2025; 124:177-191. [PMID: 39580057 DOI: 10.1016/j.bbi.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Astrocytes, which actively participate in cognitive processes, have a complex spongiform morphology, highlighted by extensive ramified fine processes that closely enwrap the pre- and post-synaptic compartments, forming tripartite synapses. However, the role of astrocyte morphology in cognitive processes remains incompletely understood and even controversial. The actin-binding protein Ezrin is highly expressed in astrocytes and is a key structural determinant of astrocyte morphology. Here, we found that Ezrin expression and astrocyte fine process volume in the hippocampus of male mice increased after learning but decreased after lipopolysaccharide injection and in a mouse model of postoperative cognitive dysfunction, both of which involved models with impaired cognitive function. Additionally, astrocytic Ezrin knock-out led to significantly decreased astrocytic fine process volumes, decreased astrocyte-neuron proximity, and induced anxiety-like behaviors and cognitive dysfunction. Astrocytic Ezrin deficiency in the hippocampus was achieved by using a microRNA silencing technique delivered by adeno-associated viruses. Down-regulation of Ezrin in hippocampal astrocytes led to disrupted astrocyte-synapse interactions and impaired synaptic functions, including synaptic transmission and synaptic plasticity, which could be rescued by exogenous administration of D-serine. Remarkably, decreased Ezrin expression and reduced astrocyte fine processes volumes were also observed in aged mice with decreased cognitive function. Moreover, overexpression of astrocytic Ezrin increased astrocyte fine process volumes and improved cognitive function in aged mice. Overall, our results indicate Ezrin-mediated astrocyte fine processes integrity shapes astrocyte-synapse signaling contributing to cognitive function.
Collapse
Affiliation(s)
- Lingmin Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fan Lei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Zhou
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Kang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Ribic A, McCoy E, Pendala V, Fariborzi M, Demir L, Buell O, Fedde S, Stinger J, Elbaum L, Holsworth T, Awude PA. Adolescent-like Processing of Behaviorally Salient Cues in Sensory and Prefrontal Cortices of Adult Preterm-Born Mice. RESEARCH SQUARE 2024:rs.3.rs-5529783. [PMID: 39711564 PMCID: PMC11661414 DOI: 10.21203/rs.3.rs-5529783/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using in vivo electrophysiology, we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence. Moreover, the non-rewarded cue fails to robustly activate the V1 and V1-projecting ACC neurons during error trials, in contrast to prefrontal fast-spiking (FS) interneurons which show elevated error-related activity, suggesting that preterm birth impairs the function of prefrontal circuits for error monitoring. Finally, environmental enrichment, a well-established paradigm that promotes sensory maturation, failed to improve the performance of preterm mice, suggesting limited capacity of early interventions for reducing the risk of cognitive deficits after preterm birth. Altogether, our study for the first time identifies potential circuit mechanisms of cognitive atypicalities in the preterm population and highlights the vulnerability of prefrontal circuits to advanced onset of extrauterine experience.
Collapse
|
12
|
Tahmasian N, Feng MY, Arbabi K, Rusu B, Cao W, Kukreja B, Lubotzky A, Wainberg M, Tripathy SJ, Kalish BT. Neonatal Brain Injury Triggers Niche-Specific Changes to Cellular Biogeography. eNeuro 2024; 11:ENEURO.0224-24.2024. [PMID: 39681473 DOI: 10.1523/eneuro.0224-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Preterm infants are at risk for brain injury and neurodevelopmental impairment due, in part, to white matter injury following chronic hypoxia exposure. However, the precise molecular mechanisms by which neonatal hypoxia disrupts early neurodevelopment are poorly understood. Here, we constructed a brain-wide map of the regenerative response to newborn brain injury using high-resolution imaging-based spatial transcriptomics to analyze over 800,000 cells in a mouse model of chronic neonatal hypoxia. Additionally, we developed a new method for inferring condition-associated differences in cell type spatial proximity, enabling the identification of niche-specific changes in cellular architecture. We observed hypoxia-associated changes in region-specific cell states, cell type composition, and spatial organization. Importantly, our analysis revealed mechanisms underlying reparative neurogenesis and gliogenesis, while also nominating pathways that may impede circuit rewiring following neonatal hypoxia. Altogether, our work provides a comprehensive description of the molecular response to newborn brain injury.
Collapse
Affiliation(s)
- Nareh Tahmasian
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Min Yi Feng
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Keon Arbabi
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
| | - Bianca Rusu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Wuxinhao Cao
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Asael Lubotzky
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario M5G 1X5, Canada
| | - Shreejoy J Tripathy
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Brian T Kalish
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
13
|
McCoy E, Pendala V, Fariborzi M, Demir LY, Buell O, Fedde S, Stinger J, Elbaum L, Holsworth TD, Amenyo-Awude P, Ribic A. Adolescent-like Processing of Behaviorally Salient Cues in Sensory and Prefrontal Cortices of Adult Preterm-Born Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625455. [PMID: 39651152 PMCID: PMC11623638 DOI: 10.1101/2024.11.26.625455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Preterm birth is a leading risk factor for atypicalities in cognitive and sensory processing, but it is unclear how prematurity impacts circuits that support these functions. To address this, we trained adult mice born a day early (preterm mice) on a visual discrimination task and found that they commit more errors and fail to achieve high levels of performance. Using in vivo electrophysiology , we found that the neurons in the primary visual cortex (V1) and the V1-projecting prefrontal anterior cingulate cortex (ACC) are hyper-responsive to the reward, reminiscent of cue processing in adolescence. Moreover, the non-rewarded cue fails to robustly activate the V1 and V1-projecting ACC neurons during error trials, in contrast to prefrontal fast-spiking (FS) interneurons which show elevated error-related activity, suggesting that preterm birth impairs the function of prefrontal circuits for error monitoring. Finally, environmental enrichment, a well-established paradigm that promotes sensory maturation, failed to improve the performance of preterm mice, suggesting limited capacity of early interventions for reducing the risk of cognitive deficits after preterm birth. Altogether, our study for the first time identifies potential circuit mechanisms of cognitive atypicalities in the preterm population and highlights the vulnerability of prefrontal circuits to advanced onset of extrauterine experience.
Collapse
|
14
|
Bureš Z, Svobodová Burianová J, Pysanenko K, Syka J. The effect of acoustically enriched environment on structure and function of the developing auditory system. Hear Res 2024; 453:109110. [PMID: 39278142 DOI: 10.1016/j.heares.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
It has long been known that environmental conditions, particularly during development, affect morphological and functional properties of the brain including sensory systems; manipulating the environment thus represents a viable way to explore experience-dependent plasticity of the brain as well as of sensory systems. In this review, we summarize our experience with the effects of acoustically enriched environment (AEE) consisting of spectrally and temporally modulated complex sounds applied during first weeks of the postnatal development in rats and compare it with the related knowledge from the literature. Compared to controls, rats exposed to AEE showed in neurons of several parts of the auditory system differences in the dendritic length and in number of spines and spine density. The AEE exposure permanently influenced neuronal representation of the sound frequency and intensity resulting in lower excitatory thresholds, increased frequency selectivity and steeper rate-intensity functions. These changes were present both in the neurons of the inferior colliculus and the auditory cortex (AC). In addition, the AEE changed the responsiveness of AC neurons to frequency modulated, and also to a lesser extent, amplitude-modulated stimuli. Rearing rat pups in AEE leads to an increased reliability of acoustical responses of AC neurons, affecting both the rate and the temporal codes. At the level of individual spikes, the discharge patterns of individual neurons show a higher degree of similarity across stimulus repetitions. Behaviorally, rearing pups in AEE resulted in an improvement in the frequency resolution and gap detection ability under conditions with a worsened stimulus clarity. Altogether, the results of experiments show that the exposure to AEE during the critical developmental period influences the frequency and temporal processing in the auditory system, and these changes persist until adulthood. The results may serve for interpretation of the effects of the application of enriched acoustical environment in human neonatal medicine, especially in the case of care for preterm born children.
Collapse
Affiliation(s)
- Zbyněk Bureš
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Technical Studies, College of Polytechnics Jihlava, Tolstého 16, 58601, Jihlava, Czech Republic; Department of Otorhinolaryngology, Third Faculty of Medicine, University Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 1150/50, 10034 Prague 10, Czech Republic.
| | - Jana Svobodová Burianová
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
15
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
16
|
Cai XY, Ma SY, Tang MH, Hu L, Wu KD, Zhang Z, Zhang YQ, Lin Y, Patel N, Yang ZC, Mo XM. Atoh1 mediated disturbance of neuronal maturation by perinatal hypoxia induces cognitive deficits. Commun Biol 2024; 7:1121. [PMID: 39261625 PMCID: PMC11390922 DOI: 10.1038/s42003-024-06846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Neurodevelopmental disorders are currently one of the major complications faced by patients with congenital heart disease (CHD). Chronic hypoxia in the prenatal and postnatal preoperative brain may be associated with neurological damage and impaired long-term cognitive function, but the exact mechanisms are unknown. In this study, we find that delayed neuronal migration and impaired synaptic development are attributed to altered Atoh1 under chronic hypoxia. This is due to the fact that excessive Atoh1 facilitates expression of Kif21b, which causes excess in free-state α-tubulin, leading to disrupted microtubule dynamic stability. Furthermore, the delay in neonatal brain maturation induces cognitive disabilities in adult mice. Then, by down-regulating Atoh1 we alleviate the impairment of cell migration and synaptic development, improving the cognitive behavior of mice to some extent. Taken together, our work unveil that Atoh1 may be one of the targets to ameliorate hypoxia-induced neurodevelopmental disabilities and cognitive impairment in CHD.
Collapse
Affiliation(s)
- Xin-Yu Cai
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Si-Yu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Ming-Hui Tang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Liang Hu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ke-de Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhen Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ya-Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Ye Lin
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Nishant Patel
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhao-Cong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Xu-Ming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
17
|
Balikci A, May-Benson TA, Sirma GC, Kardas A, Demirbas D, Aracikul Balikci AF, Ilbay G, Sozen HG, Beaudry-Bellefeuille I. The Homeostasis-Enrichment-Plasticity (HEP ®) Approach for Premature Infants with Developmental Risks: A Pre-Post Feasibility Study. J Clin Med 2024; 13:5374. [PMID: 39336861 PMCID: PMC11432283 DOI: 10.3390/jcm13185374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The environmental enrichment (EE) framework has inspired several early intervention (EI) approaches. This study evaluated the feasibility, safety, caregiver acceptance, and satisfaction of implementing the HEP Approach intervention, a novel EI model based on the EE paradigm. Outcome measures for motor development, individual functional goals, sensory functions, caregiver-provided environmental affordances, and motivation for movement were examined. Methods: A pre-post-study design examined 18 premature infants (<33 weeks six days gestation) with a corrected age of 4-10 months. A 21-item Likert scale survey assessed the feasibility, safety, acceptability, and satisfaction of implementing the HEP Approach intervention. The Peabody Developmental Motor Scales-2, Test of Sensory Functions in Infants, Affordances in the Home Environment for Motor Development, and Infant Movement Motivation Questionnaire were used for outcomes. The goal attainment scale measured progress toward parent goals. The HEP Approach consisted of 12 one-hour sessions implemented over three months. Results: Most participating parents found the HEP Approach intervention feasible, safe, acceptable, and satisfactory. GAS scores demonstrated significant gains with a mean t-score of 67.75 (SD = 2.00). Results found significant improvement (p ≤ 0.05) in all outcome measures. Conclusions: Results suggest that the HEP Approach intervention is safe, feasible, and acceptable to implement. Outcome measures were meaningful and sensitive in identifying improved motor development, individualized parental goals, sensory functions, caregivers' use of environmental opportunities, and movement motivation in premature at-risk infants. Results suggest further studies on the HEP Approach are feasible, and highlight the potential of this intervention to inspire and guide future research in this field.
Collapse
Affiliation(s)
| | | | - Gamze Cagla Sirma
- Department of Occupational Therapy, Faculty of Health Sciences, Fenerbahçe University, Istanbul 34758, Türkiye
| | - Ayten Kardas
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul 34755, Türkiye
| | - Duygu Demirbas
- Department of Occupational Therapy, Faculty of Health Sciences, İstanbul Sağlık ve Teknoloji University, Istanbul 34275, Türkiye
| | | | - Gul Ilbay
- Department of Physiology, Faculty of Medicine, Kocaeli University, Kocaeli 41001, Türkiye
| | - Hatice Gulhan Sozen
- Department of Child Health and Diseases, Faculty of Medicine, Bahcesehir University, Istanbul 34734, Türkiye
| | | |
Collapse
|
18
|
Xiong Z, Li Z, Sima X, Zeng Z. Astaxanthin reduces TBPH-induced neurobehavioral deficits in mice by the ROS-ERK1/2-FOS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116674. [PMID: 38964056 DOI: 10.1016/j.ecoenv.2024.116674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Zhenkun Xiong
- Department of Neurosurgery, Jiujiang City Key Laboratory of Cell Therapy, Jiujiang NO.1 People's Hospital, Jiangxi 332000, PR China
| | - Zhenhua Li
- Department of Cardiothoracic Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xueqin Sima
- Department of Histology and Embryology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
19
|
O'Connor AM, Hagenauer MH, Thew Forrester LC, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. Neurobiol Stress 2024; 31:100651. [PMID: 38933284 PMCID: PMC11201356 DOI: 10.1016/j.ynstr.2024.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | - Megan Hastings Hagenauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Liam Cannon Thew Forrester
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Pamela M. Maras
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Keiko Arakawa
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Elaine K. Hebda-Bauer
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huzefa Khalil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Evelyn R. Richardson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Farizah I. Rob
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Yusra Sannah
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Stanley J. Watson
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| | - Huda Akil
- Michigan Neuroscience Institute, 205 Zina Pitcher Place, University of Michigan, Ann Arbor, MI, USA, 48109
| |
Collapse
|
20
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
21
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
22
|
Dong J, Dong Y, An L, Wang Y, Li Y, Jin L. The role of the sensory input intervention in recovery of the motor function in hypoxic ischemic encephalopathy rat model. J Neurophysiol 2024; 131:865-871. [PMID: 38568478 PMCID: PMC11381113 DOI: 10.1152/jn.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024] Open
Abstract
Motor disturbances predominantly characterize hypoxic-ischemic encephalopathy (HIE). Among its intervention methods, environmental enrichment (EE) is strictly considered a form of sensory intervention. However, limited research uses EE as a single sensory input intervention to validate outcomes postintervention. A Sprague-Dawley rat model subjected to left common carotid artery ligation and exposure to oxygen-hypoxic conditions is used in this study. EE was achieved by enhancing the recreational and stress-relief items within the cage, increasing the duration of sunlight, colorful items exposure, and introducing background music. JZL184 (JZL) was administered as neuroprotective drugs. EE was performed 21 days postoperatively and the rats were randomly assigned to the standard environment and EE groups, the two groups were redivided into control, JZL, and vehicle injection subgroups. The Western blotting and behavior test indicated that EE and JZL injections were efficacious in promoting cognitive function in rats following HIE. In addition, the motor function performance in the EE-alone intervention group and the JZL-alone group after HIE was significantly improved compared with the control group. The combined EE and JZL intervention group exhibited even more pronounced improvements in these performances. EE may enhance motor function through sensory input different from the direct neuroprotective effect of pharmacological treatment.NEW & NOTEWORTHY Rarely does literature assess motor function, even though it is common after hypoxia ischemic encephalopathy (HIE). Previously used environmental enrichment (EE) components have not been solely used as sensory inputs. Physical factors were minimized in our study to observe the effects of purely sensory inputs.
Collapse
Affiliation(s)
- Juchuan Dong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yifei Dong
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Lijuan An
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yufan Wang
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yongmei Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Lihua Jin
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
23
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
24
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Han Y, Shen X, Gao Z, Han P, Bi X. Enriched environment treatment promotes neural functional recovery together with microglia polarization and remyelination after cerebral ischemia in rats. Brain Res Bull 2024; 209:110912. [PMID: 38423189 DOI: 10.1016/j.brainresbull.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Microglia activation and oligodendrocyte maturation are critical for remyelination after cerebral ischemia. Studies have shown that enriched environment (EE) can effectively alleviate stroke-induced neurological deficits. However, little is known about the mechanism associated with glial cells underlying the neuroprotection of EE. Therefore, this study focuses on investigating the effect of EE on activated microglia polarization as well as oligodendrogenesis in the progress of remyelination following cerebral ischemia. METHODS The ischemia/reperfusion (I/R) injury model was established by middle cerebral artery occlusion (MCAO) in rats. Animals executed 4 weeks of environmental intervention after performing MCAO or sham surgery and were divided into sham, MCAO, and MCAO+EE groups. Cognitive function, myelin damage, microglia activation and polarization, inflammation, oligodendrogenesis, remyelination, and protein expression of the PI3K/AKT/GSK3β signaling pathway were determined. RESULTS The staining of NeuN indicated that the infarct size of MCAO rats was decreased under EE. EE intervention improved animal performance in the Morris water maze test and novel object recognition test, promoting the recovery of cognitive function after I/R injury. EE treatment alleviated myelin damage in MCAO rats, as evidenced by the lower fluorescence intensity ratio of SMI-32/MBP in MCAO+EE group. EE increased the fluorescence intensity ratio of NG2+/Ki67+/Olig2+, MBP, and MOG, enhancing the proliferation and differentiation of OPCs and oligodendrogenesis after MCAO. In terms of remyelination, more myelinated axons and lower G/ratio were detected in MCAO+EE rats compared with MCAO group. Moreover, EE treatment decreased the number of Iba1+/CD86+ M1 microglia, increased the number of Iba1+/CD206+ M2 microglia, and suppressed the inflammation response after I/R injury, which could be attributed to the augmented expression of PI3K/AKT/GSK3β axis. CONCLUSION EE improved long‑term recovery of cognitive function after cerebral I/R injury, at least in part by promoting M2 microglia transformation through activation of the PI3K/AKT/GSK3β signaling pathway, inhibiting inflammation to provide a favorable microenvironment for oligodendrocyte maturation and remyelination. The effect of the EE on myelin and inflammation could account for the neuroprotection provided by EE.
Collapse
Affiliation(s)
- Yu Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China; Department of rehabilitation technology, Lianyungang maternal and Child Health Hospital, Lianyungang 222062, China
| | - Xinya Shen
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhenkun Gao
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Pingping Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xia Bi
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
26
|
Guo YS, Bi X. Enriched environment enhanced the astrocyte-derived BDNF and VEGF expression and alleviate white matter injuries of rats with ischemic stroke. Neurol Res 2024; 46:272-283. [PMID: 38145566 DOI: 10.1080/01616412.2023.2298136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVES Numerous studies have shown that an enriched environment can promote ischemic stroke and improve cognitive function. In addition, white matter is closely related to cognitive function. The effects and mechanisms of the enriched environment on white matter recovery after stroke have not been elucidated. This study will analyse the effects of the enriched environment on white matter and cognitive function in the post-stroke brain from the perspective of astrocytes and their secretions. METHODS Stroke models were used for middle cerebral artery occlusion model. post-operative rats were divided into sham-operated, standard and enriched environment groups. The degree of cerebral infarction was assessed by TTC staining and the degree of white matter damage was assessed by Luxol-Fast Blue staining. The prognosis after stroke was assessed using the longa score and Morris water maze test. Western Blot and immunofluorescence were used to quantify and localize astrocytes and their associated secretory factors and myelin protein markers. RESULTS We found that ischemic stroke can cause severe demyelination. After EE treatment, there was a significant increase in cerebral remyelination and a significant improvement in neurological and cognitive functions. Astrocyte, BDNF, and VEGF expression were significantly higher than in rats in the standard circumstances of stroke model. CONCLUSION These data suggest that the enriched environment contributes to brain white matter recovery and improvement of cognitive function after stroke. The mechanism is related to astrocytes and their secretions. EE can activate astrocytes to secrete BDNF and VEGF, which may be crucial to promote white matter recovery.
Collapse
Affiliation(s)
- Yi-Sha Guo
- Department of Physical Therapy, Affiliated Yangzhi Rehabilitation Hospital of Tongji University, Shanghai, China
- Department of rehabilitation medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xia Bi
- Department of rehabilitation medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
27
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
28
|
Hurd CL, Livingstone D, Smith A, Yang JF. Engaging the Lower Extremity via Active Therapy Early (ELEVATE) Is Feasible and May Improve Gross Motor Function in Children with Spastic Bilateral Cerebral Palsy: A Case Series. Physiother Can 2023; 75:311-321. [PMID: 38037582 PMCID: PMC10686296 DOI: 10.3138/ptc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/15/2023] [Indexed: 12/02/2023]
Abstract
Purpose The feasibility of ELEVATE with respect to adherence and preliminary efficacy was determined for children with spastic bilateral cerebral palsy (CP) from encephalopathy of prematurity. Methods A case series was used. Participants were randomized to receive ELEVATE immediately or delay the intervention by 3 months before receiving the intervention. The outcomes included feasibility measures of (1) number of children recruited, (2) percentage of sessions attended, (3) stride counts during the intervention, and preliminary efficacy measures of change over the intervention period in (4) Gross Motor Function Measure-66 (GMFM-66), and (5) kinematics and weight-bearing during treadmill walking. Results Four boys under 3 years of age participated. All participants tolerated 60-minute intervention sessions four times/week for 12 weeks, and attended 75%-94% (min-max) of the targeted sessions. The median step count per session ranged from 833 to 2484 steps (min-max) during the final week of training. Participants showed an increase in GMFM-66 score of 2.4-7.5 points (min-max) over the 3-month intervention phase, as compared to a decrease of 1.7 for one participant and an increase of 1.3 for another over the delay period. Three participants demonstrated small improvements in their gait with the intervention. Conclusions Engaging young children with bilateral CP in intensive rehabilitation targeting gross motor function was feasible and demonstrated preliminary efficacy. The results have guided the design of a larger clinical trial to assess efficacy of early, active interventions for children with spastic bilateral CP.
Collapse
Affiliation(s)
- Caitlin L. Hurd
- From the:
Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Donna Livingstone
- From the:
Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Allison Smith
- From the:
Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
| | - Jaynie F. Yang
- From the:
Department of Physical Therapy, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
29
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Faraji J, Metz GAS. Toward reframing brain-social dynamics: current assumptions and future challenges. Front Psychiatry 2023; 14:1211442. [PMID: 37484686 PMCID: PMC10359502 DOI: 10.3389/fpsyt.2023.1211442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Evolutionary analyses suggest that the human social brain and sociality appeared together. The two fundamental tools that accelerated the concurrent emergence of the social brain and sociality include learning and plasticity. The prevailing core idea is that the primate brain and the cortex in particular became reorganised over the course of evolution to facilitate dynamic adaptation to ongoing changes in physical and social environments. Encouraged by computational or survival demands or even by instinctual drives for living in social groups, the brain eventually learned how to learn from social experience via its massive plastic capacity. A fundamental framework for modeling these orchestrated dynamic responses is that social plasticity relies upon neuroplasticity. In the present article, we first provide a glimpse into the concepts of plasticity, experience, with emphasis on social experience. We then acknowledge and integrate the current theoretical concepts to highlight five key intertwined assumptions within social neuroscience that underlie empirical approaches for explaining the brain-social dynamics. We suggest that this epistemological view provides key insights into the ontology of current conceptual frameworks driving future research to successfully deal with new challenges and possible caveats in favour of the formulation of novel assumptions. In the light of contemporary societal challenges, such as global pandemics, natural disasters, violent conflict, and other human tragedies, discovering the mechanisms of social brain plasticity will provide new approaches to support adaptive brain plasticity and social resilience.
Collapse
|
31
|
Liu T, Li J, Li Q, Liang Y, Gao J, Meng Z, Li P, Yao M, Gu J, Tu H, Gan Y. Environmental eustress promotes liver regeneration through the sympathetic regulation of type 1 innate lymphoid cells to increase IL-22 in mice. Hepatology 2023; 78:136-149. [PMID: 36631003 DOI: 10.1097/hep.0000000000000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS The liver has the unique ability of regeneration, which is extremely important for restoring homeostasis after liver injury. Although clinical observations have revealed an association between psychological stress and the liver, whether stress has a causal influence on the liver regeneration remains markedly less defined. APPROACH AND RESULTS Rearing rodents in an enriched environment (EE) can induce eustress or positive psychological stress. Herein, EE-induced eustress was found to significantly enhance the ability of liver regeneration after partial hepatectomy or carbon tetrachloride-induced liver injury based on the more rapid restoration of liver/body weight ratio and the significantly increased number of proliferating hepatocytes in EE mice. Mechanistically, the cytokine array revealed that IL-22 was markedly increased in the regenerating liver in response to EE. Blockade of IL-22 signaling abrogated the enhanced liver regeneration induced by EE. Group 1 innate lymphoid cells (ILCs), including type 1 ILCs (ILC1s), have been identified as the major sources of IL-22 in the regenerating liver. EE housing led to a rapid accumulation of hepatic ILC1s after partial hepatectomy and the EE-induced enhancement of liver regeneration and elevation of IL-22 was nearly eliminated in ILC1-deficient Tbx21-/- mice. Chemical sympathectomy or blockade of β-adrenergic signaling also abolished the effect of EE on ILC1s and attenuated the enhanced liver regeneration of EE-housed mice. CONCLUSION The study findings support the brain-liver axis and suggest that environment-induced eustress promotes liver regeneration through the sympathetic nerve/ILC1/IL-22 axis.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihong Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations Between Socioeconomic Status, Obesity, Cognition, and White Matter Microstructure in Children. JAMA Netw Open 2023; 6:e2320276. [PMID: 37368403 DOI: 10.1001/jamanetworkopen.2023.20276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Importance Lower neighborhood and household socioeconomic status (SES) are associated with negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter and via what mechanisms. Objective To assess whether and how neighborhood and household SES are independently associated with children's white matter microstructure and examine whether obesity and cognitive performance (reflecting environmental cognitive and sensory stimulation) are plausible mediators. Design, Setting, and Participants This cross-sectional study used baseline data from participants in the Adolescent Brain Cognitive Development (ABCD) study. Data were collected at 21 US sites, and school-based recruitment was used to represent the US population. Children aged 9 to 11 years and their parents or caregivers completed assessments between October 1, 2016, and October 31, 2018. After exclusions, 8842 of 11 875 children in the ABCD study were included in the analyses. Data analysis was conducted from July 11 to December 19, 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at participants' primary residence. Household SES factors were total income and highest parental educational attainment. Main Outcomes and Measures A restriction spectrum imaging (RSI) model was used to quantify restricted normalized directional (RND; reflecting oriented myelin organization) and restricted normalized isotropic (RNI; reflecting glial and neuronal cell bodies) diffusion in 31 major white matter tracts. The RSI measurements were scanner harmonized. Obesity was assessed through body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), age- and sex-adjusted BMI z scores, and waist circumference, and cognition was assessed through the National Institutes of Health Toolbox Cognition Battery. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, mean head motion, and twin or siblingship. Results Among 8842 children, 4543 (51.4%) were boys, and the mean (SD) age was 9.9 (0.7) years. Linear mixed-effects models revealed that greater neighborhood disadvantage was associated with lower RSI-RND in the left superior longitudinal fasciculus (β = -0.055; 95% CI, -0.081 to -0.028) and forceps major (β = -0.040; 95% CI, -0.067 to -0.013). Lower parental educational attainment was associated with lower RSI-RND in the bilateral superior longitudinal fasciculus (eg, right hemisphere: β = 0.053; 95% CI, 0.025-0.080) and bilateral corticospinal or pyramidal tract (eg, right hemisphere: β = 0.042; 95% CI, 0.015-0.069). Structural equation models revealed that lower cognitive performance (eg, lower total cognition score and higher neighborhood disadvantage: β = -0.012; 95% CI, -0.016 to -0.009) and greater obesity (eg, higher BMI and higher neighborhood disadvantage: β = -0.004; 95% CI, -0.006 to -0.001) partially accounted for the associations between SES and RSI-RND. Lower household income was associated with higher RSI-RNI in most tracts (eg, right inferior longitudinal fasciculus: β = -0.042 [95% CI, -0.073 to -0.012]; right anterior thalamic radiations: β = -0.045 [95% CI, -0.075 to -0.014]), and greater neighborhood disadvantage had similar associations in primarily frontolimbic tracts (eg, right fornix: β = 0.046 [95% CI, 0.019-0.074]; right anterior thalamic radiations: β = 0.045 [95% CI, 0.018-0.072]). Lower parental educational attainment was associated with higher RSI-RNI in the forceps major (β = -0.048; 95% CI, -0.077 to -0.020). Greater obesity partially accounted for these SES associations with RSI-RNI (eg, higher BMI and higher neighborhood disadvantage: β = 0.015; 95% CI, 0.011-0.020). Findings were robust in sensitivity analyses and were corroborated using diffusion tensor imaging. Conclusions and Relevance In this cross-sectional study, both neighborhood and household contexts were associated with white matter development in children, and findings suggested that obesity and cognitive performance were possible mediators in these associations. Future research on children's brain health may benefit from considering these factors from multiple socioeconomic perspectives.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Yuqi Cai
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Now with Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rita L Taylor
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
| | - Sarah A Eisenstein
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University in St Louis School of Medicine, St Louis, Missouri
| |
Collapse
|
33
|
Dill LK, Teymornejad S, Sharma R, Bozkurt S, Christensen J, Chu E, Rewell SS, Shad A, Mychasiuk R, Semple BD. Modulating chronic outcomes after pediatric traumatic brain injury: Distinct effects of social and environmental enrichment. Exp Neurol 2023; 364:114407. [PMID: 37059414 DOI: 10.1016/j.expneurol.2023.114407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.
Collapse
Affiliation(s)
- Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sadaf Teymornejad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Jennaya Christensen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erskine Chu
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sarah S Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Ali Shad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
34
|
Dean T, Ghaemmaghami J, Corso J, Gallo V. The cortical NG2-glia response to traumatic brain injury. Glia 2023; 71:1164-1175. [PMID: 36692058 PMCID: PMC10404390 DOI: 10.1002/glia.24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant worldwide cause of morbidity and mortality. A chronic neurologic disease bearing the moniker of "the silent epidemic," TBI currently has no targeted therapies to ameliorate cellular loss or enhance functional recovery. Compared with those of astrocytes, microglia, and peripheral immune cells, the functions and mechanisms of NG2-glia following TBI are far less understood, despite NG2-glia comprising the largest population of regenerative cells in the mature cortex. Here, we synthesize the results from multiple rodent models of TBI, with a focus on cortical NG2-glia proliferation and lineage potential, and propose future avenues for glia researchers to address this unique cell type in TBI. As the molecular mechanisms that regulate NG2-glia regenerative potential are uncovered, we posit that future therapeutic strategies may exploit cortical NG2-glia to augment local cellular recovery following TBI.
Collapse
Affiliation(s)
- Terry Dean
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
- Division of Critical Care Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - John Corso
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
35
|
Guez-Barber D, Eisch AJ, Cristancho AG. Developmental Brain Injury and Social Determinants of Health: Opportunities to Combine Preclinical Models for Mechanistic Insights into Recovery. Dev Neurosci 2023; 45:255-267. [PMID: 37080174 PMCID: PMC10614252 DOI: 10.1159/000530745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiological studies show that social determinants of health are among the strongest factors associated with developmental outcomes after prenatal and perinatal brain injuries, even when controlling for the severity of the initial injury. Elevated socioeconomic status and a higher level of parental education correlate with improved neurologic function after premature birth. Conversely, children experiencing early life adversity have worse outcomes after developmental brain injuries. Animal models have provided vital insight into mechanisms perturbed by developmental brain injuries, which have indicated directions for novel therapeutics or interventions. Animal models have also been used to learn how social environments affect brain maturation through enriched environments and early adverse conditions. We recognize animal models cannot fully recapitulate human social circumstances. However, we posit that mechanistic studies combining models of developmental brain injuries and early life social environments will provide insight into pathways important for recovery. Some studies combining enriched environments with neonatal hypoxic injury models have shown improvements in developmental outcomes, but further studies are needed to understand the mechanisms underlying these improvements. By contrast, there have been more limited studies of the effects of adverse conditions on developmental brain injury extent and recovery. Uncovering the biological underpinnings for early life social experiences has translational relevance, enabling the development of novel strategies to improve outcomes through lifelong treatment. With the emergence of new technologies to analyze subtle molecular and behavioral phenotypes, here we discuss the opportunities for combining animal models of developmental brain injury with social construct models to deconvolute the complex interactions between injury, recovery, and social inequity.
Collapse
Affiliation(s)
- Danielle Guez-Barber
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana G. Cristancho
- Division of Child Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
36
|
Zhang S, Zhang Y, Liu H, Wu F, Wang Z, Li L, Huang H, Qiu S, Li Y. Enriched environment remodels the central immune environment and improves the prognosis of acute ischemic stroke in elderly mice with chronic ischemia. Front Immunol 2023; 14:1114596. [PMID: 36969204 PMCID: PMC10033834 DOI: 10.3389/fimmu.2023.1114596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
With the aging of many populations, cognitive and motor dysfunction caused by ischemic stroke (IS) secondary to long-term chronic cerebral ischemia presents a global problem. Enriched environment (EE), a classic paradigm of environment response and genetic interaction, has shown tremendous influence on the brain. This research aimed to investigate the potential effect of EE on cognitive and motor function in mice with chronic cerebral ischemia and secondary IS. In the chronic cerebral hypoperfusion (CCH) phase, EE treatment improved behavior performance by alleviating neuronal loss and white matter myelin damage, promoting the expression of brain-derived neurotrophic factor (BDNF) and phosphor-cAMP response element binding protein (p-CREB). Furthermore, infiltration of microglia/macrophages and astrocytes was inhibited, and the levels of IL-1β and TNFα were decreased. In the IS phase, EE altered the neuronal outcome on day 21 but not on day one after IS. In addition, EE inhibited IS-induced infiltration of microglia/macrophages and astrocytes, mediated the polarization of microglia/macrophages, and reduced pro-inflammatory factors. Importantly, EE improved IS-induced cognitive and motor deficits on day 21. Collectively, our work demonstrates that EE protects mice from cognitive and motor dysfunction and inhibits neuroinflammation caused by CCH and IS.
Collapse
Affiliation(s)
- Shehong Zhang
- Department of Rehabilitation Medicine, Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Yonggang Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Fengfeng Wu
- Department of Rehabilitation Medicine, Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Zhihong Wang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Liqin Li
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Huilian Huang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Sheng Qiu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- *Correspondence: Sheng Qiu, ; Yuntao Li,
| | - Yuntao Li
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- *Correspondence: Sheng Qiu, ; Yuntao Li,
| |
Collapse
|
37
|
Li ZA, Cai Y, Taylor RL, Eisenstein SA, Barch DM, Marek S, Hershey T. Associations between socioeconomic status and white matter microstructure in children: indirect effects via obesity and cognition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285150. [PMID: 36798149 PMCID: PMC9934783 DOI: 10.1101/2023.02.09.23285150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Importance Both neighborhood and household socioeconomic disadvantage relate to negative health outcomes and altered brain structure in children. It is unclear whether such findings extend to white matter development, and via what mechanisms socioeconomic status (SES) influences the brain. Objective To test independent associations between neighborhood and household SES indicators and white matter microstructure in children, and examine whether body mass index and cognitive function (a proxy of environmental cognitive/sensory stimulation) may plausibly mediate these associations. Design This cross-sectional study used baseline data from the Adolescent Brain Cognitive Development (ABCD) Study, an ongoing 10-year cohort study tracking child health. Setting School-based recruitment at 21 U.S. sites. Participants Children aged 9 to 11 years and their parents/caregivers completed baseline assessments between October 1 st , 2016 and October 31 st , 2018. Data analysis was conducted from July to December 2022. Exposures Neighborhood disadvantage was derived from area deprivation indices at primary residence. Household SES indicators were total income and the highest parental education attainment. Main Outcomes and Measures Thirty-one major white matter tracts were segmented from diffusion-weighted images. The Restriction Spectrum Imaging (RSI) model was implemented to measure restricted normalized directional (RND; reflecting oriented myelin organization) and isotropic (RNI; reflecting glial/neuronal cell bodies) diffusion in each tract. Obesity-related measures were body mass index (BMI), BMI z -scores, and waist circumference, and cognitive performance was assessed using the NIH Toolbox Cognition Battery. Linear mixed-effects models tested the associations between SES indicators and scanner-harmonized RSI metrics. Structural equation models examined indirect effects of obesity and cognitive performance in the significant associations between SES and white mater microstructure summary principal components. Analyses were adjusted for age, sex, pubertal development stage, intracranial volume, and head motion. Results The analytical sample included 8842 children (4299 [48.6%] girls; mean age [SD], 9.9 [0.7] years). Greater neighborhood disadvantage and lower parental education were independently associated with lower RSI-RND in forceps major and corticospinal/pyramidal tracts, and had overlapping associations in the superior longitudinal fasciculus. Lower cognition scores and greater obesity-related measures partially accounted for these SES associations with RSI-RND. Lower household income was related to higher RSI-RNI in almost every tract, and greater neighborhood disadvantage had similar effects in primarily frontolimbic tracts. Lower parental education was uniquely linked to higher RSI-RNI in forceps major. Greater obesity-related measures partially accounted for these SES associations with RSI-RNI. Findings were robust in sensitivity analyses and mostly corroborated using traditional diffusion tensor imaging (DTI). Conclusions and Relevance These cross-sectional results demonstrate that both neighborhood and household contexts are relevant to white matter development in children, and suggest cognitive performance and obesity as possible pathways of influence. Interventions targeting obesity reduction and improving cognition from multiple socioeconomic angles may ameliorate brain health in low-SES children. Key Points Question: Are neighborhood and household socioeconomic levels associated with children’s brain white matter microstructure, and if so, do obesity and cognitive performance (reflecting environmental stimulation) mediate the associations?Findings: In a cohort of 8842 children, higher neighborhood disadvantage, lower household income, and lower parental education had independent and overlapping associations with lower restricted directional diffusion and greater restricted isotropic diffusion in white matter. Greater body mass index and poorer cognitive performance partially mediated these associations.Meaning: Both neighborhood and household poverty may contribute to altered white matter development in children. These effects may be partially explained by obesity incidence and poorer cognitive performance.
Collapse
Affiliation(s)
- Zhaolong Adrian Li
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuqi Cai
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rita L. Taylor
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sarah A. Eisenstein
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63130, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Seol S, Kwon J, Kang HJ. Cell type characterization of spatiotemporal gene co-expression modules in Down syndrome brain. iScience 2022; 26:105884. [PMID: 36647384 PMCID: PMC9840153 DOI: 10.1016/j.isci.2022.105884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/02/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability and increases the risk of other brain-related dysfunctions, like seizures, early-onset Alzheimer's disease, and autism. To reveal the molecular profiles of DS-associated brain phenotypes, we performed a meta-data analysis of the developmental DS brain transcriptome at cell type and co-expression module levels. In the DS brain, astrocyte-, microglia-, and endothelial cell-associated genes show upregulated patterns, whereas neuron- and oligodendrocyte-associated genes show downregulated patterns. Weighted gene co-expression network analysis identified cell type-enriched co-expressed gene modules. We present eight representative cell-type modules for neurons, astrocytes, oligodendrocytes, and microglia. We classified the neuron modules into glutamatergic and GABAergic neurons and associated them with detailed subtypes. Cell type modules were interpreted by analyzing spatiotemporal expression patterns, functional annotations, and co-expression networks of the modules. This study provides insight into the mechanisms underlying brain abnormalities in DS and related disorders.
Collapse
Affiliation(s)
- Sihwan Seol
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Joonhong Kwon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea,Corresponding author
| |
Collapse
|
39
|
A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming. Nat Commun 2022; 13:4253. [PMID: 35869067 PMCID: PMC9307658 DOI: 10.1038/s41467-022-31687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour. Myelination is a key regulator of brain function. Here the authors use MR-based myelin measures to examine if cortico-cortical interactions, as assessed by paired pulse transcranial magnetic stimulation, are affected by variations in myelin in the human brain.
Collapse
|
40
|
Fekete CD, Nishiyama A. Presentation and integration of multiple signals that modulate oligodendrocyte lineage progression and myelination. Front Cell Neurosci 2022; 16:1041853. [PMID: 36451655 PMCID: PMC9701731 DOI: 10.3389/fncel.2022.1041853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination is critical for fast saltatory conduction of action potentials. Recent studies have revealed that myelin is not a static structure as previously considered but continues to be made and remodeled throughout adulthood in tune with the network requirement. Synthesis of new myelin requires turning on the switch in oligodendrocytes (OL) to initiate the myelination program that includes synthesis and transport of macromolecules needed for myelin production as well as the metabolic and other cellular functions needed to support this process. A significant amount of information is available regarding the individual intrinsic and extrinsic signals that promote OL commitment, expansion, terminal differentiation, and myelination. However, it is less clear how these signals are made available to OL lineage cells when needed, and how multiple signals are integrated to generate the correct amount of myelin that is needed in a given neural network state. Here we review the pleiotropic effects of some of the extracellular signals that affect myelination and discuss the cellular processes used by the source cells that contribute to the variation in the temporal and spatial availability of the signals, and how the recipient OL lineage cells might integrate the multiple signals presented to them in a manner dialed to the strength of the input.
Collapse
Affiliation(s)
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
41
|
Endogenous Circadian Clock Machinery in Cortical NG2-Glia Regulates Cellular Proliferation. eNeuro 2022; 9:ENEURO.0110-22.2022. [PMID: 36123116 PMCID: PMC9536852 DOI: 10.1523/eneuro.0110-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular circadian clock can be found throughout the body and is essential for the synchronizing cellular physiology with the 24 h day. However, the role of the clock in regulating the regenerative potential of the brain has not been explored. We report here that murine NG2-glia, the largest population of proliferative cells in the mature central nervous system, rhythmically express circadian clock genes in a 24 h period, including the critical clock component Bmal1 RNA and BMAL1 protein. Interestingly, daily NG2-glia proliferation preferentially occurs during the time of day in which Bmal1 expression is high, while conditional knockout of Bmal1 decreases both cortical NG2-glia density and cellular proliferation. Furthermore, in a neurotrauma model, we show that pathology-induced NG2-glia proliferation is also dependent on Bmal1 expression. Because circadian rhythm disturbances are common in neurologic disorders across the life span, including in traumatic brain injury, these findings bear significant implications for cellular regeneration in brain injuries and disease.
Collapse
|
42
|
Yrjölä P, Myers MM, Welch MG, Stevenson NJ, Tokariev A, Vanhatalo S. Facilitating early parent-infant emotional connection improves cortical networks in preterm infants. Sci Transl Med 2022; 14:eabq4786. [PMID: 36170448 DOI: 10.1126/scitranslmed.abq4786] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Exposure to environmental adversities during early brain development, such as preterm birth, can affect early brain organization. Here, we studied whether development of cortical activity networks in preterm infants may be improved by a multimodal environmental enrichment via bedside facilitation of mother-infant emotional connection. We examined functional cortico-cortical connectivity at term age using high-density electroencephalography recordings in infants participating in a randomized controlled trial of Family Nurture Intervention (FNI). Our results identify several large-scale, frequency-specific network effects of FNI, most extensively in the alpha frequency in fronto-central cortical regions. The connectivity strength in this network was correlated to later neurocognitive performance, and it was comparable to healthy term-born infants rather than the infants receiving standard care. These findings suggest that preterm neurodevelopmental care can be improved by a biologically driven environmental enrichment, such as early facilitation of direct human connection.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, Children's Hospital and HUS Imaging, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.,Department of Physiology, University of Helsinki, 00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Jablonska B, Adams KL, Kratimenos P, Li Z, Strickland E, Haydar TF, Kusch K, Nave KA, Gallo V. Sirt2 promotes white matter oligodendrogenesis during development and in models of neonatal hypoxia. Nat Commun 2022; 13:4771. [PMID: 35970992 PMCID: PMC9378658 DOI: 10.1038/s41467-022-32462-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/01/2022] [Indexed: 01/02/2023] Open
Abstract
Delayed oligodendrocyte (OL) maturation caused by hypoxia (Hx)-induced neonatal brain injury results in hypomyelination and leads to neurological disabilities. Previously, we characterized Sirt1 as a crucial regulator of OL progenitor cell (OPC) proliferation in response to Hx. We now identify Sirt2 as a critical promoter of OL differentiation during both normal white matter development and in a mouse model of Hx. Importantly, we find that Hx reduces Sirt2 expression in mature OLs and that Sirt2 overexpression in OPCs restores mature OL populations. Reduced numbers of Sirt2+ OLs were also observed in the white matter of preterm human infants. We show that Sirt2 interacts with p27Kip1/FoxO1, p21Cip1/Cdk4, and Cdk5 pathways, and that these interactions are altered by Hx. Furthermore, Hx induces nuclear translocation of Sirt2 in OPCs where it binds several genomic targets. Overall, these results indicate that a balance of Sirt1 and Sirt2 activity is required for developmental oligodendrogenesis, and that these proteins represent potential targets for promoting repair following white matter injury.
Collapse
Affiliation(s)
- Beata Jablonska
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA.
| | - Katrina L Adams
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
- Neonatology Department, Children's National Hospital, Washington, DC, 20010, USA
| | - Zhen Li
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Emma Strickland
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Tarik F Haydar
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Katharina Kusch
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Gottingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Gottingen, Germany
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
44
|
Rapid behavioral recovery based on environmental enrichment of a white-throated toucan (Ramphastos tucanus: Rampastidae) affected by collision trauma. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
46
|
Faraji J, Lotfi H, Moharrerie A, Jafari SY, Soltanpour N, Tamannaiee R, Marjani K, Roudaki S, Naseri F, Moeeini R, Metz GAS. Regional Differences in BDNF Expression and Behavior as a Function of Sex and Enrichment Type: Oxytocin Matters. Cereb Cortex 2022; 32:2985-2999. [PMID: 35059698 DOI: 10.1093/cercor/bhab395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2025] Open
Abstract
The early environment is critical to brain development, but the relative contribution of physical versus social stimulation is unclear. Here, we investigated in male and female rats the response to early physical and social environmental enrichment in relation to oxytocin (OT) and brain-derived neurotrophic factor (BDNF) expression. The findings show that males and females respond differently to prolonged sensorimotor stimulation from postnatal days 21-110 in terms of functional, structural, and molecular changes in the hippocampus versus medial prefrontal cortex (mPFC). Physical enrichment promoted motor and cognitive functions and hippocampal BDNF mRNA and protein expression in both sexes. Combined physical and social enrichment, however, promoted functional and structural gain in females. These changes were accompanied by elevated plasma oxytocin (OT) levels and BDNF mRNA expression in the mPFC, while the hippocampus was not affected. Administration of an OT antagonist in females blocked the beneficial effects of enrichment and led to reduced cortical BDNF signaling. These findings suggest that an OT-based mechanism selectively stimulates a region-specific BDNF response which is dependent on the type of experience.
Collapse
Affiliation(s)
- Jamshid Faraji
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Hamid Lotfi
- Department of Psychology, Islamic Azad University, Tonekabon 4684161167, Iran
| | - Alireza Moharrerie
- Department of Anatomy, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - S Yaghoob Jafari
- Faculty of Nursing and Midwifery, Golestan University of Medical Sciences, Gorgan 4918936316, Iran
| | - Nasrin Soltanpour
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
| | - Rosa Tamannaiee
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Kameran Marjani
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Shabnam Roudaki
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | | | - Reza Moeeini
- Department of Behavioural Studies, Avicenna Institute of Neuroscience, Yazd 4467330219, Iran
| | - Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge T1K3M4, Canada
| |
Collapse
|
47
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
48
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
49
|
Bai PY, Chen SQ, Jia DL, Pan LH, Liu CB, Liu J, Luo W, Yang Y, Sun MY, Wan NF, Rong WW, Sun AJ, Ge JB. Environmental eustress improves postinfarction cardiac repair via enhancing cardiac macrophage survival. SCIENCE ADVANCES 2022; 8:eabm3436. [PMID: 35476440 PMCID: PMC9045726 DOI: 10.1126/sciadv.abm3436] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/10/2022] [Indexed: 05/24/2023]
Abstract
Macrophages play a vital role in cardiac repair following myocardial infarction (MI). An enriched environment (EE) is involved in the regulation of macrophage-related activities and disease progression; however, whether EE affects the phenotype and function of macrophages to improve postinfarction cardiac repair remains unknown. In this study, we found that EE improved cardiac function, decreased mortality, and ameliorated adverse ventricular remodeling in mice after MI, with these outcomes closely related to the increased survival of Ly6Clow macrophages and their CCR2-MHCIIlow subsets. EE increased the expression of brain-derived neurotrophic factor (BDNF) in the hypothalamus, leading to higher circulating levels of BDNF, which, in turn, regulated the cardiac macrophages. BDNF bound to tropomyosin receptor kinase B to activate downstream ERK1/2 and AKT pathways, promoting macrophage survival. These findings demonstrate that EE optimizes postinfarction cardiac repair and highlights the significance of EE as a previously unidentified strategy for impeding adverse ventricular remodeling.
Collapse
Affiliation(s)
- Pei-Yuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Si-Qin Chen
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Le Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li-Hong Pan
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao-Bao Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ma-Yu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nai-Fu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wu-Wei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|