1
|
Naghilou A, Evers TMJ, Armbruster O, Satarifard V, Mashaghi A. Synthesis and Characterization of Phase-Separated Extracellular Condensates in Interactions with Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644961. [PMID: 40196562 PMCID: PMC11974749 DOI: 10.1101/2025.03.24.644961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biomolecular condensates formed through liquid-liquid phase separation play key roles in intracellular organization and signaling, yet their function in extracellular environments remains largely unexplored. Here, we establish a model using heparan sulfate, a key component of the extracellular matrix, to study extracellular condensate-cell interactions. We demonstrate that heparan sulfate can form condensates with a positively charged counterpart in serum-containing solutions, mimicking the complexity of extracellular fluid, and supporting cell viability. We observe that these condensates adhere to cell membranes and remain stable, enabling a versatile platform for examining extracellular condensate dynamics and quantifying their rheological properties as well as their adhesion forces with cellular surfaces. Our findings and methodology open new avenues for understanding the organizational roles of condensates beyond cellular boundaries.
Collapse
|
2
|
Ogawa T, Nonaka Y, Shoji H, Nakamura T. Evolution and function of galectins in Xenopus laevis: Comparison with mammals and new perspectives. BBA ADVANCES 2025; 7:100157. [PMID: 40224191 PMCID: PMC11986560 DOI: 10.1016/j.bbadva.2025.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Galectins are metal-independent sugar-binding proteins that recognize galactose (the β-galactoside structure) and regulate the cross-linking of sugar chains between cells and the extracellular matrix. Their specificity for galactose is attributed to their highly conserved carbohydrate recognition domain. Galectins participate in biological processes across species, including development, differentiation, morphogenesis, tumor progression, metastasis, immunity, and apoptosis. However, the relationship between the binding of galectin to sugar chains (glycans) and their biological functions remains unclear. Thus, a comprehensive functional analysis of galectins is required to better characterize their evolutionarily conserved and unique functions. We have previously identified and characterized 12 Xenopus laevis galectins (xgalectins), the only non-mammalian vertebrate species in which galectins have been comprehensively characterized to date. In this review, we present the latest findings on the types and functions of xgalectins and discuss prospects for elucidating their diverse functions from an evolutionary perspective through comparisons with mammalian galectins.
Collapse
Affiliation(s)
- Takashi Ogawa
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Department of Genome Medical Science and Medical Genetics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nonaka
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroki Shoji
- Department of Biology, Kanazawa Medical University, Ishikawa, Japan
| | - Takanori Nakamura
- Department of Endocrinology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
3
|
Sato S, Iwaki J, Hirabayashi J. Decoding the multifaceted roles of galectins in self-defense. Semin Immunol 2025; 77:101926. [PMID: 39721561 DOI: 10.1016/j.smim.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes. Furthermore, due to the heterogeneity of galectin ligands, glycans, there is a risk of perceiving galectin-specific functions as ambiguous, potentially obscuring their core biological significance. To address this, we revisit foundational aspects, focusing on the significance of the recognition of galactose, a "late-comer" monosaccharide in evolutionary terms, provide an overview of galectin glycan binding specificity, with emphasis on the potential biological importance of each carbohydrate-recognition domain. We also discuss the biological implications of the galectin location paradox wherein these cytosolic lectins function in host defense despite their glycan ligands being synthesized in the secretory pathway. Additionally, we examine the role of galectins in liquid-liquid phase separation on membranes, which may facilitate their diverse functions in cellular responses. Through this approach, we aim to re-evaluate the complex and diverse biological roles of galectins in host defense.
Collapse
Affiliation(s)
- Sachiko Sato
- Axe of Infectious and Immune Diseases, CHU de Quebec-Université Laval Research Centre, Faculty of Medicine, and Research Centre for Infectious Diseases, Laval University, Quebec City, Canada.
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan.
| | - Jun Hirabayashi
- Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan.
| |
Collapse
|
4
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. Cell 2025; 188:447-464.e20. [PMID: 39591966 PMCID: PMC11761381 DOI: 10.1016/j.cell.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.
Collapse
Affiliation(s)
- Stephanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrés R Tejedor
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ignacio S Burgos
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lara Nasr
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Nesrine Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Kéren Fraissard
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Jorge R Espinosa
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| |
Collapse
|
6
|
Jaroentomeechai T, Karlsson R, Goerdeler F, Teoh FKY, Grønset MN, de Wit D, Chen YH, Furukawa S, Psomiadou V, Hurtado-Guerrero R, Vidal-Calvo EE, Salanti A, Boltje TJ, van den Bos LJ, Wunder C, Johannes L, Schjoldager KT, Joshi HJ, Miller RL, Clausen H, Vakhrushev SY, Narimatsu Y. Mammalian cell-based production of glycans, glycopeptides and glycomodules. Nat Commun 2024; 15:9668. [PMID: 39516489 PMCID: PMC11549445 DOI: 10.1038/s41467-024-53738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Access to defined glycans and glycoconjugates is pivotal for discovery, dissection, and harnessing of a range of biological functions orchestrated by cellular glycosylation processes and the glycome. We previously employed genetic glycoengineering by nuclease-based gene editing to develop sustainable production of designer glycoprotein therapeutics and cell-based glycan arrays that display glycans in their natural context at the cell surface. However, access to human glycans in formats and quantities that allow structural studies of molecular interactions and use of glycans in biomedical applications currently rely on chemical and chemoenzymatic syntheses associated with considerable labor, waste, and costs. Here, we develop a sustainable and scalable method for production of glycans in glycoengineered mammalian cells by employing secreted Glycocarriers with repeat glycosylation acceptor sequence motifs for different glycans. The Glycocarrier technology provides a flexible production platform for glycans in different formats, including oligosaccharides, glycopeptides, and multimeric glycomodules, and offers wide opportunities for use in bioassays and biomedical applications.
Collapse
Affiliation(s)
- Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felix Goerdeler
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fallen Kai Yik Teoh
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Nørregaard Grønset
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dylan de Wit
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Venetia Psomiadou
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Ramon Hurtado-Guerrero
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | - Elena Ethel Vidal-Calvo
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- VAR2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Translational Medicine and Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas J Boltje
- Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Christian Wunder
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Ludger Johannes
- Institut Curie, Cellular and Chemical Biology Unit, PSL Research University, U1143 INSERM, UMR3666 CNRS, Paris, France
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- GlycoDisplay ApS, Copenhagen, Denmark.
| |
Collapse
|
7
|
Sun Y, Hsieh T, Lin C, Shao W, Lin Y, Huang J. A Few Charged Residues in Galectin-3's Folded and Disordered Regions Regulate Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402570. [PMID: 39248370 PMCID: PMC11538691 DOI: 10.1002/advs.202402570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Indexed: 09/10/2024]
Abstract
Proteins with intrinsically disordered regions (IDRs) often undergo phase separation to control their functions spatiotemporally. Changing the pH alters the protonation levels of charged sidechains, which in turn affects the attractive or repulsive force for phase separation. In a cell, the rupture of membrane-bound compartments, such as lysosomes, creates an abrupt change in pH. However, how proteins' phase separation reacts to different pH environments remains largely unexplored. Here, using extensive mutagenesis, NMR spectroscopy, and biophysical techniques, it is shown that the assembly of galectin-3, a widely studied lysosomal damage marker, is driven by cation-π interactions between positively charged residues in its folded domain with aromatic residues in the IDR in addition to π-π interaction between IDRs. It is also found that the sole two negatively charged residues in its IDR sense pH changes for tuning the condensation tendency. Also, these two residues may prevent this prion-like IDR domain from forming rapid and extensive aggregates. These results demonstrate how cation-π, π-π, and electrostatic interactions can regulate protein condensation between disordered and structured domains and highlight the importance of sparse negatively charged residues in prion-like IDRs.
Collapse
Affiliation(s)
- Yung‐Chen Sun
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Tsung‐Lun Hsieh
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Chia‐I Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Wan‐Yu Shao
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| | - Yu‐Hao Lin
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
| | - Jie‐rong Huang
- Institute of Biochemistry and Molecular BiologyNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Department of Life Sciences and Institute of Genome SciencesNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
- Institute of Biomedical InformaticsNational Yang Ming Chiao Tung UniversityNo. 155, Sec. 2, Linong St.Taipei112304Taiwan
| |
Collapse
|
8
|
Lu B, Qiu R, Wei J, Wang L, Zhang Q, Li M, Zhan X, Chen J, Hsieh IY, Yang C, Zhang J, Sun Z, Zhu Y, Jiang T, Zhu H, Li J, Zhao W. Phase separation of phospho-HDAC6 drives aberrant chromatin architecture in triple-negative breast cancer. NATURE CANCER 2024; 5:1622-1640. [PMID: 39198689 DOI: 10.1038/s43018-024-00816-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
How dysregulated liquid-liquid phase separation (LLPS) contributes to the oncogenesis of female triple-negative breast cancer (TNBC) remains unknown. Here we demonstrate that phosphorylated histone deacetylase 6 (phospho-HDAC6) forms LLPS condensates in the nuclei of TNBC cells that are essential for establishing aberrant chromatin architecture. The disordered N-terminal domain and phosphorylated residue of HDAC6 facilitate effective LLPS, whereas nuclear export regions exert a negative dominant effect. Through phase-separation-based screening, we identified Nexturastat A as a specific disruptor of phospho-HDAC6 condensates, which effectively suppresses tumor growth. Mechanistically, importin-β interacts with phospho-HDAC6, promoting its translocation to the nucleus, where 14-3-3θ mediates the condensate formation. Disruption of phospho-HDAC6 LLPS re-established chromatin compartments and topologically associating domain boundaries, leading to disturbed chromatin loops. The phospho-HDAC6-induced aberrant chromatin architecture affects chromatin accessibility, histone acetylation, RNA polymerase II elongation and transcriptional profiles in TNBC. This study demonstrates phospho-HDAC6 LLPS as an emerging mechanism underlying the dysregulation of chromatin architecture in TNBC.
Collapse
Affiliation(s)
- Bing Lu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ru Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiatian Wei
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qinkai Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Mingsen Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiudan Zhan
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jian Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - I-Yun Hsieh
- Shunde Hospital (The First People's Hospital of Shunde), Southern Medical University, Foshan, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yifan Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Jiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Han Zhu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.
- Department of Thyroid Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Wei Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Chen H, Bao Y, Li X, Chen F, Sugimura R, Zeng X, Xia J. Cell Surface Engineering by Phase-Separated Coacervates for Antibody Display and Targeted Cancer Cell Therapy. Angew Chem Int Ed Engl 2024; 63:e202410566. [PMID: 39103291 DOI: 10.1002/anie.202410566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/07/2024]
Abstract
Cell therapies such as CAR-T have demonstrated significant clinical successes, driving the investigation of immune cell surface engineering using natural and synthetic materials to enhance their therapeutic performance. However, many of these materials do not fully replicate the dynamic nature of the extracellular matrix (ECM). This study presents a cell surface engineering strategy that utilizes phase-separated peptide coacervates to decorate the surface of immune cells. We meticulously designed a tripeptide, Fmoc-Lys-Gly-Dopa-OH (KGdelta; Fmoc=fluorenylmethyloxycarbonyl; delta=Dopa, dihydroxyphenylalanine), that forms coacervates in aqueous solution via phase separation. These coacervates, mirroring the phase separation properties of ECM proteins, coat the natural killer (NK) cell surface with the assistance of Fe3+ ions and create an outer layer capable of encapsulating monoclonal antibodies (mAb), such as Trastuzumab. The antibody-embedded coacervate layer equips the NK cells with the ability to recognize cancer cells and eliminate them through enhanced antibody-dependent cellular cytotoxicity (ADCC). This work thus presents a unique strategy of cell surface functionalization and demonstrates its use in displaying cancer-targeting mAb for cancer therapies, highlighting its potential application in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Xiaojing Li
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| | - Fangke Chen
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Ryohichi Sugimura
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 99999, Hong Kong SAR, China
| | - Xiangze Zeng
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, 99999, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, 99999, Hong Kong SAR, China
| |
Collapse
|
10
|
Greisen SR, Bendix M, Nielsen MA, Pedersen K, Jensen NH, Hvid M, Mikkelsen JH, Drace T, Boesen T, Steiniche T, Schmidt H, Deleuran B. Gal-3 blocks the binding between PD-1 and pembrolizumab. J Immunother Cancer 2024; 12:e009952. [PMID: 39357979 PMCID: PMC11448214 DOI: 10.1136/jitc-2024-009952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICI) have revolutionized the treatment of metastatic malignant melanoma (MM) and improved long-term survival. Despite the impressive results, some patients still have progressive disease, and the search for biomarkers predicting response to ICI treatment is ongoing. In this search, galectin-3 (Gal-3) has been suggested as a molecule of interest, both as a marker of treatment response and as a treatment target to potentiate ICI therapy. We have previously demonstrated the binding between programmed cell death 1 (PD-1) and Gal-3, and here, we investigated the interaction between PD-1, pembrolizumab, and Gal-3 in metastatic MM patients. METHODS The binding between PD-1, pembrolizumab and Gal-3 was investigated by surface plasmon resonance (SPR) and cryogenic electron microscopy (cryo-EM). The function was studied in in vitro cultures and soluble levels of both PD-1 and Gal-3 were measured in metastatic MM patients, treated with pembrolizumab. RESULTS By SPR, we demonstrated that Gal-3 can block the binding between PD-1 and pembrolizumab, and further visualized a steric inhibition using cryo-EM. T cells cultured with Gal-3 had reduced pro-inflammatory cytokine production, which could not be rescued by pembrolizumab. In patients with metastatic MM, high levels of Gal-3 in plasma were found in patients with a longer progression-free survival in the study period, whereas high Gal-3 expression in the tumor was seen in patients with disease progression. Soluble PD-1 levels in plasma increased after treatment with pembrolizumab and correlated with disease progression. CONCLUSION We demonstrate that the interaction between PD-1 and Gal-3 interferes with the binding of pembrolizumab, supporting that an immune suppression induced by Gal-3 in the tumor microenvironment cannot be rescued by pembrolizumab.
Collapse
Affiliation(s)
- Stinne Ravn Greisen
- Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mia Bendix
- Department of Medicine, Randers Regional Hospital, Randers, Denmark
| | - Morten Aagaard Nielsen
- Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Nina Haunstrup Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Anaesthesiology and Intensive Care, Goedstrup Hospital, Herning, Denmark
| | - Malene Hvid
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Taner Drace
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Zhang Y, Li Z, Chen X. The role of galectin-3 in bone homeostasis: A review. Int J Biol Macromol 2024; 278:134882. [PMID: 39168209 DOI: 10.1016/j.ijbiomac.2024.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
The skeletal system maintains a delicate balance known as bone homeostasis, which is essential for the lifelong preservation of bone mass, shape, and integrity. This equilibrium relies on a complex interplay between bone marrow mesenchymal stem cells (BMSCs), osteoblasts, osteocytes, and osteoclasts. Galectin-3 (Gal-3), a chimeric galectin with a unique N-terminal tail and a conserved carbohydrate recognition domain (CRD) at its C-terminus, has emerged as a critical regulator in bone homeostasis. The CRD of Gal-3 mediates carbohydrate binding, while its N-terminal tail is implicated in oligomerization and phase separation, which are vital for its functionality. Gal-3's multivalency is central to its role in a range of cellular activities, including inflammation, immune response, apoptosis, cell adhesion, and migration. Imbalances in bone homeostasis often arise from disruptions in osteoblast differentiation and activity, increased osteoclast differentiation and activity. Gal-3's influence on these processes suggests its significant role in the regulation of bone remodeling. This review will examine the molecular mechanisms through which Gal-3 contributes to bone remodeling and discuss its potential as a therapeutic target for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Zhiyong Li
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China
| | - Xueqing Chen
- Department of Orthopedics, Tianjin Baodi Hospital/Baodi Clinical College of Tianjin Medical University, Tianjin 301800, China.
| |
Collapse
|
12
|
Shafaq-Zadah M, Dransart E, Mani SK, Sampaio JL, Bouidghaghen L, Nilsson UJ, Leffler H, Johannes L. Exploration into Galectin-3 Driven Endocytosis and Lattices. Biomolecules 2024; 14:1169. [PMID: 39334935 PMCID: PMC11430376 DOI: 10.3390/biom14091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Essentially all plasma membrane proteins are glycosylated, and their activity is regulated by tuning their cell surface dynamics. This is achieved by glycan-binding proteins of the galectin family that either retain glycoproteins within lattices or drive their endocytic uptake via the clathrin-independent glycolipid-lectin (GL-Lect) mechanism. Here, we have used immunofluorescence-based assays to analyze how lattice and GL-Lect mechanisms affect the internalization of the cell adhesion and migration glycoprotein α5β1 integrin. In retinal pigment epithelial (RPE-1) cells, internalized α5β1 integrin is found in small peripheral endosomes under unperturbed conditions. Pharmacological compounds were used to competitively inhibit one of the galectin family members, galectin-3 (Gal3), or to inhibit the expression of glycosphingolipids, both of which are the fabric of the GL-Lect mechanism. We found that under acute inhibition conditions, endocytic uptake of α5β1 integrin was strongly reduced, in agreement with previous studies on the GL-Lect driven internalization of the protein. In contrast, upon prolonged inhibitor treatment, the uptake of α5β1 integrin was increased, and the protein was now internalized by alternative pathways into large perinuclear endosomes. Our findings suggest that under these prolonged inhibitor treatment conditions, α5β1 integrin containing galectin lattices are dissociated, leading to an altered endocytic compartmentalization.
Collapse
Affiliation(s)
- Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Satish Kailasam Mani
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| | - Julio Lopes Sampaio
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Lydia Bouidghaghen
- CurieCoreTech–Metabolomics and Lipidomics Platform, Institute Curie, 75248 Paris, France; (J.L.S.); (L.B.)
| | - Ulf J. Nilsson
- Department of Chemistry, Lund University, 221 00 Lund, Sweden;
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, Paris Sciences & Lettres Research University, U1143 INSERM, UMR3666 CNRS, 75248 Paris, France; (E.D.); (S.K.M.)
| |
Collapse
|
13
|
Lozinski BM, Ta K, Dong Y. Emerging role of galectin 3 in neuroinflammation and neurodegeneration. Neural Regen Res 2024; 19:2004-2009. [PMID: 38227529 DOI: 10.4103/1673-5374.391181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Neuroinflammation and neurodegeneration are key processes that mediate the development and progression of neurological diseases. However, the mechanisms modulating these processes in different diseases remain incompletely understood. Advances in single cell based multi-omic analyses have helped to identify distinct molecular signatures such as Lgals3 that is associated with neuroinflammation and neurodegeneration in the central nervous system (CNS). Lgals3 encodes galectin-3 (Gal3), a β-galactoside and glycan binding glycoprotein that is frequently upregulated by reactive microglia/macrophages in the CNS during various neurological diseases. While Gal3 has previously been associated with non-CNS inflammatory and fibrotic diseases, recent studies highlight Gal3 as a prominent regulator of inflammation and neuroaxonal damage in the CNS during diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In this review, we summarize the pleiotropic functions of Gal3 and discuss evidence that demonstrates its detrimental role in neuroinflammation and neurodegeneration during different neurological diseases. We also consider the challenges of translating preclinical observations into targeting Gal3 in the human CNS.
Collapse
Affiliation(s)
- Brian M Lozinski
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Khanh Ta
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yifei Dong
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Miura A, Manabe Y, Suzuki KGN, Shomura H, Okamura S, Shirakawa A, Yano K, Miyake S, Mayusumi K, Lin CC, Morimoto K, Ishitobi J, Nakase I, Arai K, Kobayashi S, Ishikawa U, Kanoh H, Miyoshi E, Yamaji T, Kabayama K, Fukase K. De Novo Glycan Display on Cell Surfaces Using HaloTag: Visualizing the Effect of the Galectin Lattice on the Lateral Diffusion and Extracellular Vesicle Loading of Glycosylated Membrane Proteins. J Am Chem Soc 2024; 146:22193-22207. [PMID: 38963258 DOI: 10.1021/jacs.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.
Collapse
Affiliation(s)
- Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroki Shomura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Soichiro Okamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumpei Yano
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuto Miyake
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Mayusumi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenta Morimoto
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Jojiro Ishitobi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Biological Chemistry, School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenta Arai
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Shouhei Kobayashi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Hyogo 651-2492, Japan
| | - Ushio Ishikawa
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Hirotaka Kanoh
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba Ward, Sendai, Miyagi 981-8558, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Interdisciplinary Research Center for Radiation Sciences, Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Center for Advanced Modalities and DDS, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
16
|
Lo TH, Weng IC, Chen HL, Liu FT. The role of galectins in the regulation of autophagy and inflammasome in host immunity. Semin Immunopathol 2024; 46:6. [PMID: 39042263 DOI: 10.1007/s00281-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Chun Weng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Hung-Lin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Dermatology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Silvestri R, Zallocco L, Corrado A, Ronci M, Aceto R, Ricci B, Cipollini M, Dell’Anno I, De Simone C, De Marco G, Ferrarini E, Beghelli D, Mazzoni MR, Lucacchini A, Gemignani F, Giusti L, Landi S. Polymorphism Pro64His within galectin-3 has functional consequences at proteome level in thyroid cells. Front Genet 2024; 15:1380495. [PMID: 38933925 PMCID: PMC11199678 DOI: 10.3389/fgene.2024.1380495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The single nucleotide polymorphism (SNP) rs4644 at codon 64 of galectin-3 (gal-3, gene name: LGALS3), specifying the variant proline (P64) to histidine (H64), is known to affect the protein's functions and has been associated with the risk of several types of cancer, including differentiated thyroid carcinoma (DTC). Materials and methods To deepen our understanding of the biological effects of this SNP, we analyzed the proteome of two isogenic cell lines (NC-P64 vs. NA-H64) derived from the immortalized non-malignant thyrocyte cell line Nthy-Ori, generated through the CRISPR-Cas9 technique to differ by rs4644 genotype. We compared the proteome of these cells to detect differentially expressed proteins and studied their proteome in relation to their transcriptome. Results Firstly, we found, consistently with previous studies, that gal-3-H64 could be detected as a monomer, homodimer, and heterodimer composed of one cleaved and one uncleaved monomer, whereas gal-3-P64 could be found only as a monomer or uncleaved homodimer. Moreover, results indicate that rs4644 influences the expression of several proteins, predominantly upregulated in NA-H64 cells. Overall, the differential protein expression could be attributed to the altered mRNA expression, suggesting that rs4644 shapes the function of gal-3 as a transcriptional co-regulator. However, this SNP also appeared to affect post-transcriptional regulatory mechanisms for proteins whose expression was oppositely regulated compared to mRNA expression. It is conceivable that the rs4644-dependent activities of gal-3 could be ascribed to the different modalities of self-dimerization. Conclusion Our study provided further evidence that rs4644 could affect the gal-3 functions through several routes, which could be at the base of differential susceptibility to diseases, as reported in case-control association studies.
Collapse
Affiliation(s)
- Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alda Corrado
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
- COIIM, Interuniversitary Consortium for Engineering and Medicine, Campobasso, Italy
| | - Romina Aceto
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Benedetta Ricci
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Monica Cipollini
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Irene Dell’Anno
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, University “G.D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Giuseppina De Marco
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Ferrarini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, Via Gentile III da Varano, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Stefano Landi
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Anila MM, Rogowski P, Różycki B. Scrutinising the Conformational Ensemble of the Intrinsically Mixed-Folded Protein Galectin-3. Molecules 2024; 29:2768. [PMID: 38930833 PMCID: PMC11207097 DOI: 10.3390/molecules29122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Galectin-3 is a protein involved in many intra- and extra-cellular processes. It has been identified as a diagnostic or prognostic biomarker for certain types of heart disease, kidney disease and cancer. Galectin-3 comprises a carbohydrate recognition domain (CRD) and an N-terminal domain (NTD), which is unstructured and contains eight collagen-like Pro-Gly-rich tandem repeats. While the structure of the CRD has been solved using protein crystallography, current knowledge about conformations of full-length galectin-3 is limited. To fill in this knowledge gap, we performed molecular dynamics (MD) simulations of full-length galectin-3. We systematically re-scaled the solute-solvent interactions in the Martini 3 force field to obtain the best possible agreement between available data from SAXS experiments and the ensemble of conformations generated in the MD simulations. The simulation conformations were found to be very diverse, as reflected, e.g., by (i) large fluctuations in the radius of gyration, ranging from about 2 to 5 nm, and (ii) multiple transient contacts made by amino acid residues in the NTD. Consistent with evidence from NMR experiments, contacts between the CRD and NTD were observed to not involve the carbohydrate-binding site on the CRD surface. Contacts within the NTD were found to be made most frequently by aromatic residues. Formation of fuzzy complexes with unspecific stoichiometry was observed to be mediated mostly by the NTD. Taken together, we offer a detailed picture of the conformational ensemble of full-length galectin-3, which will be important for explaining the biological functions of this protein at the molecular level.
Collapse
Affiliation(s)
| | | | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland; (M.M.A.); (P.R.)
| |
Collapse
|
19
|
Gędaj A, Gregorczyk P, Żukowska D, Chorążewska A, Ciura K, Kalka M, Porębska N, Opaliński Ł. Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs. Cytokine Growth Factor Rev 2024; 77:39-55. [PMID: 38719671 DOI: 10.1016/j.cytogfr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.
Collapse
Affiliation(s)
- Aleksandra Gędaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Paulina Gregorczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Dominika Żukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Kalka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
20
|
Ostan NKH, Cole GB, Wang FZ, Reichheld SE, Moore G, Pan C, Yu R, Lai CCL, Sharpe S, Lee HO, Schryvers AB, Moraes TF. A secreted bacterial protein protects bacteria from cationic antimicrobial peptides by entrapment in phase-separated droplets. PNAS NEXUS 2024; 3:pgae139. [PMID: 38633880 PMCID: PMC11022072 DOI: 10.1093/pnasnexus/pgae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC-MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Flora Zhiqi Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronghua Yu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
21
|
Cai D, He F, Wu S, Wang Z, Bian Y, Wen C, Ding K. Functional structural domain synthesis of anti-pancreatic carcinoma pectin-like polysaccharide RN1. Carbohydr Polym 2024; 327:121668. [PMID: 38171659 DOI: 10.1016/j.carbpol.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The great structural and functional diversity supports polysaccharides as favorable candidates for new drug development. Previously we reported that a drug candidate pectin-like natural polysaccharide, RN1 might target galectin-3 (Gal-3) to impede pancreatic cancer cell growth in vivo. However, the quality control of polysaccharide-based drug research faces great challenges due to the heterogeneity. A potential solution is to synthesize structurally identified subfragments of this polysaccharide as alternatives. In this work, we took RN1 as an example, and synthesized five subfragments derived from the putative repeating units of RN1. Among them, pentasaccharide 4 showed an approximative binding affinity to Gal-3 in vitro, as well as an antiproliferative activity against pancreatic BxPC-3 cells comparable to that of RN1. Further, we scaled up pentasaccharide 4 to gram-scale in an efficient synthetic route with a 6.9 % yield from D-galactose. Importantly, pentasaccharide 4 significantly suppressed the growth of pancreatic tumor in vivo. Based on the mechanism complementarity of galactin-3 inhibitor and docetaxel, the combination administration of pentasaccharide 4 and docetaxel afforded better result. The result suggested pentasaccharide 4 was one of the functional structural domains of polysaccharide RN1 and might be a leading compound for anti-pancreatic cancer new drug development.
Collapse
Affiliation(s)
- Deqin Cai
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei He
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shengjie Wu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zixuan Wang
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ya Bian
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang Wen
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kan Ding
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Glycochemistry and Glycobiology Lab, Carbohydrate Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan 528400, China.
| |
Collapse
|
22
|
Siew JJ, Chen HM, Chiu FL, Lee CW, Chang YM, Chen HL, Nguyen TNA, Liao HT, Liu M, Hagar HT, Sun YC, Lai HL, Kuo MH, Blum D, Buée L, Jin LW, Chen SY, Ko TM, Huang JR, Kuo HC, Liu FT, Chern Y. Galectin-3 aggravates microglial activation and tau transmission in tauopathy. J Clin Invest 2024; 134:e165523. [PMID: 37988169 PMCID: PMC10786694 DOI: 10.1172/jci165523] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell-derived microglia in both its free and extracellular vesicular-associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.
Collapse
Affiliation(s)
| | | | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | - Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Yung-Chen Sun
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, Lille, France
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, USA
| | | | - Tai-Ming Ko
- Institute of Biomedical Sciences
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
23
|
Johannes L, Shafaq-Zadah M, Dransart E, Wunder C, Leffler H. Endocytic Roles of Glycans on Proteins and Lipids. Cold Spring Harb Perspect Biol 2024; 16:a041398. [PMID: 37735065 PMCID: PMC10759989 DOI: 10.1101/cshperspect.a041398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Most cell surface proteins are decorated by glycans, and the plasma membrane is rich in glycosylated lipids. The mechanisms by which the enormous complexity of these glycan structures on proteins and lipids is exploited to control glycoprotein activity by setting their cell surface residence time and the ways by which they are taken up into cells are still under active investigation. Here, two mechanisms are presented, termed galectin lattices and glycolipid-lectin (GL-Lect)-driven endocytosis, which are among the most prominent to establish a link between glycan information and endocytosis. Types of glycans on glycoproteins and glycolipids are reviewed from the angle of their interaction with glycan-binding proteins that are at the heart of galectin lattices and GL-Lect-driven endocytosis. Examples are given to show how these mechanisms affect cellular functions ranging from cell migration and signaling to vascularization and immune modulation. Finally, outstanding challenges on the link between glycosylation and endocytosis are discussed.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | | | - Estelle Dransart
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Institut Curie, 75248 Paris Cedex 05, France
| | - Hakon Leffler
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| |
Collapse
|
24
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
25
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550444. [PMID: 37546967 PMCID: PMC10402034 DOI: 10.1101/2023.07.24.550444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.
Collapse
|
27
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
28
|
Cao K, Li S, Wang Y, Hu H, Xiang S, Zhang Q, Liu Y. Cellular uptake of nickel by NikR is regulated by phase separation. Cell Rep 2023; 42:112518. [PMID: 37210726 DOI: 10.1016/j.celrep.2023.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/02/2023] [Accepted: 05/01/2023] [Indexed: 05/23/2023] Open
Abstract
Bacterial cells were long thought to be "bags of enzymes" with minimal internal structures. In recent years, membrane-less organelles formed by liquid-liquid phase separation (LLPS) of proteins or nucleic acids have been found to be involved in many important biological processes, although most of them were studied on eukaryotic cells. Here, we report that NikR, a bacterial nickel-responsive regulatory protein, exhibits LLPS both in solution and inside cells. Analyses of cellular nickel uptake and cell growth of E. coli confirm that LLPS enhances the regulatory function of NikR, while disruption of LLPS in cells promotes the expression of nickel transporter (nik) genes, which are negatively regulated by NikR. Mechanistic study shows that Ni(II) ions induces the accumulation of nik promoter DNA into the condensates formed by NikR. This result suggests that the formation of membrane-less compartments can be a regulatory mechanism of metal transporter proteins in bacterial cells.
Collapse
Affiliation(s)
- Kaiming Cao
- College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shixuan Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hongze Hu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Sijia Xiang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yangzhong Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
29
|
Vander Zanden CM, Majewski J, Weissbarth Y, Browne DF, Watkins EB, Gabius HJ. Structure of Galectin-3 bound to a model membrane containing ganglioside GM1. Biophys J 2023; 122:1926-1937. [PMID: 35986516 PMCID: PMC10257012 DOI: 10.1016/j.bpj.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactosidase-binding protein involved in various biological processes, including neuronal growth and adhesion. The pairing of Gal-3 with ganglioside GM1's pentasaccharide chain at the outer leaflet of the plasma membrane, which triggers downstream cell-signaling cascades, seems to be involved in these processes. A crucial feature of Gal-3 is its ability to form oligomers and supramolecular assemblies that connect various carbohydrate-decorated molecules. Although we know the atomistic structure of Gal-3 bound to small carbohydrate ligands, it remains unclear how Gal-3 binds GM1 in a membrane. Furthermore, the influence of this interaction on Gal-3's structure and oligomeric assembly has to be elucidated. In this study, we used X-ray reflectivity (XR) from a model membrane to determine the structure and surface coverage of Gal-3 bound to a membrane containing GM1. We observed that the carbohydrate recognition domain interacts with GM1's pentasaccharide, while the N-terminal domain is pointed away from the membrane, likely to facilitate protein-protein interactions. In a membrane containing 20 mol % GM1, Gal-3 covered ∼50% of the membrane surface with one Gal-3 molecule bound per 2130 Å2. We used molecular dynamics simulations and Voronoi tessellation algorithms to build an atomistic model of membrane-bound Gal-3, which is supported by the XR results. Overall, this work provides structural information describing how Gal-3 can bind GM1's pentasaccharide chain, a prerequisite for triggering regulatory processes in neuronal growth and adhesion.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado.
| | - Jaroslaw Majewski
- Division of Molecular and Cellular Biology, National Science Foundation, Alexandria, Virginia; Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico; Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Yvonne Weissbarth
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Danielle F Browne
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
30
|
Anila MM, Ghosh R, Różycki B. Membrane curvature sensing by model biomolecular condensates. SOFT MATTER 2023; 19:3723-3732. [PMID: 37190858 DOI: 10.1039/d3sm00131h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomolecular condensates (BCs) are fluid droplets that form in biological cells by liquid-liquid phase separation. Their major components are intrinsically disordered proteins. Vast attention has been given in recent years to BCs inside the cytosol and nucleus. BCs at the cell membrane have not been studied to the same extent so far. However, recent studies provide increasingly more examples of interfaces between BCs and membranes which function as platforms for diverse biomolecular processes. Galectin-3, for example, is known to mediate clathrin-independent endocytosis and has been recently shown to undergo liquid-liquid phase separation, but the function of BCs of galectin-3 in endocytic pit formation is unknown. Here, we use dissipative particle dynamics simulations to study a generic coarse-grained model for BCs interacting with lipid membranes. In analogy to galectin-3, we consider polymers comprising two segments - one of them mediates multivalent attractive interactions between the polymers, and the other one has affinity for association with specific lipid head groups. When these polymers are brought into contact with a multi-component membrane, they spontaneously assemble into droplets and, simultaneously, induce lateral separation of lipids within the membrane. Interestingly, we find that if the membrane is bent, the polymer droplets localize at membrane regions curved inward. Although the polymers have no particular shape or intrinsic curvature, they appear to sense membrane curvature when clustered at the membrane. Our results indicate toward a generic mechanism of membrane curvature sensing by BCs involved in such processes as endocytosis.
Collapse
Affiliation(s)
- Midhun Mohan Anila
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Rikhia Ghosh
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
31
|
Jiang Y, Lei G, Lin T, Zhou N, Wu J, Wang Z, Fan Y, Sheng H, Mao R. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biol 2023; 21:75. [PMID: 37024934 PMCID: PMC10080975 DOI: 10.1186/s12915-023-01580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Nan Zhou
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jintao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Zhou Wang
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
32
|
Zhu L, Tang Y, Li XY, Kerk SA, Lyssiotis CA, Sun X, Wang Z, Cho JS, Ma J, Weiss SJ. Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption. J Cell Biol 2023; 222:e202206121. [PMID: 36880731 PMCID: PMC9998966 DOI: 10.1083/jcb.202206121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the β-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.
Collapse
Affiliation(s)
- Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Yi Tang
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiao-Yan Li
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Samuel A. Kerk
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Xiaoyue Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zijun Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jung-Sun Cho
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Jun Ma
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| | - Stephen J. Weiss
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Voss PG, Wang JL. Liquid-liquid phase separation: Galectin-3 in nuclear speckles and ribonucleoprotein complexes. Exp Cell Res 2023; 427:113571. [PMID: 37003559 DOI: 10.1016/j.yexcr.2023.113571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Nuclear speckles are subcellular structures originally characterized by punctate immunofluorescence staining of the monoclonal antibody SC35, which recognizes an epitope on SRRM2 (serine/arginine repetitive matrix protein 2) and Sfrs2, a member of the SR (serine/arginine-rich) family of splicing factors. Galectin-3 co-localizes with SC35 in nuclear speckles, which represent one group of nuclear bodies that include the nucleolus, Cajal bodies and gems, paraspeckles, etc. Although they appear to have well-delineated physical boundaries, these nuclear bodies are not membrane-bound structures but represent macromolecular assemblies arising from a phenomenon called liquid-liquid phase separation. There has been much recent interest in liquid phase condensation as a newly recognized mechanism by which a cell can organize and compartmentalize subcellular structures with distinct composition. The punctate/speckled staining of galectin-3 with SC3 demonstrates their co-localization in a phase-separated body in vivo, under conditions endogenous to the cell. The purpose of the present review is to summarize the studies that document three key features of galectin-3 for its localization in liquid phase condensates: (a) an intrinsically disordered domain; (b) oligomer formation for multivalent binding; and (c) association with RNA and ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Patricia G Voss
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John L Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
34
|
A liquid-to-solid phase transition of Cu/Zn superoxide dismutase 1 initiated by oxidation and disease mutation. J Biol Chem 2023; 299:102857. [PMID: 36592929 PMCID: PMC9898760 DOI: 10.1016/j.jbc.2022.102857] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023] Open
Abstract
Cu/Zn superoxide dismutase 1 (SOD1) has a high propensity to misfold and form abnormal aggregates when it is subjected to oxidative stress or carries mutations associated with amyotrophic lateral sclerosis. However, the transition from functional soluble SOD1 protein to aggregated SOD1 protein is not completely clear. Here, we propose that liquid-liquid phase separation (LLPS) represents a biophysical process that converts soluble SOD1 into aggregated SOD1. We determined that SOD1 undergoes LLPS in vitro and cells under oxidative stress. Abnormal oxidation of SOD1 induces maturation of droplets formed by LLPS, eventually leading to protein aggregation and fibrosis, and involves residues Cys111 and Trp32. Additionally, we found that pathological mutations in SOD1 associated with ALS alter the morphology and material state of the droplets and promote the transformation of SOD1 to solid-like oligomers which are toxic to nerve cells. Furthermore, the fibrous aggregates formed by both pathways have a concentration-dependent toxicity effect on nerve cells. Thus, these combined results strongly indicate that LLPS may play a major role in pathological SOD1 aggregation, contributing to pathogenesis in ALS.
Collapse
|
35
|
Wang F, Zhou L, Eliaz A, Hu C, Qiang X, Ke L, Chertow G, Eliaz I, Peng Z. The potential roles of galectin-3 in AKI and CKD. Front Physiol 2023; 14:1090724. [PMID: 36909244 PMCID: PMC9995706 DOI: 10.3389/fphys.2023.1090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Acute kidney injury (AKI) is a common condition with high morbidity and mortality, and is associated with the development and progression of chronic kidney disease (CKD). The beta-galactoside binding protein galectin-3 (Gal3), with its proinflammatory and profibrotic properties, has been implicated in the development of both AKI and CKD. Serum Gal3 levels are elevated in patients with AKI and CKD, and elevated Gal3 is associated with progression of CKD. In addition, Gal3 is associated with the incidence of AKI among critically ill patients, and blocking Gal3 in murine models of sepsis and ischemia-reperfusion injury results in significantly lower AKI incidence and mortality. Here we review the role of Gal3 in the pathophysiology of AKI and CKD, as well as the therapeutic potential of targeting Gal3.
Collapse
Affiliation(s)
- Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lixin Zhou
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Amity Eliaz
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xinhua Qiang
- Department of Critical Care Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Li Ke
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Glenn Chertow
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Isaac Eliaz
- Amitabha Medical Center, Santa Rosa, CA, United States
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.,Center of Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
36
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
37
|
Sarangi N, Shafaq-Zadah M, Berselli GB, Robinson J, Dransart E, Di Cicco A, Lévy D, Johannes L, Keyes TE. Galectin-3 Binding to α 5β 1 Integrin in Pore Suspended Biomembranes. J Phys Chem B 2022; 126:10000-10017. [PMID: 36413808 PMCID: PMC9743206 DOI: 10.1021/acs.jpcb.2c05717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Galectin-3 (Gal3) is a β-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein α5β1 integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and α5β1 were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA. Using electrochemical impedance and fluorescence lifetime correlation spectroscopy, we found that on incubation with low nanomolar concentrations of wild-type Gal3, the membrane's admittance and fluidity, as well as integrin's lateral diffusivity, were enhanced. These effects were diminished in the following conditions: (i) absence of integrin, (ii) presence of lactose as a competitive inhibitor of glycan-Gal3 interaction, and (iii) use of a Gal3 mutant that lacked the N-terminal oligomerization domain (Gal3ΔNter). These findings indicated that WTGal3 oligomerized on α5β1 integrin in a glycan-dependent manner and that the N-terminal domain interacted directly with membranes in a way that is yet to be fully understood. At concentrations above 10 nM of WTGal3, membrane capacitance started to decrease and very slowly diffusing molecular species appeared, which indicated the formation of protein clusters made from WTGal3-α5β1 integrin assemblies. Overall, our study demonstrates the capacity of WTGal3 to oligomerize in a cargo protein-dependent manner at low nanomolar concentrations. Of note, these WTGal3 oligomers appeared to have membrane active properties that could only be revealed using our sensitive methods. At slightly higher WTGal3 concentrations, the capacity to generate lateral assemblies between cargo proteins was observed. In cells, this could lead to the construction of tubular endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis or to the formation of galectin lattices, depending on cargo glycoprotein stability at the membrane, the local Gal3 concentration, or plasma membrane intrinsic parameters. The study also demonstrates the utility of microcavity array-suspended lipid bilayers to address the biophysics of transmembrane proteins.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Massiullah Shafaq-Zadah
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Guilherme B. Berselli
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Jack Robinson
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Estelle Dransart
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Aurélie Di Cicco
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Daniel Lévy
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Ludger Johannes
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France,
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland,
| |
Collapse
|
38
|
Samulevich ML, Shamilov R, Aneskievich BJ. Thermostable Proteins from HaCaT Keratinocytes Identify a Wide Breadth of Intrinsically Disordered Proteins and Candidates for Liquid-Liquid Phase Separation. Int J Mol Sci 2022; 23:ijms232214323. [PMID: 36430801 PMCID: PMC9692912 DOI: 10.3390/ijms232214323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) move through an ensemble of conformations which allows multitudinous roles within a cell. Keratinocytes, the predominant cell type in mammalian epidermis, have had only a few individual proteins assessed for intrinsic disorder and its possible contribution to liquid-liquid phase separation (LLPS), especially in regard to what functions or structures these proteins provide. We took a holistic approach to keratinocyte IDPs starting with enrichment via the isolation of thermostable proteins. The keratinocyte protein involucrin, known for its resistance to heat denaturation, served as a marker. It and other thermostable proteins were identified by liquid chromatography tandem mass spectrometry and subjected to extensive bioinformatic analysis covering gene ontology, intrinsic disorder, and potential for LLPS. Numerous proteins unique to keratinocytes and other proteins with shared expression in multiple cell types were identified to have IDP traits (e.g., compositional bias, nucleic acid binding, and repeat motifs). Among keratinocyte-specific proteins, many that co-assemble with involucrin into the cell-specific structure known as the cornified envelope scored highly for intrinsic disorder and potential for LLPS. This suggests intrinsic disorder and LLPS are previously unrecognized traits for assembly of the cornified envelope, echoing the contribution of intrinsic disorder and LLPS to more widely encountered features such as stress granules and PML bodies.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06292-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269-3092, USA
- Correspondence: ; Tel.: +1-860-486-3053; Fax: +1-860-486-5792
| |
Collapse
|
39
|
Bhattacharya S, Zhang M, Hu W, Qi T, Heisterkamp N. Targeting disordered-structured domain interactions in Galectin-3 based on NMR and enhanced MD. Biophys J 2022; 121:4342-4357. [PMID: 36209362 PMCID: PMC9703043 DOI: 10.1016/j.bpj.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California
| | - Tong Qi
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California.
| |
Collapse
|
40
|
Tanaka M, Tsuboi Y, Yuyama KI. Formation of a core-shell droplet in a thermo-responsive ionic liquid/water mixture by using optical tweezers. Chem Commun (Camb) 2022; 58:11787-11790. [PMID: 36168832 DOI: 10.1039/d2cc02699f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many chemical and biological processes involve phase separation; however, controlling this is challenging. Here, we demonstrate local phase separation using optical tweezers in a thermo-responsive ionic liquid/water solution. Upon near-infrared laser irradiation, a single droplet is formed at the focal spot. The droplet has a core consisting of highly concentrated ionic liquid. The mechanism of the core-shell droplet formation is discussed in view of the spatial distribution of optical and thermal potentials.
Collapse
Affiliation(s)
- Maho Tanaka
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.
| |
Collapse
|
41
|
Herrador-Cañete G, Zalacain M, Labiano S, Laspidea V, Puigdelloses M, Marrodan L, Garcia-Moure M, Gonzalez-Huarriz M, Marco-Sanz J, Ausejo-Mauleon I, de la Nava D, Hernández-Osuna R, Martínez-García J, Silva-Pilipich N, Gurucega E, Patiño-García A, Hernández-Alcoceba R, Smerdou C, Alonso MM. Galectin-3 inhibition boosts the therapeutic efficacy of Semliki Forest virus in pediatric osteosarcoma. Mol Ther Oncolytics 2022; 26:246-264. [PMID: 35949950 PMCID: PMC9345771 DOI: 10.1016/j.omto.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The outcomes of metastatic and nonresponder pediatric osteosarcoma patients are very poor and have not improved in the last 30 years. These tumors harbor a highly immunosuppressive environment, making existing immunotherapies ineffective. Here, we evaluated the use of Semliki Forest virus (SFV) vectors expressing galectin-3 (Gal3) inhibitors as therapeutic tools, since both the inhibition of Gal3, which is involved in immunosuppression and metastasis, and virotherapy based on SFV have been demonstrated to reduce tumor progression in different tumor models. In vitro, inhibitors based on the Gal3 amino-terminal domain alone (Gal3-N) or fused to a Gal3 peptide inhibitor (Gal3-N-C12) were able to block the binding of Gal3 to the surface of activated T cells. In vivo, SFV expressing Gal3-N-C12 induced strong antitumor responses in orthotopic K7M2 and MOS-J osteosarcoma tumors, leading to complete regressions in 47% and 30% of mice, respectively. Pulmonary metastases were also reduced in K7M2 tumor-bearing mice after treatment with SFV-Gal3-N-C12. Both the antitumor and antimetastatic responses were dependent on modulation of the immune system, primarily including an increase in tumor-infiltrating lymphocytes and a reduction in the immunosuppressive environment inside tumors. Our results demonstrated that SFV-Gal3-N-C12 could constitute a potential therapeutic agent for osteosarcoma patients expressing Gal3.
Collapse
Affiliation(s)
- Guillermo Herrador-Cañete
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Sara Labiano
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Virginia Laspidea
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Montserrat Puigdelloses
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Lucía Marrodan
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Javier Marco-Sanz
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Iker Ausejo-Mauleon
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Reyes Hernández-Osuna
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Javier Martínez-García
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Noelia Silva-Pilipich
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Elisabeth Gurucega
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Bioinformatics Platform, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Rubén Hernández-Alcoceba
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Cristian Smerdou
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Gene Therapy and Regulation of Gene Expression Program, Cima Universidad de Navarra, Pamplona 31008, Spain
| | - Marta M Alonso
- Health Research Institute of Navarra (IdiSNA), Pamplona 31008, Spain.,Solid Tumor Program, Cima Universidad de Navarra, Pamplona 31008, Spain.,Department of Pediatrics, Clínica Universidad de Navarra, Pamplona 31008, Spain
| |
Collapse
|
42
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
43
|
Wei W, Bai L, Yan B, Meng W, Wang H, Zhai J, Si F, Zheng C. When liquid-liquid phase separation meets viral infections. Front Immunol 2022; 13:985622. [PMID: 36016945 PMCID: PMC9395683 DOI: 10.3389/fimmu.2022.985622] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells have both membranous and membraneless organelles. While the formation mechanism of membranous organelles is well understood, the formation mechanism of membraneless organelles remains unknown. Many biomolecules in the cytoplasm transition from the liquid phase to the agglutinated phase are known as liquid-liquid phase separation (LLPS). The biomolecular agglomerates’ physical properties enable them to function as dynamic compartments that respond to external pressures and stimuli. Scientists have gradually recognized the importance of phase separation during viral infections. LLPS provides a powerful new framework for understanding the viral life cycle from viral replication to evasion of host immune surveillance. As a result, this review focuses on the progress of LLPS research in viral infection and immune regulation to provide clues for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lu Bai
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Bing Yan
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Weiquan Meng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Chunfu Zheng, ; Fusheng Si,
| |
Collapse
|
44
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
45
|
Grazier JJ, Sylvester PW. Role of Galectins in Metastatic Breast Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-galectins] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Yin Y, Romei MG, Sankar K, Pal LR, Hon Hoi K, Yang Y, Leonard B, De Leon Boenig G, Kumar N, Matsumoto M, Payandeh J, Harris SF, Moult J, Lazar GA. Antibody Interfaces Revealed Through Structural Mining. Comput Struct Biotechnol J 2022; 20:4952-4968. [PMID: 36147680 PMCID: PMC9474289 DOI: 10.1016/j.csbj.2022.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022] Open
Abstract
Antibodies are fundamental effectors of humoral immunity, and have become a highly successful class of therapeutics. There is increasing evidence that antibodies utilize transient homotypic interactions to enhance function, and elucidation of such interactions can provide insights into their biology and new opportunities for their optimization as drugs. Yet the transitory nature of weak interactions makes them difficult to investigate. Capitalizing on their rich structural data and high conservation, we have characterized all the ways that antibody fragment antigen-binding (Fab) regions interact crystallographically. This approach led to the discovery of previously unrealized interfaces between antibodies. While diverse interactions exist, β-sheet dimers and variable-constant elbow dimers are recurrent motifs. Disulfide engineering enabled interactions to be trapped and investigated structurally and functionally, providing experimental validation of the interfaces and illustrating their potential for optimization. This work provides first insight into previously undiscovered oligomeric interactions between antibodies, and enables new opportunities for their biotherapeutic optimization.
Collapse
|
47
|
Lao Z, Dong X, Liu X, Li F, Chen Y, Tang Y, Wei G. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. J Chem Inf Model 2022; 62:3227-3238. [PMID: 35709363 DOI: 10.1021/acs.jcim.2c00414] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fused in sarcoma (FUS), a nuclear RNA binding protein, can not only undergo liquid-liquid phase separation (LLPS) to form dynamic biomolecular condensates but also aggregate into solid amyloid fibrils which are associated with the pathology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration diseases. Phosphorylation in the FUS low-complexity domain (FUS-LC) inhibits FUS LLPS and aggregation. However, it remains largely elusive what are the underlying atomistic mechanisms of this inhibitory effect and whether phosphorylation can disrupt preformed FUS fibrils, reversing the FUS gel/solid phase toward the liquid phase. Herein, we systematically investigate the impacts of phosphorylation on the conformational ensemble of the FUS37-97 monomer and dimer and the structure of the FUS37-97 fibril by performing extensive all-atom molecular dynamics simulations. Our simulations reveal three key findings: (1) phosphorylation shifts the conformations of FUS37-97 from the β-rich, fibril-competent state toward a helix-rich, fibril-incompetent state; (2) phosphorylation significantly weakens protein-protein interactions and enhances protein-water interactions, which disfavor FUS-LC LLPS as well as aggregation and facilitate the dissolution of the preformed FUS-LC fibril; and (3) the FUS37-97 peptide displays a high β-strand probability in the region spanning residues 52-67, and phosphorylation at S54 and S61 residues located in this region is crucial for the disruption of LLPS and aggregation of FUS-LC. This study may pave the way for ameliorating phase-separation-related pathologies via site-specific phosphorylation.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Xuewei Dong
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Fangying Li
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
48
|
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. MOLECULAR BIOMEDICINE 2022; 3:13. [PMID: 35543798 PMCID: PMC9092326 DOI: 10.1186/s43556-022-00075-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.
Collapse
Affiliation(s)
- Jingxian Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Weirui Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
50
|
Bonhoure A, Henry L, Bich C, Blanc L, Bergeret B, Bousquet M, Coux O, Stoebner P, Vidal M. Extracellular
20S
proteasome secreted via microvesicles can degrade poorly folded proteins and inhibit Galectin‐3 agglutination activity. Traffic 2022; 23:287-304. [DOI: 10.1111/tra.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Bonhoure
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| | - Laurent Henry
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Claudia Bich
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Lionel Blanc
- The Feinstein Institutes for Medical Research Manhasset New York USA
| | - Blanche Bergeret
- Institut des Biomolécules Max Mousseron Université Montpellier, CNRS Montpellier France
| | - Marie‐Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale Université Toulouse, CNRS, UPS Toulouse France
| | - Olivier Coux
- Centre de Recherche en Biologie cellulaire de Montpellier Univ. Montpellier, CNRS Montpellier France
| | - Pierre‐Emmanuel Stoebner
- Service de Dermatologie, CHU Nîmes Nîmes France
- Institut de Recherche en Cancérologie de Montpellier (IRCM) Université Montpellier Montpellier France
| | - Michel Vidal
- Laboratory of Pathogen Host Interactions Université Montpellier, CNRS Montpellier France
| |
Collapse
|