1
|
Chen J, Sun C, Xiang Y, Wang XL, Yao YF. Bismuth-doped methylamine lead bromide perovskite CH 3NH 3PbBr 3 single crystals for efficient hydrogen evolution via hydrobromic acid splitting. J Colloid Interface Sci 2025; 693:137567. [PMID: 40262203 DOI: 10.1016/j.jcis.2025.137567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Organic-inorganic hybrid halide perovskites have emerged as promising photocatalysts for hydrogen production because of their high absorption coefficients and large carrier diffusion lengths. However, the synthesis and development of organic-inorganic perovskite bromide photocatalysts have not been fully explored. Herein, we report on a novel high-activity Bismuth (Bi) doped CH3NH3PbBr3 (MAPbBr3) photocatalyst that was successfully synthesized using the reverse-temperature crystallization method. This material exhibited a reduced band gap and increased free-carrier concentration compared to pure MAPbBr3. Molecular dynamics and lattice changes within the photocatalyst were systematically investigated using solid-state nuclear magnetic resonance spectroscopy (NMR). The photocatalyst employs hypophosphorous acid (H3PO2) as a stabilizer and platinum (Pt) as a co-catalyst in the photocatalytic hydrogen bromide (HBr) splitting system, achieving a hydrogen evolution rate of 3946.52 μmol·g-1·h-1 under visible light irradiation. Our experimental results suggest that the enhanced photocatalytic performance is attributed to Bi doping, which modifies the charge distribution in the region of the lead (Pb) octahedron, thereby promoting effective charge separation and improving the hydrogen production efficiency. This study provides new insights into the photocatalytic hydrogen production capabilities of organic-inorganic hybrid bromide perovskites.
Collapse
Affiliation(s)
- Jiyuan Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Chao Sun
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Yulong Xiang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China
| | - Xue-Lu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China; Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, PR China.
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, PR China; Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, PR China.
| |
Collapse
|
2
|
Zhang W, Zhong Z, Wei X, Zhang Y, Ma W, Liu D, Han X, Dong J, Gong W, Dai F, Liu Y, Ma Y, Cui Y. Single-Crystal Metal-Organic and Covalent Organic Framework Hybrids Enable Efficient Photoelectrochemical CO 2 Reduction to Ethanol. J Am Chem Soc 2025; 147:17975-17984. [PMID: 40373328 DOI: 10.1021/jacs.5c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Multicarbon alcohols produced through photochemical and electrochemical CO2 reduction reactions (CO2RR) are promising alternatives to fossil fuels; however, their selectivity and efficiency remain low due to the high energy barrier for C-C coupling and the competition from hydrocarbon production. Here, we present a strategy to enhance ethanol efficiency and selectivity via cooperative catalysis in porous structures for photoelectrochemical (PEC) CO2RR. Using a coordination-templated strategy, we synthesized single crystals of MOF-COF (MOCOF) hybrids with metalloporphyrins, with their structures determined by single-crystal 3D electron diffraction. The porous frameworks featuring adjacent confined metalloporphyrins efficiently capture and cooperatively activate CO2, achieving outstanding PEC CO2-to-ethanol conversion. Particularly, the Pt-MOCOF delivers a Faradaic efficiency (FE) of 83.5% at -1.0 V with 91.7% carbon selectivity, surpassing state-of-the-art COF or MOF catalysts and ranking it among the top-performing catalysts. The catalyst system displays remarkable stability, maintaining 95% of its activity after 100 h of continuous operation. Experiments and theoretical calculations revealed that the cooperative catalyst enriches and stabilizes intermediates in the channels, guiding the reaction pathway toward ethanol production.
Collapse
Affiliation(s)
- Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiye Zhong
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, Shanghai Tech University, Shanghai 201210, China
| | - Xiaofei Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuting Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weili Ma
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Han
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Gong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhang Ma
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, Shanghai Tech University, Shanghai 201210, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Synergistic Chem-Bio Synthesis, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Q, Huang Y, Dai Z, Li Y, Li Z, Lai R, Wei F, Shao F. Covalent Organic Framework Membranes: Synthesis Strategies and Separation Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27605-27628. [PMID: 40305289 DOI: 10.1021/acsami.5c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as highly promising materials for membrane separations due to their high porosity, tunable pore sizes, ordered crystalline structures, and exceptional chemical stability. With these features, COF membranes possess greater selectivity and permeability than conventional materials, making them the preferred choice in various fields, including membrane separations. Fascinating research endeavors have emerged encompassing fabrication strategies for COF-based membranes and their diverse separation applications. Hence, this review summarizes the latest advancements in COF synthesis, including COF powders and continuous COF-based membranes and their applications in separation membranes. Special consideration was given to regulation strategies for the performance optimization of COF membranes in separation applications, such as pore size, hydrophilicity/hydrophobicity, surface charge, crystallinity, and stability. Furthermore, applications of COF membranes in water treatment, metal ion separation, organic solvent nanofiltration, and gas separation are comprehensively reviewed. Finally, the research results and future prospects for the development of COF membranes are discussed. Future research may be focused on the following key directions: (1) single-crystal COF fabrication, (2) cost-effective membrane preparation, (3) subnanometer pore engineering, (4) advanced characterization techniques, and (5) AI-assisted development.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou 215100, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | | | | | - Facai Wei
- Suzhou Laboratory, Suzhou 215100, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| |
Collapse
|
4
|
Huang P, Hou LH, Yang MY, Xiao C, Wu YL, Cai SJ, Guo WJ, Zhang M, Lu M, Lan YQ. One-Dimensional Covalent Organic Frameworks: From Design, Synthesis to Applications. Angew Chem Int Ed Engl 2025:e202507002. [PMID: 40355386 DOI: 10.1002/anie.202507002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
As an important branch of the covalent organic frameworks (COFs) family, one-dimensional COFs (1D COFs), which are formed by the ordered arrangement of confined covalent bonds in one dimension and non-covalent interactions (van der Waals force, π-π interactions, and hydrogen bonds) in the vertical two and three dimensions has aroused much attention. Compared with two-dimensional (2D)/three-dimensional (3D) COFs, 1D COFs behaved more easily dispersing and had more opportunities for active sites exposure due to their weaker interchain/interlayer interaction, modified nonlinear edge, and pore structures. These features make them have great application potential in many fields, including catalysis, energy storage, adsorption, sensing, and others. In this minireview, we highlight the state-of-the-art advances of 1D COFs in the structure design principles of building blocks, synthesis strategies, and their related applications. Furthermore, we present an in-depth outlook on the challenges and opportunities faced by 1D COFs, aiming to offer insights for future studies in this intriguing and significant research field.
Collapse
Affiliation(s)
- Pei Huang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Lu-Hua Hou
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ming-Yi Yang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Cheng Xiao
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Yan-Li Wu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Si-Jing Cai
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Wen-Jie Guo
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Mi Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Meng Lu
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| |
Collapse
|
5
|
Yuan F, Han G, Chen C, Fan X, Xiang S, Zhang Z. Synergistic Assembly of Single-Crystal 2D Porphyrin-Based Organic Polymers via Dative B─N Bonds and Halogen Bonds. Angew Chem Int Ed Engl 2025; 64:e202501875. [PMID: 40066773 DOI: 10.1002/anie.202501875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The rigorous synthetic methodologies have significantly impeded the progress in developing single-crystal extended organic polymers. Notably, the existence of macroscopic single-crystalline 2D porphyrin-based organic polymers has never been documented in the literature until now. In this study, we present a groundbreaking example of single-crystal 2D porphyrin-based organic polymers that are compatible with single-crystal X-ray diffraction (SXRD) for precise structural elucidation. Their formation is fundamentally dependent on the synergistic assembly facilitated by dative B─N bonds and halogen bonds. These crystals exhibit remarkable stability in both air and aqueous environments. Notably, the formation of the B-N Lewis pairs within these crystals significantly enhances the separation of photogenerated carriers, and their single crystals demonstrate exceptional photocatalytic activity for the production of hydrogen peroxide (H2O2) from water and oxygen, without the requirement for sacrificial agents. This pioneering discovery establishes a new approach for crystalline control within the realm of organic polymers.
Collapse
Affiliation(s)
- Furong Yuan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Guanrui Han
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Chenxin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xi Fan
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
6
|
Wu J, Zhang L, Chen Z, Wang X, Gu Q, Zhang Q. Single Crystals of a Covalent Organic Polymer for Photocatalysis. Chemistry 2025:e202501173. [PMID: 40275465 DOI: 10.1002/chem.202501173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Covalent organic polymers (COPs) with high crystallinity and excellent stability is very important for potential applications in photocatalysis and environmental remediation. However, most COPs are amorphous, limiting their structural characterization, photocatalytic performance, and mechanism exploration. In this study, we report the construction of a crystalline 1D COP (CityU-49) via dative boron←nitrogen (B←N) bonds using 3,6-di(pyridin-4-yl)-9H-carbazole (DPC) as the nitrogen donor and 1,4-bis(benzodioxaborole) as the boron donor. The dynamic and directional nature of B←N bonds enables a self-healing and self-correcting assembly process resulting in a highly crystalline and stable structure. Single-crystal X-ray diffraction (SCXRD) revealed the precise structure of CityU-49 providing insights into its ordered architecture. The photocatalytic performance of CityU-49 was conducted to investigat the degradation of rhodamine B (RhB) (a persistent and toxic organic pollutant). Under UV light irradiation, CityU-49 achieves 95% degradation of RhB in 300 minutes demonstrating excellent photocatalytic activity and environmental applicability. This study highlights the potential of crystalline COPs as efficient and sustainable photocatalysts paving the way for the development of advanced materials for environmental remediation and green technologies.
Collapse
Affiliation(s)
- Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, SAR, Hong Kong, 999077, P.R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) &Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong Province, 518057, P. R. China
| |
Collapse
|
7
|
Jia R, Ye R, Chang Z, Yu H, Wang M, Xu G, Guo Z, Zhan H. Supersaturation-Controlled Single-Crystal Growth of Covalent Organic Frameworks with Binary Solvents. Chemistry 2025; 31:e202404423. [PMID: 40024899 DOI: 10.1002/chem.202404423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
The ability to rapidly produce large single crystals is crucial for advancing the applications of covalent organic frameworks (COFs). Although the modulation strategy provides a straightforward method for growing high-quality single crystals, the slow crystallization process of COFs often limits their practical use. In this study, we combined the principles of crystallization thermodynamics and kinetics with the modulation strategy to develop a binary solvent-supersaturation method, enabling the growth of single-crystal COFs in a significantly shorter time. By systematically investigating the crystal-growth kinetics across different solvent ratios, we established a diffusion-reaction growth model, highlighting the essential role of supersaturation in controlling COF crystal growth. Especially, under this crystallization guidance, elegant single crystals of COFs built with heteroatom or other functionality can also facilely obtained, which spontaneously validate the universality of the protocol. Importantly, the resulting single-crystal COFs, characterized by high structural symmetry, exhibited notable second harmonic generation (SHG) activity, which could open new avenues for future research in this field.
Collapse
Affiliation(s)
- Ruiqiang Jia
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Ronglong Ye
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhen Chang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Guohai Xu
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
8
|
Hou B, Han X, Xie H, Yuan C, Guo Y, Chen X, Tang X, Su S, Jiang H, Ye ZM, Kirlikovali KO, Liu Y, Farha OK, Cui Y. Single-Crystal X-ray Structures of Homochiral Brønsted Acidic Covalent Organic Frameworks. J Am Chem Soc 2025; 147:12127-12137. [PMID: 40133085 DOI: 10.1021/jacs.5c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Determining the crystal structures of covalent organic frameworks (COFs) with atomic precision is pivotal for uncovering their properties and optimizing functionalities. However, the synthesis of high-quality single crystals of COFs suitable for X-ray diffraction analysis, especially chiral COFs (CCOFs), remains a formidable challenge. In this work, we report two three-dimensional (3D) CCOFs synthesized via imine condensation of tetrahedral tetraamine and tetraaldehydes derived from optically active 1,1'-biphenol phosphoryl chloride or thiophosphoryl chloride. Single crystals of varying sizes are obtained through either a low-temperature modulation strategy, yielding large crystals up to 100 μm, or a solvothermal method. The large single crystals are structurally characterized by single-crystal X-ray diffraction, achieving a resolution of 0.90 Å. These two CCOFs are isostructural and each features a 4-fold interpenetrated diamondoid open framework with all phosphoric acid groups periodically aligned within tubular helical channels, displaying enhanced Brønsted acidity compared to non-immobilized acids. The frameworks exhibit permanent porosity, chemical resistance in boiling water, 14 M NaOH, and 0.1 M HCl, and thermal stability up to 400 °C. Notably, these CCOFs serve as efficient and recyclable heterogeneous Brønsted acid catalysts in the asymmetric addition to aromatic aldehydes, enantioselective transfer hydrogenation of ketimines, and three-component direct asymmetric Mannich reactions involving aldimines and cyclic ketones, achieving good to high enantioselectivities (up to 99.5% ee) that surpass those obtained in analogous systems with homogeneous catalysts. This work represents the first successful demonstration of single-crystal structures of homochiral COFs, paving the way for in-depth investigations into structure-property relationships in enantioselective processes and facilitating the design of novel functional chiral organic materials.
Collapse
Affiliation(s)
- Bang Hou
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Xing Han
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Chen Yuan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yu Guo
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinfa Chen
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xianhui Tang
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Hong Jiang
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Ming Ye
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Kent O Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Liu
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Yong Cui
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Xia SK, Liu Y, Zhu RM, Feng JD, Han WK, Gu ZG. 1D Covalent Organic Frameworks with Tunable Dual-Cobalt Synergistic Sites for Efficient CO 2 Photoreduction. Macromol Rapid Commun 2025; 46:e2400780. [PMID: 39731336 DOI: 10.1002/marc.202400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Indexed: 12/29/2024]
Abstract
Diatomic catalysts enhance photocatalytic CO2 reduction through synergistic effects. However, precisely regulating the distance between two catalytic centers to achieve synergistic catalysis poses significant challenges. In this study, a series of one-dimensional (1D) covalent organic frameworks (COFs) are designed with adjustable micropores to facilitate efficient CO2 photoreduction. CO2 molecules are anchored between dual-cobalt centers within micropores, thus effectively reducing their activation energy and initiating the photocatalytic process. Additionally, the formation of *COOH intermediates is significantly influenced by the coordination microenvironment around dual-cobalt sites. Notably, COF-Co-N4 exhibited remarkable CO2 photoreduction activity with a CO evolution rate of 110.3 µmol·g-1·h-1, which surpasses most of previously reported single-atom-site photocatalysts. Comprehensive characterization and density functional theory (DFT) calculations revealed that 1D COFs with dual-cobalt sites possess the ability to anchor CO2 molecules, thereby enhancing the efficacy of synergistic catalysis. Simultaneously, COF-Co-N4 with quadruple nitrogen coordination significantly reduced the energy barrier of crucial *COOH intermediate, facilitating efficient photocatalytic CO2 reduction. This study meticulously modulated the coordination microenvironment surrounding dual-cobalt synergistic sites, providing new insight into the design of high-performance photocatalysts.
Collapse
Affiliation(s)
- Shu-Kun Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Zhang X, Hu J, Liu H, Sun T, Wang Z, Zhao Y, Zhang YB, Huai P, Ma Y, Jiang S. Determining Covalent Organic Framework Structures Using Electron Crystallography and Computational Intelligence. J Am Chem Soc 2025; 147:1709-1720. [PMID: 39621315 PMCID: PMC11744758 DOI: 10.1021/jacs.4c12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024]
Abstract
The structural characterization of new materials often poses immense challenges, especially when obtaining single-crystal structures is difficult, which is a common difficulty with covalent organic frameworks (COFs). Despite this, understanding the atomic structure is crucial as it provides insights into the arrangement and connectivity of organic building blocks, offering the opportunity to establish the correlation of structure-function relationships and unravel material properties. In this study, we present an approach for determining the structures of COFs, an integration of electron crystallography and computational intelligence (COF+). By applying established chemistry knowledge and employing particle swarm optimization (PSO) for trial structure generation, we overcome existing limitations, thus paving the way for advancements in COF structural determination. We have successfully implemented this technique on four representative COFs, each with unique characteristics. These examples underline the accuracy and efficacy of our approach in addressing the challenges tied to COF structural determination. Furthermore, our approach has revealed new structure candidates with different topologies or interpenetrations that are chemically feasible. This discovery demonstrates the capability of our algorithm in constructing trial COF structures without being influenced by topological factors. Our new approach to COF structure determination represents a significant advancement in the field and opens new avenues for exploring the properties and applications of COF materials.
Collapse
Affiliation(s)
- Xiangyu Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Junyi Hu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Huiyu Liu
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Tu Sun
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Zidi Wang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yingbo Zhao
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Ping Huai
- Center
for Transformative Science, ShanghaiTech
University, Shanghai 201210, China
| | - Yanhang Ma
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| | - Shan Jiang
- School
of Physical Science and Technology & Shanghai Key Laboratory of
High-Resolution Electron Microscopy, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|
11
|
Wang X, Zhang Y, Zhang L, Gu Q, Liu Q, Ren Y, Lee CS, Zhang Q. A tetrathiafulvalene-containing covalent organic nanobelt: preparation, crystal structure and application for sodium-ion batteries. Chem Sci 2024; 15:20397-20402. [PMID: 39583562 PMCID: PMC11580028 DOI: 10.1039/d4sc06300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
Developing single crystals of covalent organic polymers (COPs) is highly attractive as they can afford precise structural information for studying internal interactions. Employing dative boron-nitrogen (B-N) bonds to construct single-crystalline COPs is feasible since the dynamic linkages can self-correct errors, thus improving crystallization. In this project, we develop a single-crystal COP with a nanobelt structure, namely CityU-26, via B-N-driven-assembly between 4,4',5,5'-tetrakis(4-(pyridin-4-yl)phenyl)-2,2'-bi(1,3-dithiolylidene) and 1,4-bis(benzodioxaborole) benzene. The B-N coordination between these units gives rise to one-dimensional (1D) nanobelts, and hydrogen bonding interactions between the nanobelts lead to the formation of a three-dimensional (3D) supramolecular structure. CityU-26 demonstrates an impressive sodium storage capability of 365 mA h g-1 with a current density of 150 mA g-1, and the capability could reach 315 mA h g-1 at 750 mA g-1. The outstanding sodium storage behaviors of CityU-26 underscore the functionalization of B-N polymers, providing a promising platform for the development of efficient energy materials.
Collapse
Affiliation(s)
- Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Yuchan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Chun Sin Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), Hong Kong Institute of Clean Energy, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
12
|
Doremus JG, Lotsi B, Sharma A, McGrier PL. Photocatalytic applications of covalent organic frameworks: synthesis, characterization, and utility. NANOSCALE 2024; 16:21619-21672. [PMID: 39495099 DOI: 10.1039/d4nr03204g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Photocatalysis has emerged as an energy efficient and safe method to perform organic transformations, and many semiconductors have been studied for use as photocatalysts. Covalent organic frameworks (COFs) are an established class of crystalline, porous materials constructed from organic units that are easily tunable. COFs importantly display semiconductor properties and respectable photoelectric behaviour, making them a strong prospect as photocatalysts. In this review, we summarize the design, synthetic methods, and characterization techniques for COFs. Strategies to boost photocatalytic performance are also discussed. Then the applications of COFs as photocatalysts in a variety of reactions are detailed. Finally, a summary, challenges, and future opportunities for the development of COFs as efficient photocatalysts are entailed.
Collapse
Affiliation(s)
- Jared G Doremus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Bertha Lotsi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Aadarsh Sharma
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Psaras L McGrier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
Wang Z, Zhang Y, Liu J, Chen Y, Cheng P, Zhang Z. Flux synthesis of two-dimensional covalent organic frameworks. Nat Protoc 2024; 19:3489-3519. [PMID: 39112651 DOI: 10.1038/s41596-024-01028-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 05/20/2024] [Indexed: 12/15/2024]
Abstract
Covalent organic frameworks (COFs) are crystalline porous polymers constructed from organic building blocks into ordered two- or three-dimensional networks through dynamic covalent bonds. Attributed to their high porosity, well-defined structure, tailored functionality and excellent chemical stability, COFs have been considered ideal sorbents for various separation applications. The synthesis of COFs mainly employs the solvothermal method, which usually requires organic solvents in sealed Pyrex tubes, resulting in unscalable powdery products and environmental pollution that seriously limits their practical applications. Herein, our protocol focuses on an emerging synthesis method for COFs based on organic flux synthesis without adding solvents. The generality of this synthesis protocol has been applied in preparing various types of COFs, including olefin-linked, imide-linked, Schiff-based COFs on both gram and kilogram scales. Furthermore, organic flux synthesis avoids the disadvantages of solvothermal synthesis and enhances the crystallization and porosity of COFs. Typically, COF synthesis takes 3-5 d to complete, and subsequent washing procedures leading to pure COFs need 1 d. The procedure for kilogram-scale production of COFs with commercially available monomers is also provided. The resulting COFs are suitable for separation applications, particularly as adsorbent materials for industrial gas separation and water treatment applications. The protocol is suited for users with prior expertise in the synthesis of inorganic materials and porous organic materials.
Collapse
Affiliation(s)
- Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Pharmacy, Nankai University, Tianjin, P.R. China
| | - Yushu Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- College of Pharmacy, Nankai University, Tianjin, P.R. China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, P.R. China
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, P.R. China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, P.R. China.
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin, P.R. China.
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
14
|
Wei L, Wu S, Li C, Liu C, Chen H, Zhang YB, Zheng F, Ma Y, Zhao Y. Dimensionality and Molecular Packing Control of Covalent Organic Frameworks through Pendant Group Design. J Am Chem Soc 2024; 146:31384-31390. [PMID: 39503737 DOI: 10.1021/jacs.4c11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Tuning the dimensions and molecular packing geometry of crystalline organic frameworks and polymers represents an important challenge for reticular chemistry. Here we show that for extended structures made of 1,3,6,8-tetrakis(4-aminophenyl)pyrene (PyTTA) linked with methoxy group functionalized terephthalaldehyde aldehydes, simple substituents on the aldehyde linker can have profound structure directing effects due to noncovalent interactions. Specifically, reacting 2,3-dimethoxyterephthalaldehyde with PyTTA gives a 2D covalent organic framework with unique AA-inclined-AA stacking and bilayer pyrene motifs, whereas reacting 2,5-dimethoxyterephthalaldehyde with PyTTA gives a 1D crystalline polymer with AB stacking and isolated pyrene motifs. Both materials show high crystallinity, allowing for atomic resolution structure determination using three-dimensional electron diffraction, and the similarity of their fluorescence properties shows the electronic structures of pyrene-based extended structures mostly depends on the in-plane structures, which is supported by density functional theory calculations. These two pyrene-based extended structures also show different fluorescence responses to organic vapors due to different pore environments. The current work shows the potential of noncovalent interactions in the reticular design of functional organic materials.
Collapse
Affiliation(s)
- Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shitao Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengji Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Fan Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
15
|
Lassitter T, Hastings J, Neumann SE, Yaghi OM, Glover TG. Gas Adsorption in Flexible COF-506 and COF-506-Cu. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39561087 DOI: 10.1021/acs.langmuir.4c03534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Flexible covalent-organic frameworks (COFs) display a variety of guest-dependent dynamic behaviors, but because these are an emerging class of materials, very little experimental adsorption data exists. This work examines the adsorption properties of COF-506 and COF-506-Cu utilizing various adsorbates as probe molecules. These materials have small surface areas (<100 m2/g) but still have significant capacity for methanol and isopropanol compared to activated carbon, even though the COF contains approximately 1/10th the surface area of many activated carbons. Isotherms for ethane/ethylene collected up to 1 bar show moderate selectivity for ethylene, but interestingly, this selectivity is reversed when the isotherms are measured up to 5 bar. The change in selectivity occurs because the ethane isotherm has a distinct stepwise increase in capacity near 4 bar. The adsorption data indicate broad generalizations and analogies of COFs to activated carbon should be avoided; that the adsorption capacity COFs may not correlate to surface area; and that high-pressure adsorption isotherms may have steps in the adsorption isotherm where capacity increases significantly.
Collapse
Affiliation(s)
- Thomas Lassitter
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - Jon Hastings
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
| | - T Grant Glover
- Department of Chemical & Biomolecular Engineering, University of South Alabama, Mobile, Alabama 36688, United States
| |
Collapse
|
16
|
Yu B, Tao Y, Yao X, Jin Y, Liu S, Xu T, Wang H, Wu H, Zhou W, Zhou X, Ding X, Wang X, Xiao X, Zhang YB, Jiang J. Single-Crystalline 3D Covalent Organic Frameworks with Exceptionally High Specific Surface Areas and Gas Storage Capacities. J Am Chem Soc 2024; 146:28932-28940. [PMID: 39392614 DOI: 10.1021/jacs.4c09680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Single-crystalline covalent organic frameworks (COFs) are highly desirable toward understanding their pore chemistry and functions. Herein, two 50-100 μm single-crystalline three-dimensional (3D) COFs, TAM-TFPB-COF and TAPB-TFS-COF, were prepared from the condensation of 4,4',4″,4‴-methanetetrayltetraaniline (TAM) with 3,3',5,5'-tetrakis(4-formylphenyl)bimesityl (TFPB) and 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) with 4,4',4″,4‴-silanetetrayltetrabenzaldehyde (TFS), respectively, in 1,4-dioxane under the catalysis of acetic acid. Single-crystal 3D electron diffraction reveals the triply interpenetrated dia-b networks of TAM-TFPB-COF with atom resolution, while the isostructure of TAPB-TFS-COF was disclosed by synchrotron single-crystal X-ray diffraction and synchrotron powder X-ray diffraction with Le Bail refinements. The nitrogen sorption measurements at 77 K disclose the microporosity nature of both activated COFs with their exceptionally high Brunauer-Emmett-Teller surface areas of 3533 and 4107 m2 g-1, representing the thus far record high specific surface area among imine-bonded COFs. This enables the activated COFs to exhibit also the record high methane uptake capacities up to 28.9 wt % (570 cm3 g-1) at 25 °C and 200 bar among all COFs reported thus far. This work not only presents the structures of two single-crystalline COFs with exceptional microporosity but also provides an example of atom engineering to adjust permanent microporous structures for methane storage.
Collapse
Affiliation(s)
- Baoqiu Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shan Liu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Xin Zhou
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Jianzhuang Jiang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Zhang L, Chen Z, Li XX, Wang X, Gu Q, Wang X, Lee CS, Lan YQ, Zhang Q. A Covalent Organic Nanoribbon: Preparation, Single-Crystal Structure with Chinese Luban Lock Configuration, and Photocatalytic Behavior. Angew Chem Int Ed Engl 2024; 63:e202411018. [PMID: 38932606 DOI: 10.1002/anie.202411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The multiple mortise-and-tenon joint parts are the core factors to provide the structural stability and diversity of Chinese Luban locks; however, constructing such structures is very challenging. Herein, single crystals of a covalent organic nanoribbon (named CityU-27) are prepared through the assembly of hexahydroxytriphenylene (HHTP), 4,4'-vinylenedipyridine (BYE), and phenylboronic acid (BA) together through dative boron←nitrogen (B←N) bonds. The single-crystal X-ray diffraction analysis indicates that CityU-27 has a covalent organic nanoribbon structure, where each nanoribbon forms multiple and tight π-π interactions with four neighboring others to generate a Luban lock-like configuration. CityU-27 has been demonstrated to be an efficient photocatalyst in a one-pot tandem reaction of hydrogen evolution reaction (HER) and semi-hydrogenation reaction of alkynes in series to produce olefins without any additional photosensitizers and co-catalysts (metal-free).
Collapse
Affiliation(s)
- Lei Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Zihao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xiao-Xin Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510000, P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510000, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), & Hong Kong Institute of Clean Energy, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
18
|
Cheng C, Liu Y, Sheng G, Jiang X, Kang X, Jiang C, Liu Y, Zhu Y, Cui Y. Construction of Benzoxazine-linked One-Dimensional Covalent Organic Frameworks Using the Mannich Reaction. Angew Chem Int Ed Engl 2024; 63:e202403473. [PMID: 38829678 DOI: 10.1002/anie.202403473] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Covalent polymerization of organic molecules into crystalline one-dimensional (1D) polymers is effective for achieving desired thermal, optical, and electrical properties, yet it remains a persistent synthetic challenge for their inherent tendency to adopt amorphous or semicrystalline phases. Here we report a strategy to synthesize crystalline 1D covalent organic frameworks (COFs) composing quasi-conjugated chains with benzoxazine linkages via the one-pot Mannich reaction. Through [4+2] and [2+2] type Mannich condensation reactions, we fabricated stoichiometric and sub-stoichiometric 1D covalent polymeric chains, respectively, using doubly and singly linked benzoxazine rings. The validity of their crystal structures has been directly visualized through state-of-the-art cryogenic low-dose electron microscopy techniques. Post-synthetic functionalizations of them with a chiral MacMillan catalyst produce crystalline organic photocatalysts that demonstrated excellent catalytic and recyclable performance in light-driven asymmetric alkylation of aldehydes, affording up to 94 % enantiomeric excess.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xinru Jiang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xing Kang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
20
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
21
|
Wayment LJ, Teat SJ, Huang S, Chen H, Zhang W. Dynamic Entwined Topology in Helical Covalent Polymers Dictated by Competing Supramolecular Interactions. Angew Chem Int Ed Engl 2024; 63:e202403599. [PMID: 38444217 DOI: 10.1002/anie.202403599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Naturally occurring polymeric structures often consist of 1D polymer chains intricately folded and entwined through non-covalent bonds, adopting precise topologies crucial for their functionality. The exploration of crystalline 1D polymers through dynamic covalent chemistry (DCvC) and supramolecular interactions represents a novel approach for developing crystalline polymers. This study shows that sub-angstrom differences in the counter-ion size can lead to various helical covalent polymer (HCP) topologies, including a novel metal-coordination HCP (m-HCP) motif. Single-crystal X-ray diffraction (SCXRD) analysis of HCP-Na revealed that double helical pairs are formed by sodium ions coordinating to spiroborate linkages to form rectangular pores. The double helices are interpenetrated by the unreacted diols coordinating sodium ions. The reticulation of the m-HCP structure was demonstrated by the successful synthesis of HCP-K. Finally, ion-exchange studies were conducted to show the interconversion between HCP structures. This research illustrates how seemingly simple modifications, such as changes in counter-ion size, can significantly influence the polymer topology and determine which supramolecular interactions dominate the crystal lattice.
Collapse
Affiliation(s)
- Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Department of Chemistry, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO-80309, USA
| |
Collapse
|
22
|
Bommakanti S, Nath S, Panda R, Panda SN, Mohapatra J, Puthukkudi A, Rajput CV, Anwar S, Das R, Biswal BP. Octupolar Cyclotriphosphazene-Cored Self-Standing Covalent Organic Framework Membranes as Nonlinear Optical Materials: Impact of Linkage Types and Material Forms. J Phys Chem Lett 2024:4965-4975. [PMID: 38690787 DOI: 10.1021/acs.jpclett.4c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Conjugated and processable self-standing vinylene-linked covalent organic framework membranes (COFMs) are highly demanding for photonics and optoelectronics. In this work, we have fabricated the first cyclotriphosphazene (CTP) cored vinylene-linked self-standing COFM (CTP-PDAN). For comparison purposes, we have successfully fabricated the imine-linked congener (CTP-PDA). Leveraging the inherent nonlinear optical (NLO) response of the CTP core, both membranes were directly mounted to evaluate NLO parameters using the open-aperture (OA) Z-scan technique. Direct measurement of NLO responses on membranes is advantageous and free from solvent and scattering effects, making it a more practical approach compared to the conventional dispersion mode. The OA Z-scan transmission yields a reverse saturable absorption signature exhibiting a higher NLO absorption coefficient (β) of 58.37 cm/GW for CTP-PDAN, compared to that of the imine-linked CTP-PDA COFM (β = 8.5 cm/GW). These results can be correlated to the efficient conjugation through the vinylene linkage in CTP-PDAN compared to the imine linked congener.
Collapse
Affiliation(s)
- Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Rudrashish Panda
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Sankalpa N Panda
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Chetan V Rajput
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Sharmistha Anwar
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Ritwick Das
- School of Physical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Optics and Photonics Centre, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| |
Collapse
|
23
|
Khojastegi A, Khosropour A, Amirjalayer S, Mosleh I, Abbaspourrad A. Modulating Narrow Bandgap in a Diacetylene Functionalized Woven Covalent Organic Framework as a Visible Light Responsive Photocatalyst. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2309367. [PMID: 39071947 PMCID: PMC11270943 DOI: 10.1002/adfm.202309367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 07/30/2024]
Abstract
Woven covalent organic frameworks (COF) possess three dimensional frameworks with spatially isolated Cu(I) centers and have promising optoelectronic properties because of metal to ligand charge transfer (MLCT). However, despite their potential, woven COFs have not yet been investigated as photocatalysts. In this study, we developed a new woven COF, Cu-PhenBDA-COF, functionalized with diacetylene bonds. Cu-PhenBDA-COF was fully characterized, and the optoelectronic and photocatalytic properties were compared to previously reported Cu-COF-505. The diacetylene bonds of the linker positively impacted the optoelectronic properties of Cu-PhenBDA-COF and resulted in a narrower band gap and better charge separation efficiency. When the Cu(I) center was removed from both woven COFs, the absorption edge was blue shifted, resulting in a wider band gap, and there was a considerable decrease in the charge separation efficiency, underscoring the pivotal role of MLCT. This trend was reflected in the photocatalytic activity of the woven COFs toward the degradation of sulfamethoxazole in water, where the highest reaction rate constant (k app ) was recorded for the metallated diacetylene functionalized woven COF, Cu-PhenBDA-COF.
Collapse
Affiliation(s)
- Anahita Khojastegi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Saeed Amirjalayer
- Institute for Solid State Theory, Center for Multiscale Theory and Computation, Center for Nanotechnology, University of Münster, 48149 Münster, Germany
| | - Imann Mosleh
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Han J, Feng J, Kang J, Chen JM, Du XY, Ding SY, Liang L, Wang W. Fast growth of single-crystal covalent organic frameworks for laboratory x-ray diffraction. Science 2024; 383:1014-1019. [PMID: 38422145 DOI: 10.1126/science.adk8680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
The imine-exchange strategy makes single-crystal growth of covalent organic frameworks (COFs) with large size (>15 microns) possible but is a time-consuming process (15 to 80 days) that has had limited success (six examples) and restricts structural characterization to synchrotron-radiation sources for x-ray diffraction studies. We developed a CF3COOH/CF3CH2NH2 protocol to harvest single-crystal COFs within 1 to 2 days with crystal sizes of up to 150 microns. The generality was exemplified by the feasible growth of 16 high-quality single-crystal COFs that were structurally determined by laboratory single-crystal x-ray diffraction with resolutions of up to 0.79 angstroms. The structures obtained included uncommon interpenetration of networks, and the details of the structural evolution of conformational isomers and host-guest interaction could be determined at the atomic level.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Kang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jie-Min Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
25
|
Hu HC, Wang ZP, Liang L, Du XY, Li T, Feng J, Xiao TT, Jin ZM, Ding SY, Liu Q, Lu LQ, Xiao WJ, Wang W. Bottom-Up Construction of Ni(II)-Incorporated Covalent Organic Framework for Metallaphotoredox Catalysis. Chemistry 2024; 30:e202303476. [PMID: 38065837 DOI: 10.1002/chem.202303476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 12/30/2023]
Abstract
The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.
Collapse
Affiliation(s)
- Hai-Chao Hu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhi-Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Lin Liang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Xin-Yu Du
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ting Li
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jie Feng
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tian-Tian Xiao
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze-Ming Jin
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Liang-Qiu Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Wei Wang
- State Key Laboratory of Applied Organic Chemistry, College of, Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
26
|
Zhou Z, Xiong XH, Zhang L, Li Y, Yang Y, Dong X, Lou D, Wei Z, Liu W, Su CY, Sun J, Zheng Z. Linker-Guided Growth of Single-Crystal Covalent Organic Frameworks. J Am Chem Soc 2024; 146:3449-3457. [PMID: 38268407 DOI: 10.1021/jacs.3c13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The core features of covalent organic frameworks (COFs) are crystallinity and porosity. However, the synthesis of single-crystal COFs with monomers of diverse reactivity and adjustment of their pore structures remain challenging. Here, we show that linkers that can react with a node to form single-crystal COFs can guide other linkers that form either COFs or amorphous polymers with the node to gain single-crystal COFs with mixed components, which are homogeneous on the unit cell scale with controlled ratios. With the linker-guided crystal growth method, we created nine types of single-crystal COFs with up to nine different components, which are more complex than any known crystal. The structure of the crystal adapted approximately to that of the main component, and its pore volume could be expanded up to 8.8%. Different components lead to complex and diverse pore structures and offer the possibilities to gain positive synergies, as exemplified by a bicomponent COF with 2200 and 733% SO2 uptake capacity of that of the two pure-component counterparts at 298 K and 0.002 bar. The selectivity for separation of SO2/CO2 ranges from 1230 to 4247 for flue gas based on ideal adsorbed solution theory, recording porous crystals. The bicomponent COF also exhibits a 1300% retention time of its pure-component counterparts for SO2 in a dynamic column breakthrough experiment for deep desulfurization.
Collapse
Affiliation(s)
- Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences Peking University, Beijing 100000, China
| | - Xiao-Hong Xiong
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Lei Zhang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen 518000, China
| | - Yuyao Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Yonghang Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Xin Dong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Dongyang Lou
- Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Zhangwen Wei
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Wei Liu
- Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510000, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences Peking University, Beijing 100000, China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510000, China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 522000, China
| |
Collapse
|
27
|
Sun J, Wang X, Wang Q, Peng L, Liu Y, Wei D. Ultra-fast supercritically solvothermal polymerization for large single-crystalline covalent organic frameworks. Nat Protoc 2024; 19:340-373. [PMID: 38001366 DOI: 10.1038/s41596-023-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/11/2023] [Indexed: 11/26/2023]
Abstract
Crystalline polymer materials, e.g., hyper-crosslinked polystyrene, conjugate microporous polymers and covalent organic frameworks, are used as catalyst carriers, organic electronic devices and molecular sieves. Their properties and applications are highly dependent on their crystallinity. An efficient polymerization strategy for the rapid preparation of highly or single-crystalline materials is beneficial not only to structure-property studies but also to practical applications. However, polymerization usually leads to the formation of amorphous or poorly crystalline products with small grain sizes. It has been a challenging task to efficiently and precisely assemble organic molecules into a single crystal through polymerization. To address this issue, we developed a supercritically solvothermal method that uses supercritical carbon dioxide (sc-CO2) as the reaction medium for polymerization. Sc-CO2 accelerates crystal growth due to its high diffusivity and low viscosity compared with traditional organic solvents. Six covalent organic frameworks with different topologies, linkages and crystal structures are synthesized by this method. The as-synthesized products feature polarized photoluminescence and second-harmonic generation, indicating their high-quality single-crystal nature. This method holds advantages such as rapid growth rate, high productivity, easy accessibility, industrial compatibility and environmental friendliness. In this protocol, we provide a step-by-step procedure including preparation of monomer dispersion, polymerization in sc-CO2, purification and characterization of the single crystals. By following this protocol, it takes 1-5 min to grow sub-mm-sized single crystals by polymerization. The procedure takes ~4 h from preparation of monomer dispersion and polymerization in sc-CO2 to purification and drying of the product.
Collapse
Affiliation(s)
- Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Lan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Yang Y, Lin E, Wang S, Wang T, Wang Z, Zhang Z. Single-Crystal One-Dimensional Porous Ladder Covalent Polymers. J Am Chem Soc 2024; 146:782-790. [PMID: 38165084 DOI: 10.1021/jacs.3c10812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of single-crystal, one-dimensional (1D) polymers is of great importance but a formidable challenge. Herein, we report the synthesis of single-crystal 1D ladder polymers in solution by dynamic covalent chemistry. The three-dimensional electron diffraction technique was used to rigorously solve the structure of the crystalline polymers, unveiling that each polymer chain is connected by double covalent bridges and all polymer chains are packed in a staggered and interlaced manner by π-π stacking and hydrogen bonding interactions, making the crystalline polymers highly robust in both thermal and chemical stability. The synthesized single-crystal polymers possess permanent micropores and can efficiently remove CO2 from the C2H2/CO2 mixture to obtain high-purity C2H2, validated by dynamic breakthrough experiments. This work demonstrates the first example of constructing single-crystal 1D porous ladder polymers with double covalent bridges in solution for efficient C2H2/CO2 separation.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sa Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
30
|
Wang M, Jin Y, Zhang W, Zhao Y. Single-crystal polymers (SCPs): from 1D to 3D architectures. Chem Soc Rev 2023; 52:8165-8193. [PMID: 37929665 DOI: 10.1039/d3cs00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-crystal polymers (SCPs) with unambiguous chemical structures at atomic-level resolutions have attracted great attention. Obtaining precise structural information of these materials is critical as it enables a deeper understanding of the potential driving forces for specific packing and long-range order, secondary interactions, and kinetic and thermodynamic factors. Such information can ultimately lead to success in controlling the synthesis or engineering of their crystal structures for targeted applications, which could have far-reaching impact. Successful synthesis of SCPs with atomic level control of the structures, especially for those with 2D and 3D architectures, is rare. In this review, we summarize the recent progress in the synthesis of SCPs, including 1D, 2D, and 3D architectures. Solution synthesis, topochemical synthesis, and extreme condition synthesis are summarized and compared. Around 70 examples of SCPs with unambiguous structure information are presented, and their synthesis methods and structural analysis are discussed. This review offers critical insights into the structure-property relationships, providing guidance for the future rational design and bottom-up synthesis of a variety of highly ordered polymers with unprecedented functions and properties.
Collapse
Affiliation(s)
- Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
31
|
Chen F, Zhang K, Yuan Y, Wong WP, Wang G, Li X, Wang L, Li R, Wu Z, Lin J, Xu HS, Loh KP. Ion-Conductive Metallo-Covalent Organic Frameworks Constructed with Tridentate Ligand and Zn Nodes. J Am Chem Soc 2023; 145:25341-25351. [PMID: 37956115 DOI: 10.1021/jacs.3c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metallo-covalent organic frameworks (metallo-COFs) are organometallic scaffolds in which covalently bonded organic frameworks are interwoven with metal-coordinated pendant groups. Unlike the rigid ligands traditionally used for metal coordination, the utilization of "soft" ligands allows for configurable topology and pore structure in metallo-COFs, particularly when the ligands are generated in situ during dynamic synthesis. In this study, we present the rational synthesis of metallo-COFs based on pyridine-2,6-diimine (pdi), wherein the incorporation of Zn2+ ions and in situ-generated tridentate ligands (pdi) yields metallo-COFs with a square-like lattice. In the absence of Zn2+ ions, a topological isomer COF with a Kagome lattice is instead produced. Thus, the presence or absence of Zn2+ ions allows us to switch between two distinct morphologies corresponding to metallo-COF or COF. In comparison to Brønsted acid-catalyzed COF, which necessitates postmetallization for loading metal ions, the metal-templated COF synthesis method yields COFs with improved crystallinity and approximately 1:1 [Zn2+]/ligand composition. Building upon the metal-templated COF synthesis approach, we successfully synthesized pdiCOF-Zn-2 and pdiCOF-Zn-3, which possess square-like and honeycomb lattices, respectively. The enhanced crystallinity and near 1:1 [Zn2+]/ligand composition of pdiCOF-Zn-3 (honeycomb) facilitate its application as ion transport channels.
Collapse
Affiliation(s)
- Fangzheng Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Kun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yijia Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Walter Peide Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lu Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhitan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai-Sen Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials (LIFM), Institute of Green Chemistry and Molecular Engineering (IGCME), School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou 350507, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
32
|
Yu B, Li W, Wang X, Li JH, Lin RB, Wang H, Ding X, Jin Y, Yang X, Wu H, Zhou W, Zhang J, Jiang J. Observation of Interpenetrated Topology Isomerism for Covalent Organic Frameworks with Atom-Resolution Single Crystal Structures. J Am Chem Soc 2023; 145:25332-25340. [PMID: 37944150 DOI: 10.1021/jacs.3c09001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Rational control and understanding of isomerism are of significance but still remain a great challenge in reticular frameworks, in particular, for covalent organic frameworks (COFs) due to the complicated synthesis and energy factors. Herein, reaction of 3,3',5,5'-tetra(4-formylphenyl)-2,2',6,6'-tetramethoxy-1,1'-biphenyl (TFTB) with 3,3',5,5'-tetrakis(4-aminophenyl)bimesityl (TAPB) under different reaction conditions affords single crystals of two 3D COF isomers, namely, USTB-20-dia and USTB-20-qtz. Their structures with resolutions up to 0.9-1.1 Å have been directly solved by three-dimensional electron diffraction (3D ED) and synchrotron single crystal X-ray diffraction, respectively. USTB-20-dia and USTB-20-qtz show rare 2 × 2-fold interpenetrated dia-b nets and 3-fold interpenetrated qtz-b frameworks. Comparative studies of the crystal structures of these COFs and theoretical simulation results indicate the crucial role of the flexible molecular configurations of building blocks in the present interpenetrated topology isomerism. This work not only presents the rare COF isomers but also gains an understanding of the formation of framework isomerism from both single crystal structures and theoretical simulation perspectives.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
33
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
34
|
Zhou W, Wang X, Zhao W, Lu N, Cong D, Li Z, Han P, Ren G, Sun L, Liu C, Deng WQ. Photocatalytic CO 2 reduction to syngas using metallosalen covalent organic frameworks. Nat Commun 2023; 14:6971. [PMID: 37914707 PMCID: PMC10620383 DOI: 10.1038/s41467-023-42757-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Metallosalen-covalent organic frameworks have recently gained attention in photocatalysis. However, their use in CO2 photoreduction is yet to be reported. Moreover, facile preparation of metallosalen-covalent organic frameworks with good crystallinity remains considerably challenging. Herein, we report a series of metallosalen-covalent organic frameworks produced via a one-step synthesis strategy that does not require vacuum evacuation. Metallosalen-covalent organic frameworks possessing controllable coordination environments of mononuclear and binuclear metal sites are obtained and act as photocatalysts for tunable syngas production from CO2. Metallosalen-covalent organic frameworks obtained via one-step synthesis exhibit higher crystallinity and catalytic activities than those obtained from two-step synthesis. The optimal framework material containing cobalt and triazine achieves a syngas production rate of 19.7 mmol g-1 h-1 (11:8 H2/CO), outperforming previously reported porous crystalline materials. This study provides a facile strategy for producing metallosalen-covalent organic frameworks of high quality and can accelerate their exploration in various applications.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiao Wang
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Wenling Zhao
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Naijia Lu
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Die Cong
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Zhen Li
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Peigeng Han
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Guoqing Ren
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Lei Sun
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China
| | - Chengcheng Liu
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China.
| | - Wei-Qiao Deng
- Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
35
|
Han X, Neumann SE, Nannenga BL, Wang K, Li KKY, Mirzaei S, Yao X, Zhu C, Gao MY, Zhang YB, Cui Y, Yaghi OM. Directing Molecular Weaving of Covalent Organic Frameworks and Their Dimensionality by Angular Control. J Am Chem Soc 2023; 145:22885-22889. [PMID: 37844128 DOI: 10.1021/jacs.3c09691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Although reticular chemistry has commonly utilized mutually embracing tetrahedral metal complexes as crossing points to generate three-dimensional molecularly woven structures, weaving in two dimensions remains largely unexplored. We report a new strategy to access 2D woven COFs by controlling the angle of the usually linear linker, resulting in the successful synthesis of a 2D woven pattern based on chain-link fence. The synthesis was accomplished by linking aldehyde-functionalized copper(I) bisphenanthroline complexes with bent 4,4'-oxydianiline building units. This results in the formation of a crystalline solid, termed COF-523-Cu, whose structure was characterized by spectroscopic techniques and electron and X-ray diffraction techniques to reveal a molecularly woven, twofold-interpenetrated chain-link fence. The present work significantly advances the concept of molecular weaving and its practice in the design of complex chemical structures.
Collapse
Affiliation(s)
- Xing Han
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - S Ephraim Neumann
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Kaiyu Wang
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Kelvin Kam-Yun Li
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Saber Mirzaei
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Xuan Yao
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mei-Yan Gao
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
| | - Yue-Biao Zhang
- Shanghai Key Laboratory of High-Resolution Electron Microscopy, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Bakar Institute of Digital Materials for the Planet, College of Computing, Data Science, and Society, University of California, Berkeley, California 94720, United States
- KACST-UC Berkeley Center of Excellence for Nanomaterials for Clean Energy Applications, King Abdulaziz City for Science and TechnologyRiyadh 11442, Saudi Arabia
| |
Collapse
|
36
|
An S, Li X, Shang S, Xu T, Yang S, Cui CX, Peng C, Liu H, Xu Q, Jiang Z, Hu J. One-Dimensional Covalent Organic Frameworks for the 2e - Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218742. [PMID: 36655733 DOI: 10.1002/anie.202218742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Shuaishuai Shang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ting Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, 453003, Xinxiang, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
37
|
Liu Y, Yan X. Woven Polymer Networks: From Crystalline to Elastomeric Materials. Chemistry 2023; 29:e202203365. [PMID: 36398470 DOI: 10.1002/chem.202203365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Weaving technology has been extensively used for manufacturing macroscopic fabrics and satisfying the artistic demands of humans through the ages. Integrating woven geometries into molecular structures is a persistent pursuit, and yet a significant challenge to chemists, owing to the lack of effective methodologies to guide the regular mutual interlacing of molecular strands. In this Concept article, recent progress and related strategies in constructing woven polymer networks (WPNs) are summarized and discussed. An outlook is then given to highlight the future opportunities and challenges in the development of both molecularly woven structures and molecularly woven functional materials.
Collapse
Affiliation(s)
- Yuhang Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
38
|
Nath S, Puthukkudi A, Mohapatra J, Biswal BP. Covalent Organic Frameworks as Emerging Nonlinear Optical Materials. Angew Chem Int Ed Engl 2023; 62:e202218974. [PMID: 36729044 DOI: 10.1002/anie.202218974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023]
Abstract
The vastness of organic synthetic strategies and knowledge of reticular chemistry have made covalent organic frameworks (COFs) one of the most chemically and structurally diverse class of materials with potential applications ranging from gas storage, molecular separation, and catalysis to energy storage and magnetism. Recently, this class of porous materials has garnered increasing interest as potential nonlinear optical (NLO) materials. Traditionally, inorganic crystals, small-molecule organic chromophores, and oligomers have been studied for their NLO response. Nevertheless, COFs offer significant advantages over existing NLO materials in terms of higher mechanical strength, thermochemical stability, and extended conjugation. Herein, we discuss crucial aspects, terminology, and measurement techniques related to NLO, followed by a critical analysis of the design principles for COFs with NLO response. Furthermore, we touch on selected potential applications of these NLO materials. Finally, future prospects and challenges of COFs as NLO materials are discussed.
Collapse
Affiliation(s)
- Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhaba National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhaba National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhaba National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhaba National Institute (HBNI), Training School Complex Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
39
|
Guan Q, Zhou LL, Dong YB. Construction of Covalent Organic Frameworks via Multicomponent Reactions. J Am Chem Soc 2023; 145:1475-1496. [PMID: 36646043 DOI: 10.1021/jacs.2c11071] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
40
|
A self-standing three-dimensional covalent organic framework film. Nat Commun 2023; 14:220. [PMID: 36639394 PMCID: PMC9839775 DOI: 10.1038/s41467-023-35931-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Covalent crystals such as diamonds are a class of fascinating materials that are challenging to fabricate in the form of thin films. This is because spatial kinetic control of bond formation is required to create covalently bonded crystal films. Directional crystal growth is commonly achieved by chemical vapor deposition, an approach that is hampered by technical complexity and associated high cost. Here we report on a liquid-liquid interfacial approach based on physical-organic considerations to synthesize an ultrathin covalent crystal film. By distributing reactants into separate phases using hydrophobicity, the chemical reaction is confined to an interface that orients the crystal growth. A molecular-smooth interface combined with in-plane isotropic conditions enables the synthesis of films on a centimeter size scale with a uniform thickness of 13 nm. The film exhibits considerable mechanical robustness enabling a free-standing length of 37 µm, as well as a clearly anisotropic chemical structure and crystal lattice alignment.
Collapse
|
41
|
Tang J, Liang Z, Qin H, Liu X, Zhai B, Su Z, Liu Q, Lei H, Liu K, Zhao C, Cao R, Fang Y. Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202214449. [PMID: 36344440 DOI: 10.1002/anie.202214449] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Synthesizing large-area free-standing covalent organic framework (COF) films is of vital importance for their applications but is still a big challenge. Herein, we reported the synthesis of large metalloporphyrin-based COF films and their applications for oxygen electrocatalysis. The reaction of meso-benzohydrazide-substituted metal porphyrins with tris-aldehyde linkers afforded free-standing COF films at the liquid-air interface. These films can be scaled up to 3000 cm2 area and display great mechanical stability and structural integrity. Importantly, the Co-porphyrin-based films are efficient for electrocatalytic O2 reduction and evolution reactions. A flexible, all-solid-state Zn-air battery was assembled using the films and showed high performance with a charge-discharge voltage gap of 0.88 V at 1 mA cm-2 and high stability under bent conditions (0° to 180°). This work thus presents a strategy to synthesize functionalized COF films with high quality for uses in flexible electronics.
Collapse
Affiliation(s)
- Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhen Su
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Qianqian Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
42
|
Wang Y, Chen Y, Zhao M, Zhang L, Zhou C, Wang H. Simulated adsorption of iodine by an amino-metal-organic framework modified with covalent bonds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88882-88893. [PMID: 35841504 DOI: 10.1007/s11356-022-21971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Radioactive iodine in nuclear waste is increasingly harmful to the human body and the environment because of its strong radioactivity, high fluidity, easy solubility in water, and long half-life. It is very important to find clean and economical materials to recover and fix radioactive iodine. In this paper, the amino-metal-organic framework was covalently modified to obtain composite materials to improve the recycling of iodine in the environment. These adsorbents are used to adsorb iodine in water, showing outstanding adsorption performance. The adsorption data are in good agreement with the Langmuir isothermal adsorption model and pseudo-second-order kinetic model, indicating that the adsorption process is mainly monolayer adsorption and chemical adsorption. The two materials showed selective adsorption capacity for iodine in the solution containing multiple competing ions. The adsorption capacity of the covalently modified composite increased from 949.52 to 2157.44 mg/g. Compared with the amino-metal-organic framework, the modified composite contains more electron-rich groups as active sites, and forms charge transfer compounds with iodine to realize chemical adsorption. Through the simulated adsorption of ultra-high-pressure micro-jet, the material has certain working ability under high pressure, which provides a theoretical basis for the future recovery and utilization of iodine under high pressure.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China
| | - Yuantao Chen
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China.
| | - Meng Zhao
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China
| | - Lili Zhang
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China
| | - Changyou Zhou
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China
| | - Haiyang Wang
- College of Chemistry and Chemical Engineering, Qinghai Normal University, No. 38, Wusi West Road, Chengxi District, Xining City, 810008, Qinghai, China
| |
Collapse
|
43
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022; 61:e202210078. [DOI: 10.1002/anie.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
44
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangfeng Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jun Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhaoming Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinyang Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Lin Cheng
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yuhang Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhewen Guo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wei Yu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xuzhou Yan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
45
|
De Bolòs E, Martínez-Abadía M, Hernández-Culebras F, Haymaker A, Swain K, Strutyński K, Weare BL, Castells-Gil J, Padial NM, Martí-Gastaldo C, Khlobystov AN, Saeki A, Melle-Franco M, Nannenga BL, Mateo-Alonso A. A Crystalline 1D Dynamic Covalent Polymer. J Am Chem Soc 2022; 144:15443-15450. [PMID: 35993775 PMCID: PMC9446889 DOI: 10.1021/jacs.2c06446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of crystalline one-dimensional polymers provides a fundamental understanding about the structure-property relationship in polymeric materials and allows the preparation of materials with enhanced thermal, mechanical, and conducting properties. However, the synthesis of crystalline one-dimensional polymers remains a challenge because polymers tend to adopt amorphous or semicrystalline phases. Herein, we report the synthesis of a crystalline one-dimensional polymer in solution by dynamic covalent chemistry. The structure of the polymer has been unambiguously confirmed by microcrystal electron diffraction that together with charge transport studies and theoretical calculations show how the π-stacked chains of the polymer generate optimal channels for charge transport.
Collapse
Affiliation(s)
- Elisabet De Bolòs
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Marta Martínez-Abadía
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Félix Hernández-Culebras
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Alison Haymaker
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Kyle Swain
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Karol Strutyński
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Benjamin L Weare
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | - Natalia M Padial
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna 46980, Spain
| | | | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.,The Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Brent L Nannenga
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, Donostia-San Sebastián 20018, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
46
|
Zhou J, Li J, Kan L, Zhang L, Huang Q, Yan Y, Chen Y, Liu J, Li SL, Lan YQ. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO 2 reduction with H 2O. Nat Commun 2022; 13:4681. [PMID: 35948601 PMCID: PMC9365760 DOI: 10.1038/s41467-022-32449-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Mimicking natural photosynthesis to convert CO2 with H2O into value-added fuels achieving overall reaction is a promising way to reduce the atmospheric CO2 level. Casting the catalyst of two or more catalytic sites with rapid electron transfer and interaction may be an effective strategy for coupling photocatalytic CO2 reduction and H2O oxidation. Herein, based on the MOF ∪ COF collaboration, we have carefully designed and synthesized a crystalline hetero-metallic cluster catalyst denoted MCOF-Ti6Cu3 with spatial separation and functional cooperation between oxidative and reductive clusters. It utilizes dynamic covalent bonds between clusters to promote photo-induced charge separation and transfer efficiency, to drive both the photocatalytic oxidative and reductive reactions. MCOF-Ti6Cu3 exhibits fine activity in the conversion of CO2 with water into HCOOH (169.8 μmol g−1h−1). Remarkably, experiments and theoretical calculations reveal that photo-excited electrons are transferred from Ti to Cu, indicating that the Cu cluster is the catalytic reduction center. A crystalline hetero-metallic cluster catalyst based on a covalent organic framework strategy is reported. The catalyst can facilitate both photocatalytic oxidative and reductive reactions leading to efficient production of HCOOH from CO2 and H2O.
Collapse
Affiliation(s)
- Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jie Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Liang Kan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Qing Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Yong Yan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Jiang Liu
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P.R. China.
| |
Collapse
|
47
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
48
|
Samperisi L, Zou X, Huang Z. How to get maximum structure information from anisotropic displacement parameters obtained by three-dimensional electron diffraction: an experimental study on metal-organic frameworks. IUCRJ 2022; 9:480-491. [PMID: 35844475 PMCID: PMC9252158 DOI: 10.1107/s2052252522005632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Three-dimensional electron diffraction (3D ED) has been used for ab initio structure determination of various types of nanocrystals, such as metal-organic frameworks (MOFs), zeolites, metal oxides and organic crystals. These crystals are often obtained as polycrystalline powders, which are too small for single-crystal X-ray diffraction (SCXRD). While it is now possible to obtain accurate atomic positions of nanocrystals by adopting kinematical refinement against 3D ED data, most new structures are refined with isotropic displacement parameters (U eq), which limits the detection of possible structure disorders and atomic motions. Anisotropic displacement parameters (ADPs, Uij ) obtained by anisotropic structure refinement, on the other hand, provide information about the average displacements of atoms from their mean positions in a crystal, which can provide insights with respect to displacive disorder and flexibility. Although ADPs have been obtained from some 3D ED studies of MOFs, they are seldom mentioned or discussed in detail. We report here a detailed study and interpretation of structure models refined anisotropically against 3D ED data. Three MOF samples with different structural complexity and symmetry, namely ZIF-EC1, MIL-140C and Ga(OH)(1,4-ndc) (1,4-ndcH2 is naphthalene-1,4-dicarboxylic acid), were chosen for the studies. We compare the ADPs refined against individual data sets and how they are affected by different data-merging strategies. Based on our results and analysis, we propose strategies for obtaining accurate structure models with interpretable ADPs based on kinematical refinement against 3D ED data. The ADPs of the obtained structure models provide clear and unambiguous information about linker motions in the MOFs.
Collapse
Affiliation(s)
- Laura Samperisi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden 106 91, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden 106 91, Sweden
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden 106 91, Sweden
| |
Collapse
|
49
|
Wang C, Zhang Z, Zhu Y, Yang C, Wu J, Hu W. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical-Electrical-Magnetic Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102290. [PMID: 35052010 DOI: 10.1002/adma.202102290] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs), an emerging class of organic crystalline polymers with highly oriented structures and permanent porosity, can adopt 2D or 3D architectures depending on the different topological diagrams of the monomers. Notably, 2D COFs have particularly gained much attention due to the extraordinary merits of their extended in-plane π-conjugation and topologically ordered columnar π-arrays. These properties together with high crystallinity, large surface area, and tunable porosity distinguish 2D COFs as an ideal candidate for the fabrication of functional materials. Herein, this review surveys the recent research advances in 2D COFs with special emphasis on the preparation of 2D COF powders, single crystals, and thin films, as well as their advanced optical, electrical, and magnetic functionalities. Some challenging issues and potential research outlook for 2D COFs are also provided for promoting their development in terms of structure, synthesis, and functionalities.
Collapse
Affiliation(s)
- Congyong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhicheng Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yating Zhu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chenhuai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
50
|
Zhang ZH, Andreassen BJ, August DP, Leigh DA, Zhang L. Molecular weaving. NATURE MATERIALS 2022; 21:275-283. [PMID: 35115722 DOI: 10.1038/s41563-021-01179-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | | | - David P August
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Liang Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|