1
|
Ma Y, Lai P, Sha Z, Li B, Wu J, Zhou X, He C, Ma X. TME-responsive nanocomposite hydrogel with targeted capacity for enhanced synergistic chemoimmunotherapy of MYC-amplified osteosarcoma. Bioact Mater 2025; 47:83-99. [PMID: 39897587 PMCID: PMC11783017 DOI: 10.1016/j.bioactmat.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The oncogene MYC is one of the most commonly activated oncogenic proteins in human tumors, with nearly one-fourth of osteosarcoma showing MYC amplification and exhibiting the worst clinical outcomes. The clinical efficacy of single radiotherapy, chemotherapy, and immunotherapy for such osteosarcoma is poor, and the dysregulation of MYC amplification and immune-suppressive tumor microenvironment (TME) may be potential causes of anti-tumor failure. To address the above issues, we developed an injectable TME-responsive nanocomposite hydrogel to simultaneously deliver an effective MYC inhibitor (NHWD-870) and IL11Rα-targeted liposomes containing cisplatin-loaded MnO2 (Cis/Mn@Lipo-IL11). After in situ administration, NHWD-870 effectively degrades MYC and downregulates CCL2 and IL13 cytokines to trigger M1 type activation of macrophages. Meanwhile, targeted delivery of Cis/Mn@Lipo-IL11 reacts with excess intratumoral GSH to generate Mn2+ and thus inducing excess active oxygen species (ROS) production through Fenton-like reaction, along with cisplatin, thereby inducing immunogenic cell death (ICD) to promote dendritic cell maturation. Through synergistic regulation of MYC and ICD levels, the immune microenvironment was reshaped to enhance immune infiltration. In the osteosarcoma-bearing model, the nanocomposite hydrogel significantly enhanced tumor T cell infiltration, induced effective anti-tumor immunity and attenuated lung metastasis. Therefore, our results reveal a powerful strategy for targeted combination therapy of MYC-amplified osteosarcoma.
Collapse
Affiliation(s)
- Yichao Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peng Lai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhou Sha
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bing Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiangpeng Wu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Huang Z, Chu T, Ma A, Lin W, Gao Y, Zhang N, Shi M, Zhang X, Yang Y, Ma W. Discovery of Bi-magnolignan as a novel BRD4 inhibitor inducing apoptosis and DNA damage for cancer therapy. Biochem Pharmacol 2025; 235:116843. [PMID: 40024351 DOI: 10.1016/j.bcp.2025.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/09/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Bi-magnolignan (BM), a novel compound isolated from Magnolia Officinalis leaves, exhibits significant anti-tumor activity in vitro. However, the underlying mechanism remains elusive. This study examines the anti-tumor properties of BM and its mechanism of action, specifically through its interaction with BRD4, a key regulator in oncogene transcription and genome stability. Molecular docking and biolayer interferometry assay (BLI) collectively demonstrate that BM exhibits strong binding affinity to the bromodomain (BD) region of BRD4. Cellular thermal shift assay (CETSA) results confirm that BM binding increases the thermostability of BRD4, providing further evidence of the interaction between BM and BRD4. RNA-seq analysis and western blotting reveal that BM abolishes the G2/M DNA damage checkpoint and disrupts homologous recombination (HR) repair mechanisms. To explore the downstream effects of BRD4, we performed gene set enrichment analysis (GSEA) using RNA-seq data. The results indicate that BM significantly inhibits BRD4 function, leading to the downregulation of various BRD4 target genes at the transcriptional level, including MYC. Importantly, overexpression of BRD4 rescues cells from BM-induced apoptosis, DNA damage, disrupted G2/M checkpoint, and HR deficiency (HRD), highlighting the specificity of BM for BRD4. Furthermore, in vivo experiments demonstrate that BM effectively suppresses tumor growth. Collectively, these findings underscore the potential of BM as a novel and potent BRD4 inhibitor, suggesting promising prospects for the development of targeted anti-tumor therapies that specifically inhibit BRD4.
Collapse
Affiliation(s)
- Zifeng Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Tong Chu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Aijun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yan Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Na Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Meina Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Xuening Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Yanchao Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
3
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Wang W, Li X, Hu R, Dong L, Pei S, Jin L, Gao Q, Chen X, Yin M. BET inhibitor in combination with BCG vaccine enhances antitumor efficacy and orchestrates T cell reprogramming for melanoma. Cell Rep Med 2025; 6:101995. [PMID: 40107246 PMCID: PMC11970395 DOI: 10.1016/j.xcrm.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025]
Abstract
Immunotherapy shows remarkable benefits in treating melanoma, yet existing approaches achieve limited overall responses. Here, we show that a combination of bromodomain and extra-terminal protein family inhibitor, NHWD-870, and Bacillus Calmette-Guérin vaccine is a promising therapeutic strategy for melanomas. Single-cell transcriptome analyses and functional experiments show that the combination therapy significantly inhibited tumor growth by reprogramming T cells toward an immune-activated state, enhancing their cytotoxicity, preventing their exhaustion, and increasing the recruitment of them into the tumor microenvironment. We identify the molecule, MT1, as a direct downstream target of BRD4, which is effectively suppressed by NHWD-870. Furthermore, our findings are reinforced by a humanized patient-derived xenograft (PDX) model, which exhibits notable antitumor effects in humanized tumor-bearing mice treated with the combination therapy. Our study underscores the immense potential of this therapeutic approach for clinical practice, offering promising prospects in overcoming the limitations of current treatments.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing 404100, China; Translational Medicine Research Center (TMRC), School of Medicine Chongqing University, Shapingba, Chongqing 400000, China.
| | - Rui Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liang Dong
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Shiyao Pei
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Liping Jin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Qian Gao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410008, China.
| |
Collapse
|
5
|
He J, Gao W, Dong R, Lv Y, Zhang Q, Li L, Xie X, Lv Q, Hu L, Wang J. Discovery of Novel Pyrrolo[2,3- b]pyridine-Based CSF-1R Inhibitors with Demonstrated Efficacy against Patient-Derived Colorectal Cancer Organoids. J Med Chem 2025; 68:5655-5674. [PMID: 40013758 DOI: 10.1021/acs.jmedchem.4c02933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Repolarizing M2-like tumor associated macrophages (TAMs) into M1 phenotype by blocking CSF-1/CSF-1R signaling pathway represents a promising strategy to remodel the tumor immune microenvironment. Therefore, the discovery of novel potent CSF-1R inhibitors is of great significance for colorectal cancer immunotherapy. In this work, a series of novel CSF-1R inhibitors were designed and synthesized through rational molecular hybridization strategy and step by step structural optimization based on PLX3397 and BLZ945. Among these derivatives, compound III-1 was strongly bound to CSF-1R and showed potent CSF-1R inhibitory activity. It also effectively inhibited the activation of intracellular CSF-1R pathway and its downstream signaling events. Mechanically, III-1 efficiently repolarized M2-like TAMs into M1-phenotype, and inhibited the proliferation and promoted apoptosis of tumor cells through immunoregulation. More importantly, III-1 showed demonstrated efficacy against patient-derived colorectal cancer organoids and exhibited stronger anticolorectal cancer efficacy in vivo compared to PLX3397, highlighting its potential in the immunotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Jinting He
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Wen Gao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Rongrong Dong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yingshan Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lin Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiaolong Xie
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Song B, Liu D, Dai W, McMyn NF, Wang Q, Yang D, Krejci A, Vasilyev A, Untermoser N, Loregger A, Song D, Williams B, Rosen B, Cheng X, Chao L, Kale HT, Zhang H, Diao Y, Bürckstümmer T, Siliciano JD, Li JJ, Siliciano RF, Huangfu D, Li W. Decoding heterogeneous single-cell perturbation responses. Nat Cell Biol 2025; 27:493-504. [PMID: 40011559 PMCID: PMC11906366 DOI: 10.1038/s41556-025-01626-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
Understanding how cells respond differently to perturbation is crucial in cell biology, but existing methods often fail to accurately quantify and interpret heterogeneous single-cell responses. Here we introduce the perturbation-response score (PS), a method to quantify diverse perturbation responses at a single-cell level. Applied to single-cell perturbation datasets such as Perturb-seq, PS outperforms existing methods in quantifying partial gene perturbations. PS further enables single-cell dosage analysis without needing to titrate perturbations, and identifies 'buffered' and 'sensitive' response patterns of essential genes, depending on whether their moderate perturbations lead to strong downstream effects. PS reveals differential cellular responses on perturbing key genes in contexts such as T cell stimulation, latent HIV-1 expression and pancreatic differentiation. Notably, we identified a previously unknown role for the coiled-coil domain containing 6 (CCDC6) in regulating liver and pancreatic cell fate decisions. PS provides a powerful method for dose-to-function analysis, offering deeper insights from single-cell perturbation data.
Collapse
Affiliation(s)
- Bicna Song
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Weiwei Dai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie F McMyn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingyang Wang
- Department of Statistics and Data Science, University of California, Los Angeles, CA, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | | | | | | | | | - Dongyuan Song
- Bioinformatics Interdepartmental PhD Program, University of California, Los Angeles, CA, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Breanna Williams
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Bess Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Xiaolong Cheng
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Lumen Chao
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Hao Zhang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental PhD Program, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biostatistics, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA.
| |
Collapse
|
7
|
Zhang M, An Z, Jiang Y, Wei M, Li X, Wang Y, Wang H, Gong Y. Self-assembled redox-responsive BRD4 siRNA nanoparticles: fomulation and its in vitro delivery in gastric cancer cells. J Chemother 2025; 37:45-59. [PMID: 38291982 DOI: 10.1080/1120009x.2024.2308980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
With the development of newer biomarkers in the diagnosis of gastric cancer (GC), therapeutic targets are emerging and molecular-targeted therapy is in progress RNA interference has emerged as a promising method of gene targeting therapy. However, naked small interfering RNA (siRNA) is unstable and susceptible to degradation, so employing vectors for siRNA delivery is the focus of our research. Therefore, we developed LMWP modified PEG-SS-PEI to deliver siRNA targeting BRD4 (L-NPs/siBRD4) for GC therapy. L-NPs/siBRD4 were prepared by electrostatic interaction and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The release characteristics, cellular uptake and intracellular localization were also investigated. The in vitro anticancer activity of the prepared nanoparticles was analysed by MTT, Transwell invasion and wound healing assay. Quantitative real time-polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of gene silencing. The results showed that the optimal N/P was 30 and the prepared L-NPs/siBRD4 uniformly distributed in the system with a spherical and regular shape. L-NPs/siBRD4 exhibited an accelerated release in GSH-containing media from 12h to 24h. The uptake of L-NPs/siBRD4 was enhanced and mainly co-localized in the lysosomes. After 6h incubation, LMWP modified PEG-SS-PEI helped siRNA escape from the lysosomes and diffused into the cytoplasm. L-NPs/siBRD4 significantly inhibited the proliferation, migration and invasion of cells. This might be related with the silence of BRD4, then inhibition of PI3K/Akt and c-Myc. Our results demonstrate that L-NPs/siBRD4 are a novel delivery system with anticancer, which may provide a more effective strategy for GC treatment.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhonghua An
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yiming Jiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meijiao Wei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiangbo Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yifan Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hongbo Wang
- Gastrointestinal Surgery Department, Jimo District People's Hospital, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Marinaro JA, Goldstein M. Non-hormonal Contraception: Current and Emerging Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:245-272. [PMID: 40301260 DOI: 10.1007/978-3-031-82990-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
There is a global need for effective, reversible contraception. While female hormonal options meet these criteria and are widely used, they are associated with side effects and may be contraindicated for women with certain pre-existing medical conditions. To meet the needs of women who cannot take or cannot tolerate these medications, several non-hormonal options are currently available, including copper intrauterine devices (IUDs), spermicides, and a new vaginal pH modulator (VPM). Several other options are currently in development, including vaginal rings, gels, and vaginally administered anti-sperm antibodies. For men, there are currently no contraceptive options available aside from condoms and vasectomy; however, several non-hormonal contraceptives targeting various aspects of sperm production and/or sperm function are currently under investigation. In this narrative review, we will discuss both the non-hormonal contraceptive methods currently available for women, as well as emerging non-hormonal medications, compounds, and devices for both genders.
Collapse
Affiliation(s)
- Jessica A Marinaro
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
- Center for Male Reproductive Medicine & Microsurgery, Weill Cornell Medicine, New York, NY, USA
| | - Marc Goldstein
- Department of Urology, Weill Cornell Medicine, New York, NY, USA.
- Center for Male Reproductive Medicine & Microsurgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
10
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
11
|
Makwana P, Modi U, Dhimmar B, Vasita R. Design and development of in-vitro co-culture device for studying cellular crosstalk in varied tissue microenvironment. BIOMATERIALS ADVANCES 2024; 163:213952. [PMID: 38991495 DOI: 10.1016/j.bioadv.2024.213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies. Therefore, in the present study, a tumorigenic and an osteogenic microenvironment have been sutured together to create a multi-cellular environment and has been appraised to study cancer progression in bone tissue. The PCL-polystyrene and PCL-collagen fibrous scaffolds were characterized for tumorigenic and osteogenic potential induction on MDA-MB-231 and MC3T3-E1 cells respectively. Diffusion ability of crystal violet, glucose, and bovine serum albumin across the membrane were used to access the potential paracrine interaction facilitated by device. While in co-cultured condition, MDA-MB-231 cells showed EMT phenotype along with secretion of TNFα and PTHrP which lower down the expression of osteogenic markers including alkaline phosphatase, RUNX2, Osteocalcin and Osteoprotegerin. The cancer progression in bone microenvironment demonstrated the role and necessity of creating multiple tissue microenvironment and its contribution in studying multicellular disease progression and therapeutics.
Collapse
Affiliation(s)
- Pooja Makwana
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Unnati Modi
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Bindiya Dhimmar
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Rajesh Vasita
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Yu S, Long L, Zhang X, Qiu Y, Huang Y, Huang X, Li X, Xu R, Fan C, Huang H. The current status and future trends of BET research in oncology. Heliyon 2024; 10:e36888. [PMID: 39281429 PMCID: PMC11399683 DOI: 10.1016/j.heliyon.2024.e36888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background BET family proteins are important epigenetic and transcriptional regulators involved in the control of tumorigenesis and development and have become important targets for cancer therapy. However, there is no systematic bibliometric analysis in this field. A visual analysis of the research hotspots and trends of BET is helpful to understand the future development direction. Method We used CiteSpace, VOSviewer, and Excel to visualize and analyze the trends regarding authors, journals, countries or regions, highly cited papers, and keywords in the field. Result The results included a total of 946 publications. There are many more papers on BET proteins published since 2013. The papers are mainly from 44 countries, led by the U.S. and China. A total of 7381 authors were identified, among which Bradner, J.E. had the greatest number of articles and the greatest influence. Cancer Discovery was the journal with the most citations per article. Our analysis identified the most influential papers in the field, including highly cited papers and citation burst references. The most frequent keywords included 'expression', 'c-Myc', 'cancer', 'BRD4', 'BET inhibition', 'resistance', 'differentiation', and 'JQ1', which represent the focus of current and developing research fields. Conclusion Research on BET is thriving. Collaboration and exchanges between countries and institutions must be strengthened in the future, and the mechanisms of BET-related pathways, the relationship between BET and various diseases, and the development of new BET inhibitors have become the major focus of current research and the trend of future research.
Collapse
Affiliation(s)
- Siying Yu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Linna Long
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorui Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Qiu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yabo Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xueying Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Sun H, Meng Y, Yao L, Du S, Li Y, Zhou Q, Liu Y, Dian Y, Sun Y, Wang X, Liang X, Deng G, Chen X, Zeng F. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm (Beijing) 2024; 5:e684. [PMID: 39135915 PMCID: PMC11318338 DOI: 10.1002/mco2.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Metastasis is a major contributing factor that affects the prognosis of melanoma patients. Nevertheless, the underlying molecular mechanisms involved in melanoma metastasis are not yet entirely understood. Here, we identified ubiquitin-specific protease 22 (USP22) as a pro-oncogenic protein in melanoma through screening the survival profiles of 52 ubiquitin-specific proteases (USPs). USP22 demonstrates a strong association with poor clinical outcomes and is significantly overexpressed in melanoma. Ablation of USP22 expression remarkably attenuates melanoma migration, invasion, and epithelial-mesenchymal transition in vitro and suppresses melanoma metastasis in vivo. Mechanistically, USP22 controls melanoma metastasis through the SIRT1/PTEN/PI3K pathway. In addition, we conducted an United States Food and Drug Administration-approved drug library screening and identified topotecan as a clinically applicable USP22-targeting molecule by promoting proteasomal degradation of USP22. Finally, we found that both pharmacological and genetic silence of USP22 sensitize RSL3-induced ferroptosis through suppressing the PI3K/Akt/mTOR pathway and its downstream SCD, and ferroptosis inhibitor could partly rescued the decreased lung metastasis by topotecan in vivo. Overall, our findings reveal a prometastatic role of USP22 and identify topotecan as a potent USP22-targeting drug to limit melanoma metastasis.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
- Department of Breast ReconstructionTianjin Medical UniversityCancer Institute and HospitalTianjinChina
| | - Yu Meng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Lei Yao
- Department of Liver SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Songtao Du
- Department of Colorectal Surgical OncologyThe Tumor Hospital of Harbin Medical UniversityHarbinChina
| | - Yayun Li
- Department of DermatologyThe Third Xiangya Hospital Central South UniversityChangshaChina
| | - Qian Zhou
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yihuang Liu
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yating Dian
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yuming Sun
- Department of Plastic and Cosmetic SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiaomin Wang
- Department of Breast SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiao‐wei Liang
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Guangtong Deng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Furong Zeng
- Department of OncologyXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
14
|
Yang YH, Yan F, Yuan W, Shi PS, Wu SM, Cui DJ. High-altitude hypoxia promotes BRD4-mediated activation of the Wnt/β-catenin pathway and disruption of intestinal barrier. Cell Signal 2024; 120:111187. [PMID: 38648894 DOI: 10.1016/j.cellsig.2024.111187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Hypobaric hypoxia, commonly experienced at elevated altitudes, presents significant physiological challenges. Our investigation is centered on the impact of the bromodomain protein 4 (BRD4) under these conditions, especially its interaction with the Wnt/β-Catenin pathway and resultant effects on glycolytic inflammation and intestinal barrier stability. By combining transcriptome sequencing with bioinformatics, we identified BRD4's key role in hypoxia-related intestinal anomalies. Clinical parameters of altitude sickness patients, including serum BRD4 levels, inflammatory markers, and barrier integrity metrics, were scrutinized. In vitro studies using CCD 841 CoN cells depicted expression changes in BRD4, Interleukin (IL)-1β, IL-6, and β-Catenin. Transepithelial electrical resistance (TEER) and FD4 analyses assessed barrier resilience. Hypoxia-induced mouse models, analyzed via H&E staining and Western blot, provided insights into barrier and protein alterations. Under hypoxic conditions, marked BRD4 expression variations emerged. Elevated serum BRD4 in patients coincided with intensified Wnt signaling, inflammation, and barrier deterioration. In vitro, findings showed hypoxia-induced upregulation of BRD4 and inflammatory markers but a decline in Occludin and ZO1, affecting barrier strength-effects mitigated by BRD4 inhibition. Mouse models echoed these patterns, linking BRD4 upregulation in hypoxia to barrier perturbations. Hypobaric hypoxia-induced BRD4 upregulation disrupts the Wnt/β-Catenin signaling, sparking glycolysis-fueled inflammation and weakening intestinal tight junctions and barrier degradation.
Collapse
Affiliation(s)
- Yun-Han Yang
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Yan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Wenqiang Yuan
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Peng-Shuang Shi
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shi-Min Wu
- Graduate School, Zunyi Medical University, Zunyi, China
| | - De-Jun Cui
- Department of Gastroenterology, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
15
|
Wang B, Wang J, Yang W, Zhao L, Wei B, Chen J. Unveiling Allosteric Regulation and Binding Mechanism of BRD9 through Molecular Dynamics Simulations and Markov Modeling. Molecules 2024; 29:3496. [PMID: 39124901 PMCID: PMC11314499 DOI: 10.3390/molecules29153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.
Collapse
Affiliation(s)
- Bin Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| |
Collapse
|
16
|
Jiang Z, Cai G, Liu H, Liu L, Huang R, Nie X, Gui R, Li J, Ma J, Cao K, Luo Y. A combination of a TLR7/8 agonist and an epigenetic inhibitor suppresses triple-negative breast cancer through triggering anti-tumor immune. J Nanobiotechnology 2024; 22:296. [PMID: 38811964 PMCID: PMC11134718 DOI: 10.1186/s12951-024-02525-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Combination therapy involving immune checkpoint blockade (ICB) and other drugs is a potential strategy for converting immune-cold tumors into immune-hot tumors to benefit from immunotherapy. To achieve drug synergy, we developed a homologous cancer cell membrane vesicle (CM)-coated metal-organic framework (MOF) nanodelivery platform for the codelivery of a TLR7/8 agonist with an epigenetic inhibitor. METHODS A novel biomimetic codelivery system (MCM@UN) was constructed by MOF nanoparticles UiO-66 loading with a bromodomain-containing protein 4 (BRD4) inhibitor and then coated with the membrane vesicles of homologous cancer cells that embedding the 18 C lipid tail of 3M-052 (M). The antitumor immune ability and tumor suppressive effect of MCM@UN were evaluated in a mouse model of triple-negative breast cancer (TNBC) and in vitro. The tumor immune microenvironment was analyzed by multicolor immunofluorescence staining. RESULTS In vitro and in vivo data showed that MCM@UN specifically targeted to TNBC cells and was superior to the free drug in terms of tumor growth inhibition and antitumor immune activity. In terms of mechanism, MCM@UN blocked BRD4 and PD-L1 to prompt dying tumor cells to disintegrate and expose tumor antigens. The disintegrated tumor cells released damage-associated molecular patterns (DAMPs), recruited dendritic cells (DCs) to efficiently activate CD8+ T cells to mediate effective and long-lasting antitumor immunity. In addition, TLR7/8 agonist on MCM@UN enhanced lymphocytes infiltration and immunogenic cell death and decreased regulatory T-cells (Tregs). On clinical specimens, we found that mature DCs infiltrating tumor tissues of TNBC patients were negatively correlated with the expression of BRD4, which was consistent with the result in animal model. CONCLUSION MCM@UN specifically targeted to TNBC cells and remodeled tumor immune microenvironment to inhibit malignant behaviors of TNBC.
Collapse
Affiliation(s)
- Zhenzhen Jiang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guangqing Cai
- Department of Orthopedics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan, 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Leping Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xinmin Nie
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinqi Ma
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Yanwei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
17
|
Liang H, Fan X, Cheng H, Ma X, Sun Y, Nan F, Zhou J, Shu P, Zhang W, Zuo F, Nakatsukasa H, Zhang D. CPT-11 mitigates autoimmune diseases by suppressing effector T cells without affecting long-term anti-tumor immunity. Cell Death Discov 2024; 10:218. [PMID: 38704362 PMCID: PMC11069576 DOI: 10.1038/s41420-024-01983-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The incidence of autoimmune diseases has significantly increased over the past 20 years. Excessive host immunoreactions and disordered immunoregulation are at the core of the pathogenesis of autoimmune diseases. The traditional anti-tumor chemotherapy drug CPT-11 is associated with leukopenia. Considering that CPT-11 induces leukopenia, we believe that it is a promising drug for the control of autoimmune diseases. Here, we show that CPT-11 suppresses T cell proliferation and pro-inflammatory cytokine production in healthy C57BL/6 mice and in complete Freund's adjuvant-challenged mice. We found that CPT-11 effectively inhibited T cell proliferation and Th1 and Th17 cell differentiation by inhibiting glycolysis in T cells. We also assessed CPT-11 efficacy in treating autoimmune diseases in models of experimental autoimmune encephalomyelitis and psoriasis. Finally, we proved that treatment of autoimmune diseases with CPT-11 did not suppress long-term immune surveillance for cancer. Taken together, these results show that CPT-11 is a promising immunosuppressive drug for autoimmune disease treatment.
Collapse
Affiliation(s)
- Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yutong Sun
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
18
|
Lv Q, Yang H, Wang D, Zhou H, Wang J, Zhang Y, Wu D, Xie Y, Lv Y, Hu L, Wang J. Discovery of a Novel CSF-1R Inhibitor with Highly Improved Pharmacokinetic Profiles and Superior Efficacy in Colorectal Cancer Immunotherapy. J Med Chem 2024; 67:6854-6879. [PMID: 38593344 DOI: 10.1021/acs.jmedchem.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Blocking CSF-1/CSF-1R pathway has emerged as a promising strategy to remodel tumor immune microenvironment (TME) by reprogramming tumor-associated macrophages (TAMs). In this work, a novel CSF-1R inhibitor C19 with a highly improved pharmacokinetic profile and in vivo anticolorectal cancer (CRC) efficiency was successfully discovered. C19 could effectively reprogram M2-like TAMs to M1 phenotype and reshape the TME by inducing the recruitment of CD8+ T cells into tumors and reducing the infiltration of immunosuppressive Tregs/MDSCs. Deeper mechanistic studies revealed that C19 facilitated the infiltration of CD8+ T cells by enhancing the secretion of chemokine CXCL9, thus significantly potentiating the anti-CRC efficiency of PD-1 blockade. More importantly, C19 combined with PD-1 mAb could induce durable antitumor immune memory, effectively overcoming the recurrence of CRC. Taken together, our findings suggest that C19 is a promising therapeutic option for sensitizing CRC to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Haikun Zhou
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dapeng Wu
- Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P. R. China
| | - Ying Xie
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yingshan Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Wang J, Yang W, Zhao L, Wei B, Chen J. Binding Mechanism of Inhibitors to BRD4 and BRD9 Decoded by Multiple Independent Molecular Dynamics Simulations and Deep Learning. Molecules 2024; 29:1857. [PMID: 38675678 PMCID: PMC11054187 DOI: 10.3390/molecules29081857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calculations are integrated to probe the binding modes of three inhibitors (H1B, JQ1 and TVU) to BRD4 and BRD9. The MD trajectory-based DL successfully identify significant functional function domains, such as BC-loop and ZA-loop. The information from the post-processing analysis of MD simulations indicates that inhibitor binding highly influences the structural flexibility and dynamic behavior of BRD4 and BRD9. The results of the MM-GBSA calculations not only suggest that the binding ability of H1B, JQ1 and TVU to BRD9 are stronger than to BRD4, but they also verify that van der Walls interactions are the primary forces responsible for inhibitor binding. The hot spots of BRD4 and BRD9 revealed by residue-based free energy estimation provide target sites of drug design in regard to BRD4 and BRD9. This work is anticipated to provide useful theoretical aids for the development of selective inhibitors over BRD family members.
Collapse
Affiliation(s)
- Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
20
|
Li S, Zhang L, Wang L, Ji J, He J, Zheng X, Cao L, Li K. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs. Molecules 2024; 29:1784. [PMID: 38675604 PMCID: PMC11051887 DOI: 10.3390/molecules29081784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Detecting the unintended adverse reactions of drugs (ADRs) is a crucial concern in pharmacological research. The experimental validation of drug-ADR associations often entails expensive and time-consuming investigations. Thus, a computational model to predict ADRs from known associations is essential for enhanced efficiency and cost-effectiveness. Here, we propose BiMPADR, a novel model that integrates drug gene expression into adverse reaction features using a message passing neural network on a bipartite graph of drugs and adverse reactions, leveraging publicly available data. By combining the computed adverse reaction features with the structural fingerprints of drugs, we predict the association between drugs and adverse reactions. Our models obtained high AUC (area under the receiver operating characteristic curve) values ranging from 0.861 to 0.907 in an external drug validation dataset under differential experiment conditions. The case study on multiple BET inhibitors also demonstrated the high accuracy of our predictions, and our model's exploration of potential adverse reactions for HWD-870 has contributed to its research and development for market approval. In summary, our method would provide a promising tool for ADR prediction and drug safety assessment in drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Cao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China; (S.L.); (L.Z.); (L.W.); (J.J.); (J.H.); (X.Z.)
| |
Collapse
|
21
|
Wang S, Lei K, Lai HT, Liu T, Du L, Wu SY, Ye X, Chiang CM, Li M. Novel BRD4-p53 Inhibitor SDU-071 Suppresses Proliferation and Migration of MDA-MB-231 Triple-Negative Breast Cancer Cells. ACS Pharmacol Transl Sci 2024; 7:1178-1190. [PMID: 38633583 PMCID: PMC11019737 DOI: 10.1021/acsptsci.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
A promising alternative for cancer treatment involves targeted inhibition of the epigenetic regulator bromodomain-containing protein 4 (BRD4); however, available BRD4 inhibitors are constrained by their potency, oral bioavailability, and cytotoxicity. Herein, to overcome the drawback of the translational BRD4 inhibitors, we describe a novel BRD4-p53 inhibitor, SDU-071, which suppresses BRD4 interaction with the p53 tumor suppressor and its biological activity in MDA-MB-231 triple-negative breast cancer (TNBC) cells in vitro and in vivo. This novel small-molecule BRD4-p53 inhibitor suppresses cell proliferation, migration, and invasion by downregulating the expression of BRD4-targeted genes, such as c-Myc and Mucin 5AC, and inducing cell cycle arrest and apoptosis, as demonstrated in cultured MDA-MB-231 TNBC cells. Its antitumor activity is illustrated in an orthotopic mouse xenograft mammary tumor model. Overall, our results show that SDU-071 is a viable option for potentially treating TNBC as a new BRD4-p53 inhibitor.
Collapse
Affiliation(s)
- Shumei Wang
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Lei
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- School
of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Hsien-Tsung Lai
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Tingting Liu
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shwu-Yuan Wu
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Xiaohan Ye
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Cheng-Ming Chiang
- Simmons
Comprehensive Cancer Center, University
of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Biochemistry, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas, Texas 75390, United States
| | - Minyong Li
- Department
of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE),
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
22
|
Jin L, Dong L, Pei S, Chen X, Kuang Y, Chen W, Zhu W, Yin M. A BET inhibitor, NHWD-870, can downregulate dendritic cells maturation via the IRF7-mediated signaling pathway to ameliorate imiquimod-induced psoriasis-like murine skin inflammation. Eur J Pharmacol 2024; 968:176382. [PMID: 38311277 DOI: 10.1016/j.ejphar.2024.176382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1β, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Liang Dong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Shiyao Pei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China; Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| |
Collapse
|
23
|
Song P, Han R, Yang F. Super enhancer lncRNAs: a novel hallmark in cancer. Cell Commun Signal 2024; 22:207. [PMID: 38566153 PMCID: PMC10986047 DOI: 10.1186/s12964-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Super enhancers (SEs) consist of clusters of enhancers, harboring an unusually high density of transcription factors, mediator coactivators and epigenetic modifications. SEs play a crucial role in the maintenance of cancer cell identity and promoting oncogenic transcription. Super enhancer lncRNAs (SE-lncRNAs) refer to either transcript from SEs locus or interact with SEs, whose transcriptional activity is highly dependent on SEs. Moreover, these SE-lncRNAs can interact with their associated enhancer regions in cis and modulate the expression of oncogenes or key signal pathways in cancers. Inhibition of SEs would be a promising therapy for cancer. In this review, we summarize the research of SE-lncRNAs in different kinds of cancers so far and decode the mechanism of SE-lncRNAs in carcinogenesis to provide novel ideas for the cancer therapy.
Collapse
Affiliation(s)
- Ping Song
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, 310006, China
| | - Rongyan Han
- Department of emergency, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, 310006, Zhejiang Province, China
| | - Fan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
24
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
25
|
Song J, Zhang S, Zhang B, Ma J. The anti-breast cancer therapeutic potential of 1,2,3-triazole-containing hybrids. Arch Pharm (Weinheim) 2024; 357:e2300641. [PMID: 38110853 DOI: 10.1002/ardp.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Breast cancer, as one of the most common invasive malignancies and the leading cause of cancer-related deaths in women globally, poses a significant challenge in the world health system. Substantial advances in diagnosis and treatment have significantly improved the survival rate of breast cancer patients, but the number of incidences and deaths of breast cancer are projected to increase by 40% and 50%, respectively, by 2040. Chemotherapy is one of the principal treatments for breast cancer therapy, but multidrug resistance and severe side effects remain the major obstacles to the success of treatment. Hence, there is a vital need to develop novel chemotherapeutic agents to combat this deadly disease. 1,2,3-Triazole, which can be effectively constructed by click chemistry, not only can serve as a linker to connect different anti-breast cancer pharmacophores but also is a valuable pharmacophore with anti-breast cancer potential and favorable properties such as hydrogen bonding, moderate dipole moment, and enhanced water solubility. Particularly, 1,2,3-triazole-containing hybrids have demonstrated promising in vitro and in vivo anti-breast cancer potential against both drug-sensitive and drug-resistant forms and possessed excellent selectivity by targeting different biological pathways associated with breast cancer, representing privileged scaffolds for the discovery of novel anti-breast cancer candidates. This review concentrates on the latest advancements of 1,2,3-triazole-containing hybrids with anti-breast cancer potential, including work published between 2020 and the present. The structure-activity relationships (SARs) and mechanisms of action are also reviewed to shed light on the development of more effective and multitargeted candidates.
Collapse
Affiliation(s)
- Juntao Song
- Department of Oncology and Hematology, Zibo 148 Hospital, Zibo, China
| | - Shuai Zhang
- Department of General Surgery, People's Hospital of Zhoucun District, Zibo, China
| | - Bo Zhang
- Emergency Department, People's Hospital of Zhoucun District, Zibo, China
| | - Junwei Ma
- Department of General Surgery, Zibo 148 Hospital, Zibo, China
| |
Collapse
|
26
|
Kim Y, Park WH, Suh DH, Kim K, No JH, Kim YB. Anticancer Effects of BRD4 Inhibitor in Epithelial Ovarian Cancer. Cancers (Basel) 2024; 16:959. [PMID: 38473320 DOI: 10.3390/cancers16050959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Efforts have been made to develop bromodomain inhibitors as cancer treatments. Sub-pathways, particularly in ovarian cancer, affected by bromodomain-containing protein (BRD) remain unclear. This study verified the antitumor effects of a new drug that can overcome OPT-0139-chemoresistance to treat ovarian cancer. A mouse xenograft model of human ovarian cancer cells, SKOV3 and OVCAR3, was used in this study. Cell viability and proliferation were assessed using MTT and ATP assays. Cell cycle arrest and apoptosis were determined using flow cytometry. BRD4 and c-Myc expression and apoptosis-related molecules were detected using RT-PCR and real-time PCR and Western blot. We confirmed the OPT-0139 effect and mechanism of action in epithelial ovarian cancer. OPT-0139 significantly reduced cell viability and proliferation and induced apoptosis and cell cycle arrest. In the mouse xenograft model, significant changes in tumor growth, volume, weight, and BRD4-related gene expression were observed, suggesting the antitumor effects of BRD4 inhibitors. Combination therapy with cisplatin promoted apoptosis and suppressed tumor growth in vitro and in vivo. Our results suggest OPT-0139, a BRD4 inhibitor, as a promising anticancer drug for the treatment of ovarian cancer by inhibiting cell proliferation, decreasing cell viability, arresting cell cycle, and inducing apoptosis.
Collapse
Affiliation(s)
- Yeorae Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
| | - Wook-Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
| | - Dong-Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Jae-Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| | - Yong-Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, 82 Gumi-ro, 173 Beon-gil, Bundang-gu, Seongnam 13620, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 103 Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
27
|
Yu Z, Wu X, Zhu J, Yan H, Li Y, Zhang H, Zhong Y, Lin M, Ye G, Li X, Jin J, Li K, Wang J, Zhuang H, Lin T, He J, Lu C, Xu Z, Zhang X, Li H, Jin X. BCLAF1 binds SPOP to stabilize PD-L1 and promotes the development and immune escape of hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:82. [PMID: 38340178 PMCID: PMC10858942 DOI: 10.1007/s00018-024-05144-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xiang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Huan Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Yeling Zhong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Man Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ganghui Ye
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Xinming Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jiabei Jin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Kailang Li
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Hui Zhuang
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Ting Lin
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Jian He
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China
| | - Changjiang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Zeping Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Xie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315040, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, China.
| |
Collapse
|
28
|
Chen X, Wu T, Du Z, Kang W, Xu R, Meng F, Liu C, Chen Y, Bao Q, Shen J, You Q, Cao D, Jiang Z, Guo X. Discovery of a brain-permeable bromodomain and extra terminal domain (BET) inhibitor with selectivity for BD1 for the treatment of multiple sclerosis. Eur J Med Chem 2024; 265:116080. [PMID: 38142510 DOI: 10.1016/j.ejmech.2023.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease and lacks effective therapeutic agents. Dysregulation of transcription mediated by bromodomain and extra-terminal domain (BET) proteins containing two different bromodomains (BD1 and BD2) is an important factor in multiple diseases, including MS. Herein, we identified a series of BD1-biased inhibitors, in which compound 16 showed nanomolar potency for BD1 (Kd = 230 nM) and a 60-fold selectivity for BRD4 BD1 over BD2. The co-crystal structure of BRD4 BD1 with 16 indicated that the hydrogen bond interaction of 16 with BD1-specific Asp145 is important for BD1 selectivity. 16 showed favorable brain distribution in mice and PK properties in rats. 16 was able to inhibit microglia activation and had significant therapeutic effects on EAE mice including improvement of spinal cord inflammatory conditions and demyelination protection. Overall, these results suggest that brain-permeable BD1 inhibitors have the potential to be further investigated as therapeutic agents for MS.
Collapse
Affiliation(s)
- Xuetao Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhiyan Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Wenjing Kang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rujun Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fanying Meng
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chihong Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yali Chen
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qichao Bao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingkang Shen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Danyan Cao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
29
|
Deutzmann A, Sullivan DK, Dhanasekaran R, Li W, Chen X, Tong L, Mahauad-Fernandez WD, Bell J, Mosley A, Koehler AN, Li Y, Felsher DW. Nuclear to cytoplasmic transport is a druggable dependency in MYC-driven hepatocellular carcinoma. Nat Commun 2024; 15:963. [PMID: 38302473 PMCID: PMC10834515 DOI: 10.1038/s41467-024-45128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.
Collapse
Affiliation(s)
- Anja Deutzmann
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Delaney K Sullivan
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Renumathy Dhanasekaran
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
- Division of Gastroenterology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wei Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, 20012, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, 20012, USA
| | - Xinyu Chen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ling Tong
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | | | - John Bell
- Stanford Genome Technology Center, Stanford University, Stanford, CA, 94305, USA
| | - Adriane Mosley
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yulin Li
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Institute for Academic Medicine, Houston Methodist and Weill Cornell Medical College, Houston, TX, 77030, USA.
| | - Dean W Felsher
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
30
|
Xue J, Lyu Q. Challenges and opportunities in rare cancer research in China. SCIENCE CHINA. LIFE SCIENCES 2024; 67:274-285. [PMID: 38036799 DOI: 10.1007/s11427-023-2422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of the major public health challenges in China. Rare cancers collectively account for a considerable proportion of all malignancies. The lack of awareness of rare cancers among healthcare professionals and the general public, the typically complex and delayed diagnosis, and limited access to clinical trials are key challenges. Recent years have witnessed an increase in funding for research related to rare cancers in China. In this review, we provide a comprehensive overview of rare cancers and summarize the status of research on rare cancers in China and overseas, including the trends of funding and publications. We also highlight the challenges and perspectives regarding rare cancers in China.
Collapse
Affiliation(s)
- Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Natural Science Foundation of China, Beijing, 100085, China
| | - Qunyan Lyu
- National Natural Science Foundation of China, Beijing, 100085, China.
| |
Collapse
|
31
|
Ma X, Chen Z, Chen W, Chen Z, Shang Y, Zhao Y, Li L, Zhou C, He J, Meng X. LncRNA AL139294.1 can be transported by extracellular vesicles to promote the oncogenic behaviour of recipient cells through activation of the Wnt and NF-κB2 pathways in non-small-cell lung cancer. J Exp Clin Cancer Res 2024; 43:20. [PMID: 38229152 DOI: 10.1186/s13046-023-02939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) participate in cancer development via cell-to-cell communication. Long non-coding RNAs (lncRNAs), one component of EVs, can play an essential role in non-small-cell lung cancer (NSCLC) through EV-mediated delivery. METHODS The NSCLC-associated lncRNA AL139294.1 in EVs was identified via lncRNA microarray analysis. The role of AL139294.1 in NSCLC was examined in vitro and in vivo. Confocal microscopy was used to observe the encapsulation of AL139294.1 into EVs and its transport to recipient cells. A co-culture device was used to examine the effects of transported AL139294.1 on the oncogenic behaviour of recipient cells. Dual-luciferase reporter assay was performed to verify the direct interaction of miR-204-5p with AL139294.1 and bromodomain-containing protein 4 (BRD4). AL139294.1 and miR-204-5p in EVs were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic efficiency. RESULTS The lncRNA AL139294.1 in EVs promoted NSCLC progression in vitro and in vivo. After AL139294.1 was encapsulated into EVs and transported to recipient cells, it promoted the cells' proliferation, migration, and invasion abilities by competitively binding with miR-204-5p to regulate BRD4, leading to the activation of the Wnt and NF-κB2 pathways. Additionally, the expression of serum lncRNA AL139294.1 in EVs was increased, whereas miR-204-5p in EVs was decreased in NSCLC. High levels of lncRNA AL139294.1 and low levels of miR-204-5p in EVs were associated with advanced pathological staging, lymph node metastasis, and distant metastasis, underscoring their promising utility for distinguishing between more and less severe manifestations of the disease. CONCLUSIONS This study reveals a novel lncRNA in EVs associated with NSCLC, namely, AL139294.1, providing valuable insights into the development of NSCLC and introducing potential diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhenhua Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Ziyuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Yue Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yikai Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Leyi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengwei Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Jinxian He
- Department of Thoracic Surgery, The Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, 315048, China
| | - Xiaodan Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, China.
- Zhejiang Provincial Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
32
|
Li D, Peng X, Hu Z, Li S, Chen J, Pan W. Small molecules targeting selected histone methyltransferases (HMTs) for cancer treatment: Current progress and novel strategies. Eur J Med Chem 2024; 264:115982. [PMID: 38056296 DOI: 10.1016/j.ejmech.2023.115982] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Histone methyltransferases (HMTs) play a critical role in gene post-translational regulation and diverse physiological processes, and are implicated in a plethora of human diseases, especially cancer. Increasing evidences demonstrate that HMTs may serve as a potential therapeutic target for cancer treatment. Thus, the development of HMTs inhibitor have been pursued with steadily increasing interest over the past decade. However, the disadvantages such as insufficient clinical efficacy, moderate selectivity, and propensity for acquired resistance have hindered the development of conventional HMT inhibitors. New technologies and methods are imperative to enhance the anticancer activity of HMT inhibitors. In this review, we first review the structure and biological functions of the several essential HMTs, such as EZH2, G9a, PRMT5, and DOT1L. The internal relationship between these HMTs and cancer is also expounded. Next, we mainly focus on the latest progress in the development of HMT modulators encompassing dual-target inhibitors, targeted protein degraders and covalent inhibitors from perspectives such as rational design, pharmacodynamics, pharmacokinetics, and clinical status. Lastly, we also discuss the challenges and future directions for HMT-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Zhihao Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Shuqing Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 516000, PR China.
| | - Wanyi Pan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China.
| |
Collapse
|
33
|
Rose AJ, Fleming MM, Francis JC, Ning J, Patrikeev A, Chauhan R, Harrington KJ, Swain A. Cell-type-specific tumour sensitivity identified with a bromodomain targeting PROTAC in adenoid cystic carcinoma. J Pathol 2024; 262:37-49. [PMID: 37792636 DOI: 10.1002/path.6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 10/06/2023]
Abstract
Salivary gland adenoid cystic carcinoma (ACC) is a rare malignancy with limited treatment options. The development of novel therapies is hindered by a lack of preclinical models. We have generated ACC patient-derived xenograft (PDX) lines that retain the physical and genetic properties of the original tumours, including the presence of the common MYB::NFIB or MYBL1::NFIB translocations. We have developed the conditions for the generation of both 2D and 3D tumour organoid patient-derived ACC models that retain MYB expression and can be used for drug studies. Using these models, we show in vitro and in vivo sensitivity of ACC cells to the bromodomain degrader, dBET6. Molecular studies show a decrease in BRD4 and MYB protein levels and target gene expression with treatment. The most prominent effect of dBET6 on tumours in vivo was a change in the relative composition of ACC cell types expressing either myoepithelial or ductal markers. We show that dBET6 inhibits the progenitor function of ACC cells, particularly in the myoepithelial marker-expressing population, revealing a cell-type-specific sensitivity. These studies uncover a novel mechanistic effect of bromodomain inhibitors on tumours and highlight the need to impact both cell-type populations for more effective treatments in ACC patients. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alexandra J Rose
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | | | - Jeffrey C Francis
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| | - Jian Ning
- Tumour Modelling Facility, Institute of Cancer Research, London, UK
| | | | - Ritika Chauhan
- Genomics Facility, Institute of Cancer Research, London, UK
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, UK
| |
Collapse
|
34
|
Zhang M, Huang H, Wei M, Sun M, Deng G, Hu S, Wang H, Gong Y. Overexpression of BRD4 in Gastric Cancer and its Clinical Significance as a Novel Therapeutic Target. Curr Cancer Drug Targets 2024; 24:167-177. [PMID: 37282642 DOI: 10.2174/1568009623666230606164030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND BRD4 is a member of the bromodomain and extra terminal domain (BET) family of proteins, containing two bromodomains and one extra terminal domain, and is overexpressed in several human malignancies. However, its expression in gastric cancer has not yet been well illustrated. OBJECTIVE This study aimed to elucidate the overexpression of BRD4 in gastric cancer and its clinical significance as a novel therapeutic target. METHODS Fresh gastric cancer tissues and paraffin-embedded specimens of gastric cancer patients were collected, and the BRD4 expression was examined by Western Blot Analysis (WB) and Immunohistochemistry Analysis (IHC), respectively. The possible relationship between BRD4 expression and the clinicopathological features as well as survival in gastric cancer patients was analyzed. The effect of BRD4 silencing on human gastric cancer cell lines was investigated by MTT assay, WB, wound healing assay, and Transwell invasion. RESULTS The results showed that the expression level in tumor tissues and adjacent tissues was significantly higher than that in normal tissues, respectively (P < 0.01). BRD4 expression level in gastric cancer tissues was strongly correlated with the degree of tumor differentiated degree (P = 0.033), regional lymph nodes metastasis (P = 0.038), clinical staging (P = 0.002), and survival situation (P = 0.000), while the gender (P = 0.564), age (P = 0.926) and infiltrating depth (P = 0.619) of patients were not associated. Increased BRD4 expression resulted in poor overall survival (P = 0.003). In in vitro assays, BRD4 small interfering RNA resulted in significantly decreased BRD4 protein expression, therefore inhibiting proliferation, migration, and invasion of gastric cancer cells. CONCLUSION BRD4 might be a novel biomarker for the early diagnosis, prognosis, and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Mengying Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hong Huang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Meijiao Wei
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Mengjia Sun
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guojin Deng
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Shuiqing Hu
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Hongbo Wang
- Department of Gastrointestinal Surgery, the People's Hospital of Jimo, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
35
|
Hu R, Hou H, Li Y, Zhang M, Li X, Chen Y, Guo Y, Sun H, Zhao S, Liao M, Cao D, Yan Q, Chen X, Yin M. Combined BET and MEK Inhibition synergistically suppresses melanoma by targeting YAP1. Theranostics 2024; 14:593-607. [PMID: 38169595 PMCID: PMC10758063 DOI: 10.7150/thno.85437] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: The response rate to the MEK inhibitor trametinib in BRAF-mutated melanoma patients is less than 30%, and drug resistance develops rapidly, but the mechanism is still unclear. Yes1-associated transcriptional regulator (YAP1) is highly expressed in melanoma and may be related to MEK inhibitor resistance. The purpose of this study was to investigate the mechanism of YAP1 in MEK inhibitor resistance in melanoma and to screen YAP1 inhibitors to further determine whether YAP1 inhibition reverses MEK inhibitor resistance. Methods: On the one hand, we analyzed paired melanoma and adjacent tissue samples using RNA-seq and found that the Hippo-YAP1 signaling pathway was the top upregulated pathway. On the other hand, we evaluated the transcriptomes of melanoma samples from patients before and after trametinib treatment and investigated the correlation between YAP1 expression and trametinib resistance. Then, we screened for inhibitors that repress YAP1 expression and investigated the mechanisms. Finally, we investigated the antitumor effect of YAP1 inhibition combined with MEK inhibition both in vitro and in vivo. Results: We found that YAP1 expression levels upon trametinib treatment in melanoma patients were correlated with resistance to trametinib. YAP1 was translocated into the nucleus after trametinib treatment in melanoma cells, which could render resistance to MEK inhibition. Thus, we screened for inhibitors that repress YAP1 expression and identified multiple bromodomain and extra-terminal (BET) inhibitors, including NHWD-870, as hits. BET inhibition repressed YAP1 expression by decreasing BRD4 binding to the YAP1 promoter. Consistently, YAP1 overexpression was sufficient to reverse the proliferation defect caused by BRD4 depletion. In addition, the BET inhibitor NHWD-870 acted synergistically with trametinib to suppress melanoma growth in vitro and in vivo. Conclusions: We identified a new vulnerability for MEK inhibitor-resistant melanomas, which activated Hippo pathway due to elevated YAP1 activity. Inhibition of BRD4 using BET inhibitors suppressed YAP1 expression and led to blunted melanoma growth when combined with treatment with the MEK inhibitor trametinib.
Collapse
Affiliation(s)
- Rui Hu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huihui Hou
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Li
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanzhong Chen
- The first clinical college of Chongqing Medical University, Chongqing, China
| | - Ying Guo
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hongyin Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mengting Liao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Health Management of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Dongsheng Cao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mingzhu Yin
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Cancer Early Detection and Treatment Center (CEDTC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
- Translational Medicine Research Center (TMRC), School of Medicine Chongqing University, Shapingba, Chongqing, China
| |
Collapse
|
36
|
Tian X, Zheng L, Wang C, Han Y, Li Y, Cui T, Liu J, Liu C, Jia G, Yang L, Hsu Y, Zeng C, Ding L, Wang C, Cheng B, Wang M, Xie R. Selenium-based metabolic oligosaccharide engineering strategy for quantitative glycan detection. Nat Commun 2023; 14:8281. [PMID: 38092825 PMCID: PMC10719347 DOI: 10.1038/s41467-023-44118-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Metabolic oligosaccharide engineering (MOE) is a classical chemical approach to perturb, profile and perceive glycans in physiological systems, but probes upon bioorthogonal reaction require accessibility and the background signal readout makes it challenging to achieve glycan quantification. Here we develop SeMOE, a selenium-based metabolic oligosaccharide engineering strategy that concisely combines elemental analysis and MOE,enabling the mass spectrometric imaging of glycome. We also demonstrate that the new-to-nature SeMOE probes allow for detection, quantitative measurement and visualization of glycans in diverse biological contexts. We also show that chemical reporters on conventional MOE can be integrated into a bifunctional SeMOE probe to provide multimodality signal readouts. SeMOE thus provides a convenient and simplified method to explore the glyco-world.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Changjiang Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yida Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yujie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jialin Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Guogeng Jia
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yi Hsu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bo Cheng
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Sharma D, Hager CG, Shang L, Tran L, Zhu Y, Ma A, Magnuson B, Lesko MW, Wicha MS, Burness ML. The BET degrader ZBC260 suppresses stemness and tumorigenesis and promotes differentiation in triple-negative breast cancer by disrupting inflammatory signaling. Breast Cancer Res 2023; 25:144. [PMID: 37968653 PMCID: PMC10648675 DOI: 10.1186/s13058-023-01715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Breast cancer stem cells (BCSCs) are resistant to standard therapies, facilitate tumor dissemination, and contribute to relapse and progression. Super-enhancers are regulators of stemness, and BET proteins, which are critical for super-enhancer function, are a potential therapeutic target. Here, we investigated the effects of BET proteins on the regulation of breast cancer stemness using the pan-BET degrader ZBC260. METHODS We evaluated the effect of ZBC260 on CSCs in TNBC cell lines. We assessed the effect of ZBC260 on cellular viability and tumor growth and measured its effects on cancer stemness. We used RNA sequencing and stemness index to determine the global transcriptomic changes in CSCs and bulk cells and further validated our findings by qPCR, western blot, and ELISA. RESULTS ZBC260 potently inhibited TNBC growth both in vitro and in vivo. ZBC260 reduced stemness as measured by cell surface marker expression, ALDH activity, tumorsphere number, and stemness index while increasing differentiated cells. GSEA analysis indicated preferential downregulation of stemness-associated and inflammatory genes by ZBC260 in ALDH+ CSCs. CONCLUSIONS The BET degrader ZBC260 is an efficient degrader of BET proteins that suppresses tumor progression and decreases CSCs through the downregulation of inflammatory genes and pathways. Our findings support the further development of BET degraders alone and in combination with other therapeutics as CSC targeting agents.
Collapse
Affiliation(s)
- Deeksha Sharma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Cody G Hager
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Li Shang
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, NCRC 26-319S, SPC 2800, 2800 Plymouth Rd, Ann Arbor, MI, USA
| | - Yongyou Zhu
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Elevate Bio, Cambridge, MA, USA
| | - Aihui Ma
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- University of Delaware, Newark, DE, USA
| | - Brian Magnuson
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Matthew W Lesko
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Upstate Medical University, Syracuse, NY, USA
| | - Max S Wicha
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Monika L Burness
- Department, Unit, and Laboratories, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
39
|
Tang Q, Zhang F, Luo L, Duan Y, Zhu T, Ni Y, Wang Y, Qi H, Jiang S, Zhou J, Ma X, Zhang Y. Ultrasound-Induced Gold Nanoparticle United with Acoustic Reprogramming of Macrophages for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50926-50939. [PMID: 37877885 DOI: 10.1021/acsami.3c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Sonodynamic therapy (SDT) has considerable potential in cancer treatment and exhibits high tissue penetration with minimal damage to healthy tissues. The efficiency of SDT is constrained by the complex immunological environment and tumor treatment resistance. Herein, a specific acoustic-actuated tumor-targeted nanomachine is proposed to generate mechanical damage to lysosomes for cancer SDT. The hybrid nanomachine was assembled with gold nanoparticles (GNPs) as the core and encapsulated with macrophage exosomes modified by AS1411 aptamers (GNP@EXO-APs) to optimize the pharmacokinetics and tumor aggregation. GNP@EXO-APs could be specifically transferred to the lysosomes of tumor cells. After induction with ultrasound, GNP@EXO-APs generated strong mechanical stress to produce lysosomal-dependent cell death in cancer cells. Notably, tumor-associated macrophages were reprogrammed in the ultrasound environment to an antitumor phenotype. Enhanced mechanical destruction via GNP@EXO-APs and immunotherapy of cancer cells were verified both in vitro and in vivo under SDT. This study provides a new direction for inside-out killing effects on tumor cells for cancer treatment.
Collapse
Affiliation(s)
- Qinchao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Fanyu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Licheng Luo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430079, China
| | - Yiling Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Taomin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430079, China
| | - Haoning Qi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Shuting Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Xiaoxin Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| |
Collapse
|
40
|
Modi N, Chen Y, Dong X, Hu X, Lau GW, Wilson KT, Peek RM, Chen LF. BRD4 Regulates Glycolysis-Dependent Nos2 Expression in Macrophages Upon H pylori Infection. Cell Mol Gastroenterol Hepatol 2023; 17:292-308.e1. [PMID: 37820788 PMCID: PMC10829522 DOI: 10.1016/j.jcmgh.2023.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND & AIMS Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.
Collapse
Affiliation(s)
- Nikita Modi
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanheng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xiangming Hu
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
41
|
An K, Deng X, Chi H, Zhang Y, Li Y, Cheng M, Ni Z, Yang Z, Wang C, Chen J, Bai J, Ran C, Wei Y, Li J, Zhang P, Xu F, Tan W. Stimuli-Responsive PROTACs for Controlled Protein Degradation. Angew Chem Int Ed Engl 2023; 62:e202306824. [PMID: 37470380 DOI: 10.1002/anie.202306824] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs) represent a promising therapeutic modality to address undruggable and resistant issues in drug discovery. However, potential on-target toxicity remains clinically challenging. We developed a generalized caging strategy to synthesize a series of stimuli-responsive PROTACs (sr-PROTACs) with diverse molecular blocks bearing robust and cleavable linkers, presenting "turn on" features in manipulating protein degradation. By leveraging pathological cues, such as elevated ROS, phosphatase, H2 S, or hypoxia, and external triggers, such as ultraviolet light, X-Ray, or bioorthogonal reagents, we achieved site-specific activation and traceless release of original PROTACs through de-caging and subsequent self-immolative cleavage, realizing selective uptake and controlled protein degradation in vitro. An in vivo study revealed that two sr-PROTACs with phosphate- and fluorine-containing cages exhibited high solubility and long plasma exposure, which were specifically activated by tumor overexpressing phosphatase or low dosage of X-Ray irradiation in situ, leading to efficient protein degradation and potent tumor remission. With more reactive biomarkers to be screened from clinical practice, our caging library could provide a general tool to design activatable PROTACs, prodrugs, antibody-drug conjugates, and smart biomaterials for personalized treatment, tissue engineering or regenerative medicine.
Collapse
Affiliation(s)
- Keli An
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xuqian Deng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Hongli Chi
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchao Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Zhigang Ni
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhi Yang
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Wang
- Department of Gastrointestinal Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jinling Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jianbo Bai
- School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China
| | - Chunyan Ran
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yong Wei
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Penghui Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
42
|
Shi M, Zheng X, Zhou Y, Yin Y, Lu Z, Zou Z, Hu Y, Liang Y, Chen T, Yang Y, Jing M, Lei D, Yang P, Li X. Selectivity Mechanism of Pyrrolopyridone Analogues Targeting Bromodomain 2 of Bromodomain-Containing Protein 4 from Molecular Dynamics Simulations. ACS OMEGA 2023; 8:33658-33674. [PMID: 37744850 PMCID: PMC10515184 DOI: 10.1021/acsomega.3c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Bromodomain and extra-terminal domain (BET) proteins play an important role in epigenetic regulation and are linked to several diseases; therefore, they are interesting targets. BET has two bromodomains: bromodomain 1 (BD1) and BD2. Selective targeting of BD1 or BD2 may produce different activities and greater effects than pan-BD inhibitors. However, the selective mechanism of the specific core must be studied at the atomic level. This study determined the effectiveness of pyrrolopyridone analogues to selectively inhibit BD2 using a pan-BD inhibitor (ABBV-075) and a selective-BD2 inhibitor (ABBV-744). Molecular dynamics simulations and calculations of binding free energies were used to systematically study the selectivity of BD2 inhibition by the pyrrolopyridone analogues. Overall, the pyrrolopyridone analogue inhibitors targeting BD2 interacted mainly with the following amino acid pairs between bromodomain-containing protein 4 (BRD4)-BD1 and BRD4-BD2 complexes: I146/V439, N140/N433, D144/H437, P82/P375, V87/V380, D88/D381, and Y139/Y432. The pyrrolopyridone analogues targeting BRD4-BD2 were divided into five regions based on selectivity mechanism. These results suggest that the R3 and R5 regions of pyrrolopyridone analogues can be modified to improve the selectivity between BRD4-BD1 and BRD4-BD2. The selectivity of BD2 inhibition by pyrrolopyridone analogues can be used to design novel BD2 inhibitors based on a pyrrolopyridone core.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
- Innovation
Center of Nursing Research, Nursing Key Laboratory of Sichuan Province,
West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueting Zheng
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Zhou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuan Yin
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhou Lu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Zhiyan Zou
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yan Hu
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuanyuan Liang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Tingting Chen
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Yuhan Yang
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| | - Meng Jing
- Department
of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Dan Lei
- School
of Life Science and Engineering, Southwest
University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Pei Yang
- Department
of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of
China, Mianyang 621099, Sichuan, China
| | - Xiaoan Li
- NHC
Key Laboratory of Nuclear Technology Medical Transformation, Mianyang
Central Hospital, School of Medicine, University
of Electronic Science and Technology of China, Mianyang 621099, Sichuan, China
| |
Collapse
|
43
|
Kim S, Jeon SH, Han MG, Kang MH, Kim IA. BRD4 Inhibition Enhances the Antitumor Effects of Radiation Therapy in a Murine Breast Cancer Model. Int J Mol Sci 2023; 24:13062. [PMID: 37685868 PMCID: PMC10487493 DOI: 10.3390/ijms241713062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is an intracellular protein that regulates expression of various cellular functions. This study investigated whether BRD4 inhibition can alter the immunomodulatory and antitumor effects of radiation therapy (RT). A murine breast cancer cell line was implanted into BALB/c mice. The dual-tumor model was used to evaluate the abscopal effects of RT. A total of 24 Gy was delivered and BRD4 inhibitor was injected intravenously. Tumor size was measured, and in vivo imaging was performed to evaluate tumor growth. Flow cytometry and immunohistochemistry were performed to examine immunologic changes upon treatment. The combination of BRD4 inhibitor and RT significantly suppressed tumor growth compared to RT alone. BRD4 inhibitor reduced the size of the unirradiated tumor, indicating that it may induce systemic immune responses. The expression of HIF-1α and PD-L1 in the tumor was significantly downregulated by the BRD4 inhibitor. The proportion of M1 tumor-associated macrophages (TAMs) increased, and the proportion of M2 TAMs decreased upon BRD4 inhibition. BRD4 inhibitor expanded CD4+ and CD8+ T cell populations in the tumor microenvironment. Additionally, splenic monocytic myeloid derived suppressor cells, which were increased by RT, were reduced upon the addition of BRD4 inhibitor. Therefore, the addition of BRD4 inhibitor significantly enhanced the systemic antitumor responses of local RT.
Collapse
Affiliation(s)
- Seongmin Kim
- Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.K.); (M.G.H.)
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Republic of Korea
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 173 Gumiro, Seongnam-si 13620, Republic of Korea
| | - Min Guk Han
- Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.K.); (M.G.H.)
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
| | - In Ah Kim
- Department of Tumor Biology, Graduate School of Medicine, Seoul National University, Seoul 03080, Republic of Korea; (S.K.); (M.G.H.)
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Republic of Korea
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea;
- Department of Radiation Oncology, Seoul National University Bundang Hospital, 173 Gumiro, Seongnam-si 13620, Republic of Korea
| |
Collapse
|
44
|
Cao L, Wang J, Zhang Y, Rong Z, Wang M, Wang L, Ji J, Qian Y, Zhang L, Wu H, Song J, Liu Z, Wang W, Li S, Wang P, Xu Z, Zhang J, Zhao L, Wang H, Sun M, Huang X, Yin R, Lu Y, Liu Z, Deng K, Wang G, Qiu M, Li K, Wang J, Hou Y. E2EFP-MIL: End-to-end and high-generalizability weakly supervised deep convolutional network for lung cancer classification from whole slide image. Med Image Anal 2023; 88:102837. [PMID: 37216736 DOI: 10.1016/j.media.2023.102837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/11/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Efficient and accurate distinction of histopathological subtype of lung cancer is quite critical for the individualized treatment. So far, artificial intelligence techniques have been developed, whose performance yet remained debatable on more heterogenous data, hindering their clinical deployment. Here, we propose an end-to-end, well-generalized and data-efficient weakly supervised deep learning-based method. The method, end-to-end feature pyramid deep multi-instance learning model (E2EFP-MIL), contains an iterative sampling module, a trainable feature pyramid module and a robust feature aggregation module. E2EFP-MIL uses end-to-end learning to extract generalized morphological features automatically and identify discriminative histomorphological patterns. This method is trained with 1007 whole slide images (WSIs) of lung cancer from TCGA, with AUCs of 0.95-0.97 in test sets. We validated E2EFP-MIL in 5 real-world external heterogenous cohorts including nearly 1600 WSIs from both United States and China with AUCs of 0.94-0.97, and found that 100-200 training images are enough to achieve an AUC of >0.9. E2EFP-MIL overperforms multiple state-of-the-art MIL-based methods with high accuracy and low hardware requirements. Excellent and robust results prove generalizability and effectiveness of E2EFP-MIL in clinical practice. Our code is available at https://github.com/raycaohmu/E2EFP-MIL.
Collapse
Affiliation(s)
- Lei Cao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jie Wang
- Department of Tumor Biobank, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pathology, Peking University People's Hospital, Beijing 100044, China
| | - Zhiwei Rong
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Meng Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Liuying Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jianxin Ji
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Youhui Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Liuchao Zhang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Hao Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen 518000, China
| | - Jiali Song
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Zheng Liu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Wenjie Wang
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Shuang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Peiyu Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Zhenyi Xu
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Jingyuan Zhang
- Department of Pathology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Liang Zhao
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Hang Wang
- Department of Tumor Biobank, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Mengting Sun
- Department of Tumor Biobank, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Yuhong Lu
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Ziqian Liu
- Biostatistics and SAS Programming, Clinical Sciences, Johnson & Johnson Vision Care, Inc., FL 32256, US
| | - Kui Deng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN 37232, US
| | - Gongwei Wang
- Department of Pathology, Peking University People's Hospital, Beijing 100044, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Kang Li
- Department of Biostatistics, School of Public Health, Harbin Medical University, Harbin 150081, China.
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China.
| | - Yan Hou
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
45
|
Rana M, Kansal RG, Bisunke B, Fang J, Shibata D, Bajwa A, Yang J, Glazer ES. Bromo- and Extra-Terminal Domain Inhibitors Induce Mitochondrial Stress in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2023; 22:936-946. [PMID: 37294884 PMCID: PMC10527726 DOI: 10.1158/1535-7163.mct-23-0149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFβ, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rita G. Kansal
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Bijay Bisunke
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Shibata
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evan S. Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
46
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
47
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
48
|
Younis SS, Ghafil FAA, Majeed S, Hadi NR. NHWD-870 protects the kidney from ischemia/reperfusion injury by upregulating the PI3K/AKT signaling pathway (experimental study). J Med Life 2023; 16:925-931. [PMID: 37675155 PMCID: PMC10478670 DOI: 10.25122/jml-2022-0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/05/2023] [Indexed: 09/08/2023] Open
Abstract
Renal ischemia-reperfusion injury is a critical clinical condition with a potentially fatal prognosis if not adequately managed. NHWD-870, a known Brd4 inhibitor with anti-cancer properties, exhibits additional attributes such as antioxidant, anti-inflammatory, and anti-apoptotic effects, suggesting its potential to preserve renal tissue and mitigate damage during ischemic insults. We aimed to assess the potential nephroprotective effect of NHWD-870 by investigating its anti-apoptotic, anti-inflammatory, and antioxidant properties in a rat model of renal ischemia-reperfusion injury. Male Wistar Albino rats (n=24) were randomly assigned to four groups: sham, control, vehicle, and NHWD-870. The control group experienced bilateral renal ischemia for 30 minutes, followed by 2 hours of reperfusion, while the sham group underwent a laparotomy without ischemia-reperfusion induction. The vehicle group received a DMSO injection, and the NHWD-870 group was administered 3mg/kg NHWD-870 orally 24 hours before repeating the control group protocol. Blood samples were collected after reperfusion for blood urea nitrogen (BUN) and serum creatinine (SCr) analysis. ELISA method was used to assess IL-1B, BCL-2, PGF-2, and PI3K/AKT signaling pathways in renal tissue. Tubular injury severity was evaluated through histopathological analysis. NHWD-870 treatment improved renal function and histological preservation compared to the control and vehicle groups. BUN, sCR, IL-1B, BCL-2, and PGF-2 levels in renal tissue were significantly improved in the NHWD-870 group (p<0.05). Furthermore, the PI3K/AKT signaling pathway was significantly upregulated (p<0.01), and tubular injury severity was reduced in the NHWD-870 group. NHWD-870 demonstrated substantial nephroprotective effects in reducing renal damage induced by ischemia-reperfusion injury in rats. These effects may be attributed to the anti-apoptotic properties, as indicated by increased levels of the anti-apoptotic protein Bcl-2, and the reduction in oxidative stress marker PGF-2 through upregulation of the PI3K/AKT signaling pathway, along with the decrease in the inflammatory marker IL-1B.
Collapse
Affiliation(s)
- Saba Sahib Younis
- Al-Sadr Medical City, Al-Najaf Health Directorate, Al Najaf Al-Ashraf, Iraq
| | | | - Sahar Majeed
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
49
|
Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Targeting bromodomain-containing proteins: research advances of drug discovery. MOLECULAR BIOMEDICINE 2023; 4:13. [PMID: 37142850 PMCID: PMC10159834 DOI: 10.1186/s43556-023-00127-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Bromodomain (BD) is an evolutionarily conserved protein module found in 46 different BD-containing proteins (BCPs). BD acts as a specific reader for acetylated lysine residues (KAc) and serves an essential role in transcriptional regulation, chromatin remodeling, DNA damage repair, and cell proliferation. On the other hand, BCPs have been shown to be involved in the pathogenesis of a variety of diseases, including cancers, inflammation, cardiovascular diseases, and viral infections. Over the past decade, researchers have brought new therapeutic strategies to relevant diseases by inhibiting the activity or downregulating the expression of BCPs to interfere with the transcription of pathogenic genes. An increasing number of potent inhibitors and degraders of BCPs have been developed, some of which are already in clinical trials. In this paper, we provide a comprehensive review of recent advances in the study of drugs that inhibit or down-regulate BCPs, focusing on the development history, molecular structure, biological activity, interaction with BCPs and therapeutic potentials of these drugs. In addition, we discuss current challenges, issues to be addressed and future research directions for the development of BCPs inhibitors. Lessons learned from the successful or unsuccessful development experiences of these inhibitors or degraders will facilitate the further development of efficient, selective and less toxic inhibitors of BCPs and eventually achieve drug application in the clinic.
Collapse
Affiliation(s)
- Zhaoping Pan
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mingxia Liu
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiyao Zhang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lian Wang
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Gu He
- Department of Dermatology & Venerology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Younis SS, Ghafil FAA, Majeed S, Hadi NR. The effect of JQ1 systemic administration on oxidative stress and apoptotic markers in renal ischemic reperfusion injury in a rat model. J Med Life 2023; 16:682-688. [PMID: 37520478 PMCID: PMC10375347 DOI: 10.25122/jml-2022-0287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 08/01/2023] Open
Abstract
This study aimed to investigate the effects of JQ1 in a renal ischemia-reperfusion (IR) rat model. Twenty-four adult male Wistar Albino rats were randomly divided into four equal groups. The sham group underwent laparotomy without ischemia-reperfusion induction. The control group experienced bilateral renal ischemia for 30 minutes, followed by a 2-hour reperfusion period. The vehicle group (IR group + DMSO) and JQ1 group (same as in control IR + 25 mg/kg JQ1). Kidney and blood samples were collected 2 hours after reperfusion. Blood samples were used to analyze serum creatinine and blood urea nitrogen levels. Renal tissue was assessed for TNF-alpha, caspase-3, FOXO4, PI3K/AKT signaling pathway, and histological analysis. The control group exhibited significantly higher serum creatinine, blood urea nitrogen, caspase-3, TNF-alpha, and FOXO4 levels in renal tissue compared to the sham group. Additionally, the PI3K/AKT signaling pathway was significantly decreased in the control group. Histopathological examination revealed severe kidney damage in the control group compared to the sham group. In rats treated with JQ1, serum creatinine, BUN, caspase-3, TNF-alpha, and FOXO4 levels in renal tissue significantly improved. The PI3K/AKT signaling pathway was substantially increased (p-value 0.01) compared to the Vehicle and Control groups. The tubular severity score was also significantly reduced in the JQ1-treated groups compared to the Control and Vehicle groups. In conclusion, JQ1 significantly ameliorated renal ischemia-reperfusion injury in rats by suppressing apoptosis and inflammatory pathways.
Collapse
Affiliation(s)
- Saba Sahib Younis
- Al-Sadr Medical City, Al-Najaf Health Directorate, Al Najaf Al-Ashraf, Iraq
| | | | - Sahar Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Al-Sadr Medical City, Al-Najaf Health Directorate, Al Najaf Al-Ashraf, Iraq
| |
Collapse
|