1
|
Basu S, Ibrahim MSB, Li J, Yang J, Albar A, Ferhan AR, Zhdanov VP, Ryu DY, Cho NJ, Song J, Jeong W. Impact of adjustable swelling dynamics on the structural integrity of sunflower pollen microgels. BIOMATERIALS ADVANCES 2025; 173:214231. [PMID: 40086005 DOI: 10.1016/j.bioadv.2025.214231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Pollen is a renewable biomaterial found in seed-bearing plants, and the biocompatibility of pollen microgels is a key factor driving their use in drug delivery, biosensor development, and wound care applications. Herein, the microgel was synthesized from sunflower bee pollen by using a cost-effective process, and to examine its structural integrity under adverse acidic and alkaline conditions, digital microscopy and dynamic image particle analysis were carried out. Swelling dynamics of pollen microgels were regulated by varying pH conditions, and adding aqueous KOH to the solution, and the influence of swelling-deswelling on bulk rheology and local elastic properties were experimentally investigated and theoretically interpreted by using the Ross-Minton equation for the suspension viscosity. The present findings reveal how pollen microgels can be adapted to acidic to alkaline environments in order to modify mechanical and rheological properties.
Collapse
Affiliation(s)
- Snehasish Basu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Mohammed Shahrudin Bin Ibrahim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jian Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ahmad Albar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Juha Song
- Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| | - Woncheol Jeong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Centre for Cross Economy, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
2
|
Chen S, Tao C, Huang Y, Zhao Z, Miao S, Peng D, Chen Y, Zhou B, Deng Z, Deng Q. Modulation of protein glutaminase α-helix and disulfide bonds in a sunflower pollen microgel microenvironment: A strategy to enhance enzyme activity and stability. Food Chem 2025; 480:143561. [PMID: 40117824 DOI: 10.1016/j.foodchem.2025.143561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Protein glutaminase (PGase) can improve plant protein solubility, but its activity tends to decline under the influence of external factors. Here, we developed a novel PGase-stabilizing agent (sunflower pollen microgel, SPMG) and investigated the mechanism for its stabilizing effect on PGase. Alkali treatment could regulate the physicochemical microenvironment of SPMG, and its ability to stabilize PGase declined with prolonged treatment time. SPMG increased PGase activity by a maximum of 49.24 %, while enhanced its storage stability by 30.61 %, 21.64 %, and 26.00 % at 4 °C, 25 °C, and 37 °C, respectively. SPMG improved PGase properties through hydrophobic interaction, resulting in the burying of inner hydrophobic groups and enhancement of intermolecular hydrogen bonding, which promoted the α-helix content from 23.28 % to 26.19 %. Additionally, these interactions facilitated the sulfhydryl-disulfide bond exchange reaction between PGase molecules, significantly increasing the disulfide bond content by nearly 80 %. This compact structure ultimately enhanced the activity and stability of PGase.
Collapse
Affiliation(s)
- Shangwen Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Caiyan Tao
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yawen Huang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Ireland
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Bin Zhou
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Ziyu Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China.
| |
Collapse
|
3
|
Aylanc V, Peixoto AF, Akyuz L, Vale N, Freire C, Vilas-Boas M. Natural sporopollenin microcarriers: Morphological insights into their functional performance for drug encapsulation and release. Int J Biol Macromol 2025; 314:144384. [PMID: 40393598 DOI: 10.1016/j.ijbiomac.2025.144384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/13/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
Natural sporopollenin microcapsules (SMCs) derived from pollen offer versatility and efficiency for different applications, from environmental remediation to food and therapeutics delivery. A critical gap remains in understanding the relationship between SMCs morphologies and their effectiveness in drug loading and delivery. Herein, we encapsulated 5-Fluorouracil (5-FU), a model anticancer drug, into SMCs derived from seven bee monofloral pollens, each exhibiting distinct morphological features, and examined how their loading and release performance correlated with their morphology. Microscopic and particle size analyses revealed that the chemically purified SMCs were hollow, with sizes ranging from 11.0 to 35.6 μm, without significant size changes after drug loading. Encapsulation efficiency achieved through vacuum-assisted loading (18-28 %) generally surpassed that of passive and compression loading techniques. Moreover, there was a trend of increasing encapsulation efficiency with larger SMC sizes, albeit with some exceptions. In a sequential release environment simulating the in vitro gastrointestinal tract and colonic fermentation, smaller SMCs exhibited a faster release profile, whereas larger ones demonstrated a slower sustained release. The quantity and shape of apertures on SMCs walls significantly impacted their drug-loading capacity and release characteristics. Additionally, natural SMCs remained structurally intact even in the presence of digestive enzymes, varying pH levels, and colonic bacteria, indicating minimal degradation under these conditions. Overall, the findings highlight the significant influence of SMCs morphologies on their functional performance and provide a list of SMCs-based microstructures to guide drug release applications.
Collapse
Affiliation(s)
- Volkan Aylanc
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; LAQV-REQUIMTE-, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Andreia F Peixoto
- LAQV-REQUIMTE-, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Lalehan Akyuz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cristina Freire
- LAQV-REQUIMTE-, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Miguel Vilas-Boas
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
4
|
Owhoso F, Jung H, Joo H, Wang B, Nikolla E, Kotov NA, Kwabi DG. High Capacity Redox-Flow Batteries with High Density Suspensions of Spiky Nanostructured Particles. ACS NANO 2025; 19:16327-16336. [PMID: 40261027 DOI: 10.1021/acsnano.4c14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Self-assembled complex nanoparticles with spiky surfaces can accommodate significant amounts of excess charge, which can enable various energy storage and conversion technologies. Their combination of high charge storage capacity, high dispersibility, and synthetic simplicity renders them attractive for use in redox-flow batteries. Here we show that hedgehog-like FeSe2 particles (HPs) are effective charge carriers in aqueous redox-flow batteries for long-duration energy storage. The spikes reduce particle-to-particle attraction, engendering stable aqueous dispersions. Shear thinning behavior of the spiky particles observed in this work for the first time facilitates their utilization in redox-flow batteries. HP suspensions exhibited a half-wave potential (E1/2) of 0.45 V vs RHE (-0.47 vs Hg/HgO) at high HP loadings under strongly alkaline conditions (pH 14). A compositionally asymmetric flow cell comprising FeSe2 HPs in the negative electrolyte and ferro/ferricyanide in the positive electrolyte displayed an open circuit voltage of ∼1.0 V. Up to 1.4 mol e/L (∼36.4 Ah/L) of volumetric capacity in the negative electrolyte was attained. Both the spiky shapes of these particles and their high densities in dispersion were responsible for capacity increase relative to nonspiky particles. The slow formation of iron hydroxide-species was responsible for capacity fade at 0.6-5.8%/cycle. Such capacity fade may be mitigated in future work through conformal particle coatings and judicious adjustments to electrolyte composition.
Collapse
Affiliation(s)
- Fiki Owhoso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongju Jung
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerface Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Complex Particles System (COMPASS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyungdon Joo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Complex Particles System (COMPASS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bin Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eranda Nikolla
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Complex Particles System (COMPASS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerface Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center for Complex Particles System (COMPASS), University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David G Kwabi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Marzano C, Pitruzzella R, Arcadio F, Passeggio F, Seggio M, Zeni L, Pasquardini L, Cennamo N. Detecting Attomolar Concentrations of Interleukin IL-17A via Pollen-Based Nanoplasmonic Biochips. BIOSENSORS 2025; 15:161. [PMID: 40136958 PMCID: PMC11940818 DOI: 10.3390/bios15030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025]
Abstract
Interleukins are involved in several diseases and cancers, and their detection and monitoring are of great interest. Their low abundance and short half-lives suggest the need to develop rapid, specific, and highly sensitive detection platforms, easily integrable in point-of-care (POC) systems. Among the other interleukins, interleukin IL-17A is associated with inflammations, neurodegenerative diseases, and cancers, and no biosensors have been previously reported for its detection. In this work, for the detection of IL-17A, a highly sensitive nanoplasmonic sensor based on natural nanostructures like pollen shells, covered by a gold film and a bio-receptor layer, is presented. Hybrid plasmonic modes are exploited to reach high sensitivity without using costly techniques to fabricate periodic nanostructures, such as electron beam lithography. A transparent amino-modified glass substrate is functionalized with carboxylic activated pollen via carbodiimide chemistry. Then, the pollen-based nanostructures are covered by a gold film and derivatized by an immuno-layer specific to IL-17A recognition. The developed IL-17A biosensor is monitored via a simple, small-sized, and low-cost experimental setup, demonstrating high selectivity, a fast response time of about five minutes, and sensitivity with a limit of detection in the ag/mL concentration range. The biosensor allows for the detection of IL-17A in complex solutions thanks to the possibility of high dilution, an advantageous aspect to POC systems.
Collapse
Affiliation(s)
- Chiara Marzano
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Rosalba Pitruzzella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Federica Passeggio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Mimimorena Seggio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| | - Laura Pasquardini
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
- Indivenire Srl, Via Sommarive 18, 38123 Trento, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (C.M.); (R.P.); (F.A.); (F.P.); (M.S.); (L.Z.)
| |
Collapse
|
6
|
Pełka K, Hafeez AB, Worobo RW, Szweda P. Probiotic potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread. Probiotics Antimicrob Proteins 2025; 17:364-377. [PMID: 37725304 PMCID: PMC11832673 DOI: 10.1007/s12602-023-10157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting γ -hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.
Collapse
Affiliation(s)
- Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80233, Gdansk, Poland.
| |
Collapse
|
7
|
Geng W, Zhang H, Lei W, Zhao X, Chen C. Welding Pollen-Based Solar Evaporator for Clean Water Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408576. [PMID: 39499059 DOI: 10.1002/smll.202408576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The world faces a trade-off between water availability and food supply, as agricultural irrigation consumes the largest freshwater globally. Inspired by inherent water transport channels in plants, a cost-effective welding pollen-based solar evaporator (PSE) is developed to obtain clean water from seawater desalination. Based on the convex and folded surface structure of natural pollen (Helianthus annuus) and the porous structure of welding pollen evaporator interconnection, the PSE reveals an efficient evaporation rate of 1.86 kg m-2 h-1 under one-sun illumination and further exhibits excellent cycling performance for 10 cycles tested in 7.0 wt.% saline water without salt accumulation. In addition, PSE has superior mechanical stability (3.44 MPa) and remains stable after being immersed in pH 1 and 14 solutions for 24 h without sacrificing mechanical properties. Importantly, the work has demonstrated the success of the freshwater collected from the evaporation process, which can effectively facilitate the cultivation of lettuce, rice, and wheat. These findings highlight the practical application of pollen as a low-cost, eco-friendly natural resource in interfacial solar evaporation. Furthermore, they inspire addressing current global water scarcity and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Wenjing Geng
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| | - Hongjie Zhang
- College of Textiles and Apparel, Quanzhou Normal University, Quanzhou, 362000, P. R. China
| | - Weiwei Lei
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, P. R. China
| | - Cheng Chen
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, 230036, P. R. China
| |
Collapse
|
8
|
Zhang H, Xiao L, Qin S, Kuang Z, Wan M, Li Z, Li L. Heterogeneity in Mechanical Properties of Plant Cell Walls. PLANTS (BASEL, SWITZERLAND) 2024; 13:3561. [PMID: 39771259 PMCID: PMC11678144 DOI: 10.3390/plants13243561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The acquisition and utilization of cell walls have fundamentally shaped the plant lifestyle. While the walls provide mechanical strength and enable plants to grow and occupy a three-dimensional space, successful sessile life also requires the walls to undergo dynamic modifications to accommodate size and shape changes accurately. Plant cell walls exhibit substantial mechanical heterogeneity due to the diverse polysaccharide composition and different development stages. Here, we review recent research advances, both methodological and experimental, that shed new light on the architecture of cell walls, with a focus on the mechanical heterogeneity of plant cell walls. Facilitated by advanced techniques and tools, especially atomic force microscopy (AFM), research efforts over the last decade have contributed to impressive progress in our understanding of how mechanical properties are associated with cell growth. In particular, the pivotal importance of pectin, the most complex wall polysaccharide, in wall mechanics is rapidly emerging. Pectin is regarded as an important determinant for establishing anisotropic growth patterns of elongating cells. Altogether, the diversity of plant cell walls can lead to heterogeneity in the mechanical properties, which will help to reveal how mechanical factors regulate plant cell growth and organ morphogenesis.
Collapse
Affiliation(s)
- He Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Liang Xiao
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Zheng Kuang
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Miaomiao Wan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; (L.X.); (M.W.)
| | - Zhan Li
- School of Life Sciences, Peking University, Beijing 100871, China; (S.Q.); (Z.L.)
| | - Lei Li
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| |
Collapse
|
9
|
Zhu G, Xiong J, Li X, He Z, Zhong S, Chen J, Shi Y, Pan T, Zhang L, Li B, Xin H. Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart. LIGHT, SCIENCE & APPLICATIONS 2024; 13:258. [PMID: 39300070 DOI: 10.1038/s41377-024-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Neural stimulation and modulation at high spatial resolution are crucial for mediating neuronal signaling and plasticity, aiding in a better understanding of neuronal dysfunction and neurodegenerative diseases. However, developing a biocompatible and precisely controllable technique for accurate and effective stimulation and modulation of neurons at the subcellular level is highly challenging. Here, we report an optomechanical method for neural stimulation and modulation with subcellular precision using optically controlled bio-darts. The bio-dart is obtained from the tip of sunflower pollen grain and can generate transient pressure on the cell membrane with submicrometer spatial resolution when propelled by optical scattering force controlled with an optical fiber probe, which results in precision neural stimulation via precisely activation of membrane mechanosensitive ion channel. Importantly, controllable modulation of a single neuronal cell, even down to subcellular neuronal structures such as dendrites, axons, and soma, can be achieved. This bio-dart can also serve as a drug delivery tool for multifunctional neural stimulation and modulation. Remarkably, our optomechanical bio-darts can also be used for in vivo neural stimulation in larval zebrafish. This strategy provides a novel approach for neural stimulation and modulation with sub-cellular precision, paving the way for high-precision neuronal plasticity and neuromodulation.
Collapse
Affiliation(s)
- Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Shuhan Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Junlin Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
10
|
Deng J, Zhao Z, Yeo XY, Yang C, Yang J, Ferhan AR, Jin B, Oh C, Jung S, Suresh S, Cho NJ. Plant-Based Shape Memory Cryogel for Hemorrhage Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311684. [PMID: 39011812 DOI: 10.1002/adma.202311684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The escalating global demand for sustainable manufacturing, motivated by concerns over energy conservation and carbon footprints, encounters challenges due to insufficient renewable materials and arduous fabrication procedures to fulfill specific requirements in medical and healthcare systems. Here, biosafe pollen cryogel is engineered as effective hemostats without additional harmful crosslinkers to treat deep noncompressible wounds. A straightforward and low-energy approach is involved in forming stable macroporous cryogel, benefiting from the unique micro-hierarchical structures and chemical components of non-allergenic plant pollen. It is demonstrated that the pollen cryogel exhibits rapid water/blood-triggered shape-memory properties within 2 s. Owing to their inherent nano/micro hierarchical structure and abundant chemical functional groups on the pollen surface, the pollen cryogel shows effective hemostatic performance in a mouse liver penetration model, which is easily removed after usage. Overall, the self-crosslinking pollen cryogel in this work pioneers a framework of potential clinical applications for the first-hand treatment on deep noncompressible wounds.
Collapse
Affiliation(s)
- J Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Z Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
| | - X Y Yeo
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - J Yang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - A R Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - B Jin
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - C Oh
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Jung
- Department of Medical Science, College of Medicine, CHA University, Gyeonggi-do, 13488, Republic of Korea
| | - S Suresh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - N-J Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
11
|
Yang Y, Zhang W, Zhang L, Guo M, Xiang C, Ren M, Han Y, Shi J, Li H, Xu X. The development of multifunctional materials for water pollution remediation using pollen and sporopollenin. Int J Biol Macromol 2024; 273:133051. [PMID: 38862057 DOI: 10.1016/j.ijbiomac.2024.133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Pollen is a promising material for water treatment owing to its renewable nature, abundant sources, and vast reserves. The natural polymer sporopollenin, found within pollen exine, possesses a distinctive layered porous structure, mechanical strength, and stable chemical properties, which can be utilized to prepare sporopollenin exine capsules (SECs). Leveraging these attributes, pollen or SECs can be used to develop water pollution remediation materials. In this review, the structure of pollen is first introduced, followed by the categorization of various methods for extracting SECs. Then, the functional expansion of pollen adsorbents, with an emphasis on their recyclability, reusability, and visual sensing capabilities, as opposed to mere functional group modification, is discussed. Furthermore, the progress made in utilizing pollen as a biological template for synthesizing catalysts is summarized. Intriguingly, pollen can also be engineered into self-propelled micromotors, enhancing its potential application in adsorption and catalysis. Finally, the challenges associated with the application of pollen in water pollution treatment are discussed. These challenges include the selection of environmentally friendly, non-toxic reagents in synthesizing pollen water remediation products and the large-scale application after synthesis. Moreover, the multifunctional synthesis and application of different water remediation products are prospected.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Mengyao Guo
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Chengwen Xiang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongliang Li
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| |
Collapse
|
12
|
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals (Basel) 2024; 17:761. [PMID: 38931428 PMCID: PMC11206572 DOI: 10.3390/ph17060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Bee-collected pollen (BCP) and bee bread (BB) are honey bee products known for their beneficial biological properties. The main goal of this study was to investigate BB microbiota and its contribution to bioactivity exerted by BB. The microbiota of BB samples collected at different maturation stages was investigated via culture-independent (Next Generation Sequencing, NGS) and culture-dependent methods. Microbial communities dynamically fluctuate during BB maturation, ending in a stable microbial community structure in mature BB. Bee bread bacterial isolates were tested for phenotypes and genes implicated in the production and secretion of enzymes as well as antibacterial activity. Out of 309 bacterial isolates, 41 secreted hemicellulases, 13 cellulases, 39 amylases, 132 proteinases, 85 Coomassie brilliant blue G or R dye-degrading enzymes and 72 Malachite Green dye-degrading enzymes. Furthermore, out of 309 bacterial isolates, 42 exhibited antibacterial activity against Staphylococcus aureus, 34 against Pseudomonas aeruginosa, 47 against Salmonella enterica ser. Typhimurium and 43 against Klebsiella pneumoniae. Artificially fermented samples exerted higher antibacterial activity compared to fresh BCP, strongly indicating that BB microbiota contribute to BB antibacterial activity. Our findings suggest that BB microbiota is an underexplored source of novel antimicrobial agents and enzymes that could lead to new applications in medicine and the food industry.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Ioanna Karaiskou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Christina Siaperopoulou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Irini Georgi
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (C.S.); (I.G.); (C.T.)
| |
Collapse
|
13
|
Yang Y, Wang B, Liu Q, Wei Z, Mou Z, Li Q, Chen C, You Z, Li BL, Wang G, Xu Z, Qian H. Sunflower pollen-derived microcapsules adsorb light and bacteria for enhanced antimicrobial photothermal therapy. NANOSCALE 2024; 16:8378-8389. [PMID: 38602041 DOI: 10.1039/d3nr04814d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Bacterial infection is one of the most serious clinical complications, with life-threatening outcomes. Nature-inspired biomaterials offer appealing microscale and nanoscale architectures that are often hard to fabricate by traditional technologies. Inspired by the light-harvesting nature, we engineered sulfuric acid-treated sunflower sporopollenin exine-derived microcapsules (HSECs) to capture light and bacteria for antimicrobial photothermal therapy. Sulfuric acid-treated HSECs show a greatly enhanced photothermal performance and a strong bacteria-capturing ability against Gram-positive bacteria. This is attributed to the hierarchical micro/nanostructure and surface chemistry alteration of HSECs. To test the potential for clinical application, an in situ bacteria-capturing, near-infrared (NIR) light-triggered hydrogel made of HSECs and curdlan is applied in photothermal therapy for infected skin wounds. HSECs and curdlan suspension that spread on bacteria-infected skin wounds of mice first capture the local bacteria and then form hydrogels on the wound upon NIR light stimulation. The combination shows a superior antibacterial efficiency of 98.4% compared to NIR therapy alone and achieved a wound healing ratio of 89.4%. The current study suggests that the bacteria-capturing ability and photothermal properties make HSECs an excellent platform for the phototherapy of bacteria-infected diseases. Future work that can fully take advantage of the hierarchical micro/nanostructure of HSECs for multiple biomedical applications is highly promising and desirable.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghua Wei
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Quan Li
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunfa Chen
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
| | - Zhi Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
- Yu-Yue Pathology Scientific Research Center, Chongqing, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Street, Chongqing 400037, China.
- Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Chongqing 400037, China
- Yu-Yue Pathology Scientific Research Center, Chongqing, China
| |
Collapse
|
14
|
Guo K, Liu M, Vella D, Suresh S, Hsia KJ. Dehydration-induced corrugated folding in Rhapis excelsa plant leaves. Proc Natl Acad Sci U S A 2024; 121:e2320259121. [PMID: 38588439 PMCID: PMC11047117 DOI: 10.1073/pnas.2320259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Plant leaves, whose remarkable ability for morphogenesis results in a wide range of petal and leaf shapes in response to environmental cues, have inspired scientific studies as well as the development of engineering structures and devices. Although some typical shape changes in plants and the driving force for such shape evolution have been extensively studied, there remain many poorly understood mechanisms, characteristics, and principles associated with the vast array of shape formation of plant leaves in nature. Here, we present a comprehensive study that combines experiment, theory, and numerical simulations of one such topic-the mechanics and mechanisms of corrugated leaf folding induced by differential shrinking in Rhapis excelsa. Through systematic measurements of the dehydration process in sectioned leaves, we identify a linear correlation between change in the leaf-folding angle and water loss. Building on experimental findings, we develop a generalized model that provides a scaling relationship for water loss in sectioned leaves. Furthermore, our study reveals that corrugated folding induced by dehydration in R. excelsa leaves is achieved by the deformation of a structural architecture-the "hinge" cells. Utilizing such connections among structure, morphology, environmental stimuli, and mechanics, we fabricate several biomimetic machines, including a humidity sensor and morphing devices capable of folding in response to dehydration. The mechanisms of corrugated folding in R. excelsa identified in this work provide a general understanding of the interactions between plant leaves and water. The actuation mechanisms identified in this study also provide insights into the rational design of soft machines.
Collapse
Affiliation(s)
- Kexin Guo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Mingchao Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
- Department of Mechanical Engineering, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Dominic Vella
- Mathematical Institute, University of Oxford, OxfordOX2 6GG, United Kingdom
| | - Subra Suresh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
- Division of Engineering, Brown University, Providence, RI02912
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
15
|
Li D, Sun L, Yang L, Liu J, Shi L, Zhuo L, Ye T, Wang S. Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133308. [PMID: 38134687 DOI: 10.1016/j.jhazmat.2023.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Herein, a novel biosorbent was successfully fabricated through a two-step process employing Pinus massoniana pollen as raw material. The efficacy of this biosorbent in eliminating methylene blue (MB), a typical organic cationic dye, from highly concentrated industrial wastewater was investigated. The results demonstrated that by adjusting the wettability of pollen microcarriers, it is possible to significantly increase their adsorption capacity for cationic dyes, resulting in a remarkable 25-fold improvement. The modified Pinus massoniana pollen microcarriers (MPPMC) exhibited an optimal adsorption capacity (585 mg/g) under specific conditions and a rapid equilibrium (97.6% in 5 min, uptake 487.8 mg/g) even at room temperature, showing excellent performance in removing MB efficiently and quickly. It is worth noting that the modified microcarriers could be regenerated via a simple pH-controlled adsorption-desorption cycle, maintaining their superior efficiency (> 99%) even after undergoing five cycles, indicating their excellent reproducibility. The MB adsorption process on MPPMC obeyed the pseudo-second-order kinetic model and followed the Langmuir model. Through the introduced modifications, the substantial deprotonation of carboxyl groups notably augmented electrostatic and hydrogen bonding interactions between MPPMC and MB. Overall, this study offers a sustainable, eco-friendly biological adsorbent, and the MPPMC exhibit the considerable potential for efficient and rapid removal of organic cationic dyes in wastewater.
Collapse
Affiliation(s)
- Dan Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Shenyang Junhong Medical Technology Co., Ltd., 59 Changjiang Street, Shenyang 110030, China
| | - Liwen Sun
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Li Yang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jun Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lingjuan Shi
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Le Zhuo
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Tiantian Ye
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Shujun Wang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
16
|
Cai L, Zhao C, Cao X, Lu M, Li N, Luo Y, Wang Y, Zhao Y. Chinese herb pollen derived micromotors as active oral drug delivery system for gastric ulcer treatment. Bioact Mater 2024; 32:28-36. [PMID: 37790918 PMCID: PMC10542601 DOI: 10.1016/j.bioactmat.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Considerable efforts have been devoted to treating gastric ulcers. Attempts in this field tend to develop drug delivery systems with prolonged gastric retention time. Herein, we develop novel Chinese herb pollen-derived micromotors as active oral drug delivery system for treating gastric ulcer. Such Chinese herb pollen-derived micromotors are simply produced by asymmetrically sputtering Mg layer onto one side of pollen grains. When exposed to gastric juice, the Mg layer can react with the hydrogen ions, resulting in intensive generation of hydrogen bubbles to propel the micromotors. Benefiting from the autonomous motion and unique spiny structure, our micromotors can move actively in the stomach and adhere to the surrounding tissues. Besides, their special architecture endows the micromotors with salient capacity of drug loading and releasing. Based on these features, we have demonstrated that our Chinese herb pollen-derived micromotors could effective deliver berberine hydrochloride and show desirable curative effect on the gastric ulcer model of mice. Therefore, these Chinese herb pollen-derived micromotors are anticipated to serve as promising oral drug delivery carriers for clinical applications.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Minhui Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Ning Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518071, China
| |
Collapse
|
17
|
Cai L, Cao X, Zhao C, Luo Z, Zhao Y. Near-Infrared-II-Driven Pollen Micromotors for Inflammatory Bowel Disease Treatment. ACS NANO 2023; 17:19993-20001. [PMID: 37787582 DOI: 10.1021/acsnano.3c05143] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a common inflammatory bowel disease with a high incidence rate and serious consequences. Attempts in this area are focusing on developing efficient delivery systems for relieving IBD. Herein, we present a kind of near-infrared-II (NIR-II)-activated pollen-derived micromotor (PDMM) as an efficient delivery system for treating IBD. These PDMMs are pollen grains with half of them covered by a gold (Au) layer, which can result in an asymmetric thermal gradient around the PDMMs under NIR-II irradiation, thereby forming a thermophoretic force to drive PDMMs to move spontaneously. Besides, the inherent spiny and hollow architectures of pollen grains endowed the PDMMs with outstanding capacity of adherence and drug delivery, respectively. Based on these features, we have demonstrated that the PDMMs could move actively in vivo with the irradiation of NIR-II light and adhere to the surrounding tissues for drug delivery. Thus, the PDMMs loaded with dexamethasone show desirable curative effects on treating IBD. These results indicated that the proposed PDMM-based delivery system has great potential in clinic gastrointestinal administration.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
18
|
Meligi NM, Dyab AKF. Natural sporopollenin microcapsules: biological evaluation and application in regulating hepatic toxicity of diclofenac sodium in vivo. Biomater Sci 2023; 11:6193-6209. [PMID: 37522344 DOI: 10.1039/d3bm00638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Diclofenac sodium (DIC) is a pain reliever and anti-nociceptive medication. Significant limitations of DIC treatment stem from its adverse effects. This study investigates the feasibility of using natural Lycopodium clavatum sporopollenin (LCS) microcapsules loaded with DIC to mitigate the hepatotoxicity associated with DIC treatment. In addition, LCS microcapsules were tracked in the blood, stomach, small intestine, and feces of rats to demonstrate their morphological integrity and uptake behavior. Four groups (6 per group) of adult male albino rats were administered normal saline (control), empty LCS (30 mg kg-1), plain DIC (10 mg kg-1), and DIC-loaded LCS (40 mg kg-1) orally for seven consecutive days. The first comprehensive histological examination of the rat stomach demonstrated the robustness and bioadhesion ability of LCS under severe conditions. The findings suggested that these versatile microcapsules are unlikely to be digested in the gastrointestinal tract (GIT). The administration of DIC-loaded LCS was found to play a potential protective role in regulating DIC-induced substantially increased serum levels of transaminases, alkaline phosphatase, total bilirubin, and pro-inflammatory cytokines. In addition, DIC-loaded LCS restored the antioxidant enzymes, DNA damage, and liver histological architecture abnormalities caused by DIC. Microencapsulation of DIC into pollen-derived biomaterials could be employed as an efficient platform with enough safety coverage on rat liver, pending further clinical studies.
Collapse
Affiliation(s)
- Noha M Meligi
- Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Amro K F Dyab
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| |
Collapse
|
19
|
Kolipaka T, Khairnar P, Phatale V, Pandey G, Famta P, Shah S, Asthana A, Nanduri S, Raghuvanshi RS, Srivastava S. Multifaceted roles of pollen in the management of cancer. Int J Pharm 2023; 643:123278. [PMID: 37516214 DOI: 10.1016/j.ijpharm.2023.123278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals. To circumvent these drawbacks, natural carriers like pollen are explored in drug delivery, which withstands harsh environments. This property helps to subdue the acid-sensitive drug in GIT. It shows uniform particle size distribution within the species. On the other side, they contain phytoconstituents like flavonoids and polysaccharides, which possess various pharmacological applications. Therefore, pollen has the capability as a carrier system and therapeutic agent. This review focuses on pollen's microstructure, composition and utility in cancer management. The extraction strategies, characterisation techniques and chemical structure of sporopollenin exine capsule, its use in the oral delivery of antineoplastic drugs, and emerging cancer treatments like photothermal therapy, immunotherapy and microrobots have been highlighted. We have mentioned a note on the anticancer activity of pollen extract. Further, we have summarised the regulatory perspective, bottlenecks and way forward associated with pollen.
Collapse
Affiliation(s)
- Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
20
|
Sun Y, Zhang Y, Hou Y, Gong H, Pang Y, Ge X, Li M. Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract. Food Chem 2023; 416:135811. [PMID: 36898334 DOI: 10.1016/j.foodchem.2023.135811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Substances that possess hierarchical and interconnected porous features are ideal choices for acting as skeletons to synthesize surface molecularly imprinted polymers (MIPs). In this work, rape pollen, a waste of biological resources, was calcined and a porous mesh material with a high specific surface area was obtained. The cellular material was adopted as a supporting skeleton to synthesize high-performance MIPs (CRPD-MIPs). The CRPD-MIPs presented an ultrathin imprinted layered structure, with an enhanced adsorption capacity for sinapic acid (154 mg g-1) relative to the non-imprinted polymers. The CRPD-MIPs also exhibited good selectivity (IF = 3.24) and a fast kinetic adsorption equilibrium (60 min). This method exhibited a good linear relationship (R2 = 0.9918) from 0.9440 to 29.26 μg mL-1, and the relative recoveries were 87.1-92.3%. The proposed CRPD-MIPs based on hierarchical and interconnected porous calcined rape pollen may be a valid program for the selective extraction of a particular ingredient from complicated actual samples.
Collapse
Affiliation(s)
- Yanhua Sun
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yange Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yujiao Hou
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Hui Gong
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Yifei Pang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China
| | - Xiaoxiao Ge
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Ming Li
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
21
|
Jaffri SRF, Scheer H, MacAlister CA. The hydroxyproline O-arabinosyltransferase FIN4 is required for tomato pollen intine development. PLANT REPRODUCTION 2023; 36:173-191. [PMID: 36749417 DOI: 10.1007/s00497-023-00459-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
The pollen grain cell wall is a highly specialized structure composed of distinct layers formed through complex developmental pathways. The production of the innermost intine layer, composed of cellulose, pectin and other polymers, is particularly poorly understood. Here we demonstrate an important and specific role for the hydroxyproline O-arabinosyltransferase (HPAT) FIN4 in tomato intine development. HPATs are plant-specific enzymes which initiate glycosylation of certain cell wall structural proteins and signaling peptides. FIN4 was expressed throughout pollen development in both the developing pollen and surrounding tapetal cells. A fin4 mutant with a partial deletion of the catalytic domain displayed significantly reduced male fertility in vivo and compromised pollen hydration and germination in vitro. However, fin4 pollen that successfully germinated formed morphologically normal pollen tubes with the same growth rate as the wild-type pollen. When we examined mature fin4 pollen, we found they were cytologically normal, and formed morphologically normal exine, but produced significantly thinner intine. During intine deposition at the late stages of pollen development we found fin4 pollen had altered polymer deposition, including reduced cellulose and increased detection of pectin, specifically homogalacturonan with both low and high degrees of methylesterification. Therefore, FIN4 plays an important role in intine formation and, in turn pollen hydration and germination and the process of intine formation involves dynamic changes in the developing pollen cell wall.
Collapse
Affiliation(s)
- Syeda Roop Fatima Jaffri
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Scheer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Jiang W, Han L, Li G, Yang Y, Shen Q, Fan B, Wang Y, Yu X, Sun Y, He S, Du H, Miao J, Wang Y, Jia L. Baits-trap chip for accurate and ultrasensitive capture of living circulating tumor cells. Acta Biomater 2023; 162:226-239. [PMID: 36940769 DOI: 10.1016/j.actbio.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023]
Abstract
Accurate analysis of living circulating tumor cells (CTCs) plays a crucial role in cancer diagnosis and prognosis evaluation. However, it is still challenging to develop a facile method for accurate, sensitive, and broad-spectrum isolation of living CTCs. Herein, inspired by the filopodia-extending behavior and clustered surface-biomarker of living CTCs, we present a unique baits-trap chip to achieve accurate and ultrasensitive capture of living CTCs from peripheral blood. The baits-trap chip is designed with the integration of nanocage (NCage) structure and branched aptamers. The NCage structure could "trap" the extended filopodia of living CTCs and resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture (∼95% accuracy) of living CTCs independent of complex instruments. Using an in-situ rolling circle amplification (RCA) method, branched aptamers were easily modified onto the NCage structure, and served as "baits" to enhance the multi-interactions between CTC biomarker and chips, leading to ultrasensitive (99%) and reversible cell capture performance. The baits-trap chip successfully detects living CTCs in broad-spectrum cancer patients and achieves high diagnostic sensitivity (100%) and specificity (86%) of early prostate cancer. Therefore, our baits-trap chip provides a facile, accurate, and ultrasensitive strategy for living CTC isolation in clinical. STATEMENT OF SIGNIFICANCE: A unique baits-trap chip integrated with precise nanocage structure and branched aptamers was developed for the accurate and ultrasensitive capture of living CTCs. Compared with the current CTC isolation methods that are unable to distinguish CTC viability, the nanocage structure could not only "trap" the extended-filopodia of living CTCs, but also resist the adhesion of filopodia-inhibited apoptotic cells, thus realizing the accurate capture of living CTCs. Additionally, benefiting from the "baits-trap" synergistic effects generated by aptamer modification and nanocage structure, our chip achieved ultrasensitive, reversible capture of living CTCs. Moreover, this work provided a facile strategy for living CTC isolation from the blood of patients with early-stage and advanced cancer, exhibiting high consistency with the pathological diagnosis.
Collapse
Affiliation(s)
- Wenning Jiang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | - Guorui Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Ying Yang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Qidong Shen
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Bo Fan
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuchao Wang
- Department of Urology, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Xiaomin Yu
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Yan Sun
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Shengxiu He
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Huakun Du
- Department of Oncology, The Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, P.R. China
| | - Jian Miao
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Yuefeng Wang
- Hepatobiliary Pancreatic Surgery II, The Second Hospital Affiliated of Dalian Medical University, Dalian 116023, P. R. China
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| |
Collapse
|
23
|
Maruthi YA, Ramakrishna S. Sporopollenin - Invincible biopolymer for sustainable biomedical applications. Int J Biol Macromol 2022; 222:2957-2965. [DOI: 10.1016/j.ijbiomac.2022.10.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
24
|
Peng J, Wu L, Zhang H, Wang B, Si Y, Jin S, Zhu H. Research progress on eco-friendly superhydrophobic materials in environment, energy and biology. Chem Commun (Camb) 2022; 58:11201-11219. [PMID: 36125075 DOI: 10.1039/d2cc03899d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few years, bioinspired eco-friendly superhydrophobic materials (EFSMs) have made great breakthroughs, especially in the fields of environment, energy and biology, which have made remarkable contributions to the sustainable development of the natural environment. However, some potential challenges still exist, which urgently need to be systematically summarized to guide the future development of this field. Herein, in this review, initially, we discuss the five typical superhydrophobic models, namely, the Wenzel, Cassie, Wenzel-Cassie, "lotus", and "gecko" models. Then, the existence of superhydrophobic creatures in nature and artificial EFSMs are summarized. Then, we focus on the applications of EFSMs in the fields of environment (self-cleaning, wastewater purification, and membrane distillation), energy (solar evaporation, heat accumulation, and batteries), and biology (biosensors, biomedicine, antibacterial, and food packaging). Finally, the challenges and developments of eco-friendly superhydrophobic materials are highlighted.
Collapse
Affiliation(s)
- Jiao Peng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Laiyan Wu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Hui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, P. R. China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hongkong SAR 999077, P. R. China.
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China.
| | - Hai Zhu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, P. R. China. .,China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
25
|
Qiu H, Lan G, Ding W, Wang X, Wang W, Shou D, Lu F, Hu E, Yu K, Shang S, Xie R. Dual-Driven Hemostats Featured with Puncturing Erythrocytes for Severe Bleeding in Complex Wounds. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9762746. [PMID: 35707050 PMCID: PMC9178490 DOI: 10.34133/2022/9762746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
Achieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field- (MF-) mediated driving, was prepared via in situ loading of Fe3O4 on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO3 clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds. During the movement in blood flow, the meteor hammer-like SEC from SEC-Fe@CaT can puncture red blood cells (RBCs) to release procoagulants, thus promoting activation of platelet and rapid hemostasis. Animal tests suggested that SEC-Fe@CaT stopped bleeding in as short as 30 and 45 s in femoral artery and liver hemorrhage models, respectively. In contrast, the similar commercial product Celox™ required approximately 70 s to stop the bleeding in both bleeding modes. This study demonstrates a new hemostat platform for rapid hemostasis in deep and complex wounds. It was the first attempt integrating geometric structure of sunflower pollen with dual-driven movement in hemostasis.
Collapse
Affiliation(s)
- Haoyu Qiu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu Province, China
| | - Wenyi Wang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dahua Shou
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Songmin Shang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
26
|
Miller K, Strychalski W, Nickaeen M, Carlsson A, Haswell ES. In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Curr Biol 2022; 32:2921-2934.e3. [PMID: 35660140 DOI: 10.1016/j.cub.2022.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Pollen, a neighbor-less cell containing the male gametes, undergoes mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously shown that the pollen-specific mechanosensitive ion channel MscS-like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here, we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell, and then they stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model, wherein MSL8 acts as a simple-tension-gated osmoregulator, does not replicate this behavior. A better fit was obtained from variations of the model, wherein MSL8 inactivates independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the cell wall strengthening model best simulated experimental responses. Finally, the expression of a nonconducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that contrary to our hypothesis and to the current understanding of MS ion channel function in bacteria, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular scale model system and illustrate how mathematical models can correct intuitive hypotheses.
Collapse
Affiliation(s)
- Kari Miller
- Department of Biology, Washington University, St. Louis, MO 63130, USA; NSF Center for Engineering Mechanobiology, Cleveland, OH, USA
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Masoud Nickaeen
- University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Anders Carlsson
- NSF Center for Engineering Mechanobiology, Cleveland, OH, USA; Department of Physics, Washington University, St. Louis, MO 63130, USA
| | - Elizabeth S Haswell
- Department of Biology, Washington University, St. Louis, MO 63130, USA; NSF Center for Engineering Mechanobiology, Cleveland, OH, USA.
| |
Collapse
|
27
|
Abstract
Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall-related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.
Collapse
Affiliation(s)
- Sebastian Wolf
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard-Karls University, Tübingen, Germany;
| |
Collapse
|
28
|
Zhao Z, Deng J, Tae H, Ibrahim MS, Suresh S, Cho NJ. Recyclable and Reusable Natural Plant-Based Paper for Repeated Digital Printing and Unprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109367. [PMID: 35289432 DOI: 10.1002/adma.202109367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Although paperless technologies are becoming ubiquitous, paper and paper-based materials remain one of the most widely used resources, predicted to exceed an annual total of 460 million metric tons by 2030. Given the environmental challenges, deleterious impact on natural resources, and waste associated with conventional wood-based paper manufacturing, developing more sustainable strategies to source, produce, and recycle paper from natural materials is essential. Here, the development and production of reusable and recyclable paper are reported. This approach offers a pathway for easily producing natural pollen grains via ecofriendly, economical, scalable, and low-energy fabrication routes. It is demonstrated that the pollen-based paper exhibits high-quality printability, readability, and erasability, enabling its reuse. Based on the pH-responsive morphological responses of engineered pollen materials, a method for hygro stable printing and on-demand unprinting is presented. The reusability of the pollen paper renders it more advantageous than conventional single-print wood-based paper. This study thus provides possible pathways to utilize non-allergenic pollen, which is renewable and naturally abundant, as a sustainable source of reusable paper. While this work primarily deals with paper, the methods described here can be extended to produce other products such as cartons and containers for the storage and transport of liquid and solid materials.
Collapse
Affiliation(s)
- Ze Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jingyu Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hyunhyuk Tae
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mohammed Shahrudin Ibrahim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Subra Suresh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
29
|
Cojocaru R, Mannix O, Capron M, Miller CG, Jouneau PH, Gallet B, Falconet D, Pacureanu A, Stukins S. A biological nanofoam: The wall of coniferous bisaccate pollen. SCIENCE ADVANCES 2022; 8:eabd0892. [PMID: 35138906 PMCID: PMC8827650 DOI: 10.1126/sciadv.abd0892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/15/2021] [Indexed: 06/01/2023]
Abstract
The outer layer of the pollen grain, the exine, plays a key role in the survival of terrestrial plant life. However, the exine structure in different groups of plants remains enigmatic. Here, modern and fossil coniferous bisaccate pollen were examined to investigate the detailed three-dimensional structure and properties of the pollen wall. X-ray nanotomography and volume electron microscopy are used to provide high-resolution imagery, revealing a solid nanofoam structure. Atomic force microscopy measurements were used to compare the pollen wall with other natural and synthetic foams and to demonstrate that the mechanical properties of the wall in this type of pollen are retained for millions of years in fossil specimens. The microscopic structure of this robust biological material has potential applications in materials sciences and also contributes to our understanding of the evolutionary success of conifers and other plants over geological time.
Collapse
Affiliation(s)
- Ruxandra Cojocaru
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Oonagh Mannix
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marie Capron
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
- Partnership for Soft Condensed Matter, ESRF–The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - C. Giles Miller
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | - Benoit Gallet
- Univ. Grenoble Alpes, CNRS, CEA, IRIG-IBS, Grenoble, France
| | - Denis Falconet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, Grenoble, France
| | | | - Stephen Stukins
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
30
|
John J, Ray D, Aswal VK, Deshpande AP, Varughese S. Pectin self-assembly and its disruption by water: Insights into plant cell wall mechanics. Phys Chem Chem Phys 2022; 24:22691-22698. [DOI: 10.1039/d2cp01479c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant cell walls undergo multiple cycles of dehydration and rehydration during their life. Cal- cium crosslinked low methoxy pectin is a major constituent of plant cell walls. Understanding the dehydration-rehydration...
Collapse
|
31
|
Haas KT, Wightman R, Peaucelle A, Höfte H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 2021; 7:100054. [PMID: 34141960 PMCID: PMC8185244 DOI: 10.1016/j.tcsw.2021.100054] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
A rapidly increasing body of literature suggests that many biological processes are driven by phase separation within polymer mixtures. Liquid-liquid phase separation can lead to the formation of membrane-less organelles, which are thought to play a wide variety of roles in cell metabolism, gene regulation or signaling. One of the characteristics of these systems is that they are poised at phase transition boundaries, which makes them perfectly suited to elicit robust cellular responses to often very small changes in the cell's "environment". Recent observations suggest that, also in the semi-solid environment of plant cell walls, phase separation not only plays a role in wall patterning, hydration and stress relaxation during growth, but also may provide a driving force for cell wall expansion. In this context, pectins, the major polyanionic polysaccharides in the walls of growing cells, appear to play a critical role. Here, we will discuss (i) our current understanding of the structure-function relationship of pectins, (ii) in vivo evidence that pectin modification can drive critical phase transitions in the cell wall, (iii) how such phase transitions may drive cell wall expansion in addition to turgor pressure and (iv) the periodic cellular processes that may control phase transitions underlying cell wall assembly and expansion.
Collapse
Affiliation(s)
- Kalina T. Haas
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Alexis Peaucelle
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
32
|
Ourani-Pourdashti S, Azadi A. Pollens in therapeutic/diagnostic systems and immune system targeting. J Control Release 2021; 340:308-317. [PMID: 34763004 DOI: 10.1016/j.jconrel.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022]
Abstract
Pollen is an excellent natural substance that plays an essential role in the reproduction of plants. In this review, we explain the structure, compositions, and characteristics of pollens. We consider pollen as a multifunctional tool that can be used in therapeutic/diagnostic systems. This microcapsule can be used in the forms of the hollow microcapsule, microgel, and composite, and also can be a tool for the synthesis of micro/nanostructures in various medical applications and used for the production of genetically modified plants that affect human health. In addition, we investigate the capability of this multifunctional tool in the immune system targeting that acts as an immunomodulator. In all applications and capabilities, we explain the potential of using nanostructures as parts of these systems and as auxiliary tools for promoting the applications of pollen. It is expected that soon, with the help of pollen-based therapeutic/diagnostic systems with the ability to immune system targeting, we will achieve effective and targeted therapeutic systems for the treatment of inflammatory and autoimmune diseases. In this paper, we suggest some ideas that may be a new step for future researches.
Collapse
Affiliation(s)
- Shima Ourani-Pourdashti
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Azadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Deng Z, Li J, Song R, Zhou B, Li B, Liang H. Carboxymethylpachymaran/alginate gel entrapping of natural pollen capsules for the encapsulation, protection and delivery of probiotics with enhanced viability. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106855] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Abstract
We demonstrate how programmable shape evolution and deformation can be induced in plant-based natural materials through standard digital printing technologies. With nonallergenic pollen paper as the substrate material, we show how specific geometrical features and architectures can be custom designed through digital printing of patterns to modulate hygrophobicity, geometry, and complex shapes. These autonomously hygromorphing configurations can be "frozen" by postprocessing coatings to meet the needs of a wide spectrum of uses and applications. Through computational simulations involving the finite element method and accompanying experiments, we develop quantitative insights and a general framework for creating complex shapes in eco-friendly natural materials with potential sustainable applications for scalable manufacturing.
Collapse
|
35
|
DaOrazio M, Reale R, De Ninno A, Brighetti MA, Mencattini A, Businaro L, Martinelli E, Bisegna P, Travaglini A, Caselli F. Electro-optical classification of pollen grains via microfluidics and machine learning. IEEE Trans Biomed Eng 2021; 69:921-931. [PMID: 34478361 DOI: 10.1109/tbme.2021.3109384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In aerobiological monitoring and agriculture there is a pressing need for accurate, label-free and automated analysis of pollen grains, in order to reduce the cost, workload and possible errors associated to traditional approaches. Methods: We propose a new multimodal approach that combines electrical sensing and optical imaging to classify pollen grains flowing in a microfluidic chip at a throughput of 150 grains per second. Electrical signals and synchronized optical images are processed by two independent machine learning-based classifiers, whose predictions are then combined to provide the final classification outcome. Results: The applicability of the method is demonstrated in a proof-of-concept classification experiment involving eight pollen classes from different taxa. The average balanced accuracy is 78.7 % for the electrical classifier, 76.7 % for the optical classifier and 84.2 % for the multimodal classifier. The accuracy is 82.8 % for the electrical classifier, 84.1 % for the optical classifier and 88.3 % for the multimodal classifier. Conclusion: The multimodal approach provides better classification results with respect to the analysis based on electrical or optical features alone. Significance: The proposed methodology paves the way for automated multimodal palynology. Moreover, it can be extended to other fields, such as diagnostics and cell therapy, where it could be used for label-free identification of cell populations in heterogeneous samples.
Collapse
|
36
|
Fossil-like pollen grains for construction of UV-responsive photochromic and fluorogenic dual-functional film. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Hwang Y, Sadhu A, Shin S, Leow SW, Zhao Z, Deng J, Jackman JA, Kim M, Wong LH, Cho NJ. An Intrinsically Micro-/Nanostructured Pollen Substrate with Tunable Optical Properties for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100566. [PMID: 34189777 DOI: 10.1002/adma.202100566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Indexed: 06/13/2023]
Abstract
There is broad interest in developing photonically active substrates from naturally abundant, minimally processed materials that can help to overcome the environmental challenges of synthetic plastic substrates while also gaining inspiration from biological design principles. To date, most efforts have focused on rationally engineering the micro- and nanoscale structural properties of cellulose-based materials by tuning fibril and fiber dimensions and packing along with chemical modifications, while there is largely untapped potential to design photonically active substrates from other classes of natural materials with distinct morphological features. Herein, the fabrication of a flexible pollen-derived substrate is reported, which exhibits high transparency (>92%) and high haze (>84%) on account of the micro- and nanostructure properties of constituent pollen particles that are readily obtained from nature and require minimal extraction or processing to form the paper-like substrate based on colloidal self-assembly. Experiments and simulations confirm that the optical properties of the pollen substrate are tunable and arise from light-matter interactions with the spiky surface of pollen particles. In a proof-of-concept example, the pollen substrate is incorporated into a functional perovskite solar cell while the tunable optical properties of the intrinsically micro-/nanostructured pollen substrate can be useful for a wide range of optoelectronic applications.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Anupam Sadhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 139602, Singapore
| | - Sangho Shin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shin Woei Leow
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 139602, Singapore
| | - Ze Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jingyu Deng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Munho Kim
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lydia H Wong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 139602, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Meligi NM, Dyab AKF, Paunov VN. Sustained In Vitro and In Vivo Delivery of Metformin from Plant Pollen-Derived Composite Microcapsules. Pharmaceutics 2021; 13:1048. [PMID: 34371742 PMCID: PMC8309045 DOI: 10.3390/pharmaceutics13071048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022] Open
Abstract
We developed a dual microencapsulation platform for the type 2 diabetes drug metformin (MTF), which is aimed to increase its bioavailability. We report the use of Lycopodium clavatum sporopollenin (LCS), derived from their natural spores, and raw Phoenix dactylifera L. (date palm) pollens (DPP) for MTF microencapsulation. MTF was loaded into LCS and DPP via a vacuum and a novel method of hydration-induced swelling. The loading capacity (LC) and encapsulation efficiency (EE) percentages for MTF-loaded LCS and MTF-loaded DPP microcapsules were 14.9% ± 0.7, 29.8 ± 0.8, and 15.2% ± 0.7, 30.3 ± 1.0, respectively. The release of MTF from MTF-loaded LCS microcapsules was additionally controlled by re-encapsulating the loaded microcapsules into calcium alginate (ALG) microbeads via ionotropic gelation, where the release of MTF was found to be significantly slower and pH-dependent. The pharmacokinetic parameters, obtained from the in vivo study, revealed that the relative bioavailability of the MTF-loaded LCS-ALG beads was 1.215 times higher compared to pure MTF, following oral administration of a single dose equivalent to 25 mg/kg body weight MTF to streptozotocin (STZ)-induced diabetic male Sprague-Dawley rats. Significant hypoglycemic effect was obtained for STZ-induced diabetic rats orally treated with MTF-loaded LCS-ALG beads compared to control diabetic rats. Over a period of 29 days, the STZ-induced diabetic rats treated with MTF-loaded LCS-ALG beads showed a decrease in the aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides, cholesterol, and low-density lipoprotein-cholesterol (LDL-C) levels, as well as an increase in glutathione peroxidase (GPx) and a recovery in the oxidative stress biomarker, lipid peroxidation (LPx). In addition, histopathological studies of liver, pancreas, kidney, and testes suggested that MTF-loaded LCS-ALG beads improved the degenerative changes in organs of diabetic rats. The LCS-ALG platform for dual encapsulation of MTF achieved sustained MTF delivery and enhancement of bioavailability, as well as the improved biochemical and histopathological characteristics in in vivo studies, opening many other intriguing applications in sustained drug delivery.
Collapse
Affiliation(s)
- Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Amro K. F. Dyab
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt;
| | - Vesselin N. Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nursultan 010000, Kazakhstan
| |
Collapse
|
39
|
Makers and shakers. Nature 2021. [DOI: 10.1038/d41586-021-01791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Ageitos JM, Robla S, Valverde-Fraga L, Garcia-Fuentes M, Csaba N. Purification of Hollow Sporopollenin Microcapsules from Sunflower and Chamomile Pollen Grains. Polymers (Basel) 2021; 13:2094. [PMID: 34202181 PMCID: PMC8271440 DOI: 10.3390/polym13132094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
Pollen grains are natural microcapsules comprised of the biopolymer sporopollenin. The uniformity and special tridimensional architecture of these sporopollenin structures confer them attractive properties such as high resistance and improved bioadhesion. However, natural pollen can be a source of allergens, hindering its biomedical applicability. Several methods have been developed to remove internal components and allergenic compounds, usually involving long and laborious processes, which often cannot be extended to other pollen types. In this work, we propose an abridged protocol to produce stable and pristine hollow pollen microcapsules, together with a complete physicochemical and morphological characterization of the intermediate and final products. The optimized procedure has been validated for different pollen samples, also producing sporopollenin microcapsules from Matricaria species for the first time. Pollen microcapsules obtained through this protocol presented low protein content (4.4%), preserved ornamented morphology with a nanoporous surface, and low product density (0.14 g/cm3). These features make them interesting candidates from a pharmaceutical perspective due to the versatility of this biomaterial as a drug delivery platform.
Collapse
Affiliation(s)
| | | | | | | | - Noemi Csaba
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (J.M.A.); (S.R.); (L.V.-F.); (M.G.-F.)
| |
Collapse
|
41
|
Didaras NA, Kafantaris I, Dimitriou TG, Mitsagga C, Karatasou K, Giavasis I, Stagos D, Amoutzias GD, Hatjina F, Mossialos D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics (Basel) 2021; 10:antibiotics10050555. [PMID: 34068740 PMCID: PMC8151309 DOI: 10.3390/antibiotics10050555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 01/18/2023] Open
Abstract
Bee bread is the only fermented product of the beehive. It constitutes the main source of proteins, lipids, vitamins, and macro- and microelements in honeybee nutrition and it exerts antioxidant and antimicrobial properties, though research on these aspects has been limited so far. In this study 18 samples of Greek bee bread, two of which were monofloral, were collected during different seasons from diverse locations such as Crete and Mount Athos and were tested for their bioactivity. Samples were analyzed for their antibacterial properties, antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC). The antimicrobial activity of each sample was tested against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella typhimurium. Our data demonstrate that all samples exert inhibitory and most of them bactericidal activity against at least two pathogens. Furthermore, all samples exert significant antioxidant activity, where the monofloral Castanea Sativa sample demonstrated superior antioxidant activity. Nevertheless, the antioxidant and antimicrobial activity were not strongly correlated. Furthermore, machine learning methods demonstrated that the palynological composition of the samples is a good predictor of their TPC and ABTS activity. This is the first study that focuses on the biological properties of Greek bee bread and demonstrates that bee bread can be considered a functional food and a possible source of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Ioannis Kafantaris
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Tilemachos G. Dimitriou
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
| | - Chrysanthi Mitsagga
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41222 Larissa, Greece;
| | - Ioannis Giavasis
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Nutrition, University of Thessaly, 43100 Karditsa, Greece; (C.M.); (I.G.)
| | - Dimitris Stagos
- Laboratory of Animal Physiology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece;
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Hellenic Agricultural Organisation DEMETER, 63200 Nea Moudania, Greece;
| | - Dimitris Mossialos
- Laboratory of Microbial Biotechnology, Molecular Bacteriology, Virology, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (N.A.D.); (I.K.); (T.G.D.)
- Correspondence: ; Tel.: +30-241-056-5270
| |
Collapse
|
42
|
Deng Z, Wang S, Pei Y, Zhou B, Li J, Hou X, Li B, Liang H. Tuning of Molecular Interactions between Zein and Tannic Acid to Modify Sunflower Sporopollenin Exine Capsules: Enhanced Stability and Targeted Delivery of Bioactive Macromolecules. ACS APPLIED BIO MATERIALS 2021; 4:2686-2695. [PMID: 35014307 DOI: 10.1021/acsabm.0c01623] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the same time provided insights into the sustained-release mechanism through exploring the interaction between zein and tannic acid (TA). β-Galactosidase (β-Gal) was utilized as a model protein and loaded into sporopollenin exine capsules (SECs), which were then coated with the zein/TA system. Under the optimized zein/TA conditions, the zein/TA system showed better performance than the zein alone system in the sustained release of β-Gal, with the residual activity of about 70.26% after 24 h of simulated digestion. Evaluation of the storage stability demonstrated a β-Gal residual activity of nearly 90% for 28 days at 25 °C. Additionally, FTIR analysis demonstrated that the stability of the zein/TA system depends on both hydrogen bonding and certain covalent bonding through the Schiff-base reaction, and the sustained release is regulated by the bonding strength.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; National "111" Center for Cellular Regulation and Molecular Pharmaceutics; Hubei Key Laboratory of Industrial Microbiology; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Xinyao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China.,Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
43
|
Stamatopoulos K, Kafourou V, Batchelor HK, Konteles SJ. Sporopollenin Exine Microcapsules as Potential Intestinal Delivery System of Probiotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004573. [PMID: 33502112 DOI: 10.1002/smll.202004573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Despite several decades of research into encapsulation of bacteria, most of the proposed technologies are in the form of immobilized cultures. In this work, sporopollenin exine capsules (SECs) opened, using silica particles which act as pressing micro-probes, and loaded with Lactobacillus casei (L. casei) cells, are described for the first time. The proposed encapsulation provided ≈30× higher encapsulation yield (30.87%), compared to direct compression of SECs (0.99%). Encapsulated L. casei cells show 1.21- and 2.25-folds higher viability compared to free cells, in in vitro simulated fasted and fed media representing the human gastrointestinal (GI) tract, respectively. Encapsulated L. casei can proliferate inside the SECs, generating enough pressure to cause the SECs to burst and release the viable and metabolically active cells. The noticeable difference with the application of the SECs as a means of encapsulation is that the SECs may act as a bioreactor and provide time for the encapsulated cells to multiply thousands of times before being released, following the SEC's burst. The unique advantages of SECs alongside the proposed encapsulation method, demonstrates the potential application of SECs as delivery system of probiotics to the distal part of the human GI tract.
Collapse
Affiliation(s)
| | - Vasiliki Kafourou
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Spyros J Konteles
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, Athens, 12243, Greece
| |
Collapse
|
44
|
Deng Z, Pei Y, Wang S, Zhou B, Hou X, Li J, Li B, Liang H. Designable Carboxymethylpachymaran/Metal Ion Architecture on Sunflower Sporopollenin Exine Capsules as Delivery Vehicles for Bioactive Macromolecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13990-14000. [PMID: 33174430 DOI: 10.1021/acs.jafc.0c05169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
There are multiple obstacles in the gastrointestinal tract (GIT) for oral administration of bioactive macromolecules. Here, we engineered an oral delivery vehicle (sporopollenin exine capsules with carboxymethylpachymaran (CMP)/metal ion modification) with targeted release based on food-grade ingredients and processing operations. Then, the interaction and binding mechanisms between CMP and metal ions in the vehicle were investigated. By using β-galactosidase (β-Gal) as a model protein, the systems were characterized for the surface morphology and monitored by the in vitro release profile of β-Gal. Notably, the CMP/metal ion systems not only markedly decreased the CMP dosage but also achieved a valid long-term release compared with the previously reported CMP system. Among all the systems, the CMP/3% AlCl3 system showed the best ability to control the release with the maximum residual activity of β-Gal at nearly 72% after 24 h of treatment. Subsequently, the interaction mechanism between CMP and metal ions within the system was characterized by the perspectives of microstructure, rheological properties, and spectroscopy characteristics. The results indicated that the low pH conditions are conducive to the further cross-linking of CMP and metal ions, resulting in a high gel strength and thus a dense structure, which can impact the controlled release of β-Gal in the GIT. Overall, the system may be utilized in the administration of medical and functional foods, specifically for the delivery of bioactive proteins via the oral route.
Collapse
Affiliation(s)
- Ziyu Deng
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Yaqiong Pei
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Shishuai Wang
- College of Culinary and Food Engineering, Wuhan Business University, Wuhan 430056, China
| | - Bin Zhou
- Key Laboratory of Fermentation Engineering, Ministry of Education; National "111" Center for Cellular Regulation and Molecular Pharmaceutics; Hubei Key Laboratory of Industrial Microbiology; School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Xinyao Hou
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Jing Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| | - Bin Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
- Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; China
| |
Collapse
|
45
|
Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics (Basel) 2020; 9:antibiotics9110811. [PMID: 33202560 PMCID: PMC7697837 DOI: 10.3390/antibiotics9110811] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/06/2023] Open
Abstract
Bee-collected pollen (BCP) is a well-known functional food. Honey bees process the collected pollen and store it in the hive, inside the comb cells. The processed pollen is called bee- bread or ambrosia and it is the main source of proteins, lipids, vitamins, macro-and micro-elements in honey bee nutrition. During storage, beebread undergoes solid state fermentation which preserves it and increases the bioavailability of nutrients. Research on beebread has been rather limited until now. In recent years, there is an increasing interest regarding the antimicrobial properties of BCP and beebread, due to emerging antimicrobial resistance by pathogens. Both BCP and beebread exhibit antimicrobial properties against diverse pathogens, like bacteria and fungi. As is the case with other bee products, lack of antimicrobial resistance might be attributed to the synergy of more than one antimicrobial compounds within BCP and beebread. Furthermore, BCP and bee bread exert targeted activity against pathogens and affect the host microbiome in a prebiotic manner. This review aims to present up to date research findings regarding these aspects as well as to discuss current challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Nikos Asoutis Didaras
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
| | - Katerina Karatasou
- Apicultural Centre of Larissa, Federation of Greek Beekeepers Associations, 41500 Larissa, Greece;
| | - Tilemachos G Dimitriou
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
| | - Grigoris D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece;
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Volos, Greece; (N.A.D.); (T.G.D.)
- Correspondence: ; Tel.: +30-241-056-5270
| |
Collapse
|
46
|
Abstract
When pollen grains become exposed to the environment, they rapidly desiccate. To protect themselves until rehydration, the grains undergo characteristic infolding with the help of special structures in the grain wall-apertures-where the otherwise thick exine shell is absent or reduced in thickness. Recent theoretical studies have highlighted the importance of apertures for the elastic response and the folding of the grain. Experimental observations show that different pollen grains sharing the same number and type of apertures can nonetheless fold in quite diverse fashions. Using the thin-shell theory of elasticity, we show how both the absolute elastic properties of the pollen wall and the relative elastic differences between the exine wall and the apertures play an important role in determining pollen folding upon desiccation. Focusing primarily on colpate pollen, we delineate the regions of pollen elastic parameters where desiccation leads to a regular, complete closing of all apertures and thus to an infolding which protects the grain against water loss. Phase diagrams of pollen folding pathways indicate that an increase in the number of apertures leads to a reduction of the region of elastic parameters where the apertures close in a regular fashion. The infolding also depends on the details of the aperture shape and size, and our study explains how the features of the mechanical design of apertures influence the pollen folding patterns. Understanding the mechanical principles behind pollen folding pathways should also prove useful for the design of the elastic response of artificial inhomogeneous shells.
Collapse
|
47
|
Atalay FE, Bingol A, Kaya H, Emre Y, Bas HH, Culum AA. Juglans Sporopollenin for High-Performance Supercapacitor Electrode Design. ACS OMEGA 2020; 5:20417-20427. [PMID: 32832795 PMCID: PMC7439399 DOI: 10.1021/acsomega.0c02355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Recently, plant pollen has been used as a source of activated carbon to produce carbon-containing supercapacitor electrodes. However, in this study, pollen was used as a biotemplate with a completely different approach. As a biotemplate, pollen offers a wide range of varieties in terms of exterior, porosity, shape, and size. An electrode formed by the use of metal oxide grown on the pollen exine layer (sporopollenin microcapsules) as the active substance will inevitably exhibit good electrochemical capacitive properties. Juglans male flowers have been distinguished by dissection from anthers. Isolation of pollen grains from anthers was carried out using sieving from suitable sieves (45-200 μm). Juglans sporopollenin exine microcapsules (SECs) were separated from the intine and protoplasm by acetolysis in combination with reflux. The solution containing SECs, metal ions, and Ni foam was put into a Teflon-lined hydrothermal container, and then, it was reacted at 120 °C for 15 h. The resulting precipitate, as well as the Ni foam, was heat-treated at 300 and 360 °C for 3 h in air. The raw pollen, chemically treated pollen, and cobalt-coated SEC (CoSEC) and CoSEC/Ni foam were characterized using scanning electron microscopy, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, and X-ray diffraction techniques. Two different types of supercapacitor electrode designs, with the use of exine microcapsules of Juglans sporopollenin, were performed for the first time. The maximum specific capacitance was up to 1691 F g-1 at 5 A g-1.
Collapse
Affiliation(s)
- Funda Ersoy Atalay
- The Faculty of Science
and Arts, Department of Physics, Inonu University, Malatya 44280, Turkey
| | - Alper Bingol
- The Faculty of Science
and Arts, Department of Physics, Inonu University, Malatya 44280, Turkey
| | - Harun Kaya
- The
Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, Malatya 44210, Turkey
| | - Yıldız Emre
- The Faculty of Science
and Arts, Department of Physics, Inonu University, Malatya 44280, Turkey
| | - Hatice Hande Bas
- The Faculty of Science
and Arts, Department of Physics, Inonu University, Malatya 44280, Turkey
| | - Ayse Asiye Culum
- The Faculty of Science and Arts, Department of Biology, Inonu University, Malatya 44280, Turkey
| |
Collapse
|
48
|
Abstract
Much progress has been made in developing bioinspired sensors and actuators based on engineered synthetic materials, although there remains a critical need to incorporate cost-effective and eco-friendly materials. Here naturally abundant pollen grains are used as a material template to produce paper that sensitively and reversibly responds as an actuator to variations in environmental humidity. The actuating properties of the all-natural paper are readily tuned by material characteristics, such as sheet thickness and surface roughness. We demonstrate self-actuation of the pollen-based paper by mimicking flower blooming. The results presented here point to pathways for the creation of self-propelled robots, flexible electronics, and multifunctional devices. They also offer the potential for digital printing and fabrication of complex and programmable natural actuators. Here we describe the development of a humidity-responsive sheet of paper that is derived solely from natural pollen. Adaptive soft material components of the paper exhibit diverse and well-integrated responses to humidity that promote shape reconfiguration, actuation, and locomotion. This mechanically versatile and nonallergenic paper can generate a cyclically high contractile stress upon water absorption and desorption, and the rapid exchange of water drives locomotion due to hydrodynamic effects. Such dynamic behavior can be finely tuned by adjusting the structure and properties of the paper, including thickness, surface roughness, and processing conditions, analogous to those of classical soapmaking. We demonstrate that humidity-responsive paper-like actuators can mimic the blooming of the Michelia flower and perform self-propelled motion. Harnessing the material properties of bioinspired systems such as pollen paper opens the door to a wide range of sustainable, eco-friendly, and biocompatible material innovation platforms for applications in sensing, actuation, and locomotion.
Collapse
|