1
|
Wang H, Weissenhorn W, Boscheron C. Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III. STAR Protoc 2025; 6:103808. [PMID: 40372921 DOI: 10.1016/j.xpro.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
We present a protocol for temporal inhibition of HIV-1 virus-like particle (VLP) release using ESCRT-III proteins fused to the Hepatitis C virus NS3 protease. These fusion proteins function like wild-type ESCRT-III but convert into dominant-negative inhibitors upon addition of the NS3 inhibitor Glecaprevir. The procedure involves co-transfection of Gag and CHMP-NS3-Green plasmids into HEK293 or HeLa cells, followed by drug treatment. Steps for protein expression analysis, VLP quantification by immunoblotting, and live-cell imaging of VLP release kinetics are included. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
2
|
Naskar S, Merino A, Espadas J, Singh J, Roux A, Colom A, Low HH. Mechanism for Vipp1 spiral formation, ring biogenesis, and membrane repair. Nat Struct Mol Biol 2025; 32:571-584. [PMID: 39528797 PMCID: PMC11919738 DOI: 10.1038/s41594-024-01401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
The ESCRT-III-like protein Vipp1 couples filament polymerization with membrane remodeling. It assembles planar sheets as well as 3D rings and helical polymers, all implicated in mitigating plastid-associated membrane stress. The architecture of Vipp1 planar sheets and helical polymers remains unknown, as do the geometric changes required to transition between polymeric forms. Here we show how cyanobacterial Vipp1 assembles into morphologically-related sheets and spirals on membranes in vitro. The spirals converge to form a central ring similar to those described in membrane budding. Cryo-EM structures of helical filaments reveal a close geometric relationship between Vipp1 helical and planar lattices. Moreover, the helical structures reveal how filaments twist-a process required for Vipp1, and likely other ESCRT-III filaments, to transition between planar and 3D architectures. Overall, our results provide a molecular model for Vipp1 ring biogenesis and a mechanism for Vipp1 membrane stabilization and repair, with implications for other ESCRT-III systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Andrea Merino
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier Espadas
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Jayanti Singh
- Department of Infectious Disease, Imperial College, London, UK
| | - Aurelien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Adai Colom
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
3
|
Nachmias D, Frohn BP, Sachse C, Mizrahi I, Elia N. ESCRTs - a multi-purpose membrane remodeling device encoded in all life forms. Trends Microbiol 2025:S0966-842X(25)00008-3. [PMID: 39979199 DOI: 10.1016/j.tim.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The ESCRT (endosomal sorting complexes required for transport) membrane remodeling complex, found across all life forms, exhibits a versatility that transcends evolutionary boundaries. From orchestrating the constriction of micron-wide tubes in cell division to facilitating the budding of 50 nm vesicles in receptor degradation, ESCRTs perform diverse functions in animal cells. However, the basis of this functional diversity remains enigmatic. While extensively studied in eukaryotes, the role of ESCRTs in prokaryotes is only beginning to emerge. This review synthesizes data on ESCRT systems across the tree of life, focusing on microorganisms and drawing parallels to their functions in human cells. This comparative approach highlights the remarkable plasticity of the ESCRT system across functional, structural, and genomic levels in both prokaryotes and eukaryotes. This integrated knowledge supports a model in which the ESCRT system evolved as a multipurpose membrane remodeling tool, adaptable to specific functions within and across organisms. Our review not only underscores the significance of ESCRTs in microorganisms but also paves the way for exciting avenues of research into the intricacies of cellular membrane dynamics, offering valuable insights into the evolution of cellular complexity across diverse organisms and ecosystems.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Béla P Frohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Dusseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
4
|
Souza DP, Espadas J, Chaaban S, Moody ERR, Hatano T, Balasubramanian M, Williams TA, Roux A, Baum B. Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling. SCIENCE ADVANCES 2025; 11:eads5255. [PMID: 39919172 PMCID: PMC11804906 DOI: 10.1126/sciadv.ads5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
ESCRT-III proteins assemble into composite polymers that undergo stepwise changes in composition and structure to deform membranes across the tree of life. Here, using a phylogenetic analysis, we demonstrate that the two endosomal sorting complex required for transport III (ESCRT-III) proteins present in eukaryote's closest Asgard archaeal relatives are evolutionarily related to the B- and A-type eukaryotic paralogs that initiate and execute membrane remodeling, respectively. We show that Asgard ESCRT-IIIB assembles into parallel arrays on planar membranes to initiate membrane deformation, from where it recruits ESCRT-IIIA to generate composite polymers. Last, we show that Asgard ESCRT-IIIA is able to remodel membranes into tubes as a likely prelude to scission. Together, these data reveal a set of conserved principles governing ESCRT-III-dependent membrane remodeling that first emerged in a two-component ESCRT-III system in archaea.
Collapse
Affiliation(s)
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sami Chaaban
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edmund R. R. Moody
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
5
|
Weiner E, Berryman E, Frey F, Solís AG, Leier A, Lago TM, Šarić A, Otegui MS. Endosomal membrane budding patterns in plants. Proc Natl Acad Sci U S A 2024; 121:e2409407121. [PMID: 39441629 PMCID: PMC11536153 DOI: 10.1073/pnas.2409407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 10/25/2024] Open
Abstract
Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In Arabidopsis, endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation. Through morphometric analyses of tomographic reconstructions of endosomes across yeast, algae, and various land plants, we have found that ILV concatenation is widespread within plant species, but only prevalent in seed plants, especially in flowering plants. Multiple budding sites that require the formation of pores in the limiting membrane were only identified in hornworts and seed plants, suggesting that this mechanism has evolved independently in both plant lineages. To identify the conditions under which these multiple budding sites can arise, we used particle-based molecular dynamics simulations and found that changes in ESCRT filament properties, such as filament curvature and membrane binding energy, can generate the membrane shapes observed in multiple budding sites. To understand the relationship between membrane budding activity and ILV network topology, we performed computational simulations and identified a set of membrane remodeling parameters that can recapitulate our tomographic datasets.
Collapse
Affiliation(s)
- Ethan Weiner
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Elizabeth Berryman
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Felix Frey
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Ariadna González Solís
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Tatiana Marquez Lago
- Department of Genetics, School of Medicine, University of Alabama-Birmingham, Birmingham, AL35294-0024
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg3400, Austria
| | - Marisa S. Otegui
- Center for Quantitative Cell Imaging and Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
6
|
de Brevern AG. Special Issue: "Molecular Dynamics Simulations and Structural Analysis of Protein Domains". Int J Mol Sci 2024; 25:10793. [PMID: 39409122 PMCID: PMC11477144 DOI: 10.3390/ijms251910793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The 3D protein structure is the basis for all their biological functions [...].
Collapse
Affiliation(s)
- Alexandre G. de Brevern
- DSIMB Bioinformatics Team, BIGR, INSERM, Université Paris Cité, F-75015 Paris, France; ; Tel.: +33-1-4449-3000
- DSIMB Bioinformatics Team, BIGR, INSERM, Université de la Réunion, F-97715 Saint Denis, France
| |
Collapse
|
7
|
Liu M, Liu Y, Song T, Yang L, Qi L, Zhang YZ, Wang Y, Shen QT. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Proc Natl Acad Sci U S A 2024; 121:e2319115121. [PMID: 38709931 PMCID: PMC11098116 DOI: 10.1073/pnas.2319115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.
Collapse
Affiliation(s)
- Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yunhui Liu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
8
|
Chauhan N, Patro BS. Emerging roles of lysosome homeostasis (repair, lysophagy and biogenesis) in cancer progression and therapy. Cancer Lett 2024; 584:216599. [PMID: 38135207 DOI: 10.1016/j.canlet.2023.216599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.
Collapse
Affiliation(s)
- Nitish Chauhan
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
9
|
Delort A, Cottone G, Malliavin TE, Müller MM. Conformational Space of the Translocation Domain of Botulinum Toxin: Atomistic Modeling and Mesoscopic Description of the Coiled-Coil Helix Bundle. Int J Mol Sci 2024; 25:2481. [PMID: 38473729 DOI: 10.3390/ijms25052481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The toxicity of botulinum multi-domain neurotoxins (BoNTs) arises from a sequence of molecular events, in which the translocation of the catalytic domain through the membrane of a neurotransmitter vesicle plays a key role. A recent structural study of the translocation domain of BoNTs suggests that the interaction with the membrane is driven by the transition of an α helical switch towards a β hairpin. Atomistic simulations in conjunction with the mesoscopic Twister model are used to investigate the consequences of this proposition for the toxin-membrane interaction. The conformational mobilities of the domain, as well as the effect of the membrane, implicitly examined by comparing water and water-ethanol solvents, lead to the conclusion that the transition of the switch modifies the internal dynamics and the effect of membrane hydrophobicity on the whole protein. The central two α helices, helix 1 and helix 2, forming two coiled-coil motifs, are analyzed using the Twister model, in which the initial deformation of the membrane by the protein is caused by the presence of local torques arising from asymmetric positions of hydrophobic residues. Different torque distributions are observed depending on the switch conformations and permit an origin for the mechanism opening the membrane to be proposed.
Collapse
Affiliation(s)
| | - Grazia Cottone
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, 90128 Palermo, Italy
| | | | | |
Collapse
|
10
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
11
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An Inducible ESCRT-III Inhibition Tool to Control HIV-1 Budding. Viruses 2023; 15:2289. [PMID: 38140530 PMCID: PMC10748027 DOI: 10.3390/v15122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Benoit Gallet
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | | | - Mylène Pezet
- University Grenoble Alpes, INSERM, IAB, 38000 Grenoble, France;
| | - Christine Chatellard
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Jean-Philippe Kleman
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| |
Collapse
|
12
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Schlösser L, Sachse C, Low HH, Schneider D. Conserved structures of ESCRT-III superfamily members across domains of life. Trends Biochem Sci 2023; 48:993-1004. [PMID: 37718229 DOI: 10.1016/j.tibs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Structural and evolutionary studies of cyanobacterial phage shock protein A (PspA) and inner membrane-associated protein of 30 kDa (IM30) have revealed that these proteins belong to the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, which is conserved across all three domains of life. PspA and IM30 share secondary and tertiary structures with eukaryotic ESCRT-III proteins, whilst also oligomerizing via conserved interactions. Here, we examine the structures of bacterial ESCRT-III-like proteins and compare the monomeric and oligomerized forms with their eukaryotic counterparts. We discuss conserved interactions used for self-assembly and highlight key hinge regions that mediate oligomer ultrastructure versatility. Finally, we address the differences in nomenclature assigned to equivalent structural motifs in both the bacterial and eukaryotic fields and suggest a common nomenclature applicable across the ESCRT-III superfamily.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute for Biological Information Processing/IBI-6 Cellular Structural Biology, Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
14
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An inducible ESCRT-III inhibition tool to control HIV-1 budding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562494. [PMID: 37905063 PMCID: PMC10614826 DOI: 10.1101/2023.10.16.562494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated auto-cleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins with variable modification of Gag VLP budding upon drug administration. Notably, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted a minor effect and synergized with CHMP2A-NS3. Localization studies demonstrated the re-localization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
|
15
|
Moss FR, Lincoff J, Tucker M, Mohammed A, Grabe M, Frost A. Brominated lipid probes expose structural asymmetries in constricted membranes. Nat Struct Mol Biol 2023; 30:167-175. [PMID: 36624348 PMCID: PMC9935397 DOI: 10.1038/s41594-022-00898-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/11/2022] [Indexed: 01/11/2023]
Abstract
Lipids in biological membranes are thought to be functionally organized, but few experimental tools can probe nanoscale membrane structure. Using brominated lipids as contrast probes for cryo-EM and a model ESCRT-III membrane-remodeling system composed of human CHMP1B and IST1, we observed leaflet-level and protein-localized structural lipid patterns within highly constricted and thinned membrane nanotubes. These nanotubes differed markedly from protein-free, flat bilayers in leaflet thickness, lipid diffusion rates and lipid compositional and conformational asymmetries. Simulations and cryo-EM imaging of brominated stearoyl-docosahexanenoyl-phosphocholine showed how a pair of phenylalanine residues scored the outer leaflet with a helical hydrophobic defect where polyunsaturated docosahexaenoyl tails accumulated at the bilayer surface. Combining cryo-EM of halogenated lipids with molecular dynamics thus enables new characterizations of the composition and structure of membranes on molecular length scales.
Collapse
Affiliation(s)
- Frank R Moss
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - James Lincoff
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Maxwell Tucker
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Arshad Mohammed
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- University of California Berkeley, Berkeley, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco (UCSF), San Francisco, CA, USA.
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
- Altos Labs, Redwood City, CA, USA.
| |
Collapse
|
16
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
The archaeal Cdv cell division system. Trends Microbiol 2023; 31:601-615. [PMID: 36658033 DOI: 10.1016/j.tim.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The Cdv system is the protein machinery that performs cell division and other membrane-deforming processes in a subset of archaea. Evolutionarily, the system is closely related to the eukaryotic ESCRT machinery, with which it shares many structural and functional similarities. Since its first description 15 years ago, the understanding of the Cdv system progressed rather slowly, but recent discoveries sparked renewed interest and insights. The emerging physical picture appears to be that CdvA acts as a membrane anchor, CdvB as a scaffold that localizes division to the mid-cell position, CdvB1 and CvdB2 as the actual constriction machinery, and CdvC as the ATPase that detaches Cdv proteins from the membrane. This paper provides a comprehensive overview of the research done on Cdv and explains how this relatively understudied machinery acts to perform its cell-division function. Understanding of the Cdv system helps to better grasp the biophysics and evolution of archaea, and furthermore provides new opportunities for the bottom-up building of a divisome for synthetic cells.
Collapse
|
18
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|
19
|
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, Weissenhorn W. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 2023; 30:81-90. [PMID: 36604498 DOI: 10.1038/s41594-022-00867-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.
Collapse
Affiliation(s)
- Kimi Azad
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Delphine Guilligay
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Cecile Boscheron
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Nicola De Franceschi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.,Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guidenn Sulbaran
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gregory Effantin
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Haiyan Wang
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Philippe Kleman
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Patricia Bassereau
- Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guy Schoehn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Ambroise Desfosses
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Winfried Weissenhorn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
20
|
Meadowcroft B, Palaia I, Pfitzner AK, Roux A, Baum B, Šarić A. Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS 2022; 129:268101. [PMID: 36608212 DOI: 10.1103/physrevlett.129.268101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The sequential exchange of filament composition to increase filament curvature was proposed as a mechanism for how some biological polymers deform and cut membranes. The relationship between the filament composition and its mechanical effect is lacking. We develop a kinetic model for the assembly of composite filaments that includes protein-membrane adhesion, filament mechanics and membrane mechanics. We identify the physical conditions for such a membrane remodeling and show this mechanism of sequential polymer assembly lowers the energetic barrier for membrane deformation.
Collapse
Affiliation(s)
- Billie Meadowcroft
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
21
|
Avalos-Padilla Y, Georgiev VN, Ewins E, Robinson T, Orozco E, Lipowsky R, Dimova R. Stepwise remodeling and subcompartment formation in individual vesicles by three ESCRT-III proteins. iScience 2022; 26:105765. [PMID: 36590172 PMCID: PMC9800321 DOI: 10.1016/j.isci.2022.105765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is a multi-protein machinery involved in several membrane remodeling processes. Different approaches have been used to resolve how ESCRT proteins scission membranes. However, the underlying mechanisms generating membrane deformations are still a matter of debate. Here, giant unilamellar vesicles, microfluidic technology, and micropipette aspiration are combined to continuously follow the ESCRT-III-mediated membrane remodeling on the single-vesicle level for the first time. With this approach, we identify different mechanisms by which a minimal set of three ESCRT-III proteins from Entamoeba histolytica reshape the membrane. These proteins modulate the membrane stiffness and spontaneous curvature to regulate bud size and generate intraluminal vesicles even in the absence of ATP. We demonstrate that the bud stability depends on the protein concentration and membrane tension. The approaches introduced here should open the road to diverse applications in synthetic biology for establishing artificial cells with several membrane compartments.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany,Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain,Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
| | - Vasil N. Georgiev
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Eleanor Ewins
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV IPN, 07360 Ciudad de México, México
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany,Corresponding author
| |
Collapse
|
22
|
Zabeo D, Davies KM. Studying membrane modulation mechanisms by electron cryo-tomography. Curr Opin Struct Biol 2022; 77:102464. [PMID: 36174286 DOI: 10.1016/j.sbi.2022.102464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Membrane modulation is a key part of cellular life. Critical to processes like energy production, cell division, trafficking, migration and even pathogen entry, defects in membrane modulation are often associated with diseases. Studying the molecular mechanisms of membrane modulation is challenging due to the highly dynamic nature of the oligomeric assemblies involved, which adopt multiple conformations depending on the precise event they are participating in. With the development of electron cryo-tomography and subtomogram averaging, many of these challenges are being resolved as it is now possible to observe complex macromolecular assemblies inside a cell at nanometre to sub-nanometre resolutions. Here, we review the different ways electron cryo-tomography is being used to help uncover the molecular mechanisms used by cells to shape their membranes.
Collapse
Affiliation(s)
- Davide Zabeo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Karen M Davies
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
23
|
Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner AK, Lominadze E, Roux A, Baum B, Šarić A. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLoS Comput Biol 2022; 18:e1010586. [PMID: 36251703 PMCID: PMC9612822 DOI: 10.1371/journal.pcbi.1010586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/27/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022] Open
Abstract
ESCRT-III filaments are composite cytoskeletal polymers that can constrict and cut cell membranes from the inside of the membrane neck. Membrane-bound ESCRT-III filaments undergo a series of dramatic composition and geometry changes in the presence of an ATP-consuming Vps4 enzyme, which causes stepwise changes in the membrane morphology. We set out to understand the physical mechanisms involved in translating the changes in ESCRT-III polymer composition into membrane deformation. We have built a coarse-grained model in which ESCRT-III polymers of different geometries and mechanical properties are allowed to copolymerise and bind to a deformable membrane. By modelling ATP-driven stepwise depolymerisation of specific polymers, we identify mechanical regimes in which changes in filament composition trigger the associated membrane transition from a flat to a buckled state, and then to a tubule state that eventually undergoes scission to release a small cargo-loaded vesicle. We then characterise how the location and kinetics of polymer loss affects the extent of membrane deformation and the efficiency of membrane neck scission. Our results identify the near-minimal mechanical conditions for the operation of shape-shifting composite polymers that sever membrane necks.
Collapse
Affiliation(s)
- Xiuyun Jiang
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Lena Harker-Kirschneck
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christian Vanhille-Campos
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Elene Lominadze
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
24
|
Cada AK, Pavlin MR, Castillo JP, Tong AB, Larsen KP, Ren X, Yokom AL, Tsai FC, Shiah JV, Bassereau PM, Bustamante CJ, Hurley JH. Friction-driven membrane scission by the human ESCRT-III proteins CHMP1B and IST1. Proc Natl Acad Sci U S A 2022; 119:e2204536119. [PMID: 35858336 PMCID: PMC9303997 DOI: 10.1073/pnas.2204536119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
The endosomal sorting complexes required for transport (ESCRT) system is an ancient and ubiquitous membrane scission machinery that catalyzes the budding and scission of membranes. ESCRT-mediated scission events, exemplified by those involved in the budding of HIV-1, are usually directed away from the cytosol ("reverse topology"), but they can also be directed toward the cytosol ("normal topology"). The ESCRT-III subunits CHMP1B and IST1 can coat and constrict positively curved membrane tubes, suggesting that these subunits could catalyze normal topology membrane severing. CHMP1B and IST1 bind and recruit the microtubule-severing AAA+ ATPase spastin, a close relative of VPS4, suggesting that spastin could have a VPS4-like role in normal-topology membrane scission. Here, we reconstituted the process in vitro using membrane nanotubes pulled from giant unilamellar vesicles using an optical trap in order to determine whether CHMP1B and IST1 are capable of membrane severing on their own or in concert with VPS4 or spastin. CHMP1B and IST1 copolymerize on membrane nanotubes, forming stable scaffolds that constrict the tubes, but do not, on their own, lead to scission. However, CHMP1B-IST1 scaffolded tubes were severed when an additional extensional force was applied, consistent with a friction-driven scission mechanism. We found that spastin colocalized with CHMP1B-enriched sites but did not disassemble the CHMP1B-IST1 coat from the membrane. VPS4 resolubilized CHMP1B and IST1 without leading to scission. These observations show that the CHMP1B-IST1 ESCRT-III combination is capable of severing membranes by a friction-driven mechanism that is independent of VPS4 and spastin.
Collapse
Affiliation(s)
- A. King Cada
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Mark R. Pavlin
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
| | - Juan P. Castillo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Alexander B. Tong
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Kevin P. Larsen
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Adam L. Yokom
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Feng-Ching Tsai
- Laboratoire Physico-Chimie Curie, Institut Curie, Université Paris Sciences & Letters, CNRS UMR168, Sorbonne Université, Paris, 75005 France
| | - Jamie V. Shiah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Patricia M. Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, Université Paris Sciences & Letters, CNRS UMR168, Sorbonne Université, Paris, 75005 France
| | - Carlos J. Bustamante
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Physics, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720
- Helen Wills Institute of Neuroscience, University of California, Berkeley, CA 94720
| |
Collapse
|
25
|
The ESCRT Machinery: Remodeling, Repairing, and Sealing Membranes. MEMBRANES 2022; 12:membranes12060633. [PMID: 35736340 PMCID: PMC9229795 DOI: 10.3390/membranes12060633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.
Collapse
|
26
|
González Solís A, Berryman E, Otegui MS. Plant endosomes as protein sorting hubs. FEBS Lett 2022; 596:2288-2304. [PMID: 35689494 DOI: 10.1002/1873-3468.14425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023]
Abstract
Endocytosis, secretion, and endosomal trafficking are key cellular processes that control the composition of the plasma membrane. Through the coordination of these trafficking pathways, cells can adjust the composition, localization, and turnover of proteins and lipids in response to developmental or environmental cues. Upon being incorporated into vesicles and internalized through endocytosis, plant plasma membrane proteins are delivered to the trans-Golgi network (TGN). At the TGN, plasma membrane proteins are recycled back to the plasma membrane or transferred to multivesicular endosomes (MVEs), where they are further sorted into intralumenal vesicles for degradation in the vacuole. Both types of plant endosomes, TGN and MVEs, act as sorting organelles for multiple endocytic, recycling, and secretory pathways. Molecular assemblies such as retromer, ESCRT (endosomal sorting complex required for transport) machinery, small GTPases, adaptor proteins, and SNAREs associate with specific domains of endosomal membranes to mediate different sorting and membrane-budding events. In this review, we discuss the mechanisms underlying the recognition and sorting of proteins at endosomes, membrane remodeling and budding, and their implications for cellular trafficking and physiological responses in plants.
Collapse
Affiliation(s)
- Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
27
|
Jukic N, Perrino AP, Humbert F, Roux A, Scheuring S. Snf7 spirals sense and alter membrane curvature. Nat Commun 2022; 13:2174. [PMID: 35449207 PMCID: PMC9023468 DOI: 10.1038/s41467-022-29850-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Endosomal Sorting Complex Required for Transport III (ESCRT-III) is a conserved protein system involved in many cellular processes resulting in membrane deformation and scission, topologically away from the cytoplasm. However, little is known about the transition of the planar membrane-associated protein assembly into a 3D structure. High-speed atomic force microscopy (HS-AFM) provided insights into assembly, structural dynamics and turnover of Snf7, the major ESCRT-III component, on planar supported lipid bilayers. Here, we develop HS-AFM experiments that remove the constraints of membrane planarity, crowdedness, and support rigidity. On non-planar membranes, Snf7 monomers are curvature insensitive, but Snf7-spirals selectively adapt their conformation to membrane geometry. In a non-crowded system, Snf7-spirals reach a critical radius, and remodel to minimize internal stress. On non-rigid supports, Snf7-spirals compact and buckle, deforming the underlying bilayer. These experiments provide direct evidence that Snf7 is sufficient to mediate topological transitions, in agreement with the loaded spiral spring model.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Alma P Perrino
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211, Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211, Geneva, Switzerland
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY, 14853, USA.
| |
Collapse
|
28
|
Migliano SM, Wenzel EM, Stenmark H. Biophysical and molecular mechanisms of ESCRT functions, and their implications for disease. Curr Opin Cell Biol 2022; 75:102062. [DOI: 10.1016/j.ceb.2022.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/31/2022]
|
29
|
Shankar R, Lettman MM, Whisler W, Frankel EB, Audhya A. The ESCRT machinery directs quality control over inner nuclear membrane architecture. Cell Rep 2022; 38:110263. [PMID: 35045304 PMCID: PMC8801257 DOI: 10.1016/j.celrep.2021.110263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/21/2021] [Accepted: 12/21/2021] [Indexed: 11/20/2022] Open
Abstract
The late-acting endosomal sorting complex required for transport (ESCRT) machinery has been implicated in facilitating the resealing of the nuclear envelope (NE) after mitosis, enabling compartmentalization of the genome away from the cytoplasm. Here, we leverage the stereotypic first division of the C. elegans embryo to identify additional functions of the ESCRT machinery in maintaining the structure of the inner nuclear membrane. Specifically, impaired ESCRT function results in a defect in the pruning of inner nuclear membrane invaginations, which arise normally during NE reformation and expansion. Additionally, in combination with a hypomorphic mutation that interferes with assembly of the underlying nuclear lamina, inhibition of ESCRT function significantly perturbs NE architecture and increases chromosome segregation defects, resulting in penetrant embryonic lethality. Our findings highlight links between ESCRT-mediated inner nuclear membrane remodeling, maintenance of nuclear envelope morphology, and the preservation of the genome during early development. In this study, Shankar et al. demonstrate that defects in ESCRT machinery functions impair pruning of inner nuclear membrane invaginations that form normally after mitotic exit as the nuclear envelope undergoes expansion. These findings highlight a critical role for the ESCRT machinery in the maintenance of inner nuclear membrane morphology.
Collapse
Affiliation(s)
- Raakhee Shankar
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Molly M Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - William Whisler
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Elisa B Frankel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
30
|
Harker-Kirschneck L, Hafner AE, Yao T, Vanhille-Campos C, Jiang X, Pulschen A, Hurtig F, Hryniuk D, Culley S, Henriques R, Baum B, Šarić A. Physical mechanisms of ESCRT-III-driven cell division. Proc Natl Acad Sci U S A 2022; 119:e2107763119. [PMID: 34983838 PMCID: PMC8740586 DOI: 10.1073/pnas.2107763119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Living systems propagate by undergoing rounds of cell growth and division. Cell division is at heart a physical process that requires mechanical forces, usually exerted by assemblies of cytoskeletal polymers. Here we developed a physical model for the ESCRT-III-mediated division of archaeal cells, which despite their structural simplicity share machinery and evolutionary origins with eukaryotes. By comparing the dynamics of simulations with data collected from live cell imaging experiments, we propose that this branch of life uses a previously unidentified division mechanism. Active changes in the curvature of elastic cytoskeletal filaments can lead to filament perversions and supercoiling, to drive ring constriction and deform the overlying membrane. Abscission is then completed following filament disassembly. The model was also used to explore how different adenosine triphosphate (ATP)-driven processes that govern the way the structure of the filament is changed likely impact the robustness and symmetry of the resulting division. Comparisons between midcell constriction dynamics in simulations and experiments reveal a good agreement with the process when changes in curvature are implemented at random positions along the filament, supporting this as a possible mechanism of ESCRT-III-dependent division in this system. Beyond archaea, this study pinpoints a general mechanism of cytokinesis based on dynamic coupling between a coiling filament and the membrane.
Collapse
Affiliation(s)
- Lena Harker-Kirschneck
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Anne E Hafner
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Tina Yao
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Christian Vanhille-Campos
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Xiuyun Jiang
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Andre Pulschen
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Fredrik Hurtig
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Dawid Hryniuk
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Siân Culley
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ricardo Henriques
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, United Kingdom
| | - Anđela Šarić
- Department of Physics & Astronomy, University College London, London WC1E 6BT, United Kingdom;
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Roux A. Common principles of surface deformation in biology. Faraday Discuss 2021; 232:347-357. [PMID: 34854444 DOI: 10.1039/d1fd00040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms, whether they are cells or multicellular organisms, are separated from their environment by an interface. For example, cells are delimited by lipid bilayers while embryos or individuals are delimited by epithelia, ectoderms or epiderms. These biological interfaces, while being different in nature and composition, and at very different scales, share common properties: they are surfaces, their thickness being very small compared to their size. They are materials of chemical composition or cell type that is unique and different from the core of the material they envelop. They are visco-elastic sheets, meaning that components can flow in the plane of the surface. The shape of cells and of embryos is inherently dictated by the shape of their envelope, and because these interfaces have common properties, we explore in this commentary article the different mechanisms that remodel these different biological surfaces, and their common principles.
Collapse
Affiliation(s)
- Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland. .,National Center of Competence in Research Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
32
|
Bottanelli F, Spang A, Stefan C, Ungermann C. An online gathering about the latest on molecular membrane biology. J Biol Chem 2021; 297:101237. [PMID: 34563539 PMCID: PMC8605330 DOI: 10.1016/j.jbc.2021.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Francesca Bottanelli
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Anne Spang
- Bioczentrum, University of Basel, Basel, Switzerland
| | - Chris Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry, Osnabrück University, Osnabrück, Germany; Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
33
|
Rheinemann L, Downhour DM, Bredbenner K, Mercenne G, Davenport KA, Schmitt PT, Necessary CR, McCullough J, Schmitt AP, Simon SM, Sundquist WI, Elde NC. RetroCHMP3 blocks budding of enveloped viruses without blocking cytokinesis. Cell 2021; 184:5419-5431.e16. [PMID: 34597582 PMCID: PMC8929533 DOI: 10.1016/j.cell.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Many enveloped viruses require the endosomal sorting complexes required for transport (ESCRT) pathway to exit infected cells. This highly conserved pathway mediates essential cellular membrane fission events, which restricts the acquisition of adaptive mutations to counteract viral co-option. Here, we describe duplicated and truncated copies of the ESCRT-III factor CHMP3 that block ESCRT-dependent virus budding and arose independently in New World monkeys and mice. When expressed in human cells, these retroCHMP3 proteins potently inhibit release of retroviruses, paramyxoviruses, and filoviruses. Remarkably, retroCHMP3 proteins have evolved to reduce interactions with other ESCRT-III factors and have little effect on cellular ESCRT processes, revealing routes for decoupling cellular ESCRT functions from viral exploitation. The repurposing of duplicated ESCRT-III proteins thus provides a mechanism to generate broad-spectrum viral budding inhibitors without blocking highly conserved essential cellular ESCRT functions.
Collapse
Affiliation(s)
- Lara Rheinemann
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Diane Miller Downhour
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kate Bredbenner
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA
| | - Gaelle Mercenne
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Kristen A Davenport
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Phuong Tieu Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christina R Necessary
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony P Schmitt
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, Rockefeller University, New York, NY 10065, USA.
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Nels C Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
34
|
Liu J, Tassinari M, Souza DP, Naskar S, Noel JK, Bohuszewicz O, Buck M, Williams TA, Baum B, Low HH. Bacterial Vipp1 and PspA are members of the ancient ESCRT-III membrane-remodeling superfamily. Cell 2021; 184:3660-3673.e18. [PMID: 34166615 PMCID: PMC8281802 DOI: 10.1016/j.cell.2021.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
Membrane remodeling and repair are essential for all cells. Proteins that perform these functions include Vipp1/IM30 in photosynthetic plastids, PspA in bacteria, and ESCRT-III in eukaryotes. Here, using a combination of evolutionary and structural analyses, we show that these protein families are homologous and share a common ancient evolutionary origin that likely predates the last universal common ancestor. This homology is evident in cryo-electron microscopy structures of Vipp1 rings from the cyanobacterium Nostoc punctiforme presented over a range of symmetries. Each ring is assembled from rungs that stack and progressively tilt to form dome-shaped curvature. Assembly is facilitated by hinges in the Vipp1 monomer, similar to those in ESCRT-III proteins, which allow the formation of flexible polymers. Rings have an inner lumen that is able to bind and deform membranes. Collectively, these data suggest conserved mechanistic principles that underlie Vipp1, PspA, and ESCRT-III-dependent membrane remodeling across all domains of life.
Collapse
Affiliation(s)
- Jiwei Liu
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Diorge P Souza
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Jeffrey K Noel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Martin Buck
- Department of Life Sciences, Imperial College, London, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK; Institute for the Physics of Living Systems, University College London, London, UK.
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
35
|
ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183689. [PMID: 34224704 DOI: 10.1016/j.bbamem.2021.183689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 11/21/2022]
Abstract
Membrane fission triggered by the endosomal sorting complex required for transport (ESCRT) is an important process observed in several pathogenic and non-pathogenic cellular events. From a synthetic-biology viewpoint, ESCRT proteins represent an interesting machinery for the construction of cell mimetic sub-compartments produced by fission. Since their discovery, the studies on ESCRT-III-mediated action, have mainly focused on protein dynamics, ignoring the role of lipid organization and membrane phase state. Recently, it has been suggested that membrane buds formed by the action of ESCRT-III are generated from transient microdomains in endosomal membranes. However, the interplay between membrane domain formation and ESCRT remodeling pathways has not been investigated. Here, giant unilamellar vesicles made of ternary lipid mixtures, either homogeneous in phase or exhibiting liquid-ordered/liquid-disordered phase coexistence, were employed as a model membrane system. These vesicles were incubated with purified recombinant ESCRT-III proteins from the parasite Entamoeba histolytica. In homogeneous membranes, we observe that EhVps32 can trigger domain formation while EhVps20 preferentially co-localizes in the liquid disordered phase. The addition of EhVps24 appears to induce the formation of intraluminal vesicles produced from the liquid-ordered phase. In phase separated membranes, the intraluminal vesicles are also generated from the liquid-ordered phase and presumably emerge from the phase boundary region. Our findings reinforce the hypothesis that ESCRT-mediated remodeling depends on the membrane phase state. Furthermore, the obtained results point to a potential synthetic biology approach for establishing eukaryotic mimics of artificial cells with microcompartments of specific membrane composition, which can also differ from that of the mother vesicle.
Collapse
|
36
|
Banjade S, Shah YH, Tang S, Emr SD. Design principles of the ESCRT-III Vps24-Vps2 module. eLife 2021; 10:67709. [PMID: 34028356 PMCID: PMC8143795 DOI: 10.7554/elife.67709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
ESCRT-III polymerization is required for all endosomal sorting complex required for transport (ESCRT)-dependent events in the cell. However, the relative contributions of the eight ESCRT-III subunits differ between each process. The minimal features of ESCRT-III proteins necessary for function and the role for the multiple ESCRT-III subunits remain unclear. To identify essential features of ESCRT-III subunits, we previously studied the polymerization mechanisms of two ESCRT-III subunits Snf7 and Vps24, identifying the association of the helix-4 region of Snf7 with the helix-1 region of Vps24 (Banjade et al., 2019a). Here, we find that mutations in the helix-1 region of another ESCRT-III subunit Vps2 can functionally replace Vps24 in Saccharomyces cerevisiae. Engineering and genetic selections revealed the required features of both subunits. Our data allow us to propose three minimal features required for ESCRT-III function – spiral formation, lateral association of the spirals through heteropolymerization, and binding to the AAA + ATPase Vps4 for dynamic remodeling.
Collapse
Affiliation(s)
- Sudeep Banjade
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Yousuf H Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
37
|
Pfitzner AK, Moser von Filseck J, Roux A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends Cell Biol 2021; 31:856-868. [PMID: 33980463 DOI: 10.1016/j.tcb.2021.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Endosomal protein complex required for transport-III (ESCRT-III) polymers are involved in many crucial cellular functions, from cell division to endosome-lysosome dynamics. As a eukaryotic membrane remodeling machinery, ESCRT-III is unique in its ability to catalyze fission of membrane necks from their luminal side and to participate in membrane remodeling processes of essentially all cellular organelles. Found in Archaea, it is also the most evolutionary ancient membrane remodeling machinery. The simple protein structure shared by all of its subunits assembles into a large variety of filament shapes, limiting our understanding of how these filaments achieve membrane remodeling. Here, we review recent findings that discovered unpredicted properties of ESCRT-III polymers, which enable us to define general principles of the mechanism by which ESCRT-III filaments remodel membranes.
Collapse
Affiliation(s)
| | | | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland.
| |
Collapse
|
38
|
Cicconofri G, Noselli G, DeSimone A. The biomechanical role of extra-axonemal structures in shaping the flagellar beat of Euglena gracilis. eLife 2021; 10:58610. [PMID: 33899736 PMCID: PMC8075587 DOI: 10.7554/elife.58610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/12/2021] [Indexed: 01/01/2023] Open
Abstract
We propose and discuss a model for flagellar mechanics in Euglena gracilis. We show that the peculiar non-planar shapes of its beating flagellum, dubbed 'spinning lasso', arise from the mechanical interactions between two of its inner components, namely, the axoneme and the paraflagellar rod. The spontaneous shape of the axoneme and the resting shape of the paraflagellar rod are incompatible. Thus, the complex non-planar configurations of the coupled system emerge as the energetically optimal compromise between the two antagonistic components. The model is able to reproduce the experimentally observed flagellar beats and the characteristic geometric signature of spinning lasso, namely, traveling waves of torsion with alternating sign along the length of the flagellum.
Collapse
Affiliation(s)
| | - Giovanni Noselli
- SISSA - International School for Advanced Studies, Trieste, Italy
| | - Antonio DeSimone
- SISSA - International School for Advanced Studies, Trieste, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Trieste, Italy
| |
Collapse
|
39
|
Alqabandi M, de Franceschi N, Maity S, Miguet N, Bally M, Roos WH, Weissenhorn W, Bassereau P, Mangenot S. The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization. BMC Biol 2021; 19:66. [PMID: 33832485 PMCID: PMC8033747 DOI: 10.1186/s12915-021-00983-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.
Collapse
Affiliation(s)
- Maryam Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Nicola de Franceschi
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nolwenn Miguet
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Marta Bally
- Umeå University, Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, 90185, Umeå, Sweden
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, 75005, Paris, France.
| |
Collapse
|
40
|
McCullough J, Sundquist WI. Membrane Remodeling: ESCRT-III Filaments as Molecular Garrotes. Curr Biol 2020; 30:R1425-R1428. [DOI: 10.1016/j.cub.2020.09.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Horváth P, Müller-Reichert T. A Structural View on ESCRT-Mediated Abscission. Front Cell Dev Biol 2020; 8:586880. [PMID: 33240884 PMCID: PMC7680848 DOI: 10.3389/fcell.2020.586880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) mediates cellular processes that are related to membrane remodeling, such as multivesicular body (MVB) formation, viral budding and cytokinesis. Abscission is the final stage of cytokinesis that results in the physical separation of the newly formed two daughter cells. Although abscission has been investigated for decades, there are still fundamental open questions related to the spatio-temporal organization of the molecular machinery involved in this process. Reviewing knowledge obtained from in vitro as well as in vivo experiments, we give a brief overview on the role of ESCRT components in abscission mainly focussing on mammalian cells.
Collapse
Affiliation(s)
- Péter Horváth
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Abstract
The endosomal sorting complexes required for transport (ESCRTs) I, -II and -III, and their associated factors are a collection of ∼20 proteins in yeast and ∼30 in mammals, responsible for severing membrane necks in processes that range from multivesicular body formation, HIV release and cytokinesis, to plasma and lysosomal membrane repair. ESCRTs are best known for 'reverse-topology' membrane scission, where they act on the inner surface of membrane necks, often when membranes are budded away from the cytosol. These events are driven by membrane-associated assemblies of dozens to hundreds of ESCRT molecules. ESCRT-III proteins form filaments with a variety of geometries and ESCRT-I has now been shown to also form helical structures. The complex nature of the system and the unusual topology of its action has made progress challenging, and led to controversies with regard to its underlying mechanism. This Review will focus on recent advances obtained by structural in vitro reconstitution and in silico mechanistic studies, and places them in their biological context. The field is converging towards a consensus on the broad outlines of a mechanism that is driven by a progressive ATP-dependent treadmilling exchange of ESCRT subunits, as well as compositional change and geometric transitions in ESCRT filaments.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Pfitzner AK, Mercier V, Jiang X, Moser von Filseck J, Baum B, Šarić A, Roux A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020; 182:1140-1155.e18. [PMID: 32814015 PMCID: PMC7479521 DOI: 10.1016/j.cell.2020.07.021] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/04/2020] [Accepted: 07/15/2020] [Indexed: 01/02/2023]
Abstract
The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity.
Collapse
Affiliation(s)
| | - Vincent Mercier
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Xiuyun Jiang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Buzz Baum
- Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anđela Šarić
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research in Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
44
|
Huber ST, Mostafavi S, Mortensen SA, Sachse C. Structure and assembly of ESCRT-III helical Vps24 filaments. SCIENCE ADVANCES 2020; 6:eaba4897. [PMID: 32875105 PMCID: PMC7438092 DOI: 10.1126/sciadv.aba4897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
ESCRT-III proteins mediate a range of cellular membrane remodeling activities such as multivesicular body biogenesis, cytokinesis, and viral release. Critical to these processes is the assembly of ESCRT-III subunits into polymeric structures. In this study, we determined the cryo-EM structure of a helical assembly of Saccharomyces cerevisiae Vps24 at 3.2-Å resolution and found that Vps24 adopts an elongated open conformation. Vps24 forms a domain-swapped dimer extended into protofilaments that associate into a double-stranded apolar filament. We demonstrate that, upon binding negatively charged lipids, Vps24 homopolymer filaments undergo partial disassembly into shorter filament fragments and oligomers. Upon the addition of Vps24, Vps2, and Snf7, liposomes are deformed into neck and tubular structures by an ESCRT-III heteropolymer coat. The filamentous Vps24 homopolymer assembly structure and interaction studies reveal how Vps24 could introduce unique geometric properties to mixed-type ESCRT-III heteropolymers and contribute to the process of membrane scission events.
Collapse
Affiliation(s)
- Stefan T. Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Siavash Mostafavi
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Simon A. Mortensen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Carsten Sachse
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, 52425 Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Liu J, Kang R, Tang D. ESCRT-III-mediated membrane repair in cell death and tumor resistance. Cancer Gene Ther 2020; 28:1-4. [PMID: 32669618 DOI: 10.1038/s41417-020-0200-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022]
Abstract
The plasma membrane is made of glycerophospholipids that separate the inner and outer parts of the cell. Under physiological conditions, it acts as a barrier and gatekeeper to protect cells from the environment. In pathological situations, it undergoes structural and functional changes, resulting in cell damage. Indeed, plasma membrane damage caused by various stresses (e.g., hypoxia, nutritional deficiencies, ultraviolet radiation, and chemotherapeutic agents) is one of the hallmarks of cell death. Phosphatidylserine exposure and plasma membrane blebbing usually occurs in apoptotic cells, while necrotic cells lose the integrity of the plasma membrane and thereby release intracellular damage-associated molecular patterns. In contrast, the endosomal sorting complex required for transport-III (ESCRT-III), an evolutionarily conserved protein complex with membrane fission machinery, plays a key role in the repair of damaged plasma membranes in various types of regulated cell death, such as necroptosis, pyroptosis, and ferroptosis. These emerging findings indicate that ESCRT-III is a potential target to overcome drug resistance during tumor therapy.
Collapse
Affiliation(s)
- Jiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510510, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Bertin A, de Franceschi N, de la Mora E, Maity S, Alqabandi M, Miguet N, di Cicco A, Roos WH, Mangenot S, Weissenhorn W, Bassereau P. Human ESCRT-III polymers assemble on positively curved membranes and induce helical membrane tube formation. Nat Commun 2020; 11:2663. [PMID: 32471988 PMCID: PMC7260177 DOI: 10.1038/s41467-020-16368-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Endosomal sorting complexes for transport-III (ESCRT-III) assemble in vivo onto membranes with negative Gaussian curvature. How membrane shape influences ESCRT-III polymerization and how ESCRT-III shapes membranes is yet unclear. Human core ESCRT-III proteins, CHMP4B, CHMP2A, CHMP2B and CHMP3 are used to address this issue in vitro by combining membrane nanotube pulling experiments, cryo-electron tomography and AFM. We show that CHMP4B filaments preferentially bind to flat membranes or to tubes with positive mean curvature. Both CHMP2B and CHMP2A/CHMP3 assemble on positively curved membrane tubes. Combinations of CHMP4B/CHMP2B and CHMP4B/CHMP2A/CHMP3 are recruited to the neck of pulled membrane tubes and reshape vesicles into helical "corkscrew-like" membrane tubes. Sub-tomogram averaging reveals that the ESCRT-III filaments assemble parallel and locally perpendicular to the tube axis, highlighting the mechanical stresses imposed by ESCRT-III. Our results underline the versatile membrane remodeling activity of ESCRT-III that may be a general feature required for cellular membrane remodeling processes.
Collapse
Affiliation(s)
- Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
| | - Nicola de Franceschi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France.
| | - Eugenio de la Mora
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Maryam Alqabandi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Nolwen Miguet
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France
| | - Aurélie di Cicco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Stéphanie Mangenot
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France
- Sorbonne Université, 75005, Paris, France
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, avenue des Martyrs, 38000, Grenoble, France.
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005, Paris, France.
- Sorbonne Université, 75005, Paris, France.
| |
Collapse
|