1
|
Myszczyszyn A, Muench A, Lehmann V, Sinnige T, van Steenbeek FG, Bouwmeester M, Samsom RA, Keuper-Navis M, van der Made TK, Kogan D, Braem S, van der Laan LJW, Eslami Amirabadi H, van de Steeg E, Masereeuw R, Spee B. A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport. Biofabrication 2025; 17:025035. [PMID: 40117762 DOI: 10.1088/1758-5090/adc3ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Liver-on-a-chip models predictive for both metabolism, and blood and canalicular transport of drug candidates in humans are lacking. Here, we established a bioengineered and 3Rs-complied (animal component-free) hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g. CYP3A4, CYP2D6, CYP2C9) and II (e.g. UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g. MDR1, MRP3, OATP1B3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we studied the bioavailability of midazolam and coumarin on-a-chip in combination with a small intestine-like system. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict pharmacokinetics' (PK)/absorption, distribution, metabolism and excretion (ADME) profiles in humans.
Collapse
Affiliation(s)
- Adam Myszczyszyn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anna Muench
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Vivian Lehmann
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Theo Sinnige
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Manon Bouwmeester
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roos-Anne Samsom
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Thomas K van der Made
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Daniel Kogan
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Sarah Braem
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Brown HM, Marlet J, León-Janampa N, Brand D, Fletcher NF. Enhanced hepatitis E virus infection of polarised hepatocytes in vitro. Sci Rep 2025; 15:7598. [PMID: 40038434 PMCID: PMC11880378 DOI: 10.1038/s41598-025-92164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Hepatitis E virus (HEV) is a leading cause of acute viral hepatitis worldwide, and the only zoonotic hepatitis virus. HEV genotype 3 (HEV3) is associated with a range of clinical presentations including chronic infection in immunocompromised individuals in developed nations as well as sporadic cases of autochthonous HEV3 in Europe. Current in vitro models support low levels of HEV infection, hampering our understanding of viral pathogenesis and development of therapeutics. We developed modified culture methods for two widely used hepatoma cell lines, PLC-PRF-5 and Huh-7.5, and evaluated HEV infection. Simple epithelial-like polarity and differentiation formed in PLC-PRF-5 cells, evidenced by localisation of tight junction proteins occludin and zona-occludin 1 to intercellular junctions, and increased albumin production. Complex hepatocyte-like polarity was observed in Huh-7.5 cells, with tight junction proteins localised to shared internal bile canaliculi-like structures and retention of the fluorescent molecule, 5(6)-Carboxyfluorescein diacetate. Cells were infected with genotype 3 HEV, and enhanced infection and replication of HEV was observed using RT-qPCR and immunofluorescent labelling of HEV ORF2 and dsRNA. We describe robust, accessible models for HEV infection in vitro. These models will allow studies to further our understanding of this emerging zoonotic pathogen and develop therapeutic interventions.
Collapse
Affiliation(s)
- Hannah M Brown
- Veterinary Sciences Centre and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Julien Marlet
- INSERM U1259 MAVIVHe, CHRU de Tours, Université de Tours et CHRU de Tours and Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - Nancy León-Janampa
- INSERM U1259 MAVIVHe, Université de Tours et CHRU de Tours, Tours, France
| | - Denys Brand
- INSERM U1259 MAVIVHe, CHRU de Tours, Université de Tours et CHRU de Tours and Service de Bactériologie-Virologie-Hygiène, Tours, France
| | - Nicola F Fletcher
- Veterinary Sciences Centre and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Hao J, Wang Z, Ren J, Cao S, Xie Z, Yang J, Li J, Ding W, Li J, Han Z, Yuan Y, Hai T, Ding S, Zhang MQ, Shi M. Single-cell multi-omics deciphers hepatocyte dedifferentiation and illuminates maintenance strategies. Cell Prolif 2025; 58:e13772. [PMID: 39810466 PMCID: PMC11882756 DOI: 10.1111/cpr.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025] Open
Abstract
Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective. In this study, we utilized 10× multiome technology to dissect the heterogeneity of porcine hepatocytes at different time points (Days 0, 1, 3, 5 and 7) during dedifferentiation. We comprehensively investigated cell heterogeneity, cellular dynamics, signalling pathways, potential gene targets, enhancer-driven gene regulatory networks, cell-cell communications of these cells and the conservation of mechanisms across species. We found that a series of critical signalling pathways driven by ERK, PI3K, Src and TGF-β were activated during this process, especially in the early stage of dedifferentiation. Based on these discoveries, we constructed a chemical combination targeting these pathways, which effectively inhibited the dedifferentiation of porcine hepatocytes in vitro. To validate the effectiveness of this combination, we transplanted such treated hepatocytes into FRGN mice, and the results demonstrated that these cells could effectively repopulate the liver and improve the survival of mice.
Collapse
Affiliation(s)
- Jie Hao
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Zhenyi Wang
- MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics DivisionTsinghua UniversityBeijingChina
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai)Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jilong Ren
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Farm Animal Research Center, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Shenghao Cao
- Institute of Image Processing and Pattern RecognitionShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of System Control and Information ProcessingMinistry of Education of ChinaShanghaiChina
| | - Zhongchen Xie
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Jinghuan Yang
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Jiachen Li
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijingChina
| | - Weizhe Ding
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Jie Li
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Farm Animal Research Center, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zhiqiang Han
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Farm Animal Research Center, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Ye Yuan
- State Key Laboratory of Biopharmaceutical Preparation and DeliveryInstitute of Process EngineeringChinese Academy of SciencesBeijingChina
| | - Tang Hai
- Key Laboratory of Organ Regeneration and ReconstructionState Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Farm Animal Research Center, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Sheng Ding
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Michael Q. Zhang
- MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics DivisionTsinghua UniversityBeijingChina
- Department of Biological Sciences, Center for Systems BiologyThe University of TexasRichardsonTexasUSA
| | - Minglei Shi
- MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics DivisionTsinghua UniversityBeijingChina
| |
Collapse
|
4
|
Ssebyatika G, Dinkelborg K, Ströh LJ, Hinte F, Corneillie L, Hueffner L, Guzman EM, Nankya PL, Plückebaum N, Fehlau L, Garn J, Meyer N, Prallet S, Mehnert AK, Kraft ARM, Verhoye L, Jacobsen C, Steinmann E, Wedemeyer H, Viejo-Borbolla A, Dao Thi VL, Pietschmann T, Lütgehetmann M, Meuleman P, Dandri M, Krey T, Behrendt P. Broadly neutralizing antibodies isolated from HEV convalescents confer protective effects in human liver-chimeric mice. Nat Commun 2025; 16:1995. [PMID: 40011441 DOI: 10.1038/s41467-025-57182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
Hepatitis E virus (HEV) causes 3.3 million symptomatic cases and 44,000 deaths per year. Chronic infections can arise in immunocompromised individuals, and pregnant women may suffer from fulminant disease as a consequence of HEV infection. Despite these important implications for public health, no specific antiviral treatment has been approved to date. Here, we report combined functional, biochemical, and X-ray crystallographic studies that characterize the human antibody response in convalescent HEV patients. We identified a class of potent and broadly neutralizing human antibodies (bnAbs), targeting a quaternary epitope located at the tip of the HEV capsid protein pORF2 that contains an N-glycosylation motif and is conserved across members of the Hepeviridae. These glycan-sensitive bnAbs specifically recognize the non-glycosylated pORF2 present in infectious particles but not the secreted glycosylated form acting as antibody decoy. Our most potent bnAb protects human liver-chimeric mice from intraperitoneal HEV challenge and co-housing exposure. These results provide insights into the bnAb response to this important emerging pathogen and support the development of glycan-sensitive antibodies to combat HEV infection.
Collapse
Affiliation(s)
- George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Katja Dinkelborg
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Luisa J Ströh
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Florian Hinte
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lucas Hueffner
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Elina M Guzman
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Prossie L Nankya
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lukas Fehlau
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Jonathan Garn
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Nele Meyer
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Sarah Prallet
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Ann-Kathrin Mehnert
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Centre for Individualised Infection Medicine (CiiM), a joint venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Lieven Verhoye
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Carina Jacobsen
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Viet Loan Dao Thi
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 61920, Heidelberg, Germany
| | - Thomas Pietschmann
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute of Medical Microbiology, Virology and Hygiene, Hamburg, Germany
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maura Dandri
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
- Institute of Virology, Hannover Medical School, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany.
| | - Patrick Behrendt
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between Helmholtz-Centre for Infection Research and Hannover Medical School, Hannover, Germany.
- Department of Gastroenterology, Hepatology, Infectious diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
- German Center for Infection Research (DZIF), Braunschweig, Germany.
| |
Collapse
|
5
|
Wu H, Wang J, Liu S, Wang Y, Tang X, Xie J, Wang N, Shan H, Chen S, Zhang X, Zeng W, Chen C, Fu Y, Lai L, Duan Y. Large-Scale Production of Expandable Hepatoblast Organoids and Polarised Hepatocyte Organoids From hESCs Under 3D Static and Dynamic Suspension Conditions. Cell Prolif 2025:e70001. [PMID: 39921573 DOI: 10.1111/cpr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025] Open
Abstract
To date, generating viable and functional hepatocytes in large scale remains challenge. By employing 3D suspension condition with the support of low concentration Matrigel, a novel culture system was developed to generate expandable hepatoblast organoids (HB-orgs) and mature polarised hepatocyte organoids (P-hep-orgs) from human embryonic stem cells (hESCs) in both dishes and bioreactors. scRNA-seq and functional assays were used to characterise HB-orgs and P-hep-orgs. hESC-derived HB-orgs could proliferate at least for 15 passages, leading to 1012 in total cells in 4 weeks. P-hep-orgs differentiated from HB-orgs displayed characteristics of mature hepatocytes with polarisation. Moreover, single-cell RNA sequencing exhibited that over 40% of cells in P-hep-orgs were highly fidelity with human primary hepatocytes. Eventually, large-scale production of P-hep-orgs could be generated from massively expanded HB-orgs within 1 week with similar number in bioreactors, which were achieved by the enhancements in energy metabolism contribute to the expansion of HB-orgs and maturation of P-hep-orgs in bioreactors. By providing a cost-efficient and robust platform, our study represents a significant step toward manufacturing large-scale functioning hESC-derived hepatocytes for cell-based therapeutics, disease modelling, pharmacology and toxicology studies.
Collapse
Affiliation(s)
- Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiyu Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianglian Tang
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghe Xie
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huanhuan Shan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Sen Chen
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xueyan Zhang
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weiping Zeng
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuxin Chen
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yinjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institute for Medical Research, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institute for Life Science, School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Palakkan AA, Nanda J, Ross JA. Human-Induced Pluripotent Stem Cell-Derived Definitive Endoderm Bulk Up and Hepatic Differentiation. Methods Mol Biol 2025; 2924:31-43. [PMID: 40307633 DOI: 10.1007/978-1-0716-4530-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
We have developed a method to bulk up definitive endoderm cells generated from human iPSC, and can be further differentiated to hepatocytes. Human iPSC-derived definitive endoderm cells were sorted, based on the expression of CXCR4, and were able to proliferate for extended periods and can be cryopreserved. These cells were able to generate functional hepatocytes expressing albumin and alpha-fetoprotein in different multi-well formats. This method would help to produce more consistent hepatocytes and also enable the development of high throughput screening strategies.
Collapse
Affiliation(s)
- Anwar A Palakkan
- Tissue Injury and Repair Group, Chancellor's Building, University of Edinburgh, Edinburgh, UK
- Immunology & Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Jyoti Nanda
- Tissue Injury and Repair Group, Chancellor's Building, University of Edinburgh, Edinburgh, UK
| | - James A Ross
- Tissue Injury and Repair Group, Chancellor's Building, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Zhang Y, Li L, Dong L, Cheng Y, Huang X, Xue B, Jiang C, Cao Y, Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. CHEM & BIO ENGINEERING 2024; 1:887-915. [PMID: 39975572 PMCID: PMC11835278 DOI: 10.1021/cbe.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 02/21/2025]
Abstract
The liver's role in metabolism, detoxification, and immune regulation underscores the urgency of addressing liver diseases, which claim millions of lives annually. Due to donor shortages in liver transplantation, liver tissue engineering (LTE) offers a promising alternative. Hydrogels, with their biocompatibility and ability to mimic the liver's extracellular matrix (ECM), support cell survival and function in LTE. This review analyzes recent advances in hydrogel-based strategies for LTE, including decellularized liver tissue hydrogels, natural polymer-based hydrogels, and synthetic polymer-based hydrogels. These materials are ideal for in vitro cell culture and obtaining functional hepatocytes. Hydrogels' tunable properties facilitate creating artificial liver models, such as organoids, 3D bioprinting, and liver-on-a-chip technologies. These developments demonstrate hydrogels' versatility in advancing LTE's applications, including hepatotoxicity testing, liver tissue regeneration, and treating acute liver failure. This review highlights the transformative potential of hydrogels in LTE and their implications for future research and clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Luofei Li
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liang Dong
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yuanqi Cheng
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaoyu Huang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Jiapeng Yang
- National
Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan
Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
8
|
Wei H, Xue T, Li F, Ju E, Wang H, Li M, Tao Y. Framework nucleic Acid-MicroRNA mediated hepatic differentiation and functional hepatic spheroid development for treating acute liver failure. Bioact Mater 2024; 41:611-626. [PMID: 39280896 PMCID: PMC11393548 DOI: 10.1016/j.bioactmat.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.
Collapse
Affiliation(s)
- Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| |
Collapse
|
9
|
Chi H, Qu B, Prawira A, Richardt T, Maurer L, Hu J, Fu RM, Lempp FA, Zhang Z, Grimm D, Wu X, Urban S, Dao Thi VL. An hepatitis B and D virus infection model using human pluripotent stem cell-derived hepatocytes. EMBO Rep 2024; 25:4311-4336. [PMID: 39232200 PMCID: PMC11466959 DOI: 10.1038/s44319-024-00236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Current culture systems available for studying hepatitis D virus (HDV) are suboptimal. In this study, we demonstrate that hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) are fully permissive to HDV infection across various tested genotypes. When co-infected with the helper hepatitis B virus (HBV) or transduced to express the HBV envelope protein HBsAg, HLCs effectively release infectious progeny virions. We also show that HBsAg-expressing HLCs support the extracellular spread of HDV, thus providing a valuable platform for testing available anti-HDV regimens. By challenging the cells along the differentiation with HDV infection, we have identified CD63 as a potential HDV co-entry factor that was rate-limiting for HDV infection in immature hepatocytes. Given their renewable source and the potential to derive hPSCs from individual patients, we propose HLCs as a promising model for investigating HDV biology. Our findings offer new insights into HDV infection and expand the repertoire of research tools available for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angga Prawira
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Talisa Richardt
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
| | - Jungen Hu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
| | - Florian A Lempp
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- Humabs Biomed SA, A Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Zhenfeng Zhang
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dirk Grimm
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Section Viral Vector Technologies, University Hospital Heidelberg, Cluster of Excellence CellNetworks, BioQuant, Center for Integrative Infectious Diseases Research (CIID), Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stephan Urban
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
- Molecular Virology, Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University, Medical Faculty Heidelberg, Heidelberg, Germany.
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
10
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
11
|
Harlow J, Dallner M, Nasheri N. Optimization of the replication of hepatitis E virus genotype 3 in vitro. J Appl Microbiol 2024; 135:lxae137. [PMID: 38849307 DOI: 10.1093/jambio/lxae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
AIMS Hepatitis E virus (HEV) is responsible for ∼20 million human infections worldwide every year. The genotypes HEV-3 and HEV-4 are zoonotic and are responsible for most of the autochthonous HEV cases in high-income countries. There are several cell culture systems that allow for propagation of different HEV genotypes in vitro. One of these systems uses human lung carcinoma cells (A549), and was further optimized for propagation of HEV-3 47832c strain. In this study, we investigated the effect of different media supplements as well as microRNA-122 (miR-122) on improving the replication of HEV-3 47832c in A549 cells. METHODS AND RESULTS We observed that supplementation of maintenance media with 5% fetal bovine serum was sufficient for efficient replication of HEV-3, and verified the positive effect of media supplementation with Amphotericin B, MgCl2, and dimethyl sulfoxide on replication of HEV-3. We have also demonstrated that adding miR-122 mimics to the culture media does not have any significant effect on the replication of HEV-3 47832c. CONCLUSIONS Herein, we detected over a 6-fold increase in HEV-3 replication in A549/D3 cells by adding all three supplements: Amphotericin B, MgCl2, and dimethyl sulfoxide to the culture media, while demonstrating that miR-122 might not play a key role in replication of HEV-3 47832c.
Collapse
Affiliation(s)
- Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Matthew Dallner
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Zhang J, Chen X, Chai Y, Zhuo C, Xu Y, Xue T, Shao D, Tao Y, Li M. 3D Printing of a Vascularized Mini-Liver Based on the Size-Dependent Functional Enhancements of Cell Spheroids for Rescue of Liver Failure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309899. [PMID: 38380546 PMCID: PMC11077657 DOI: 10.1002/advs.202309899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/22/2024]
Abstract
The emerging stem cell-derived hepatocyte-like cells (HLCs) are the alternative cell sources of hepatocytes for treatment of highly lethal acute liver failure (ALF). However, the hostile local environment and the immature cell differentiation may compromise their therapeutic efficacy. To this end, human adipose-derived mesenchymal stromal/stem cells (hASCs) are engineered into different-sized multicellular spheroids and co-cultured with 3D coaxially and hexagonally patterned human umbilical vein endothelial cells (HUVECs) in a liver lobule-like manner to enhance their hepatic differentiation efficiency. It is found that small-sized hASC spheroids, with a diameter of ≈50 µm, show superior pro-angiogenic effects and hepatic differentiation compared to the other counterparts. The size-dependent functional enhancements are mediated by the Wnt signaling pathway. Meanwhile, co-culture of hASCs with HUVECs, at a HUVECs/hASCs seeding density ratio of 2:1, distinctly promotes hepatic differentiation and vascularization both in vitro and in vivo, especially when endothelial cells are patterned into hollow hexagons. After subcutaneous implantation, the mini-liver, consisting of HLC spheroids and 3D-printed interconnected vasculatures, can effectively improve liver regeneration in two ALF animal models through amelioration of local oxidative stress and inflammation, reduction of liver necrosis, as well as increase of cell proliferation, thereby showing great promise for clinical translation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Yurong Chai
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
| | - Dan Shao
- Institute of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhou510006China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| |
Collapse
|
14
|
Blaszkiewicz J, Duncan SA. Use of stem cell-derived hepatocytes to model liver disease. J Hepatol 2024; 80:826-828. [PMID: 38365506 DOI: 10.1016/j.jhep.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 02/18/2024]
Affiliation(s)
- Josef Blaszkiewicz
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Carpentier A. Cell Culture Models for Hepatitis B and D Viruses Infection: Old Challenges, New Developments and Future Strategies. Viruses 2024; 16:716. [PMID: 38793598 PMCID: PMC11125795 DOI: 10.3390/v16050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic Hepatitis B and D Virus (HBV and HDV) co-infection is responsible for the most severe form of viral Hepatitis, the Hepatitis Delta. Despite an efficient vaccine against HBV, the HBV/HDV infection remains a global health burden. Notably, no efficient curative treatment exists against any of these viruses. While physiologically distinct, HBV and HDV life cycles are closely linked. HDV is a deficient virus that relies on HBV to fulfil is viral cycle. As a result, the cellular response to HDV also influences HBV replication. In vitro studying of HBV and HDV infection and co-infection rely on various cell culture models that differ greatly in terms of biological relevance and amenability to classical virology experiments. Here, we review the various cell culture models available to scientists to decipher HBV and HDV virology and host-pathogen interactions. We discuss their relevance and how they may help address the remaining questions, with one objective in mind: the development of new therapeutic approaches allowing viral clearance in patients.
Collapse
Affiliation(s)
- Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Strasse 7, 30625 Hannover, Germany;
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
16
|
Csernalabics B, Marinescu MS, Maurer L, Kelsch L, Werner J, Baumann K, Zoldan K, Panning M, Reuken P, Bruns T, Bengsch B, Neumann-Haefelin C, Hofmann M, Thimme R, Dao Thi VL, Boettler T. Efficient formation and maintenance of humoral and CD4 T-cell immunity targeting the viral capsid in acute-resolving hepatitis E infection. J Hepatol 2024; 80:564-575. [PMID: 38154741 DOI: 10.1016/j.jhep.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.
Collapse
Affiliation(s)
- Benedikt Csernalabics
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Mircea Stefan Marinescu
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany
| | - Lara Kelsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Jill Werner
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Baumann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Hospital Freiburg, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV, University Hospital Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, University Hospital Jena, Germany; Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
17
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
18
|
Hiebinger F, Kudulyte A, Chi H, Burbano De Lara S, Ilic D, Helm B, Welsch H, Dao Thi VL, Klingmüller U, Binder M. Tumour cells can escape antiproliferative pressure by interferon-β through immunoediting of interferon receptor expression. Cancer Cell Int 2023; 23:315. [PMID: 38066598 PMCID: PMC10709914 DOI: 10.1186/s12935-023-03150-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2025] Open
Abstract
Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation. Particularly for cancer arising in the context of chronic inflammation, constant exposure to IFNs may constitute a strong selective pressure during tumour evolution. Expansion of neoplastic subclones resistant to the antiproliferative effects of IFNs may contribute to immunoediting of tumours, leading to more aggressive disease. Experimental evidence for this development of IFN-insensitivity has been scarce and its molecular mechanism is unclear. In this study we demonstrate that six weeks exposure of cells to IFN-β in vitro reduces their sensitivity to its antiproliferative effects, and that this phenotype was stable for up to four weeks. Furthermore, we observed substantial differences in cellular sensitivity to growth inhibition by IFN-β in a panel of ten different liver cancer cell lines, most prominently in a pair of highly dedifferentiated cell lines, and least in cells from well-differentiated tumours. In both, long-term IFN selection and in dedifferentiated tumour cell lines, we found IFNAR2 expression to be substantially reduced, suggesting the receptor complex to be a sensitive target amenable to immunoediting. Beyond new insights into possible molecular processes in tumour evolution, these findings might prove valuable for the development of biomarkers allowing to stratify tumours for their sensitivity to IFN treatment in the context of patient tailored therapies.
Collapse
Affiliation(s)
- Felix Hiebinger
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aiste Kudulyte
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Huanting Chi
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Burbano De Lara
- Division of Systems Biology of Signal Transduction (B200), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doroteja Ilic
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Barbara Helm
- Division of Systems Biology of Signal Transduction (B200), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany
| | - Hendrik Welsch
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction (B200), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Lung Research (DZL) and Translational Lung Research Center Heidelberg (TRLC), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater 2023; 28:112-131. [PMID: 37250866 PMCID: PMC10209199 DOI: 10.1016/j.bioactmat.2023.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Reactive oxygen species (ROS)-associated oxidative stress, inflammation storm, and massive hepatocyte necrosis are the typical manifestations of acute liver failure (ALF), therefore specific therapeutic interventions are essential for the devastating disease. Here, we developed a platform consisting of versatile biomimetic copper oxide nanozymes (Cu NZs)-loaded PLGA nanofibers (Cu NZs@PLGA nanofibers) and decellularized extracellular matrix (dECM) hydrogels for delivery of human adipose-derived mesenchymal stem/stromal cells-derived hepatocyte-like cells (hADMSCs-derived HLCs) (HLCs/Cu NZs@fiber/dECM). Cu NZs@PLGA nanofibers could conspicuously scavenge excessive ROS at the early stage of ALF, and reduce the massive accumulation of pro-inflammatory cytokines, herein efficiently preventing the deterioration of hepatocytes necrosis. Moreover, Cu NZs@PLGA nanofibers also exhibited a cytoprotection effect on the transplanted HLCs. Meanwhile, HLCs with hepatic-specific biofunctions and anti-inflammatory activity acted as a promising alternative cell source for ALF therapy. The dECM hydrogels further provided the desirable 3D environment and favorably improved the hepatic functions of HLCs. In addition, the pro-angiogenesis activity of Cu NZs@PLGA nanofibers also facilitated the integration of the whole implant with the host liver. Hence, HLCs/Cu NZs@fiber/dECM performed excellent synergistic therapeutic efficacy on ALF mice. This strategy using Cu NZs@PLGA nanofiber-reinforced dECM hydrogels for HLCs in situ delivery is a promising approach for ALF therapy and shows great potential for clinical translation.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
20
|
Lange F, Garn J, Anagho HA, Vondran FWR, von Hahn T, Pietschmann T, Carpentier A. Hepatitis D virus infection, innate immune response and antiviral treatments in stem cell-derived hepatocytes. Liver Int 2023; 43:2116-2129. [PMID: 37366005 DOI: 10.1111/liv.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are a valuable model to investigate host-pathogen interactions of hepatitis viruses in a mature and authentic environment. Here, we investigate the susceptibility of HLCs to the hepatitis delta virus (HDV). METHODS We differentiated hPSC into HLCs, and inoculated them with infectious HDV produced in Huh7NTCP . HDV infection and cellular response was monitored by RTqPCR and immunostaining. RESULTS Cells undergoing hepatic differentiation become susceptible to HDV after acquiring expression of the viral receptor Na+ -taurocholate co-transporting polypeptide (NTCP) during hepatic specification. Inoculation of HLCs with HDV leads to detection of intracellular HDV RNA and accumulation of the HDV antigen in the cells. Upon infection, the HLCs mounted an innate immune response based on induction of the interferons IFNB and L, and upregulation of interferon-stimulated genes. The intensity of this immune response positively correlated with the level of viral replication and was dependant on both the JAK/STAT and NFκB pathway activation. Importantly, this innate immune response did not inhibit HDV replication. However, pre-treatment of the HLCs with IFNα2b reduced viral infection, suggesting that ISGs may limit early stages of infection. Myrcludex efficiently abrogated infection and blocked innate immune activation. Lonafarnib treatment of HDV mono infected HLCs on the other hand led to exacerbated viral replication and innate immune response. CONCLUSION The HDV in vitro mono-infection model represents a new tool to study HDV replication, its host-pathogen interactions and evaluate new antiviral drugs in cells displaying mature hepatic functions.
Collapse
Affiliation(s)
- Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jonathan Garn
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Holda A Anagho
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Florian W R Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas von Hahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Medical School Hannover (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
23
|
Oechslin N, Ankavay M, Moradpour D, Gouttenoire J. Expanding the Hepatitis E Virus Toolbox: Selectable Replicons and Recombinant Reporter Genomes. Viruses 2023; 15:v15040869. [PMID: 37112849 PMCID: PMC10147066 DOI: 10.3390/v15040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E virus (HEV) has received relatively little attention for decades although it is now considered as one of the most frequent causes of acute hepatitis worldwide. Our knowledge of this enterically-transmitted, positive-strand RNA virus and its life cycle remains scarce but research on HEV has gained momentum more recently. Indeed, advances in the molecular virology of hepatitis E, including the establishment of subgenomic replicons and infectious molecular clones, now allow study of the entire viral life cycle and to explore host factors required for productive infection. Here, we provide an overview on currently available systems, with an emphasis on selectable replicons and recombinant reporter genomes. Furthermore, we discuss the challenges in developing new systems which should enable to further investigate this widely distributed and important pathogen.
Collapse
|
24
|
Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 2023; 294:122014. [PMID: 36709644 DOI: 10.1016/j.biomaterials.2023.122014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
Abstract
Engineering hepatocytes as multicellular cell spheroids can improve their viability after implantation in vivo for effective rescue of the devastating acute liver failure (ALF). However, there is still a lack of straightforward methods for efficient generation of functional hepatocyte spheroids. In this study, a magnetic system, consisting of magnetic microwell arrays and magnet blocks, is developed to realize magnetically controlled 3D cell capture and spatial confinement-mediated cell aggregation. The cell spheroids with smaller size show superior hepatic functions than the larger-sized counterparts. Notably, the intrinsic magnetism of magnetic microwell arrays can regulate superoxide anions in hepatocyte spheroids and herein promote various biological processes, including antioxidation, hepatocyte-related functions, and pro-angiogenic potential. Ectopic implantation of the functional cell spheroids in ALF-challenged mice significantly prolongs the animal survival, ameliorates inflammation, and promotes liver regeneration. Hence, application of the magnetic system for generation of functionally enhanced hepatocyte spheroids holds great potential for clinical translation in the future.
Collapse
|
25
|
Yuan Y, Cotton K, Samarasekera D, Khetani SR. Engineered Platforms for Maturing Pluripotent Stem Cell-Derived Liver Cells for Disease Modeling. Cell Mol Gastroenterol Hepatol 2023; 15:1147-1160. [PMID: 36738860 PMCID: PMC10034210 DOI: 10.1016/j.jcmgh.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023]
Abstract
Several liver diseases (eg, hepatitis B/C viruses, alcoholic/nonalcoholic fatty liver, malaria, monogenic diseases, and drug-induced liver injury) significantly impact global mortality and morbidity. Species-specific differences in liver functions limit the use of animals to fully elucidate/predict human outcomes; therefore, in vitro human liver models are used for basic and translational research to complement animal studies. However, primary human liver cells are in short supply and display donor-to-donor variability in viability/quality. In contrast, human hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells and embryonic stem cells are a near infinite cell resource that retains the patient/donor's genetic background; however, conventional protocols yield immature phenotypes. HLC maturation can be significantly improved using advanced techniques, such as protein micropatterning to precisely control cell-cell interactions, controlled sized spheroids, organoids with multiple cell types and layers, 3-dimensional bioprinting to spatially control cell populations, microfluidic devices for automated nutrient exchange and to induce liver zonation via soluble factor gradients, and synthetic biology to genetically modify the HLCs to accelerate and enhance maturation. Here, we present design features and characterization for representative advanced HLC maturation platforms and then discuss HLC use for modeling various liver diseases. Lastly, we discuss desirable advances to move this field forward. We anticipate that with continued advances in this space, pluripotent stem cell-derived liver models will provide human-relevant data much earlier in preclinical drug development and reduce animal usage, help elucidate liver disease mechanisms for the discovery of efficacious and safe therapeutics, and be useful as cell-based therapies for patients suffering from end-stage liver failure.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Kristen Cotton
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Dinithi Samarasekera
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
26
|
Wang L, Wang Y, Zhuang H. Puzzles for Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:247-256. [PMID: 37223871 DOI: 10.1007/978-981-99-1304-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is an important but understudied virus that has been the major cause of acute viral hepatitis worldwide. In recent decades, our understanding of this neglected virus has changed greatly: novel forms of viral proteins and their functions have been discovered; HEV can transmit via blood transfusion and organ transplantation; HEV can infect many animal species and the number is still increasing; HEV can induce chronic hepatitis and extra-hepatic manifestations. However, we are short of effective treatment measures to counter the virus. In this chapter we tend to briefly introduce the puzzles and major knowledge gaps existed in the field of HEV research.
Collapse
Affiliation(s)
- Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Xiang K, Zhuang H. Liver Organoid Potential Application for Hepatitis E Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:133-139. [PMID: 37223863 DOI: 10.1007/978-981-99-1304-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite the advances in hepatitis E virus (HEV) cell infection models' development, HEV infection efficacy in these cell models is still low, which hampers the further study of molecular mechanism of HEV infection and replication and even the interaction between HEV and host. Along with the advances in the technology for liver organoids generation, major efforts will be made to develop liver organoids for HEV infection. Here, we summarize the entire new and impressive cell culture system of liver organoids and discuss their potential application in HEV infection and pathogenesis. Liver organoids can be generated from tissue-resident cells isolated from biopsies of adult tissues or from iPSCs/ESCs differentiation, which can expand the large-scale experiments such as antiviral drug screening. Different types of liver cells working together can recapitulate the liver organ maintaining the physiological and biochemical microenvironments to support cell morphogenesis, migration, and response to viral infections. Efforts to optimize the protocols for liver organoids generation will speed up the research for HEV infection and pathogenesis and even the antiviral drug identification and evaluation.
Collapse
Affiliation(s)
- Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Hepatic Polarized Differentiation Promoted the Maturity and Liver Function of Human Embryonic Stem Cell-Derived Hepatocytes via Activating Hippo and AMPK Signaling Pathways. Cells 2022; 11:cells11244117. [PMID: 36552880 PMCID: PMC9776724 DOI: 10.3390/cells11244117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood-bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.
Collapse
|
29
|
McLEOD M, Belford G, Harlow J, Nasheri N. Examining the Effect of Organic Acids on Inactivation of Hepatitis E Virus. J Food Prot 2022; 85:1690-1695. [PMID: 36048964 DOI: 10.4315/jfp-22-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Infection with hepatitis E virus genotype 3 (HEV-3) is an emerging cause of illness in developed countries. In North America and Europe, HEV-3 has been increasingly detected in swine, and exposure to pigs and pork products is considered the primary source of infection. We have previously demonstrated the prevalence of the HEV-3 genome in commercial pork products in Canada. In this study, we investigated the application of citric acid and acetic acid to inactivate HEV-3 on food and on food contact surfaces. For this purpose, plastic, stainless steel, and pork pâté surfaces were inoculated with HEV-3 and were treated with acetic acid or citric acid at 1, 3, or 5%. The infectivity of posttreatment viral particles was determined by cell culture. A greater than 2-log reduction in viral infectivity was observed on plastic and stainless steel treated with the organic acids, but the treatment was less effective on HEV infectivity on pork pâté (average reductions of 0.47 log citric acid and 0.63 log acetic acid). Therefore, we conclude that citric acid and acetic acid have potential application to control HEV-3 on food contact surfaces but are not suitable for food. HIGHLIGHTS
Collapse
Affiliation(s)
- Madison McLEOD
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Genevieve Belford
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
30
|
Shi Y, Deng J, Sang X, Wang Y, He F, Chen X, Xu A, Wu F. Generation of Hepatocytes and Nonparenchymal Cell Codifferentiation System from Human-Induced Pluripotent Stem Cells. Stem Cells Int 2022; 2022:3222427. [PMID: 36467281 PMCID: PMC9709383 DOI: 10.1155/2022/3222427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2024] Open
Abstract
To date, hepatocytes derived from human-induced pluripotent stem cells (hiPSC) provide a potentially unlimited resource for clinical application and drug development. However, most hiPSC-derived hepatocyte-like cells initiated differentiation from highly purified definitive endoderm, which are insufficient to accurately replicate the complex regulation of signals among multiple cells and tissues during liver organogenesis, thereby displaying an immature phenotypic and short survival time in vitro. Here, we described a protocol to achieve codifferentiation of endoderm-derived hepatocytes and mesoderm-derived nonparenchymal cells by the inclusion of BMP4 into hepatic differentiation medium, which has a beneficial effect on the hepatocyte maturation and lifespan in vitro. Our codifferentiation system suggests the important role of nonparenchymal cells in liver organogenesis. Hopefully, these hepatocytes described here provide a promising approach in the therapy of liver diseases.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiali Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaopu Sang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Wang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fei He
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fenfang Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
31
|
Ma Z, de Man RA, Kamar N, Pan Q. Chronic hepatitis E: Advancing research and patient care. J Hepatol 2022; 77:1109-1123. [PMID: 35605741 DOI: 10.1016/j.jhep.2022.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
The hepatitis E virus (HEV) was initially thought to exclusively cause acute hepatitis. However, the first diagnosis of chronic hepatitis E in transplant recipients in 2008 profoundly changed our understanding of this pathogen. We have now begun to understand that specific HEV genotypes can cause chronic infection in certain immunocompromised populations. Over the past decade, dedicated clinical and experimental research has substantiated knowledge on the epidemiology, transmission routes, pathophysiological mechanisms, diagnosis, clinical features and treatment of chronic HEV infection. Nevertheless, many gaps and major challenges remain, particularly regarding the translation of knowledge into disease prevention and improvement of clinical outcomes. This article aims to highlight the latest developments in the understanding and management of chronic hepatitis E. More importantly, we attempt to identify major knowledge gaps and discuss strategies for further advancing both research and patient care.
Collapse
Affiliation(s)
- Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Nassim Kamar
- Department of Nephrology, Dialysis and Organ Transplantation, CHU Rangueil, INSERM UMR 1291, Toulouse Institute for Infectious and Inflammatory Disease (Infinity), University Paul Sabatier, Toulouse, France
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
32
|
Kinast V, Klöhn M, Nocke MK, Todt D, Steinmann E. Hepatitis E virus species barriers: seeking viral and host determinants. Curr Opin Virol 2022; 56:101274. [PMID: 36283248 DOI: 10.1016/j.coviro.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either 'single-host' or 'multi-host' genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
33
|
An Engineered Protein-Based Building Block (Albumin Methacryloyl) for Fabrication of a 3D In Vitro Cryogel Model. Gels 2022; 8:gels8070404. [PMID: 35877489 PMCID: PMC9324498 DOI: 10.3390/gels8070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition in drug development or withdrawal; current animal experiments and traditional 2D cell culture systems fail to precisely predict the liver toxicity of drug candidates. Hence, there is an urgent need for an alternative in vitro model that can mimic the liver microenvironments and accurately detect human-specific drug hepatotoxicity. Here, for the first time we propose the fabrication of an albumin methacryloyl cryogel platform inspired by the liver’s microarchitecture via emulating the mechanical properties and extracellular matrix (ECM) cues of liver. Engineered crosslinkable albumin methacryloyl is used as a protein-based building block for fabrication of albumin cryogel in vitro models that can have potential applications in 3D cell culture and drug screening. In this work, protein modification, cryogelation, and liver ECM coating were employed to engineer highly porous three-dimensional cryogels with high interconnectivity, liver-like stiffness, and liver ECM as artificial liver constructs. The resulting albumin-based cryogel in vitro model provided improved cell–cell and cell–material interactions and consequently displayed excellent liver functional gene expression, being conducive to detection of fialuridine (FIAU) hepatotoxicity.
Collapse
|
34
|
Wang J, Huang D, Yu H, Cheng Y, Ren H, Zhao Y. Developing tissue engineering strategies for liver regeneration. ENGINEERED REGENERATION 2022; 3:80-91. [DOI: 10.1016/j.engreg.2022.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
35
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
36
|
Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, Volz A, Chassé T, Kluger PJ. Cell‐derived and enzyme‐based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng 2022; 119:1142-1156. [DOI: 10.1002/bit.28047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Ivana Mrsic
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Silke Keller
- 3R‐Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
- Department for Microphysiological Systems Institute of Biomedical Engineering, Faculty of Medicine of the Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
| | - Simon Heine
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Monika Bach
- Core Facility Hohenheim, University of Hohenheim Emil‐Wolff‐Str. 12 70599 Stuttgart Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| |
Collapse
|
37
|
Induction of Hepatitis E Virus Anti-ORF3 Antibodies from Systemic Administration of a Muscle-Specific Adeno-Associated Virus (AAV) Vector. Viruses 2022; 14:v14020266. [PMID: 35215859 PMCID: PMC8878420 DOI: 10.3390/v14020266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.
Collapse
|
38
|
Chapuy-Regaud S, Allioux C, Capelli N, Migueres M, Lhomme S, Izopet J. Vectorial Release of Human RNA Viruses from Epithelial Cells. Viruses 2022; 14:231. [PMID: 35215825 PMCID: PMC8875463 DOI: 10.3390/v14020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells are apico-basolateral polarized cells that line all tubular organs and are often targets for infectious agents. This review focuses on the release of human RNA virus particles from both sides of polarized human cells grown on transwells. Most viruses that infect the mucosa leave their host cells mainly via the apical side while basolateral release is linked to virus propagation within the host. Viruses do this by hijacking the cellular factors involved in polarization and trafficking. Thus, understanding epithelial polarization is essential for a clear understanding of virus pathophysiology.
Collapse
Affiliation(s)
- Sabine Chapuy-Regaud
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Claire Allioux
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Nicolas Capelli
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Marion Migueres
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Sébastien Lhomme
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| | - Jacques Izopet
- Department of Virology, CHU Purpan, F-31059 Toulouse, France; (N.C.); (M.M.); (S.L.); (J.I.)
- INFINITy (Toulouse Institute for Infectious and Inflammatory Diseases), INSERM UMR1291, CNRS UMR5051, Université Toulouse III, CHU Purpan, F-31024 Toulouse, France;
| |
Collapse
|
39
|
Li P, Li Y, Wang Y, Liu J, Lavrijsen M, Li Y, Zhang R, Verstegen MMA, Wang Y, Li TC, Ma Z, Kainov DE, Bruno MJ, de Man RA, van der Laan LJW, Peppelenbosch MP, Pan Q. Recapitulating hepatitis E virus-host interactions and facilitating antiviral drug discovery in human liver-derived organoids. SCIENCE ADVANCES 2022; 8:eabj5908. [PMID: 35044825 PMCID: PMC8769558 DOI: 10.1126/sciadv.abj5908] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hepatotropic viruses naturally have narrow host and tissue tropisms, challenging the development of robust experimental models. The advent of organoid technology provides a unique opportunity for moving the field forward. Here, we demonstrate that three-dimensional cultured organoids from fetal and adult human liver with cholangiocyte or hepatocyte phenotype support hepatitis E virus (HEV) replication. Inoculation with infectious HEV particles demonstrates that human liver–derived organoids support the full life cycle of HEV infection. By directing organoids toward polarized monolayers in a transwell system, we observed predominantly apical secretion of HEV particles. Genome-wide transcriptomic and tRNAome analyses revealed robust host responses triggered by viral replication. Drug screening in organoids identified brequinar and homoharringtonine as potent HEV inhibitors, which are also effective against the ribavirin resistance variant harboring G1634R mutation. Thus, successful recapitulation of HEV infection in liver-derived organoids shall facilitate the study of virus-host interactions and development of antiviral therapies.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Corresponding author. (Q.P.); (Y.W.)
| | - Jiaye Liu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Marla Lavrijsen
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Ruyi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Monique M. A. Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, PR China
| | - Denis E. Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway
- Institute of Technology, University of Tartu, Tartu 50090, Estonia
| | - Marco J. Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Robert A. de Man
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Luc J. W. van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
- Corresponding author. (Q.P.); (Y.W.)
| |
Collapse
|
40
|
Matakovic L, Overeem AW, Klappe K, van IJzendoorn SCD. Induction of Bile Canaliculi-Forming Hepatocytes from Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2544:71-82. [PMID: 36125710 DOI: 10.1007/978-1-0716-2557-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell polarity and formation of bile canaliculi can be achieved in hepatocytes which are generated from patient-derived induced pluripotent stem cells. This allows for the study of endogenous mutant proteins, patient-specific pathogenesis, and drug responses for diseases where hepatocyte polarity and bile canaliculi play a key role. Here, we describe a step-by-step protocol for the generation of bile canaliculi-forming hepatocytes from induced pluripotent stem cells and their evaluation.
Collapse
Affiliation(s)
- Lavinija Matakovic
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend W Overeem
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karin Klappe
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sven C D van IJzendoorn
- Department of Biomedical Sciences of Cells and Systems, section Molecular Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
41
|
Bushweller L, Zhao Y, Zhang F, Wu X. Generation of Human Pluripotent Stem Cell-Derived Polarized Hepatocytes. Curr Protoc 2022; 2:e345. [PMID: 35007406 PMCID: PMC9175647 DOI: 10.1002/cpz1.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) are valuable tools to study liver biology. HLCs, however, lack certain key in vivo characteristics relevant to their physiological function. One such characteristic is cellular polarity, which is critical to hepatocyte counter-current flow systems involving canalicular bile secretion and sinusoidal secretion of large quantities of serum proteins into blood. Model systems using non-polarized hepatocytes, therefore, cannot recapitulate this physiological function of hepatocytes. Here, we describe a stepwise protocol to generate hPSC-derived polarized HLCs (pol-HLCs), which feature clearly defined basolateral and apical membranes separated by tight junctions. Pol-HLCs not only display many hepatic functions but are also capable of directional cargo secretion, mimicking the counter-current flow systems. We describe protocols for stem cell culture maintenance and for differentiating hPSCs into pol-HLCs. In addition, we describe protocols to assay the pol-HLCs for basic hepatic functions and polarized hepatic characteristics. Once successfully differentiated, these pol-HLCs can be used as an in vitro model system to study hepatocyte biology, disease mechanisms, genetic variation, and drug metabolism. The establishment of hepatic polarity from non-polarized hPSCs also provides a useful tool to study the development and maintenance of hepatic polarity. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Maintenance of hPSCs Basic Protocol 2: Differentiation of hPSCs to pol-HLCs Basic Protocol 3: Assaying pol-HLCs for basic hepatic functions Support Protocol 1: Assessment of pol-HLC monolayer tightness Support Protocol 2: Assessment of pol-HLC polarity.
Collapse
Affiliation(s)
- Leila Bushweller
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio,Cleveland Clinic College of Medicine at Case Western Reserve University, Cleveland, Ohio
| | - Yuanyuan Zhao
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Fan Zhang
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Xianfang Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio,Corresponding author:
| |
Collapse
|
42
|
Klöhn M, Schrader JA, Brüggemann Y, Todt D, Steinmann E. Beyond the Usual Suspects: Hepatitis E Virus and Its Implications in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:5867. [PMID: 34831021 PMCID: PMC8616277 DOI: 10.3390/cancers13225867] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus infections are the leading cause of viral hepatitis in humans, contributing to an estimated 3.3 million symptomatic cases and almost 44,000 deaths annually. Recently, HEV infections have been found to result in chronic liver infection and cirrhosis in severely immunocompromised patients, suggesting the possibility of HEV-induced hepatocarcinogenesis. While HEV-associated formation of HCC has rarely been reported, the expansion of HEV's clinical spectrum and the increasing evidence of chronic HEV infections raise questions about the connection between HEV and HCC. The present review summarizes current clinical evidence of the relationship between HEV and HCC and discusses mechanisms of virus-induced HCC development with regard to HEV pathogenesis. We further elucidate why the development of HEV-induced hepatocellular carcinoma has so rarely been observed and provide an outlook on possible experimental set-ups to study the relationship between HEV and HCC formation.
Collapse
Affiliation(s)
- Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Jil Alexandra Schrader
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44801 Bochum, Germany; (M.K.); (J.A.S.); (Y.B.); (D.T.)
- German Centre for Infection Research (DZIF), External Partner Site, 44801 Bochum, Germany
| |
Collapse
|
43
|
The Viral ORF3 Protein Is Required for Hepatitis E Virus Apical Release and Efficient Growth in Polarized Hepatocytes and Humanized Mice. J Virol 2021; 95:e0058521. [PMID: 34523963 DOI: 10.1128/jvi.00585-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted RNA virus, is a major cause of acute hepatitis worldwide. Additionally, HEV genotype 3 (gt3) can frequently persist in immunocompromised individuals with an increased risk for developing severe liver disease. Currently, no HEV-specific treatment is available. The viral open reading frame 3 (ORF3) protein facilitates HEV egress in vitro and is essential for establishing productive infection in macaques. Thus, ORF3, which is unique to HEV, has the potential to be explored as a target for antiviral therapy. However, significant gaps exist in our understanding of the critical functions of ORF3 in HEV infection in vivo. Here, we utilized a polarized hepatocyte culture model and a human liver chimeric mouse model to dissect the roles of ORF3 in gt3 HEV release and persistent infection. We show that ORF3's absence substantially decreased HEV replication and virion release from the apical surface but not the basolateral surface of polarized hepatocytes. While wild-type HEV established a persistent infection in humanized mice, mutant HEV lacking ORF3 (ORF3null) failed to sustain the infection despite transient replication in the liver and was ultimately cleared. Strikingly, mice inoculated with the ORF3null virus displayed no fecal shedding throughout the 6-week experiment. Overall, our results demonstrate that ORF3 is required for HEV fecal shedding and persistent infection, providing a rationale for targeting ORF3 as a treatment strategy for HEV infection. IMPORTANCE HEV infections are associated with significant morbidity and mortality. HEV gt3 additionally can cause persistent infection, which can rapidly progress to liver cirrhosis. Currently, no HEV-specific treatments are available. The poorly understood HEV life cycle hampers the development of antivirals for HEV. Here, we investigated the role of the viral ORF3 protein in HEV infection in polarized hepatocyte cultures and human liver chimeric mice. We found that two major aspects of the HEV life cycle require ORF3: fecal virus shedding and persistent infection. These results provide a rationale for targeting ORF3 to treat HEV infection.
Collapse
|
44
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
46
|
Xu Q. Human Three-Dimensional Hepatic Models: Cell Type Variety and Corresponding Applications. Front Bioeng Biotechnol 2021; 9:730008. [PMID: 34631680 PMCID: PMC8497968 DOI: 10.3389/fbioe.2021.730008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Owing to retained hepatic phenotypes and functions, human three-dimensional (3D) hepatic models established with diverse hepatic cell types are thought to recoup the gaps in drug development and disease modeling limited by a conventional two-dimensional (2D) cell culture system and species-specific variability in drug metabolizing enzymes and transporters. Primary human hepatocytes, human hepatic cancer cell lines, and human stem cell-derived hepatocyte-like cells are three main hepatic cell types used in current models and exhibit divergent hepatic phenotypes. Primary human hepatocytes derived from healthy hepatic parenchyma resemble in vivo-like genetic and metabolic profiling. Human hepatic cancer cell lines are unlimitedly reproducible and tumorigenic. Stem cell-derived hepatocyte-like cells derived from patients are promising to retain the donor's genetic background. It has been suggested in some studies that unique properties of cell types endue them with benefits in different research fields of in vitro 3D modeling paradigm. For instance, the primary human hepatocyte was thought to be the gold standard for hepatotoxicity study, and stem cell-derived hepatocyte-like cells have taken a main role in personalized medicine and regenerative medicine. However, the comprehensive review focuses on the hepatic cell type variety, and corresponding applications in 3D models are sparse. Therefore, this review summarizes the characteristics of different cell types and discusses opportunities of different cell types in drug development, liver disease modeling, and liver transplantation.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Chinese Medicine, and Centre for Cancer and Inflammation Research, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
47
|
Siao RF, Lin CH, Chen LH, Wang LC. Establishment of a striped catfish skin explant model for studying the skin response in Aeromonas hydrophila infections. Sci Rep 2021; 11:19057. [PMID: 34561532 PMCID: PMC8463585 DOI: 10.1038/s41598-021-98583-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
Teleost fish skin serves as the first line of defense against pathogens. The interaction between pathogen and host skin determines the infection outcome. However, the mechanism(s) that modulate infection remain largely unknown. A proper tissue culture model that is easier to handle but can quantitatively and qualitatively monitor infection progress may shed some lights. Here, we use striped catfish (Pangasius hypophthalmus) to establish an ex vivo skin explant tissue culture model to explore host pathogen interactions. The skin explant model resembles in vivo skin in tissue morphology, integrity, and immune functionality. Inoculation of aquatic pathogen Aeromonas hydrophila in this model induces epidermal exfoliation along with epithelial cell dissociation and inflammation. We conclude that this ex vivo skin explant model could serve as a teleost skin infection model for monitoring pathogenesis under various infection conditions. The model can also potentially be translated into a platform to study prevention and treatment of aquatic infection on the skin in aquaculture applications.
Collapse
Affiliation(s)
- Ru-Fang Siao
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Hsuan Lin
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Li-Hsuan Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Chun Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
48
|
Yadav KK, Kenney SP. Hepatitis E Virus Immunopathogenesis. Pathogens 2021; 10:pathogens10091180. [PMID: 34578211 PMCID: PMC8465319 DOI: 10.3390/pathogens10091180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.
Collapse
|
49
|
Pettinato G, Coughlan MF, Zhang X, Chen L, Khan U, Glyavina M, Sheil CJ, Upputuri PK, Zakharov YN, Vitkin E, D’Assoro AB, Fisher RA, Itzkan I, Zhang L, Qiu L, Perelman LT. Spectroscopic label-free microscopy of changes in live cell chromatin and biochemical composition in transplantable organoids. SCIENCE ADVANCES 2021; 7:7/34/eabj2800. [PMID: 34407934 PMCID: PMC8373132 DOI: 10.1126/sciadv.abj2800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 02/01/2023]
Abstract
Organoids formed from human induced pluripotent stem cells (hiPSCs) could be a limitless source of functional tissue for transplantations in many organs. Unfortunately, fine-tuning differentiation protocols to form large quantities of hiPSC organoids in a controlled, scalable, and reproducible manner is quite difficult and often takes a very long time. Recently, we introduced a new approach of rapid organoid formation from dissociated hiPSCs and endothelial cells using microfabricated cell-repellent microwell arrays. This approach, when combined with real-time label-free Raman spectroscopy of biochemical composition changes and confocal light scattering spectroscopic microscopy of chromatin transition, allows for monitoring live differentiating organoids without the need to sacrifice a sample, substantially shortening the time of protocol fine-tuning. We used this approach to both culture and monitor homogeneous liver organoids that have the main functional features of the human liver and which could be used for cell transplantation liver therapy in humans.
Collapse
Affiliation(s)
- Giuseppe Pettinato
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Mark F. Coughlan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Xuejun Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Liming Chen
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Umar Khan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Maria Glyavina
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Conor J. Sheil
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Paul K. Upputuri
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Yuri N. Zakharov
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Edward Vitkin
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | | | - Robert A. Fisher
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Irving Itzkan
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA
| | - Lei Zhang
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| | - Le Qiu
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| | - Lev T. Perelman
- Center for Advanced Biomedical Imaging and Photonics, Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA, USA.,Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA.,Corresponding author. (L.Z.); (L.Q.); (L.T.P.)
| |
Collapse
|
50
|
Chen YT, Miao K, Zhou L, Xiong WN. Stem cell therapy for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:1535-1545. [PMID: 34250959 PMCID: PMC8280064 DOI: 10.1097/cm9.0000000000001596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD), characterized by persistent and not fully reversible airflow restrictions, is currently one of the most widespread chronic lung diseases in the world. The most common symptoms of COPD are cough, expectoration, and exertional dyspnea. Although various strategies have been developed during the last few decades, current medical treatment for COPD only focuses on the relief of symptoms, and the reversal of lung function deterioration and improvement in patient's quality of life are very limited. Consequently, development of novel effective therapeutic strategies for COPD is urgently needed. Stem cells were known to differentiate into a variety of cell types and used to regenerate lung parenchyma and airway structures. Stem cell therapy is a promising therapeutic strategy that has the potential to restore the lung function and improve the quality of life in patients with COPD. This review summarizes the current state of knowledge regarding the clinical research on the treatment of COPD with mesenchymal stem cells (MSCs) and aims to update the understanding of the role of MSCs in COPD treatment, which may be helpful for developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Yun-Tian Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Kang Miao
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Key Cite of National Clinical Research Center for Respiratory Disease, Wuhan Clinical Medical Research Center for Chronic Airway Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei-Ning Xiong
- Department of Pulmonary and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| |
Collapse
|