1
|
Gao F, Pan L, Liu W, Chen J, Wang Y, Li Y, Liu Y, Hua Y, Li R, Zhang T, Zhu T, Jin F, Gao Y. Idiopathic pulmonary fibrosis microenvironment: Novel mechanisms and research directions. Int Immunopharmacol 2025; 155:114653. [PMID: 40222273 DOI: 10.1016/j.intimp.2025.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressive interstitial lung disease marked by increasing dyspnea and respiratory failure. The underlying mechanisms remain poorly understood, given the complexity of its pathogenesis. This review investigates the microenvironment of IPF to identify novel mechanisms and therapeutic avenues. Studies have revealed that various cell types, including alveolar epithelial cells, fibroblasts, myofibroblasts, and immune cells, are integral to disease progression, engaging in cellular stress responses and inflammatory regulation via signaling pathways such as TGF-β, Wnt, mTOR, and ROS. Non-coding RNAs, particularly miRNAs, are critical in IPF and may serve as diagnostic and prognostic biomarkers. Regarding treatment, mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) or non-vesicular derivatives offer promise by modulating immune responses, enhancing tissue repair, and inhibiting fibrosis. Additionally, alterations in the lung microbiota are increasingly recognized as a contributing factor to IPF progression, offering fresh insights into potential treatments. Despite the encouraging results of MSC-based therapies, the precise mechanisms and clinical applications remain subjects of ongoing research. This review emphasizes the significance of the IPF microenvironment and highlights the need for further exploration to develop effective therapies that could enhance patient outcomes.
Collapse
Affiliation(s)
- Fuguo Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Lei Pan
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wei Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Jian Chen
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yifeng Wang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yan Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China; Department of Pulmonary and Critical Care Medicine, Shaanxi provincal people's hospital, Xi'an, 710068, China
| | - Yurou Liu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yiying Hua
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ruiqi Li
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Tongtong Zhang
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Ting Zhu
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China
| | - Faguang Jin
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Yongheng Gao
- Department of Pulmonary and Critical Care Medicine, Tangdu hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Yatera K, Wang Z, Shibata Y, Ishikawa N, Homma T, Fukushima K, Hataji O, Inoue Y, Kawabata H, Miki K, Sato K, Tobino K, Yoshida M, Ishii T, Ito R, Kobayashi T, Kawamatsu S, Compton CH, Jones PW. Sputum Microbiome, Potentially Pathogenic Organisms, and Clinical Outcomes in Japanese Patients with COPD and Moderate Airflow Limitation: The Prospective AERIS-J Study. Int J Chron Obstruct Pulmon Dis 2025; 20:1477-1492. [PMID: 40391128 PMCID: PMC12086862 DOI: 10.2147/copd.s481406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/21/2025] [Indexed: 05/21/2025] Open
Abstract
Background In Western studies, lung microbiome changes are reported in patients with chronic obstructive pulmonary disease (COPD) and are associated with poorer outcomes, but similar studies in Asian patients or those with less severe COPD are limited. Methods The Acute Exacerbation and Respiratory InfectionS in COPD Japan (AERIS-J; jRCT1080224632/NCT03957577) was a prospective, non-interventional study to evaluate sputum microbiome diversity at baseline and after 12 months (V2; exploratory analysis), in patients aged 40-80 years with stable COPD (June 2019-June 2022). Baseline sputum potentially pathogenic organisms (PPOs) were identified. Blood cell counts and COPD Assessment Test (CAT) scores were collected at baseline and COPD symptoms measured over 12 months using the Evaluating Respiratory Symptoms in COPD and EXAcerbations of Chronic pulmonary disease Tool, collected by eDiary. Results Patients (N=63) had a mean age of 72.8 years, and percent predicted post-bronchodilator forced expiratory volume in 1 second was 58.3%; 92% were male. Across 62 baseline sputum samples, microbiome composition was similar between 16S rRNA/metagenomic datasets. Patients graded Global Initiative for Chronic Obstructive Lung Disease (GOLD) III versus GOLD I/II had minimal differences in their microbial taxonomic profile and no differences in microbial diversity (Wilcoxon P=0.71). Alpha diversity (Shannon index) positively correlated with blood basophils (rho=0.41; P=0.0019) and negatively correlated with CAT score (rho=0.36; P=0.0069). Alpha diversity and sputum (rho: -0.0637; P=0.7836) or blood (rho: 0.1739; P=0.2043) eosinophils were not correlated. No difference in alpha (P=0.5) or beta (P=0.3) diversity or Operational Taxonomic Unit (Anosim R=-0.024; P=0.892) was observed between PPO-positive or -negative sputum. Conclusion A less diverse microbiome correlated with poorer health status and lower blood basophils in patients with COPD and moderate airflow limitation. There was no relationship between PPO presence and microbiome diversity.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- University of Occupational and Environmental Health Japan, Fukuoka, Japan
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, People’s Republic of China
| | | | | | | | | | | | - Yoshikazu Inoue
- Osaka Anti-tuberculosis Association, Osaka Fukujuji Hospital, Osaka, Japan
- NHO Kinki Chuo Chest Medical Center, Osaka, Japan
| | - Hiroki Kawabata
- University of Occupational and Environmental Health Japan, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | - Paul W Jones
- GSK, R&D Global Medical, Brentford, Middlesex, UK
| |
Collapse
|
3
|
Mikhail SG, O'Dwyer DN. The lung microbiome in interstitial lung disease. Breathe (Sheff) 2025; 21:240167. [PMID: 40255291 PMCID: PMC12004254 DOI: 10.1183/20734735.0167-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/17/2025] [Indexed: 04/22/2025] Open
Abstract
Interstitial lung disease (ILD) is a heterogeneous chronic form of lung disease. The pathogenesis of ILD is poorly understood and a common form of ILD, idiopathic pulmonary fibrosis (IPF) is associated with poor prognosis. There is evidence for substantial dysregulated immune responses in ILD. The microbiome is a key regulator of the immune response, and the lung microbiome correlates with alveolar immunity and clinical outcomes in ILD. Most observational lung microbiome studies have been conducted in patients with IPF. A consistent observation in these studies is that the bacterial burden of the lung is elevated in patients with IPF and predicts mortality. However, our understanding of the mechanism is incomplete and our understanding of the role of the lung microbiome in other forms of ILD is limited. The microbiomes of the oropharynx and gut may have implications for the lung microbiome and pulmonary immunity in ILD but require substantial further research. Here, we discuss the studies supporting a role for the lung microbiome in the pathogenesis of IPF, and briefly describe the putative role of the oral-lung axis and the gut-lung axis in ILD.
Collapse
Affiliation(s)
- Sheridan G. Mikhail
- Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Tsukada A, Katagiri D, Izumi S, Terada-Hirashima J, Shimizu Y, Uemura Y, Toda M, Yasuma T, Gabazza CND, Fujimoto H, Kobayashi T, Gabazza EC, Sugiyama M, Noiri E, Abe S, Azuma A, Sugiyama H. Inflammatory and Coagulation Marker Changes in PMX-DHP-Treated COVID-19 Patients. Cureus 2025; 17:e78836. [PMID: 40084335 PMCID: PMC11904442 DOI: 10.7759/cureus.78836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Direct hemoperfusion using polymyxin B-immobilized polystyrene fiber column (PMX-DHP) removes endotoxin and inflammatory mediators from the blood. This study aimed to evaluate the changes in the levels of cytokines, coagulation factors, and a microbiota-derived proapoptotic peptide in COVID-19 patients treated with PMX-DHP. Methods We conducted a multicenter, prospective, single-arm interventional study of 21 oxygen-requiring patients with COVID-19 admitted between September 28, 2020, and March 31, 2022. PaO2/FiO2 (P/F) ratio and biomarkers of inflammation, fibrosis, coagulation, and microbiota-derived peptide were analyzed on PMX-DHP treatment days 1, 4, and 15. Results The P/F ratio significantly improved on Day 4 (87.1, 95% CI: 14.8-159.3) and Day 15 (140.6, 95% CI: 56.2-224.9) compared to baseline values. Among the inflammatory cytokines, IL-8 and IL-10 levels significantly decreased on Day 15 (-8.5, 95% CI: -13.4 to -3.5) and Day 4 (-2.3, 95% CI: -5.2 to 0.5) respectively compared to baseline values. Regarding coagulation markers, levels of thrombomodulin increased on Day 4 (1.1, 95% CI: 0.4-1.7) and Day 15 (0.8, 95% CI: 0.3-1.4), and those of tissue plasminogen activator-plasminogen activator-1 significantly decreased on Day 15 (-35.1, 95% CI: -57.6 to -12.6). Microbiota-derived corisin levels significantly decreased on Day 4 (-1740.6, 95% CI: -2860.2 to -621.0) and Day 15 (-1436.7, 95% CI: -2615.8 to -257.6). Conclusion Our study revealed improvement in the P/F ratio and the time course of various biomarkers in COVID-19 patients treated with PMX-DHP.
Collapse
Affiliation(s)
- Akinari Tsukada
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| | - Daisuke Katagiri
- Nephrology, National Center for Global Health and Medicine, Tokyo, JPN
| | - Shinyu Izumi
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| | | | - Yosuke Shimizu
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, JPN
| | - Yukari Uemura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, JPN
| | - Masaaki Toda
- Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | - Taro Yasuma
- Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | | | - Hajime Fujimoto
- Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | - Tetsu Kobayashi
- Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu, JPN
| | | | - Masaya Sugiyama
- Viral Pathogenesis and Controls, National Center for Global Health and Medicine, Tokyo, JPN
| | - Eisei Noiri
- National Center Biobank Network, National Center for Global Health and Medicine, Tokyo, JPN
| | - Shinji Abe
- Respiratory Medicine, Tokyo Medical University Hospital, Tokyo, JPN
| | - Arata Azuma
- Respiratory Medicine, Nippon Medical School, Musashi Kosugi Hospital, Kawasaki, JPN
| | - Haruhito Sugiyama
- Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, JPN
| |
Collapse
|
5
|
Takeuchi S, Kawada J, Suzuki A, Sakamoto K, Fukuda Y, Horiba K, Suzuki T, Torii Y, Shindo Y, Ito Y. Metagenomic Analysis of Lung Microbiome in Patients With Interstitial Lung Diseases and Sarcoidosis: An Experimental Study. Health Sci Rep 2025; 8:e70328. [PMID: 39927182 PMCID: PMC11803077 DOI: 10.1002/hsr2.70328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/11/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
Background and Aims Interactions between the lung microbiome and pulmonary epithelium plays a pivotal role in shaping immunity in the lung. Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease (ILD). Some patients with IPF develop episodic acute exacerbations often associated with microbial dysbiosis in the lungs. This study aimed to investigate etiologic agents as well as the lung microbiome in patients with ILDs and sarcoidosis. Methods This study analyzed 31 patients divided into the IPF (IPF-stable, n = 12), acute exacerbation of ILDs (AE-ILDs, n = 6), and sarcoidosis (n = 13) groups. Bronchoalveolar lavage fluid (BALF) samples were analyzed by RNA-based metagenomic next-generation sequencing (NGS) on an Illumina platform. Results In total, 87 pathogens were detected using metagenomic NGS at the genus level. Prevotella, Streptococcus, and Veillonella dominated the BALF microbial communities, and sequence reads of these bacteria were abundant, especially in the sarcoidosis group. Conversely, only a small number of bacterial reads were detected in the AE-ILDs group, and the overall proportion of microbial composition differed from that of the other groups. No significant difference was found in community diversity (α-diversity) among the groups, whereas the structural similarity of the microflora (β-diversity) differed significantly between the AE-ILDs and sarcoidosis groups. Conclusions Bacterial sequence reads in BALF were smaller in both the IPF-stable and AE-ILD groups than in the sarcoidosis group. Dysbiosis in the lung microbiome has been observed in patients with AE-ILD and may be related to the progression of inflammation.
Collapse
Affiliation(s)
- Suguru Takeuchi
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Jun‐ichi Kawada
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
- Department of PediatricsFujita Health University School of MedicineToyoakeJapan
| | - Atsushi Suzuki
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Sakamoto
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuto Fukuda
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Kazuhiro Horiba
- Pathogen Genomics Center, National Institute of Infectious DiseasesTokyoJapan
| | - Takako Suzuki
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuka Torii
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuichiro Shindo
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshinori Ito
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
- Department of PediatricsAichi Medical UniversityNagakuteJapan
| |
Collapse
|
6
|
Shadid A, Rich HE, DeVaughn H, Domozhirov A, Doursout MF, Weng-Mills T, Eckel-Mahan KL, Karmouty-Quintana H, Restrepo MI, Shivshankar P. Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into non-typeable Haemophilus influenza pathogenesis. Front Cell Infect Microbiol 2024; 14:1479801. [PMID: 39760094 PMCID: PMC11695292 DOI: 10.3389/fcimb.2024.1479801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases. However, while epidemiological studies have highlighted pollutants, gastric aspirate, and microbial infections as major causes for the progression and exacerbation of IPF, the role of persistent microbial infections in the pathogenesis of IPF remains unclear. In this review, we have focused on the role of persistent microbial infections, including viral, bacterial, and fungal infections, and their mechanisms of action in the pathogenesis of IPF. In particular, the mechanisms and pathogenesis of the Gram-negative bacteria Non-typeable Haemophilus influenzae (NTHi) in ILDs are discussed, along with growing evidence of its role in IPF, given its unique ability to establish persistent intracellular infections by leveraging its non-capsulated nature to evade host defenses. While antibiotic treatments are presumably beneficial to target the extracellular, interstitial, and systemic burden of pathogens, their effects are significantly reduced in combating pathogens that reside in the intracellular compartments. The review also includes recent clinical trials, which center on combinatorial treatments involving antimicrobials and immunosuppressants, along with antifibrotic drugs that help mitigate disease progression in IPF patients. Finally, future directions focus on mRNA-based therapeutics, given their demonstrated effectiveness across a wide range of clinical applications and feasibility in targeting intracellular pathogens.
Collapse
Affiliation(s)
- Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Haydn E. Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Aleksey Domozhirov
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marie- Françoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Tingting Weng-Mills
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Kristin L. Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, UTHealth-McGovern Medical School, Houston, TX, United States
| | - Marcos I. Restrepo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, South Texas Veterans Health Care System and the University of Texas Health San Antonio, San Antonio, TX, United States
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States
| |
Collapse
|
7
|
Zou J, Nov P, Du K. Mendelian randomization analysis of the causal relationship between immune cells and keloid. Dermatol Reports 2024; 17. [PMID: 40420724 DOI: 10.4081/dr.2024.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Indexed: 05/28/2025] Open
Abstract
Immune cells play complex roles in the formation of keloid. We aimed to investigate the causal relationship between immune cells and keloid and provide genetic evidence for the association between immune cells and keloid risk. Based on data from a genome-wide association study (GWAS), we performed a comprehensive two-sample Mendelian randomization (MR) analysis of 731 immune cell traits in 481,912 keloid cases. We used the inverse-variance weighting (IVW) method as the primary analysis. Then, a comprehensive sensitivity analysis was adopted to verify the results' robustness, heterogeneity, and horizontal pleiotropy. Finally, reverse MR analysis was performed. The IVW method in forward MR analysis showed that CD66b++ myeloid cell AC was negatively associated with keloid risk (OR<1, p<0.05). Consistently, reverse MR analysis showed that keloid risk was negatively associated with CD66b++ myeloid cell AC (OR=0.85, p=0.012). No significant horizontal pleiotropy or heterogeneity was observed. The results of MR analysis demonstrate a bidirectional causal association between CD66b++ myeloid cell AC and keloid formation, suggesting that CD66b++ myeloid cell AC is a protective factor against keloid.
Collapse
Affiliation(s)
- Jingwen Zou
- Department of Dermatologic Surgery, Dermatology Hospital of Southern Medical University, Guangzhou
| | - Pengkhun Nov
- Department of Radiation Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou
| | - Kunpeng Du
- Department of Radiation Oncology, Zhujiang Hospital of Southern Medical University, Guangzhou
| |
Collapse
|
8
|
Ponholzer F, Bogensperger C, Krendl FJ, Krapf C, Dumfarth J, Schneeberger S, Augustin F. Beyond the organ: lung microbiome shapes transplant indications and outcomes. Eur J Cardiothorac Surg 2024; 66:ezae338. [PMID: 39288305 PMCID: PMC11466426 DOI: 10.1093/ejcts/ezae338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 09/19/2024] Open
Abstract
The lung microbiome plays a crucial role in the development of chronic lung diseases, which may ultimately lead to the need for lung transplantation. Also, perioperative results seem to be connected with altered lung microbiomes and its dynamic changes providing a possible target for optimizing short-term outcome after transplantation. A literature review using MEDLINE, PubMed Central and Bookshelf was performed. Chronic lung allograft dysfunction (CLAD) seems to be influenced and partly triggered by changes in the pulmonary microbiome and dysbiosis, e.g. through increased bacterial load or abundance of specific species such as Pseudomonas aeruginosa. Additionally, the specific indications for transplantation, with their very heterogeneous changes and influences on the pulmonary microbiome, influence long-term outcome. Next to composition and measurable bacterial load, dynamic changes in the allografts microbiome also possess the ability to alter long-term outcomes negatively. This review discusses the "new" microbiome after transplantation and the associations with direct postoperative outcome. With the knowledge of these principles the impact of alterations in the pulmonary microbiome in hindsight to CLAD and possible therapeutic implications are described and discussed. The aim of this review is to summarize the current literature regarding pre- and postoperative lung microbiomes and how they influence different lung diseases on their progression to failure of conservative treatment. This review provides a summary of current literature for centres looking for further options in optimizing lung transplant outcomes and highlights possible areas for further research activities investigating the pulmonary microbiome in connection to transplantation.
Collapse
Affiliation(s)
- Florian Ponholzer
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Julius Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Krapf
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Dumfarth
- Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Curioni AV, Borie R, Crestani B, Helou DG. Updates on the controversial roles of regulatory lymphoid cells in idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1466901. [PMID: 39386201 PMCID: PMC11461235 DOI: 10.3389/fimmu.2024.1466901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and severe form of pulmonary fibrosis, characterized by scar formation in the lung interstitium. Transforming growth factor beta (TGF-β) is known as a key mediator in the fibrotic process, acting on fibroblasts and mediating their proliferation and differentiation into myofibroblasts. Although the immune system is not considered responsible for the initiation of IPF, markers of tolerogenic immunity define the pro-fibrotic microenvironment in the lungs. In homeostatic conditions, regulatory T cells (Tregs) constitute the main lymphoid population responsible for maintaining peripheral tolerance. Similar to Tregs, regulatory B cells (Bregs) represent a recently described subset of B lymphocytes with immunosuppressive functions. In the context of IPF, numerous studies have suggested a role for Tregs in enhancing fibrosis, mainly via the secretion of TGF-β. In humans, most studies show increased percentages of Tregs associated with the severity of IPF, although their exact role remains unclear. In mice, the most commonly used model involves triggering acute lung inflammation with bleomycin, leading to a subsequent fibrotic process. Consequently, data are still conflicting, as Tregs may play a protective role during the inflammatory phase and a deleterious role during the fibrotic phase. Bregs have been less studied in the context of IPF, but their role appears to be protective in experimental models of lung fibrosis. This review presents the latest updates on studies exploring the implication of regulatory lymphoid cells in IPF and compares the different approaches to better understand the origins of conflicting findings.
Collapse
Affiliation(s)
- Anna V. Curioni
- Université Paris Cité, Institut national de la santé et de la recherche médicale (INSERM), Physiopathologie et épidémiologie des maladies respiratoires (PHERE), Paris, France
| | - Raphaël Borie
- Université Paris Cité, Institut national de la santé et de la recherche médicale (INSERM), Physiopathologie et épidémiologie des maladies respiratoires (PHERE), Paris, France
- Service Pneumologie A, Assistance publique – Hôpitaux de Paris (AP-HP), Hôpital Bichat, Paris, France
| | - Bruno Crestani
- Université Paris Cité, Institut national de la santé et de la recherche médicale (INSERM), Physiopathologie et épidémiologie des maladies respiratoires (PHERE), Paris, France
- Service Pneumologie A, Assistance publique – Hôpitaux de Paris (AP-HP), Hôpital Bichat, Paris, France
| | - Doumet Georges Helou
- Université Paris Cité, Institut national de la santé et de la recherche médicale (INSERM), Physiopathologie et épidémiologie des maladies respiratoires (PHERE), Paris, France
| |
Collapse
|
10
|
Tharavecharak S, Fujimoto H, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Tomaru A, Saiki H, Uemura M, Kogue Y, Ito T, Furuhashi K, Okano T, Takeshita A, Nishihama K, Ono R, Hataji O, Nosaka T, Kobayashi T, Gabazza EC. Bleomycin-Induced Pulmonary Fibrosis in Transgenic Mice Carrying the Human MUC5B rs35705950 Variant. Cells 2024; 13:1523. [PMID: 39329706 PMCID: PMC11430646 DOI: 10.3390/cells13181523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, often fatal lung disease characterized by tissue scarring and declining lung function. The MUC5B promoter polymorphism rs35705950, a significant genetic predisposition for IPF, paradoxically associates with better survival and slower disease progression than other IPF genotypes. This study investigates the potential paradoxical protective effects of this MUC5B variant in lung fibrosis. For this purpose, we developed a transgenic mouse model overexpressing the human MUC5B rs35705950 variant in the proximal large airways. Lung fibrosis was induced through subcutaneous injection of bleomycin. Results demonstrated significantly reduced lung fibrosis severity in transgenic mice compared to wild-type mice, assessed by trichrome staining, Ashcroft scoring, and hydroxyproline levels. Additionally, transgenic mice showed significantly lower levels of inflammatory cells and cytokines (TNFα, IL-6, IFNγ) and growth factors (PDGF, CTGF, IL-13) in the bronchoalveolar lavage fluid and lung tissues. There was also a significant decrease in mRNA expressions of fibrosis-related markers (periostin, fibronectin, Col1a1). In summary, this study reveals that mucin overexpression related to the MUC5B rs35705950 variant in the large airways significantly attenuates lung fibrosis and inflammatory responses in transgenic mice. These findings suggest that the rs35705950 variant modulates inflammatory and fibrotic responses in the proximal airways, which may contribute to the slower disease progression observed in IPF patients carrying this variant. Our study offers a possible explanation for the paradoxical beneficial effects of the MUC5B variant despite its role as a significant predisposing factor for IPF.
Collapse
Affiliation(s)
- Suphachai Tharavecharak
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Hajime Fujimoto
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Atsushi Tomaru
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Haruko Saiki
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Mei Uemura
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Yurie Kogue
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Toshiyuki Ito
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Kazuki Furuhashi
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Tomohito Okano
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Osamu Hataji
- Respiratory Center, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka 515-8544, Mie, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Tetsu Kobayashi
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Department Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu 514-8507, Mie, Japan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA
- Respiratory Center, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka 515-8544, Mie, Japan
| |
Collapse
|
11
|
Zhan S, Li S, Cao Y, Liu D, Feng J. Value of bronchoalveolar lavage fluid metagenomic next-generation sequencing in acute exacerbation of fibrosing interstitial lung disease: an individualized treatment protocol based on microbiological evidence. BMC Pulm Med 2024; 24:400. [PMID: 39164677 PMCID: PMC11337881 DOI: 10.1186/s12890-024-03216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Acute exacerbation of fibrosing interstitial lung diseases (AE-ILD) is a serious life-threatening event per year. Methylprednisolone and/or immunosuppressive agents (ISA) are a mainstay in any regimen, under the premise that pulmonary infection has been promptly identified and controlled. We investigated the value of bronchoalveolar lavage fluid (BALF) metagenomic next-generation sequencing (mNGS) on the treatment adjustment of AE-ILD. METHODS We conducted a cross-sectional observational study. All data were collected prospectively and retrospectively analyzed. We included fifty-six patients with AE-ILD and nineteen stable ILD who underwent BALF mNGS at the beginning of admission. RESULTS Patients with a variety of ILD classification were included. Connective-tissue disease related ILD (CTD-ILD) occupy the most common underlying non-idiopathic pulmonary fibrosis (non-IPF). The infection-triggered AE accounted for 39.29%, with the majority of cases being mixed infections. The microorganisms load in the AE-ILD group was significantly higher. After adjusted by mNGS, the therapy coverage number of pathogens was significantly higher compared to the initial treatment (p < 0.001). After treatment, the GGO score and the consolidation score were significantly lower during follow up in survivors (1.57 ± 0.53 vs. 2.38 ± 0.83 with p < 0.001, 1.11 ± 0.24 vs. 1.49 ± 0.47 with p < 0.001, respectively). Some detected microorganisms, such as Tropheryma whipplei, Mycobacterium, Aspergillus, and mixed infections were difficult to be fully covered by empirical medication. BALF mNGS was also very helpful for excluding infections and early administration of methylprednisolone and/or ISA. CONCLUSIONS mNGS has been shown to be a useful tool to determine pathogens in patients with AE-ILD, the results should be fully analyzed. The comprehensive treatment protocol based on mNGS has been shown crucial in AE-ILD patients.
Collapse
Affiliation(s)
- Siyu Zhan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuo Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yaoqian Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
12
|
Zhou J, Hou W, Zhong H, Liu D. Lung microbiota: implications and interactions in chronic pulmonary diseases. Front Cell Infect Microbiol 2024; 14:1401448. [PMID: 39233908 PMCID: PMC11372588 DOI: 10.3389/fcimb.2024.1401448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The lungs, as vital organs in the human body, continuously engage in gas exchange with the external environment. The lung microbiota, a critical component in maintaining internal homeostasis, significantly influences the onset and progression of diseases. Beneficial interactions between the host and its microbial community are essential for preserving the host's health, whereas disease development is often linked to dysbiosis or alterations in the microbial community. Evidence has demonstrated that changes in lung microbiota contribute to the development of major chronic lung diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, and lung cancer. However, in-depth mechanistic studies are constrained by the small scale of the lung microbiota and its susceptibility to environmental pollutants and other factors, leaving many questions unanswered. This review examines recent research on the lung microbiota and lung diseases, as well as methodological advancements in studying lung microbiota, summarizing the ways in which lung microbiota impacts lung diseases and introducing research methods for investigating lung microbiota.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huilin Zhong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
O’Dwyer DN, Noth I, Oldham JM. Reply to Fujimoto et al.: Leveraging Microbiome Composition Variability for Precision Medicine in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 210:528-530. [PMID: 38271703 PMCID: PMC11351812 DOI: 10.1164/rccm.202312-2262le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
- David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
14
|
Tsuruga T, Fujimoto H, Yasuma T, D'Alessandro-Gabazza CN, Toda M, Ito T, Tomaru A, Saiki H, Okano T, Alhawsawi MAB, Takeshita A, Nishihama K, Takei R, Kondoh Y, Cann I, Gabazza EC, Kobayashi T. Role of microbiota-derived corisin in coagulation activation during SARS-CoV-2 infection. J Thromb Haemost 2024; 22:1919-1935. [PMID: 38453025 DOI: 10.1016/j.jtha.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Coagulopathy is a major cause of morbidity and mortality in COVID-19 patients. Hypercoagulability in COVID-19 results in deep vein thrombosis, thromboembolic complications, and diffuse intravascular coagulation. Microbiome dysbiosis influences the clinical course of COVID-19. However, the role of dysbiosis in COVID-19-associated coagulopathy is not fully understood. OBJECTIVES The present study tested the hypothesis that the microbiota-derived proapoptotic corisin is involved in the coagulation system activation during SARS-CoV-2 infection. METHODS This cross-sectional study included 47 consecutive patients who consulted for symptoms of COVID-19. A mouse acute lung injury model was used to recapitulate the clinical findings. A549 alveolar epithelial, THP-1, and human umbilical vein endothelial cells were used to evaluate procoagulant and anticoagulant activity of corisin. RESULTS COVID-19 patients showed significantly high circulating levels of corisin, thrombin-antithrombin complex, D-dimer, tumor necrosis factor-α, and monocyte-chemoattractant protein-1 with reduced levels of free protein S compared with healthy subjects. The levels of thrombin-antithrombin complex, D-dimer, and corisin were significantly correlated. A monoclonal anticorisin-neutralizing antibody significantly inhibited the inflammatory response and coagulation system activation in a SARS-CoV-2 spike protein-associated acute lung injury mouse model, and the levels of corisin and thrombin-antithrombin complex were significantly correlated. In an in vitro experiment, corisin increased the tissue factor activity and decreased the anticoagulant activity of thrombomodulin in epithelial, endothelial, and monocytic cells. CONCLUSION The microbiota-derived corisin is significantly increased and correlated with activation of the coagulation system during SARS-CoV-2 infection, and corisin may directly increase the procoagulant activity in epithelial, endothelial, and monocytic cells.
Collapse
Affiliation(s)
- Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Haruko Saiki
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Manal A B Alhawsawi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Atsuro Takeshita
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Reoto Takei
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Esteban C Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
15
|
Tian M, Zhu X, Ren L, Zhou X, Gu L, Meng K, Tian Y, Cai H, Liu X, Ding J. HE4-based nomogram for predicting overall survival in patients with idiopathic pulmonary fibrosis: construction and validation. Eur J Med Res 2024; 29:238. [PMID: 38627872 PMCID: PMC11020350 DOI: 10.1186/s40001-024-01829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a life-threatening interstitial lung disease. Identifying biomarkers for early diagnosis is of great clinical importance. The epididymis protein 4 (HE4) is important in the process of inflammation and fibrosis in the epididymis. Its prognostic value in IPF, however, has not been studied. The mRNA and protein levels of HE4 were used to determine the prognostic value in different patient cohorts. In this study, prognostic nomograms were generated based on the results of the cox regression analysis. We identified the HE4 protein level increased in IPF patients, but not the HE4 gene expression. The increased expression of HE4 correlated positively with a poor prognosis for patients with IPF. The HR and 95% CI were 2.62 (1.61-4.24) (p < 0.001) in the training set. We constructed a model based on the risk-score = 0.16222182 * HE4 + 0/0.37580659/1.05003609 (for GAP index 0-3/4-5/6-8) + (- 1.1183375). In both training and validation sets, high-risk patients had poor prognoses (HR: 3.49, 95%CI 2.10-5.80, p = 0.001) and higher likelihood of dying (HR: 6.00, 95%CI 2.04-17.67, p = 0.001). Analyses of calibration curves and decision curves suggest that the method is effective in predicting outcomes. Furthermore, a similar formulation was used in a protein-based model based on HE4 that also showed prognostic value when applied to IPF patients. Accordingly, HE4 is an independent poor prognosis factor, and it has the potential to predict IPF patient survival.
Collapse
Affiliation(s)
- Mi Tian
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiaohui Zhu
- Department of Respiratory, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Nanjing, 211899, China
| | - Lijun Ren
- Department of Pulmonary and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Zhou
- Department of Respiratory, The Fourth Affiliated Hospital of Nanjing Medical University, 298 Nanpu Road, Nanjing, 211899, China
- Phase I Clinical Trials Unit, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 359 Pu Zhu Middle Road, Nanjing, 210031, China
| | - Lina Gu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Kaifang Meng
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Yaqiong Tian
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hourong Cai
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Xiaoqin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Jingjing Ding
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
16
|
Lipinksi JH, Ranjan P, Dickson RP, O’Dwyer DN. The Lung Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1269-1275. [PMID: 38560811 PMCID: PMC11073614 DOI: 10.4049/jimmunol.2300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/01/2024] [Indexed: 04/04/2024]
Abstract
Although the lungs were once considered a sterile environment, advances in sequencing technology have revealed dynamic, low-biomass communities in the respiratory tract, even in health. Key features of these communities-composition, diversity, and burden-are consistently altered in lung disease, associate with host physiology and immunity, and can predict clinical outcomes. Although initial studies of the lung microbiome were descriptive, recent studies have leveraged advances in technology to identify metabolically active microbes and potential associations with their immunomodulatory by-products and lung disease. In this brief review, we discuss novel insights in airway disease and parenchymal lung disease, exploring host-microbiome interactions in disease pathogenesis. We also discuss complex interactions between gut and oropharyngeal microbiota and lung immunobiology. Our advancing knowledge of the lung microbiome will provide disease targets in acute and chronic lung disease and may facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jay H. Lipinksi
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Piyush Ranjan
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Robert P. Dickson
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Weil Institute for Critical Care Research and Innovation, Ann Arbor, MI, USA
| | - David N. O’Dwyer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Yasuma T, Gabazza EC. Cell Death in Acute Organ Injury and Fibrosis. Int J Mol Sci 2024; 25:3930. [PMID: 38612740 PMCID: PMC11012379 DOI: 10.3390/ijms25073930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Tissue fibrosis is characterized by the excessive accumulation of extracellular matrix in various organs, including the lungs, liver, skin, kidneys, pancreas, and heart, ultimately leading to organ failure [...].
Collapse
Affiliation(s)
- Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan;
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan;
| |
Collapse
|
18
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Li R, Li J, Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal Transduct Target Ther 2024; 9:19. [PMID: 38228603 PMCID: PMC10791971 DOI: 10.1038/s41392-023-01722-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
The lungs were long thought to be sterile until technical advances uncovered the presence of the lung microbial community. The microbiome of healthy lungs is mainly derived from the upper respiratory tract (URT) microbiome but also has its own characteristic flora. The selection mechanisms in the lung, including clearance by coughing, pulmonary macrophages, the oscillation of respiratory cilia, and bacterial inhibition by alveolar surfactant, keep the microbiome transient and mobile, which is different from the microbiome in other organs. The pulmonary bacteriome has been intensively studied recently, but relatively little research has focused on the mycobiome and virome. This up-to-date review retrospectively summarizes the lung microbiome's history, composition, and function. We focus on the interaction of the lung microbiome with the oropharynx and gut microbiome and emphasize the role it plays in the innate and adaptive immune responses. More importantly, we focus on multiple respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), fibrosis, bronchiectasis, and pneumonia. The impact of the lung microbiome on coronavirus disease 2019 (COVID-19) and lung cancer has also been comprehensively studied. Furthermore, by summarizing the therapeutic potential of the lung microbiome in lung diseases and examining the shortcomings of the field, we propose an outlook of the direction of lung microbiome research.
Collapse
Affiliation(s)
- Ruomeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Nishiwaki R, Imoto I, Oka S, Yasuma T, Fujimoto H, D'Alessandro-Gabazza CN, Toda M, Kobayashi T, Osamu H, Fujibe K, Nishikawa K, Hamaguchi T, Sugimasa N, Noji M, Ito Y, Takeuchi K, Cann I, Inoue Y, Kato T, Gabazza EC. Elevated plasma and bile levels of corisin, a microbiota-derived proapoptotic peptide, in patients with severe acute cholangitis. Gut Pathog 2023; 15:59. [PMID: 38037145 PMCID: PMC10688013 DOI: 10.1186/s13099-023-00587-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute cholangitis is a severe, life-threatening infection of the biliary system that requires early diagnosis and treatment. The Tokyo Guidelines recommend a combination of clinical, laboratory, and imaging findings for diagnosis and severity assessment, but there are still challenges in identifying severe cases that need immediate intervention. The microbiota and its derived products have been implicated in the pathogenesis of acute cholangitis. Corisin is a microbiome-derived peptide that induces cell apoptosis, acute tissue injury, and inflammation. This study aimed to evaluate the potential of plasma and bile corisin as a biomarker of acute cholangitis. METHODS Forty patients with acute cholangitis associated with choledocholithiasis or malignant disease were enrolled. Nine patients without acute cholangitis were used as controls. Corisin was measured by enzyme immunoassays in plasma and bile samples. Patients were classified into severe and non-severe groups. The associations of plasma and bile corisin with the clinical grade of acute cholangitis and other parameters were analyzed by univariate and multivariate regression analysis. RESULTS Plasma and bile corisin levels were significantly higher in patients with acute cholangitis than in controls. Patients with severe acute cholangitis had significantly higher plasma and bile corisin levels than those with non-severe form of the disease. Bile corisin level was significantly correlated with markers of inflammation, coagulation, fibrinolysis, and renal function. Univariate analysis revealed a significant association of bile corisin but a weak association of plasma corisin with the clinical grade of acute cholangitis. In contrast, multivariate analysis showed a significant relationship between plasma corisin level and the disease clinical grade. The receiver operating characteristic curve analysis showed low sensitivity but high specificity for plasma and bile corisin to detect the severity of acute cholangitis. The plasma and bile corisin sensitivity was increased when serum C-reactive protein level was included in the receiver operating characteristic curve analysis. CONCLUSIONS Overall, these findings suggest that plasma and bile corisin levels may be useful biomarkers for diagnosing and monitoring acute cholangitis and that corisin may play a role in the pathophysiology of the disease by modulating inflammatory, coagulation and renal pathways.
Collapse
Affiliation(s)
- Ryo Nishiwaki
- Digestive Endoscopy Center, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Ichiro Imoto
- Digestive Endoscopy Center, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Satoko Oka
- Department of Internal Medicine, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Taro Yasuma
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Hajime Fujimoto
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of IL at Urbana-Champaign, Urbana, IL, USA
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Tetsu Kobayashi
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Hataji Osamu
- Respiratory Center, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka, Mie, 515-8544, Japan
| | - Kodai Fujibe
- Department of Gastroenterology, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka, Mie, 515-8544, Japan
| | - Kenichiro Nishikawa
- Department of Gastroenterology, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka, Mie, 515-8544, Japan
| | - Tetsuya Hamaguchi
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Natsuko Sugimasa
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Midori Noji
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Yoshiyuki Ito
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Kenji Takeuchi
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of IL at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, The University of IL at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yasuhiro Inoue
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Toshio Kato
- Department of Surgery, Doshinkai Tohyama Hospital, Minamishinmachi 17-22, Tsu, Mie, 514-0043, Japan
| | - Esteban C Gabazza
- Microbiome Research Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan.
- Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of IL at Urbana-Champaign, Urbana, IL, USA.
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Mie University Hospital, Edobashi 2-174, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
21
|
Ye X, Zhang M, Gu H, Liu M, Zhao Y, Shi Y, Wu S, Jiang C, Ye X, Zhu H, Li Q, Huang X, Cao M. Animal models of acute exacerbation of pulmonary fibrosis. Respir Res 2023; 24:296. [PMID: 38007420 PMCID: PMC10675932 DOI: 10.1186/s12931-023-02595-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.
Collapse
Affiliation(s)
- Xu Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Mingrui Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shufei Wu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng Jiang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Ye
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huihui Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Li
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| | - Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China.
- Nanjing Institute of Respiratory Diseases, Nanjing, China.
| |
Collapse
|
22
|
Jie Z, Zhu Q, Zou Y, Wu Q, Qin M, He D, Lin X, Tong X, Zhang J, Jie Z, Luo W, Xiao X, Chen S, Wu Y, Guo G, Zheng S, Li Y, Lai W, Yang H, Wang J, Xiao L, Chen J, Zhang T, Kristiansen K, Jia H, Zhong S. A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model. iScience 2023; 26:106960. [PMID: 37378328 PMCID: PMC10291474 DOI: 10.1016/j.isci.2023.106960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
By a survey of metagenome-wide association studies (MWAS), we found a robust depletion of Bacteroides cellulosilyticus, Faecalibacterium prausnitzii, and Roseburia intestinalis in individuals with atherosclerotic cardiovascular disease (ACVD). From an established collection of bacteria isolated from healthy Chinese individuals, we selected B. cellulosilyticus, R. intestinalis, and Faecalibacterium longum, a bacterium related to F. prausnitzii, and tested the effects of these bacteria in an Apoe/- atherosclerosis mouse model. We show that administration of these three bacterial species to Apoe-/- mice robustly improves cardiac function, reduces plasma lipid levels, and attenuates the formation of atherosclerotic plaques. Comprehensive analysis of gut microbiota, plasma metabolome, and liver transcriptome revealed that the beneficial effects are associated with a modulation of the gut microbiota linked to a 7α-dehydroxylation-lithocholic acid (LCA)-farnesoid X receptor (FXR) pathway. Our study provides insights into transcriptional and metabolic impact whereby specific bacteria may hold promises for prevention/treatment of ACVD.
Collapse
Affiliation(s)
- Zhuye Jie
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Qian Zhu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Qili Wu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Min Qin
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | | | | | | | | | - Zhu Jie
- BGI-Shenzhen, Shenzhen, China
| | - Wenwei Luo
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Shiyu Chen
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yonglin Wu
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Gongjie Guo
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Shufen Zheng
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Weihua Lai
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Zhang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen, China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
23
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
24
|
D'Alessandro VF, D'Alessandro-Gabazza CN, Yasuma T, Toda M, Takeshita A, Tomaru A, Tharavecharak S, Lasisi IO, Hess RY, Nishihama K, Fujimoto H, Kobayashi T, Cann I, Gabazza EC. Inhibition of a Microbiota-derived Peptide Ameliorates Established Acute Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00113-X. [PMID: 36965776 PMCID: PMC10035802 DOI: 10.1016/j.ajpath.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Acute lung injury is a clinical syndrome characterized by a diffuse lung inflammation that commonly evolves into acute respiratory distress syndrome and respiratory failure. The lung microbiota is involved in the pathogenesis of acute lung injury. Corisin, a proapoptotic peptide derived from the lung microbiota, plays a role in acute lung injury and acute exacerbation of pulmonary fibrosis. Preventive therapeutic intervention with a monoclonal anticorisin antibody inhibits acute lung injury in mice. However, whether inhibition of corisin with the antibody ameliorates established acute lung injury is unknown. Here, the therapeutic effectiveness of the anticorisin antibody in already established acute lung injury in mice was assessed. Lipopolysaccharide was used to induce acute lung injury in mice. After causing acute lung injury, the mice were treated with a neutralizing anticorisin antibody. Mice treated with the antibody showed significant improvement in lung radiological and histopathological findings, decreased lung infiltration of inflammatory cells, reduced markers of lung tissue damage, and inflammatory cytokines in bronchoalveolar lavage fluid compared to untreated mice. In addition, the mice treated with anticorisin antibody showed significantly increased expression of antiapoptotic proteins with decreased caspase-3 activation in the lungs compared to control mice treated with an irrelevant antibody. In conclusion, these observations suggest that the inhibition of corisin is a novel and promising approach for treating established acute lung injury.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaiah O Lasisi
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca Y Hess
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Isaac Cann
- School of Molecular and Cellular Biology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Animal Science, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, the University of Illinois at Urbana-Champaign, Urbana, IL, United States; Center for East Asian & Pacific Studies, the University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan;; Center for Intractable Diseases, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering), University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
25
|
Meng Y, Mao Y, Tang Z, Qiu X, Bajinka O, Tan Y, Song Z. Crosstalk between the lung microbiome and lung cancer. Microb Pathog 2023; 178:106062. [PMID: 36914054 DOI: 10.1016/j.micpath.2023.106062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The human microbiome is a complex ecosystem that mediates interaction between the human host and the environment. All of the human body is colonized by microorganisms. The lung as an organ used to be considered sterile. Recently, however, there has been a growing number of reports with evidence that the lungs are also in a state of carrying bacteria. The pulmonary microbiome is associated with many lung diseases and is increasingly reported in current studies. These include; chronic obstructive pulmonary disease (COPD), asthma, acute chronic respiratory infections, and cancers. These lung diseases are associated with reduced diversity and dysbiosis. It directly or indirectly affects the occurrence and development of lung cancer. Very few microbes directly cause cancer, while many are complicit in cancer growth, usually working through the host's immune system. This review focuses on the correlation between lung microbiota and lung cancer, and investigates the mechanism of action of lung microorganisms on lung cancer, which will provide new and reliable treatments and diagnosis of lung cancer in the future.
Collapse
Affiliation(s)
- Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Zhi Song
- Department of General Surgery, the third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
26
|
Zhang T, Zhang M, Yang L, Gao L, Sun W. Potential targeted therapy based on deep insight into the relationship between the pulmonary microbiota and immune regulation in lung fibrosis. Front Immunol 2023; 14:1032355. [PMID: 36761779 PMCID: PMC9904240 DOI: 10.3389/fimmu.2023.1032355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pulmonary fibrosis is an irreversible disease, and its mechanism is unclear. The lung is a vital organ connecting the respiratory tract and the outside world. The changes in lung microbiota affect the progress of lung fibrosis. The latest research showed that lung microbiota differs in healthy people, including idiopathic pulmonary fibrosis (IPF) and acute exacerbation-idiopathic pulmonary fibrosis (AE-IPF). How to regulate the lung microbiota and whether the potential regulatory mechanism can become a necessary targeted treatment of IPF are unclear. Some studies showed that immune response and lung microbiota balance and maintain lung homeostasis. However, unbalanced lung homeostasis stimulates the immune response. The subsequent biological effects are closely related to lung fibrosis. Core fucosylation (CF), a significant protein functional modification, affects the lung microbiota. CF regulates immune protein modifications by regulating key inflammatory factors and signaling pathways generated after immune response. The treatment of immune regulation, such as antibiotic treatment, vitamin D supplementation, and exosome micro-RNAs, has achieved an initial effect in clearing the inflammatory storm induced by an immune response. Based on the above, the highlight of this review is clarifying the relationship between pulmonary microbiota and immune regulation and identifying the correlation between the two, the impact on pulmonary fibrosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Tao Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Min Zhang
- Department of Geriatric Endocrinology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - Liqing Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China
| | - Lingyun Gao
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,Guanghan People's Hospital, Guanghan, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, Chengdu, China,Medical College, University of Electronic Science and Technology, Chengdu, China,*Correspondence: Wei Sun, ; Lingyun Gao,
| |
Collapse
|
27
|
Raudoniute J, Bironaite D, Bagdonas E, Kulvinskiene I, Jonaityte B, Danila E, Aldonyte R. Human airway and lung microbiome at the crossroad of health and disease (Review). Exp Ther Med 2023; 25:18. [PMID: 36561630 PMCID: PMC9748710 DOI: 10.3892/etm.2022.11718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
The evolving field of the microbiome and microbiota has become a popular research topic. The human microbiome is defined as a new organ and is considered a living community of commensal, symbiotic and pathogenic microorganisms within a certain body space. The term 'microbiome' is used to define the entire genome of the microbiota. Bacteria, archaea, fungi, algae and small protists are all members of the microbiota, followed by phages, viruses, plasmids and mobile genetic elements. The composition, heterogeneity and dynamics of microbiomes in time and space, their stability and resistance, essential characteristics and key participants, as well as interactions within the microbiome and with the host, are crucial lines of investigation for the development of successful future diagnostics and therapies. Standardization of microbiome studies and harmonized comparable methodologies are required for the transfer of knowledge from fundamental science into the clinic. Human health is dependent on microbiomes and achieved by nurturing beneficial resident microorganisms and their interplay with the host. The present study reviewed scientific knowledge on the major components of the human respiratory microbiome, i.e. bacteria, viruses and fungi, their symbiotic and parasitic roles, and, also, major diseases of the human respiratory tract and their microbial etiology. Bidirectional relationships regulate microbial ecosystems and host susceptibility. Moreover, environmental insults render host tissues and microbiota disease-prone. The human respiratory microbiome reflects the ambient air microbiome. By understanding the human respiratory microbiome, potential therapeutic strategies may be proposed.
Collapse
Affiliation(s)
- Jovile Raudoniute
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius LT-0840, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius LT-0840, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius LT-0840, Lithuania
| | - Ieva Kulvinskiene
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius LT-0840, Lithuania
| | - Brigita Jonaityte
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Clinic, Vilnius LT-08661, Lithuania
| | - Edvardas Danila
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Clinic, Vilnius LT-08661, Lithuania
| | - Ruta Aldonyte
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, Vilnius LT-0840, Lithuania
| |
Collapse
|
28
|
Tharavecharak S, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Tsuyama T, Kamei I, Gabazza EC. Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces. MYCOBIOLOGY 2023; 51:94-108. [PMID: 37122680 PMCID: PMC10142329 DOI: 10.1080/12298093.2023.2187614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a co-adjuvant therapy in malignant diseases.
Collapse
Affiliation(s)
- Suphachai Tharavecharak
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | | | - Masaaki Toda
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taro Yasuma
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Taku Tsuyama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Ichiro Kamei
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University, Tsu, Japan
- CONTACT Esteban C. Gabazza
| |
Collapse
|
29
|
Enomoto N. Pathological Roles of Pulmonary Cells in Acute Lung Injury: Lessons from Clinical Practice. Int J Mol Sci 2022; 23:ijms232315027. [PMID: 36499351 PMCID: PMC9736972 DOI: 10.3390/ijms232315027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Interstitial lung diseases (ILD) are relatively rare and sometimes become life threatening. In particular, rapidly progressive ILD, which frequently presents as acute lung injury (ALI) on lung histopathology, shows poor prognosis if proper and immediate treatments are not initiated. These devastating conditions include acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF), clinically amyopathic dermatomyositis (CADM), epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-induced lung injury, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection named coronavirus disease 2019 (COVID-19). In this review, clinical information, physical findings, laboratory examinations, and findings on lung high-resolution computed tomography and lung histopathology are presented, focusing on majorly damaged cells in each disease. Furthermore, treatments that should be immediately initiated in clinical practice for each disease are illustrated to save patients with these diseases.
Collapse
Affiliation(s)
- Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; ; Tel.: +81-53-435-2263; Fax: +81-53-435-2354
- Health Administration Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| |
Collapse
|
30
|
D'Alessandro VF, Takeshita A, Yasuma T, Toda M, D'Alessandro-Gabazza CN, Okano Y, Tharavecharak S, Inoue C, Nishihama K, Fujimoto H, Kobayashi T, Yano Y, Gabazza EC. Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. Int J Mol Sci 2022; 23:ijms232214265. [PMID: 36430743 PMCID: PMC9693927 DOI: 10.3390/ijms232214265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetes mellitus is a global health problem. Diabetic nephropathy is a common complication of diabetes mellitus and the leading cause of end-stage renal disease. The clinical course, response to therapy, and prognosis of nephropathy are worse in diabetic than in non-diabetic patients. The role of transforming growth factorβ1 in kidney fibrosis is undebatable. This study assessed whether the overexpression of transforming growth factorβ1 is associated with insulin resistance and the rapid progression of transforming growth factorβ1-mediated nephropathy under diabetic conditions. Diabetes mellitus was induced with streptozotocin in wild-type mice and transgenic mice with the kidney-specific overexpression of human transforming growth factorβ1. Mice treated with saline were the controls. Glucose tolerance and kidney fibrosis were evaluated. The blood glucose levels, the values of the homeostasis model assessment for insulin resistance, and the area of kidney fibrosis were significantly increased, and the renal function was significantly impaired in the diabetic transforming growth factorβ1 transgenic mice compared to the non-diabetic transgenic mice, diabetic wild-type mice, and non-diabetic mice. Transforming growth factorβ1 impaired the regulatory effect of insulin on glucose in the hepatocyte and skeletal muscle cell lines. This study shows that transforming growth factorβ1 overexpression is associated with insulin resistance and rapidly progressive kidney fibrosis under diabetic conditions in mice.
Collapse
Affiliation(s)
- Valeria Fridman D'Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yuko Okano
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Suphachai Tharavecharak
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical care Medicine, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Edobashi 2-174, Tsu 514-8507, Japan
| |
Collapse
|
31
|
Yi X, Gao J, Wang Z. The human lung microbiome-A hidden link between microbes and human health and diseases. IMETA 2022; 1:e33. [PMID: 38868714 PMCID: PMC10989958 DOI: 10.1002/imt2.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Once thought to be sterile, the human lung is now well recognized to harbor a consortium of microorganisms collectively known as the lung microbiome. The lung microbiome is altered in an array of lung diseases, including chronic lung diseases such as chronic obstructive pulmonary disease, asthma, and bronchiectasis, acute lung diseases caused by pneumonia, sepsis, and COVID-19, and other lung complications such as those related to lung transplantation, lung cancer, and human immunodeficiency virus. The effects of lung microbiome in modulating host immunity and inflammation in the lung and distal organs are being elucidated. However, the precise mechanism by which members of microbiota produce structural ligands that interact with host genes and pathways remains largely uncharacterized. Multiple unique challenges, both technically and biologically, exist in the field of lung microbiome, necessitating the development of tailored experimental and analytical approaches to overcome the bottlenecks. In this review, we first provide an overview of the principles and methodologies in studying the lung microbiome. We next review current knowledge of the roles of lung microbiome in human diseases, highlighting mechanistic insights. We finally discuss critical challenges in the field and share our thoughts on broad topics for future investigation.
Collapse
Affiliation(s)
- Xinzhu Yi
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life SciencesSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
32
|
Promises and Challenges of Cell-Based Therapies to Promote Lung Regeneration in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:cells11162595. [PMID: 36010671 PMCID: PMC9406501 DOI: 10.3390/cells11162595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/17/2022] Open
Abstract
The lung epithelium is constantly exposed to harmful agents present in the air that we breathe making it highly susceptible to damage. However, in instances of injury to the lung, it exhibits a remarkable capacity to regenerate injured tissue thanks to the presence of distinct stem and progenitor cell populations along the airway and alveolar epithelium. Mechanisms of repair are affected in chronic lung diseases such as idiopathic pulmonary fibrosis (IPF), a progressive life-threatening disorder characterized by the loss of alveolar structures, wherein excessive deposition of extracellular matrix components cause the distortion of tissue architecture that limits lung function and impairs tissue repair. Here, we review the most recent findings of a study of epithelial cells with progenitor behavior that contribute to tissue repair as well as the mechanisms involved in mouse and human lung regeneration. In addition, we describe therapeutic strategies to promote or induce lung regeneration and the cell-based strategies tested in clinical trials for the treatment of IPF. Finally, we discuss the challenges, concerns and limitations of applying these therapies of cell transplantation in IPF patients. Further research is still required to develop successful strategies focused on cell-based therapies to promote lung regeneration to restore lung architecture and function.
Collapse
|
33
|
Wen Y, Wu Q, Zhang L, He J, Chen Y, Yang X, Zhang K, Niu X, Li S. Association of Intrauterine Microbes with Endometrial Factors in Intrauterine Adhesion Formation and after Medicine Treatment. Pathogens 2022; 11:pathogens11070784. [PMID: 35890029 PMCID: PMC9322781 DOI: 10.3390/pathogens11070784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Intrauterine adhesions (IUAs) have caused serious harm to women’s reproductive health. Although emerging evidence has linked intrauterine microbiome to gynecological diseases, the association of intrauterine microbiome with IUA, remains unknown. We performed metagenome-wide association, metabolomics, and transcriptomics studies on IUA and non-IUA uteri of adult rats to identify IUA-associated microbial species, which affected uterine metabolites and endometrial transcriptions. A rat model was used with one side of the duplex uterus undergoing IUA and the other remaining as a non-IUA control. Both 16S rRNA sequencing and metagenome-wide association analysis revealed that instead of Mycoplasmopsis specie in genital tract, murine lung pathogen Mycoplasmopsispulmonis markedly increased in IUA samples and displayed a distinct positive interaction with the host immune system. Moreover, most of the IUA-enriched 58 metabolites positively correlate with M.pulmonis, which inversely correlates with a mitotic progression inhibitor named 3-hydroxycapric acid. A comparison of metabolic profiles of intrauterine flushing fluids from human patients with IUA, endometritis, and fallopian tube obstruction suggested that rat IUA shared much similarity to human IUA. The endometrial gene Tenascin-N, which is responsible for extracellular matrix of wounds, was highly up-regulated, while the key genes encoding parvalbumin, trophectoderm Dkkl1 and telomerase involved in leydig cells, trophectoderm cells, activated T cells and monocytes were dramatically down-regulated in rat IUA endometria. Treatment for rat IUA with estrogen (E2), oxytetracycline (OTC), and a traditional Chinese patent medicine GongXueNing (GXN) did not reduce the incidence of IUA, though inflammatory factor IL-6 was dramatically down-regulated (96–86%) with all three. Instead, in both the E2 and OTC treated groups, IUA became worse with a highly up-regulated B cell receptor signaling pathway, which may be associated with the significantly increased proportions of Ulvibacter or Staphylococcus. Our results suggest an association between intrauterine microbiota alterations, certain uterine metabolites, characteristic changes in endometrial transcription, and IUA and the possibility to intervene in IUA formation by targeting the causal factors, microbial infection, and Tenascin-like proteins.
Collapse
Affiliation(s)
- Ya Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650091, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Longlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Jiangbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming 650214, China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xiaoyu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming 650034, China
| | - Keqin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China; (Y.W.); (Q.W.); (L.Z.); (J.H.); (Y.C.); (X.Y.); (K.Z.)
- Correspondence: (X.N.); (S.L.)
| | - Shenghong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (X.N.); (S.L.)
| |
Collapse
|
34
|
Cao M, Gu L, Guo L, Liu M, Wang T, Zhang J, Zhang H, Zhang Y, Shi Y, Zhao Y, Qiu X, Gui X, Ma M, Tian Y, Liu X, Meng F, Xiao Y, Sun L. Elevated Expression of Growth Differentiation Factor-15 Is Associated With Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:891448. [PMID: 35784345 PMCID: PMC9241490 DOI: 10.3389/fimmu.2022.891448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Growth differentiation factor 15 (GDF-15) is a highly divergent member of the TGF-β superfamily and has been implicated in various biological functions. However, the expression of GDF-15 in patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is unclear. Method The study included 47 AE-IPF patients, 61 stable IPF (S-IPF) subjects, and 31 healthy controls (HCs). Serum GDF-15 levels and their expression in the lung were measured. The correlation between serum GDF-15 and other clinical parameters and the risk factors for AE occurrence and the survival of IPF patients were analyzed. Results Serum GDF-15 levels were significantly elevated in AE-IPF patients (1279.22 ± 540.02 pg/ml) as compared with HCs (891.30 ± 479.90 pg/ml) or S-IPF subjects (107.82 ± 14.21 pg/ml) (both p < 0.001). The protein and mRNA expressions of GDF-15 in the lung of AE-IPF patients were significantly increased as compared with S-IPF cases (p = 0.007 and p = 0.026, respectively). The serum GDF-15 level was correlated with the clinical variables of inflammation, metabolism, and disease severity in IPF subjects (all p < 0.05). The GDF-15 serum concentration was significantly higher in decedents than in survivors (p = 0.005). A serum GDF-15 level above 989.3 pg/ml was a risk factor for AE occurrence (p = 0.04), and the level above 1,075.76 pg/ml was an independent predictor for survival in IPF cases (p = 0.007). Conclusions The GDF-15 level was significantly elevated in subjects with AE-IPF. GDF-15 could be a promising biomarker for AE occurrence and survival in IPF patients.
Collapse
Affiliation(s)
- Mengshu Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Lina Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Guo
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengying Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianzhen Wang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ji Zhang
- Wuxi Transplant Center, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Huizhe Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufeng Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanchen Shi
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichao Zhao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohua Qiu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xianhua Gui
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miao Ma
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaqiong Tian
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoqin Liu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fanqing Meng
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Yonglong Xiao, ; Fanqing Meng,
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Yonglong Xiao, ; Fanqing Meng,
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Yonglong Xiao, ; Fanqing Meng,
| |
Collapse
|
35
|
Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nat Commun 2022; 13:1558. [PMID: 35322016 PMCID: PMC8943153 DOI: 10.1038/s41467-022-29064-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis is an incurable disease of unknown etiology. Acute exacerbation of idiopathic pulmonary fibrosis is associated with high mortality. Excessive apoptosis of lung epithelial cells occurs in pulmonary fibrosis acute exacerbation. We recently identified corisin, a proapoptotic peptide that triggers acute exacerbation of pulmonary fibrosis. Here, we provide insights into the mechanism underlying the processing and release of corisin. Furthermore, we demonstrate that an anticorisin monoclonal antibody ameliorates lung fibrosis by significantly inhibiting acute exacerbation in the human transforming growth factorβ1 model and acute lung injury in the bleomycin model. By investigating the impact of the anticorisin monoclonal antibody in a general model of acute lung injury, we further unravel the potential of corisin to impact such diseases. These results underscore the role of corisin in the pathogenesis of acute exacerbation of pulmonary fibrosis and acute lung injury and provide a novel approach to treating this incurable disease.
Collapse
|
36
|
Complete Genome Sequences of Three Staphylococcus haemolyticus Strains Isolated from the Lung of a TGFβ1 Transgenic Mouse with Lung Fibrosis. Microbiol Resour Announc 2022; 11:e0117621. [PMID: 35254127 PMCID: PMC9022589 DOI: 10.1128/mra.01176-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the complete genome sequences of three Staphylococcus haemolyticus strains isolated from a mouse fibrotic lung tissue and exhibiting proapoptotic activity on human lung alveolar epithelial cells. The genomes were obtained from a combination of Illumina MiSeq and Oxford Nanopore MinION sequencing.
Collapse
|
37
|
Galaris A, Fanidis D, Stylianaki EA, Harokopos V, Kalantzi AS, Moulos P, Dimas AS, Hatzis P, Aidinis V. Obesity Reshapes the Microbial Population Structure along the Gut-Liver-Lung Axis in Mice. Biomedicines 2022; 10:biomedicines10020494. [PMID: 35203702 PMCID: PMC8962327 DOI: 10.3390/biomedicines10020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
The microbiome is emerging as a major player in tissue homeostasis in health and disease. Gut microbiome dysbiosis correlates with several autoimmune and metabolic diseases, while high-fat diets and ensuing obesity are known to affect the complexity and diversity of the microbiome, thus modulating pathophysiology. Moreover, the existence of a gut-liver microbial axis has been proposed, which may extend to the lung. In this context, we systematically compared the microbiomes of the gut, liver, and lung of mice fed a high-fat diet to those of littermates fed a matched control diet. We carried out deep sequencing of seven hypervariable regions of the 16S rRNA microbial gene to examine microbial diversity in the tissues of interest. Comparison of the local microbiomes indicated that lung tissue has the least diverse microbiome under healthy conditions, while microbial diversity in the healthy liver clustered closer to the gut. Obesity increased microbial complexity in all three tissues, with lung microbial diversity being the most modified. Obesity promoted the expansion of Firmicutes along the gut-liver-lung axis, highlighting staphylococcus as a possible pathologic link between obesity and systemic pathophysiology, especially in the lungs.
Collapse
Affiliation(s)
- Apostolos Galaris
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Dionysios Fanidis
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Elli-Anna Stylianaki
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Vaggelis Harokopos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Alexandra-Styliani Kalantzi
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Antigone S. Dimas
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (V.H.); (P.M.); (P.H.)
| | - Vassilis Aidinis
- Institute of Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (A.G.); (D.F.); (E.-A.S.); (A.-S.K.); (A.S.D.)
- Correspondence:
| |
Collapse
|
38
|
Inoue C, Yasuma T, D’Alessandro-Gabazza CN, Toda M, Fridman D’Alessandro V, Inoue R, Fujimoto H, Kobori H, Tharavecharak S, Takeshita A, Nishihama K, Okano Y, Wu J, Kobayashi T, Yano Y, Kawagishi H, Gabazza EC. The Fairy Chemical Imidazole-4-Carboxamide Inhibits the Expression of Axl, PD-L1, and PD-L2 and Improves Response to Cisplatin in Melanoma. Cells 2022; 11:cells11030374. [PMID: 35159184 PMCID: PMC8834508 DOI: 10.3390/cells11030374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The leading cause of death worldwide is cancer. Many reports have proved the beneficial effect of mushrooms in cancer. However, the precise mechanism is not completely clear. In the present study, we focused on the medicinal properties of biomolecules released by fairy ring-forming mushrooms. Fairy chemicals generally stimulate or inhibit the growth of surrounding vegetation. In the present study, we evaluated whether fairy chemicals (2-azahypoxanthine, 2-aza-8-oxohypoxanthine, and imidazole-4-carboxamide) exert anticancer activity by decreasing the expression of Axl and immune checkpoint molecules in melanoma cells. We used B16F10 melanoma cell lines and a melanoma xenograft model in the experiments. Treatment of melanoma xenograft with cisplatin combined with imidazole-4-carboxamide significantly decreased the tumor volume compared to untreated mice or mice treated cisplatin alone. In addition, mice treated with cisplatin and imidazole-4-carboxamide showed increased peritumoral infiltration of T cells compared to mice treated with cisplatin alone. In vitro studies showed that all fairy chemicals, including imidazole-4-carboxamide, inhibit the expression of immune checkpoint molecules and Axl compared to controls. Imidazole-4-carboxamide also significantly blocks the cisplatin-induced upregulation of PD-L1. These observations point to the fairy chemical imidazole-4-carboxamide as a promising coadjuvant therapy with cisplatin in patients with cancer.
Collapse
Affiliation(s)
- Chisa Inoue
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Taro Yasuma
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Ryo Inoue
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Hajime Kobori
- Iwade—Research Institute of Mycology Co., Ltd., Tsu 514-0012, Japan;
| | - Suphachai Tharavecharak
- Department of Agriculture, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Yuko Okano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (H.F.); (T.K.)
| | - Yutaka Yano
- Department of Diabetes, Metabolism and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.I.); (T.Y.); (A.T.); (K.N.); (Y.O.); (Y.Y.)
| | - Hirokazu Kawagishi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan; (J.W.); (H.K.)
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu 514-8507, Japan; (C.N.D.-G.); (M.T.); (V.F.D.); (R.I.)
- Correspondence:
| |
Collapse
|
39
|
Warheit-Niemi HI, Edwards SJ, SenGupta S, Parent CA, Zhou X, O'Dwyer DN, Moore BB. Fibrotic lung disease inhibits innate immune responses to Staphylococcal pneumonia via impaired neutrophil and macrophage function. JCI Insight 2022; 7:152690. [PMID: 34990413 PMCID: PMC8876506 DOI: 10.1172/jci.insight.152690] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by collagen deposition within the lung interstitium. Bacterial infection is associated with increased morbidity and more rapid mortality in IPF patient populations, and pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) are commonly isolated from the lungs of hospitalized patients with IPF. Despite this, the effects of fibrotic lung injury on critical immune responses to infection remain unknown. In the present study, we show that, like humans with IPF, fibrotic mice infected with MRSA exhibit increased morbidity and mortality compared with uninfected fibrotic mice. We determine that fibrosis conferred a defect in MRSA clearance compared with nonfibrotic mice, resulting from blunted innate immune responses. We show that fibrosis inhibited neutrophil intracellular killing of MRSA through impaired neutrophil elastase release and oxidative radical production. Additionally, we demonstrate that lung macrophages from fibrotic mice have impaired phagocytosis of MRSA. Our study describes potentially novel impairments of antimicrobial responses upon pulmonary fibrosis development, and our findings suggest a possible mechanism for why patients with IPF are at greater risk of morbidity and mortality related to infection.
Collapse
Affiliation(s)
- Helen I Warheit-Niemi
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Summer J Edwards
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Shuvasree SenGupta
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Carole A Parent
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - Xiaofeng Zhou
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| | - David N O'Dwyer
- The University of Michigan Medical School, Ann Arbor, United States of America
| | - Bethany B Moore
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, United States of America
| |
Collapse
|
40
|
Lai Y, Wei X, Ye T, Hang L, Mou L, Su J. Interrelation Between Fibroblasts and T Cells in Fibrosing Interstitial Lung Diseases. Front Immunol 2021; 12:747335. [PMID: 34804029 PMCID: PMC8602099 DOI: 10.3389/fimmu.2021.747335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of diseases characterized by varying degrees of inflammation and fibrosis of the pulmonary interstitium. The interrelations between multiple immune cells and stromal cells participate in the pathogenesis of ILDs. While fibroblasts contribute to the development of ILDs through secreting extracellular matrix and proinflammatory cytokines upon activation, T cells are major mediators of adaptive immunity, as well as inflammation and autoimmune tissue destruction in the lung of ILDs patients. Fibroblasts play important roles in modulating T cell recruitment, differentiation and function and conversely, T cells can balance fibrotic sequelae with protective immunity in the lung. A more precise understanding of the interrelation between fibroblasts and T cells will enable a better future therapeutic design by targeting this interrelationship. Here we highlight recent work on the interactions between fibroblasts and T cells in ILDs, and consider the implications of these interactions in the future development of therapies for ILDs.
Collapse
Affiliation(s)
- Yunxin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lilin Hang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ling Mou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
41
|
A Microbiome-Derived Peptide Induces Apoptosis of Cells from Different Tissues. Cells 2021; 10:cells10112885. [PMID: 34831108 PMCID: PMC8616533 DOI: 10.3390/cells10112885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a programmed cell death involved in embryogenesis and tissue homeostasis under physiological conditions. However, abnormalities in the process of apoptosis are implicated in the pathogenesis of various diseases. The human microbiota may release products that induce apoptosis of host cells. We recently identified a novel microbiome-derived peptide called corisin that worsens lung fibrosis by inducing apoptosis of lung epithelial cells. We hypothesized that corisin and a corisin-like peptide might also induce apoptosis of cells from different tissues. We cultured podocytes, renal tubular epithelial cells, keratinocytes, retinal and intestinal cells treated with corisin and evaluated apoptosis by flow cytometry and Western blotting. Although at different grades, flow cytometry analysis and Western blotting showed that corisin and a corisin-like peptide induced apoptosis of podocytes, keratinocytes, tubular epithelial cells, retinal, and intestinal cells. In addition, we found that corisin synergistically enhances the proapoptotic activity of transforming growth factor-β1 on podocytes. In conclusion, these results suggest that corisin and corisin-like peptides may play a role in the pathogenesis of disease in different organs by promoting apoptosis of parenchymal cells.
Collapse
|
42
|
Polke M, Kondoh Y, Wijsenbeek M, Cottin V, Walsh SLF, Collard HR, Chaudhuri N, Avdeev S, Behr J, Calligaro G, Corte TJ, Flaherty K, Funke-Chambour M, Kolb M, Krisam J, Maher TM, Molina Molina M, Morais A, Moor CC, Morisset J, Pereira C, Quadrelli S, Selman M, Tzouvelekis A, Valenzuela C, Vancheri C, Vicens-Zygmunt V, Wälscher J, Wuyts W, Bendstrup E, Kreuter M. Management of Acute Exacerbation of Idiopathic Pulmonary Fibrosis in Specialised and Non-specialised ILD Centres Around the World. Front Med (Lausanne) 2021; 8:699644. [PMID: 34646836 PMCID: PMC8502934 DOI: 10.3389/fmed.2021.699644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is a severe complication associated with a high mortality. However, evidence and guidance on management is sparse. The aim of this international survey was to assess differences in prevention, diagnostic and treatment strategies for AE-IPF in specialised and non-specialised ILD centres worldwide. Material and Methods: Pulmonologists working in specialised and non-specialised ILD centres were invited to participate in a survey designed by an international expert panel. Responses were evaluated in respect to the physicians' institutions. Results: Three hundred and two (65%) of the respondents worked in a specialised ILD centre, 134 (29%) in a non-specialised pulmonology centre. Similarities were frequent with regards to diagnostic methods including radiology and screening for infection, treatment with corticosteroids, use of high-flow oxygen and non-invasive ventilation in critical ill patients and palliative strategies. However, differences were significant in terms of the use of KL-6 and pathogen testing in urine, treatments with cyclosporine and recombinant thrombomodulin, extracorporeal membrane oxygenation in critical ill patients as well as antacid medication and anaesthesia measures as preventive methods. Conclusion: Despite the absence of recommendations, approaches to the prevention, diagnosis and treatment of AE-IPF are comparable in specialised and non-specialised ILD centres, yet certain differences in the managements of AE-IPF exist. Clinical trials and guidelines are needed to improve patient care and prognosis in AE-IPF.
Collapse
Affiliation(s)
- Markus Polke
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Vincent Cottin
- National Coordinating Reference Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Simon L F Walsh
- Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Harold R Collard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Nazia Chaudhuri
- North West Interstitial Lung Disease Unit, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jürgen Behr
- Medizinische Klinik und Poliklinik V, LMU Klinikum, University of Munich, Munich, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| | - Gregory Calligaro
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tamera J Corte
- Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Kevin Flaherty
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, McMaster University, Hamilton, ON, Canada
| | - Johannes Krisam
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Toby M Maher
- Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care, and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Interstitial Lung Disease Unit, Imperial College London, National Heart and Lung Institute, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Maria Molina Molina
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University Hospital of Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Morais
- Department of Pneumology, Faculdade de Medicina, Centro Hospitalar São João, Universidade do Porto, Porto, Portugal
| | - Catharina C Moor
- Department of Respiratory Medicine, Centre for Interstitial Lung Diseases and Sarcoidosis, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Julie Morisset
- Département de Médecine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Carlos Pereira
- Lung Disease Department, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Quadrelli
- Hospital Británico, Buenos Aires, Argentina.,Sanatorio Güemes, Buenos Aires, Argentina
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Argyrios Tzouvelekis
- Department of First Academic Respiratory, Sotiria General Hospital for Thoracic Diseases, University of Athens, Athens, Greece
| | - Claudia Valenzuela
- ILD Unit, Pulmonology Department Hospital Universitario de La Princesa, Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlo Vancheri
- Regional Referral Centre for Rare Lung Diseases, A.O.U. Policlinico-Vittorio Emanuele, University of Catania, Catania, Italy
| | - Vanesa Vicens-Zygmunt
- Unit of Interstitial Lung Diseases, Department of Pneumology, Pneumology Research Group, IDIBELL, L'Hospitalet de Llobregat, University Hospital of Bellvitge, Barcelona, Spain
| | - Julia Wälscher
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,Department of Pulmonary Medicine, Centre for Interstitial and Rare Lung Diseases, Ruhrlandklinik University Hospital Essen, Essen, Germany
| | - Wim Wuyts
- Unit for Interstitial Lung Diseases, Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Elisabeth Bendstrup
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus C, Denmark
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
43
|
Multifaceted roles of a bioengineered nanoreactor in repressing radiation-induced lung injury. Biomaterials 2021; 277:121103. [PMID: 34478930 DOI: 10.1016/j.biomaterials.2021.121103] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic cancer radiotherapy. However, effective therapeutic agents for this condition are limited. Here, we describe a novel strategy to exert additive effects of a non-erythropoietic EPO derivative (ARA290), along with a free radical scavenger, superoxide dismutase (SOD), using a bioengineered nanoreactor (SOD@ARA290-HBc). ARA290-chimeric nanoreactor makes SOD present in a confined reaction space by encapsulation into its interior to heighten stability against denaturing stimuli. In a RILI mouse model, intratracheal administration of SOD@ARA290-HBc was shown to significantly ameliorate acute radiation pneumonitis and pulmonary fibrosis. Our investigations revealed that SOD@ARA290-HBc performs its radioprotective effects by protecting against radiation induced alveolar epithelial cell apoptosis and ferroptosis, suppressing oxidative stress, inhibiting inflammation and by modulating the infiltrated macrophage phenotype, or through a combination of these mechanisms. In conclusion, SOD@ARA29-HBc is a potential therapeutic agent for RILI, and given its multifaceted roles, it may be further developed as a translational nanomedicine for other related disorders.
Collapse
|
44
|
Okano Y, Takeshita A, Yasuma T, Toda M, Nishihama K, Fridman D’Alessandro V, Inoue C, D’Alessandro-Gabazza CN, Kobayashi T, Yano Y, Gabazza EC. Protective Role of Recombinant Human Thrombomodulin in Diabetes Mellitus. Cells 2021; 10:2237. [PMID: 34571886 PMCID: PMC8470378 DOI: 10.3390/cells10092237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a global threat to human health. The ultimate cause of diabetes mellitus is insufficient insulin production and secretion associated with reduced pancreatic β-cell mass. Apoptosis is an important and well-recognized mechanism of the progressive loss of functional β-cells. However, there are currently no available antiapoptotic drugs for diabetes mellitus. This study evaluated whether recombinant human thrombomodulin can inhibit β-cell apoptosis and improve glucose intolerance in a diabetes mouse model. A streptozotocin-induced diabetes mouse model was prepared and treated with thrombomodulin or saline three times per week for eight weeks. The glucose tolerance and apoptosis of β-cells were evaluated. Diabetic mice treated with recombinant human thrombomodulin showed significantly improved glucose tolerance, increased insulin secretion, decreased pancreatic islet areas of apoptotic β-cells, and enhanced proportion of regulatory T cells and tolerogenic dendritic cells in the spleen compared to counterpart diseased mice treated with saline. Non-diabetic mice showed no changes. This study shows that recombinant human thrombomodulin, a drug currently used to treat patients with coagulopathy in Japan, ameliorates glucose intolerance by protecting pancreatic islet β-cells from apoptosis and modulating the immune response in diabetic mice. This observation points to recombinant human thrombomodulin as a promising antiapoptotic drug for diabetes mellitus.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Hypoglycemic Agents/administration & dosage
- Injections, Intraperitoneal
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice, Inbred C57BL
- Proto-Oncogene Proteins c-akt/metabolism
- Recombinant Proteins/administration & dosage
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Streptozocin
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thrombomodulin/administration & dosage
- Mice
Collapse
Affiliation(s)
- Yuko Okano
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Atsuro Takeshita
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Taro Yasuma
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Valeria Fridman D’Alessandro
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Chisa Inoue
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan;
| | - Yutaka Yano
- Department of Diabetes and Endocrinology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (K.N.); (C.I.); (Y.Y.)
| | - Esteban C. Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu 514-8507, Mie, Japan; (Y.O.); (A.T.); (T.Y.); (M.T.); (V.F.D.); (C.N.D.-G.)
| |
Collapse
|
45
|
Abstract
The healthy lung was long thought of as sterile, but recent advances using molecular sequencing approaches have detected bacteria at low levels. Healthy lung bacteria largely reflect communities present in the upper respiratory tract that enter the lung via microaspiration, which is balanced by mechanical and immune clearance and likely involves limited local replication. The nature and dynamics of the lung microbiome, therefore, differ from those of ecological niches with robust self-sustaining microbial communities. Aberrant populations (dysbiosis) have been demonstrated in many pulmonary diseases not traditionally considered microbial in origin, and potential pathways of microbe-host crosstalk are emerging. The question now is whether and how dysbiotic microbiota contribute to initiation or perpetuation of injury. The fungal microbiome and virome are less well studied. This Review highlights features of the lung microbiome, unique considerations in studying it, examples of dysbiosis in selected disease, emerging concepts in lung microbiome-host interactions, and critical areas for investigation.
Collapse
|
46
|
Uchida A, Yasuma T, Takeshita A, Toda M, Okano Y, Nishihama K, D'Alessandro-Gabazza CN, Fridman D'Alessandro V, Inoue C, Takagi T, Mukaiyama H, Takagi N, Shimizu K, Yano Y, Gabazza EC. Oral Limonite Supplement Ameliorates Glucose Intolerance in Diabetic and Obese Mice. J Inflamm Res 2021; 14:3089-3105. [PMID: 34276223 PMCID: PMC8277451 DOI: 10.2147/jir.s320451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Diabetes mellitus is a serious threat to public health worldwide. It causes a substantial economic burden, mental and physical disabilities, poor quality of life, and high mortality. Limonite is formed when iron-rich materials from the underground emerge and oxidized on the ground surface. It is currently used to purify contaminated water, absorption of irritant gases, and improve livestock breeding. Limonite can change the composition of environmental microbial communities. In the present study, we evaluated whether limonite can ameliorate glucose metabolism abnormalities by remodeling the gut microbiome. Methods The investigation was performed using mouse models of streptozotocin-induced diabetes mellitus and high-calorie diet-induced metabolic syndrome. Results Oral limonite supplement was associated with significant body weight recovery, reduced glycemia with improved insulin secretion, increased number of regulatory T cells, and abundant beneficial gut microbial populations in mice with diabetes mellitus compared to control. Similarly, mice with obesity fed with limonite supplements had significantly reduced body weight, insulin resistance, steatohepatitis, and systemic inflammatory response with significant gut microbiome remodeling. Conclusion This study demonstrates that limonite supplement ameliorates abnormal glucose metabolism in diabetes mellitus and obesity. Gut microbiome remodeling, inhibition of inflammatory cytokines, and the host immune response regulation may explain the limonite’s beneficial activity under pathological conditions in vivo.
Collapse
Affiliation(s)
- Akihiro Uchida
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Atsuro Takeshita
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuko Okano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
47
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
48
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
49
|
Pardo A, Selman M. The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:163-172. [PMID: 32946290 DOI: 10.1165/rcmb.2020-0373ps] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease of indeterminate etiology and limited therapeutic options. The initiation, development, and progression of IPF are influenced by genetic predisposition, aging, and host and environmental factors, but the magnitude of the contribution of each of them and the sequence of the pathogenic events are uncertain. Current evidence indicates that accumulated environmental exposures in a genetically predisposed individual, usually over 60 years of age, leads to phenotypic and functional alterations of the lung epithelium. Aberrant activation of epithelial cells results, through a complex release of numerous mediators, in the local expansion of peculiar subsets of aggressive fibroblasts and myofibroblasts, which are crucial effector cells of fibrotic remodeling and loss of the normal lung architecture and function. Progressive increase of the mechanical stiffness activates cell-autonomous and matrix-dependent processes contributing to the perpetuation of the fibrotic response. This Perspective provides an integral overview of the major risk factors underpinning the pathogenesis of IPF, including gene variants, aging alterations, environmental factors, host risk factors, and epigenetic reprogramming.
Collapse
Affiliation(s)
- Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico; and
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," México City, Mexico
| |
Collapse
|
50
|
Antoniou KM, Tsitoura E, Vasarmidi E, Symvoulakis EK, Aidinis V, Tzilas V, Tzouvelekis A, Bouros D. Precision medicine in idiopathic pulmonary fibrosis therapy: From translational research to patient-centered care. Curr Opin Pharmacol 2021; 57:71-80. [PMID: 33556824 DOI: 10.1016/j.coph.2020.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible fibrotic chronic lung disease affecting predominantly older adults, with a history of smoking. The current model of disease natural course is that recurrent injury of the alveolar epithelium in the context of advanced aging/cellular senescence is followed by defective re-epithelialization and scar tissue formation. Currently, two drugs, nintedanib and pirfenidone, that modify disease progression have been approved worldwide for the treatment of IPF. However, despite treatment, patients with IPF are not cured, and eventually, disease advances in most treated patients. Enhancing biogenomic and metabolic research output, its translation into clinical precision and optimal service delivery through patient-centeredness are key elements to support effective IPF care. In this review, we summarize therapeutic options currently investigated for IPF based on the major pathogenetic pathways and molecular targets that drive pulmonary fibrosis.
Collapse
Affiliation(s)
- Katerina M Antoniou
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece.
| | - Eliza Tsitoura
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | - Eirini Vasarmidi
- Molecular & Cellular Pneumonology Laboratory, Department of Respiratory Medicine, Faculty of Medicine, University of Crete, Greece
| | | | - Vassilis Aidinis
- Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Athens, Greece
| | - Vassilis Tzilas
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| | | | - Demosthenes Bouros
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece; Medical School, National and Kapodistrian University of Athens, Greece
| |
Collapse
|