1
|
Lu D, Zheng Y, Yi X, Hao J, Zeng X, Han L, Li Z, Jiao S, Jiang B, Ai J, Peng J. Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning. Nat Commun 2025; 16:3591. [PMID: 40234405 PMCID: PMC12000451 DOI: 10.1038/s41467-025-58439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To address this problem, we propose a deep reinforcement learning-based computational approach named RL-GenRisk to identify ccRCC risk genes. Distinct from traditional supervised models, RL-GenRisk frames the identification of ccRCC risk genes as a Markov Decision Process, combining the graph convolutional network and Deep Q-Network for risk gene identification. Moreover, a well-designed data-driven reward is proposed for mitigating the limitation of scant known risk genes. The evaluation demonstrates that RL-GenRisk outperforms existing methods in ccRCC risk gene identification. Additionally, RL-GenRisk identifies eight potential ccRCC risk genes. We successfully validated epidermal growth factor receptor (EGFR) and piccolo presynaptic cytomatrix protein (PCLO), corroborated through independent datasets and biological experimentation. This approach may also be used for other diseases in the future.
Collapse
Affiliation(s)
- Dazhi Lu
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zheng
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianye Hao
- College of Intelligence and Computing, Tianjin University, Tianjin, China.
| | - Xi Zeng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Lu Han
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Zhigang Li
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Shaoqing Jiao
- School of Software, Northwestern Polytechnical University, Xi'an, China
| | - Bei Jiang
- Tianjin Second People's Hospital, Tianjin, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiajie Peng
- AI for Science Interdisciplinary Research Center, School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
- Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology, Xi'an, China.
| |
Collapse
|
2
|
Arai M, Tanaka N, Takamatsu K, Murakami T, Mikami S, Imamura T, Nakamura K, Nishihara H, Oya M. Prognostic impact and landscape of cellular CXCR5 chemokine receptor expression in clear-cell renal cell carcinoma. Cancer Immunol Immunother 2025; 74:166. [PMID: 40208344 PMCID: PMC11985720 DOI: 10.1007/s00262-025-04020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025]
Abstract
CXCR5 is a chemokine receptor that promotes B cell follicular formation and antibody production. Indeed, CXCR5 has been found to be expressed in a variety of cancers; however, the role of CXCR5 expression in clear-cell renal cell carcinoma (ccRCC) remains unclear. We aimed to determine the impact of cellular CXCR5 expression on cancer outcomes, the PD-1/PD-L1 axis, and genetic states in patients with ccRCC. First, multiplex immunofluorescence staining for CXCR5, CD4, CD8, and AE1/AE3, along with automated single-cell counting, was performed to assess cellular CXCR5 expression in ccRCC and its association with prognosis. Second, the tumour microenvironment (TME) was analysed, with a focus on the relationship between the PD-1/PD-L1 axis and CXCR5 expression. Finally, an integrated analysis of CXCR5 expression and genomic mutation information was conducted to reveal the genetic background underlying CXCR5 expression. A total of 105 ccRCC patients were included. Among the 696,964 cells analysed, the distribution of CXCR5-expressing cells was as follows: 30% CXCR5+CD4+ cells, 9% CXCR5+CD8+ cells, and 26% CXCR5+AE1/AE3+ cells. Survival analysis revealed that tumours with low-CXCR5+CD8+ cells had a poor prognosis; TME analysis revealed a relationship between low-CXCR5+CD8+ status and a highly suppressive PD-L1-positive immune environment. Genomic analysis revealed a correlation between low-CXCR5+CD8+ status and high rates of alterations in chromatin remodelling genes, including PBRM1. This study highlights the significance of CXCR5+CD8+ cells in ccRCC, demonstrating their clinical implications and revealing the immunogenomic landscape underlying CXCR5 expression.
Collapse
Affiliation(s)
- Masashi Arai
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Kimiharu Takamatsu
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tetsushi Murakami
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shuji Mikami
- Department of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
- Department of Diagnostic Pathology, National Hospital Organization Saitama Hospital, Wako, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
3
|
Elwy AE, Nassar MI, Shaban SH, Elsaba TM. The prognostic impact of PBRM1 immunohistochemical expression and its association with CD3 + and CD8 + immune cells in patients with renal cell carcinoma: A retrospective study. Pathol Res Pract 2025; 268:155863. [PMID: 40015117 DOI: 10.1016/j.prp.2025.155863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025]
Abstract
The objective of this study is to determine the prognostic implications of PBRM1 immunohistochemical (IHC) expression in renal cell carcinoma (RCC) patients. Additionally, the objective is extended to evaluate the association between PBRM1 expression and CD3 + and CD8 + immune infiltrates. This study retrospectively reviewed 115 RCC patients who underwent nephrectomy. Immunohistochemistry was performed for PBRM1, CD3, and CD8. The associations between the studied parameters and variable clinicopathological characteristics, including survival, were analyzed statistically. A significant association was observed between the low expression of PBRM1 (< 50 %) and aggressive clinicopathologic features (p value around 0.001), as well as a significantly worse 3-year overall survival (OS) and disease-free survival (DFS) (p value around 0.001). PBRM1 low expression was considered an independent predictor of shortened DFS in multivariate analysis (p = 0.030). In addition, PBRM1 expression was incorporated into the SSPN scoring system (stage, sarcomatoid, PBRM1 expression, and necrosis) for recurrence risk stratification. The four risk groups exhibited substantial disparities in OS and DFS (p < 0.001). Moreover, a robust correlation was observed between the high density of immune infiltrate (number of CD3 + and CD8 + immune cells/mm2) and the low expression of PBRM1 (p < 0.001). In conclusion, poor prognosis and tumor progression are strongly associated with a low expression of PBRM1. Postoperative recurrence can be accurately predicted by the SSPN score, which incorporates PBRM1 expression and clinicopathologic findings. Patients with high-risk factors associated with low expression of PBRM1 and a dense inflamed microenvironment could potentially benefit from effective immunotherapy and target treatment.
Collapse
Affiliation(s)
- Amira Emad Elwy
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt; Department of Pathology, Shefaa Al-Orman Hospital, Luxor, Egypt.
| | | | - Shimaa Hassan Shaban
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Tarek Mohamed Elsaba
- Department of Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt; Department of Pathology, College of Medicine, Jouf University, 2004, Sakaka 42421, Saudi Arabia
| |
Collapse
|
4
|
Wu X, Zhang Y, Ding Y, Yang J, Song Z, Lin S, Zhang R, Wu J, Shen S. Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414525. [PMID: 39823528 PMCID: PMC11904949 DOI: 10.1002/advs.202414525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Indexed: 01/19/2025]
Abstract
Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis. Furthermore, it is demonstrated that PBRM1 can impede iCCA progression, and a gene therapy nanomedicine is developed to treat iCCA in vivo by modulating PBRM1 expression. The heightened expression of PBRM1 induces by the nanomedicine substantially inhibited tumor growth in iCCA. Conversely, the decrease in PBRM1 results in the abnormal activation of the ERK1/2 signaling pathway, a reduction in p16, p53/p21, and cellular senescence, thereby promoting iCCA advancement. Treatment with U0126, an ERK1/2 inhibitor, effectively halted iCCA progression by regulating the PBRM1-ERK1/2-cellular senescence pathway. These findings underscore the significant role of PBRM1 in controlling iCCA progression and predicting prognosis. Targeting the PBRM1-ERK1/2-cellular senescence pathway with U0126 shows promise for clinical applications in treating iCCA.
Collapse
Affiliation(s)
- Xiwen Wu
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Clinical NutritionSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
| | - Yi Zhang
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Hepatobiliary SurgeryThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Yuan Ding
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiali Yang
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zimin Song
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Shuirong Lin
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Ruhe Zhang
- Department of HematologyThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Jun Wu
- Bioscience and Biomedical Engineering ThrustThe Hong Kong University of Science and Technology (Guangzhou)NanshaGuangzhouGuangdong511400China
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong Kong SAR999077China
| | - Shunli Shen
- Department of Hepatic SurgeryCenter of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
5
|
Li R, He J, Liu C, Jiang Z, Qin J, Liang K, Ji Z, Zhao L. PBRM1 deficiency enhances PD1 immunotherapeutic sensitivity via chromosomal accessibility in colorectal cancer. Theranostics 2025; 15:3316-3331. [PMID: 40093909 PMCID: PMC11905143 DOI: 10.7150/thno.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Tumor cell epigenetics, especially chromosome accessibility, has been reported to be closely related to the tumor immune landscape and immunotherapy. However, the exact mechanism remains unknown. Methods: Whole-exome sequencing was used to analyze 13 colorectal tumor samples treated with PD1 immunotherapy. The assays for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing were used to detect tumor cells' chromosome accessibility status and screen regulatory pathways. Results: Polybromo-1 (PBRM1) was one of the 12 genes with the highest frequency of somatic mutations associated with immunotherapy sensitivity. PBRM1/Pbrm1 deficiency in colorectal cancer promoted PD-1 immunotherapy sensitivity and chemotaxis of CD8+ T and NK cells in the microenvironment in vivo and in vitro. ATAC sequencing revealed that deletion of Pbrm1, a critical component of the SWI/SNF complex, increased chromosomal accessibility in tumor cells and triggered the release of cytokines, such as CCL5 and CXCL10, by activating the NF-κB signaling pathway. Application of ACBL1, a PROC inhibitor of PBRM1, in BALB/C mice or colorectal patient-derived tumor organoids (PDTOs) significantly promoted the sensitivity to PD1 antibody immunotherapy. Conclusions: Our study established that PBRM1/Pbrm1 deficiency was positively correlated with PD1 immunotherapeutic sensitivity in colorectal cancer. The underlying molecular mechanisms involved regulation of chromosome accessibility, activation of the NF-κB signaling pathway, and immune cell infiltration in the microenvironment. These findings identify potential molecular targets for enhancing immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Rui Li
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Jie He
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zesheng Jiang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiasheng Qin
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kun Liang
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| | - Zhuocheng Ji
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, Basic Medical College, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Li FL, Gu LH, Tong YL, Chen RQ, Chen SY, Yu XL, Liu N, Lu JL, Si Y, Sun JH, Chen J, Long YR, Gong LK. INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling. Acta Pharmacol Sin 2025; 46:448-461. [PMID: 39223366 PMCID: PMC11747416 DOI: 10.1038/s41401-024-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4+ T and CD8+ T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Fang-Lin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Hua Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shi-Yi Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Lu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Si
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Kun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
7
|
Li H, Zhang C, Zhu N, Shi Y, Qin L. Sensitivity of renal cell carcinoma to cuproptosis: a bioinformatics analysis and experimental verification. J Cancer 2025; 16:952-968. [PMID: 39781354 PMCID: PMC11705067 DOI: 10.7150/jca.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose: Targeting cuproptosis is considered as a promising therapeutic strategy for the prevention of tumors. However, the potential role of cuproptosis and its related genes in clear cell renal cell carcinoma (ccRCC) remains elusive. The present study aims to explore the sensitivity of ccRCC to cuproptosis and its underlying mechanism. Methods: Cuproptosis differential genes (CDGs) were extracted using the GSE53757 and GSE66272 datasets. A comprehensive analysis of the role of CDGs was conducted through multiple public databases and experiments. Results: It was found that cuproptosis inducer elesclomol significantly induced cell death in 786-O and A498 cells. FDX and DLAT exhibited significantly low expression, which were independent prognostic factors for poor survival, and had a strong positive correlation in ccRCC patients. Functional analysis of differentially expressed genes positively or negatively correlated with both FDX1 and DLAT indicated that acetyl-CoA biosynthetic process and acetyl-CoA metabolic process were remarkably affected. In ccRCC patients, the methylation levels and sites of FDX1 and DLAT genes were dramatically correlated with overall survival (OS). The expressions of FDX1 and DLAT were closely related to immune infiltration and immune checkpoints. Docking results indicated that mitotane, adicicol and dihydrolipoic acid might be potential drug targets for FDX1 and DLAT. Conclusions: Overall, the present study demonstrates the sensitivity of ccRCC to cuproptosis, and targeting the combination of FDX1 and DLAT may be a novel therapeutic strategy to induce cuproptosis in ccRCC.
Collapse
Affiliation(s)
- Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Lee J, Moon S, Kwon HJ, Lee S, Choe G, Lee KS. Evaluation of PD-L1 expression in PBRM1-altered clear cell renal cell carcinoma. Urol Oncol 2024; 42:454.e21-454.e30. [PMID: 39341712 DOI: 10.1016/j.urolonc.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/05/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) often harbors Polybromo 1 (PBRM1) alterations. These alterations are associated with immune checkpoint blockade response in ccRCC, particularly antiprogrammed cell death 1 (PD1)/programmed cell death ligand 1 (PD-L1)-targeted therapy. However, the association between PBRM1 alterations and PD-L1 expression in ccRCC remains unclear. MATERIALS AND METHODS We analyzed alterations in PBRM1 and PD-L1 expression using immunohistochemistry (IHC) targeting PBRM1 and PD-L1 (22C3) in tissues collected from patients with localized ccRCC (Cohort 1) and advanced ccRCC (Cohort 2). Additionally, next-generation sequencing (NGS) was conducted on Cohort 2 patients to analyze PBRM1 alterations. RESULTS Cohort 1 comprised 526 patients, of whom 139 (26.4%) exhibited PD-L1 positivity and 205 (38.9%) exhibited loss of PBRM1 expression in IHC. PD-L1 expression was positively associated with the loss of PBRM1 expression (P < 0.001) in localized ccRCC. Kaplan-Meier analysis indicated that PBRM1 expression loss and PD-L1 expression positively correlated with tumor recurrence (P < 0.001 and P = 0.003, respectively). Cohort 2 comprised 59 patients with advanced ccRCC, of whom 33 (56.9%) exhibited PBRM1 genetic alterations. PBRM1 IHC exhibited a sensitivity of 84.48% and specificity of 87.5% compared to NGS results. We did not find a significant association between PBRM1 mutation and PD-L1 expression, in contrast to the findings in Cohort 1. However, we frequently observed that PBRM1 mutation and PD-L1 expression occur concurrently, with 60% of PBRM1-altered ccRCC cases being PD-L1 positive. CONCLUSION Although our study did not establish a correlation between PBRM1 mutations and PD-L1 expression, it demonstrated that the occurrence of PBRM1-altered ccRCC with PD-L1 expression is not uncommon. Therefore, the presence of PBRM1 alterations may challenge the use of PD-L1 IHC as a predictive marker for PD-L1 blockade in ccRCC.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seyoung Moon
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyun Jung Kwon
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Sejoon Lee
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea
| | - Kyu Sang Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Tanaka H, Fukawa Y, Yamamoto K, Tanimoto K, Takemoto A, Mori T, Hasumi H, Kinoshita M, Kanazawa T, Furukawa A, Kimura K, Sato H, Hirakawa A, Fukuda S, Waseda Y, Yoshida S, Campbell SC, Fujii Y. Prognostic Impact and Genomic Backgrounds of Renal Parenchymal Infiltration or Micronodular Spread in Nonmetastatic Clear Cell Renal Cell Carcinoma. Mod Pathol 2024; 37:100590. [PMID: 39142537 DOI: 10.1016/j.modpat.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
A subset of clear cell renal cell carcinomas (ccRCCs) exhibits various growth patterns that infiltrate the normal renal parenchyma; however, our understanding of its association with cancer aggressiveness is incomplete. Here, we show that the morphology of the tumor interface with normal renal parenchyma is robustly associated with cancer recurrence after surgery, even when compared with the TNM staging system or the World Health Organization/International Society of Urological Pathology (WHO/ISUP) nuclear grade in nonmetastatic ccRCC. Hematoxylin and eosin-stained slides of whole tissue sections from surgical specimens were analyzed using a cohort of 331 patients with nonmetastatic ccRCC treated with radical nephrectomy. The patients were classified into 10 subgroups based on our classification algorithms for assessing the tumor interface with normal renal parenchyma. Among the 10 subgroups, 4 subgroups consisting of 40 patients (12%) were identified to have aggressive forms of nonmetastatic ccRCC associated with poor prognosis and unified as renal parenchymal infiltration or micronodular spread (RPI/MNS) phenotypes. Multivariable analyses showed that RPI/MNS phenotypes were robustly associated with shorter disease-free survival, independently of existing pathological factors including the TNM staging system and WHO/ISUP nuclear grade. The hazard ratio was highest for RPI/MNS (4.62), followed by WHO/ISUP grades 3 to 4 (2.11) and ≥pT3a stage (2.05). In addition, we conducted genomic analyses using next-generation sequencing of infiltrative lesions in 18 patients with RPI/MNS and tumor lesions in 33 patients without RPI/MNS. Results showed that alterations in SETD2 and TSC1 might be associated with RPI/MNS phenotypes, whereas alterations in PBRM1 might be associated with non-RPI/MNS phenotypes. These data suggest that RPI/MNS may be associated with aggressive genomic backgrounds of ccRCC, although more comprehensive analyses with a larger sample size are required. Future studies may further elucidate the clinical implications of RPI/MNS, particularly for deciding the indication of adjuvant treatment after nephrectomy.
Collapse
Affiliation(s)
- Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yuki Fukawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takemoto
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hisashi Hasumi
- Department of Urology, Yokohama City University, Yokohama, Japan
| | - Mayumi Kinoshita
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Takumi Kanazawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Tokyo, Japan
| | - Asuka Furukawa
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Kimura
- Department of Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Sato
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shohei Fukuda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuma Waseda
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Steven C Campbell
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
11
|
Cho N, Kim SY, Lee SG, Park C, Choi S, Kim EM, Kim KK. Alternative splicing of PBRM1 mediates resistance to PD-1 blockade therapy in renal cancer. EMBO J 2024; 43:5421-5444. [PMID: 39375538 PMCID: PMC11574163 DOI: 10.1038/s44318-024-00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Alternative pre-mRNA splicing (AS) is a biological process that results in proteomic diversity. However, implications of AS alterations in cancer remain poorly understood. Herein, we performed a comprehensive AS analysis in cancer driver gene transcripts across fifteen cancer types and found global alterations in inclusion rates of the PBAF SWI/SNF chromatin remodeling complex subunit Polybromo 1 (PBRM1) exon 27 (E27) in most types of cancer tissues compared with those in normal tissues. Further analysis confirmed that PBRM1 E27 is excluded by the direct binding of RBFOX2 to intronic UGCAUG elements. In addition, the E27-included PBRM1 isoform upregulated PD-L1 expression via enhanced PBAF complex recruitment to the PD-L1 promoter. PBRM1 wild-type patients with clear cell renal cell carcinoma were resistant to PD-1 blockade therapy when they expressed low RBFOX2 mRNA levels. Overall, our study suggests targeting of RBFOX2-mediated AS of PBRM1 as a potential therapeutic strategy for immune checkpoint blockade.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Eun-Mi Kim
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Kato T, Nonomura N. Validity and utility of switch-maintenance therapy with nivolumab in tyrosine kinase inhibitor-sensitive patients with metastatic renal cell carcinoma: learning from NIVOSWITCH. Transl Androl Urol 2024; 13:1333-1335. [PMID: 39100829 PMCID: PMC11291407 DOI: 10.21037/tau-24-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/17/2024] [Indexed: 08/06/2024] Open
Affiliation(s)
- Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
Chen Y, Zhou Y, Chen J, Yang J, Yuan Y, Wu W. Exosomal lncRNA SNHG12 promotes angiogenesis and breast cancer progression. Breast Cancer 2024; 31:607-620. [PMID: 38833118 PMCID: PMC11194216 DOI: 10.1007/s12282-024-01574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Breast cancer is one of the most prevalent malignancies in women. Exosomes are important mediators of intercellular communication; however, their regulatory mechanisms in human umbilical vein endothelial cells (HUVECs) angiogenesis in breast cancer remain unknown. METHODS We isolated and characterized breast cancer cell-derived exosomes and investigated their functions. Exosomal sequencing and the TCGA database were used to screen long non-coding RNA (lncRNA). In vitro and in vivo experiments were performed to investigate the role of exosomal lncRNA in HUVEC angiogenesis and tumor growth. Molecular methods were used to demonstrate the molecular mechanism of lncRNA. RESULTS We demonstrated that breast cancer cell-derived exosomes promoted HUVEC proliferation, tube formation, and migration. Combining exosomal sequencing results with The Cancer Genome Atlas Breast Cancer database, we screened lncRNA small nucleolar RNA host gene 12 (SNHG12), which was highly expressed in breast cancer cells. SNHG12 was also upregulated in HUVECs co-cultured with exosome-overexpressed SNHG12. Moreover, overexpression of SNHG12 in exosomes increased HUVEC proliferation and migration, whereas deletion of SNHG12 in exosomes showed the opposite effects. In vivo experiments showed that SNHG12 knockdown in exosomes inhibited breast cancer tumor growth. Transcriptome sequencing identified MMP10 as the target gene of SNHG12. Functional experiments revealed that MMP10 overexpression promoted HUVEC angiogenesis. Mechanistically, SNHG12 blocked the interaction between PBRM1 and MMP10 by directly binding to PBRM1. Moreover, exosomal SNHG12 promoted HUVEC angiogenesis via PBRM1 and MMP10. CONCLUSIONS In summary, our findings confirmed that exosomal SNHG12 promoted HUVEC angiogenesis via the PBRM1-MMP10 axis, leading to enhanced malignancy of breast cancer. Exosomal SNHG12 may be a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yuxin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Jiafeng Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Jiahui Yang
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yijie Yuan
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Weizhu Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China.
- East Branch of Lihuili Hospital, Ningbo Medical Center, No. 1111 Jiangnan Road, Meixu Street, Yinzhou District, Ningbo, Zhejiang, China.
| |
Collapse
|
14
|
Li L, Xiang T, Li X. The immune response-related genomic alterations in patients with malignant melanoma. Medicine (Baltimore) 2024; 103:e37966. [PMID: 38669390 PMCID: PMC11049764 DOI: 10.1097/md.0000000000037966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) significantly improve the survival outcomes of patients with advanced melanoma. However, response varies among from patient to patient and predictive biomarkers are urgently needed. We integrated mutational profiles from next-generation sequencing (NGS) data and clinicopathologic characteristics of melanoma patients to investigate whether tumor genomic profiling contribute to clinical benefit of ICIs treatment. The majority of genes identified with high mutation frequency have all been reported as well-known immunotherapy-related genes. Thirty-five patients (43.2%) had at least 1 BRAF/RAS/NF1 mutation. The other 46 (56.8%) melanomas without BRAF/RAS/NF1 mutation were classified as Triple-WT. We identified mutational signature 6 (known as associated with defective DNA mismatch repair) among cases in this cohort. Compared to patients with PD-L1 expression (TPS < 1%), patients with PD-L1 expression (TPS ≥ 1%) had significantly higher median progression-free survival (mPFS), but no significantly higher durable clinical benefit (DCB) rate. In contrast, FAT1, ATM, BRCA2, LRP1B, and PBRM1 mutations only occurred frequently in patients with DCB, irrespective of PD-L1 expression status. Our study explored molecular signatures of melanoma patients who respond to ICIs treatment and identified a series of mutated genes that might serve as predictive biomarker for ICIs responses in melanoma.
Collapse
Affiliation(s)
- Linqing Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Tianmin Xiang
- Research and Development Department, Bioperfectus Technologies Company Limited, Jiangsu, China
| | - Xianan Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| |
Collapse
|
15
|
Barata P, Gulati S, Elliott A, Hammers HJ, Burgess E, Gartrell BA, Darabi S, Bilen MA, Basu A, Geynisman DM, Dawson NA, Zibelman MR, Zhang T, Wei S, Ryan CJ, Heath EI, Poorman KA, Nabhan C, McKay RR. Renal cell carcinoma histologic subtypes exhibit distinct transcriptional profiles. J Clin Invest 2024; 134:e178915. [PMID: 38652565 PMCID: PMC11142736 DOI: 10.1172/jci178915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Molecular profiling of clear cell renal cell carcinoma (ccRCC) tumors of patients in a clinical trial has identified distinct transcriptomic signatures with predictive value, yet data in non-clear cell variants (nccRCC) are lacking. We examined the transcriptional profiles of RCC tumors representing key molecular pathways, from a multi-institutional, real-world patient cohort, including ccRCC and centrally reviewed nccRCC samples. ccRCC had increased angiogenesis signature scores compared with the heterogeneous group of nccRCC tumors, while cell cycle, fatty acid oxidation/AMPK signaling, and fatty acid synthesis/pentose phosphate signature scores were increased in one or more nccRCC subtypes. Among both ccRCC and nccRCC tumors, T effector scores statistically correlated with increased immune cell infiltration and were more commonly associated with immunotherapy-related markers (PD-L1+/TMBhi/MSIhi). In conclusion, this study provides evidence of differential gene transcriptional profiles among ccRCC versus nccRCC tumors, providing insights for optimizing personalized and histology-specific therapeutic strategies for patients with advanced RCC.
Collapse
Affiliation(s)
- Pedro Barata
- Tulane Medical School, New Orleans, Louisiana, USA
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | | | | | - Hans J. Hammers
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Earle Burgess
- Levine Cancer Institute Atrium Health, Charlotte, North Carolina, USA
| | - Benjamin A. Gartrell
- Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sourat Darabi
- Hoag Memorial Presbyterian Hospital, Newport Beach, California, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Arnab Basu
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Nancy A. Dawson
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | - Tian Zhang
- Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shuanzeng Wei
- Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Elisabeth I. Heath
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | | | | | - Rana R. McKay
- Moores Cancer Center, UCSD, San Diego, California, USA
| |
Collapse
|
16
|
Wolf MM, Madden MZ, Arner EN, Bader JE, Ye X, Vlach L, Tigue ML, Landis MD, Jonker PB, Hatem Z, Steiner KK, Gaines DK, Reinfeld BI, Hathaway ES, Xin F, Tantawy MN, Haake SM, Jonasch E, Muir A, Weiss VL, Beckermann KE, Rathmell WK, Rathmell JC. VHL loss reprograms the immune landscape to promote an inflammatory myeloid microenvironment in renal tumorigenesis. J Clin Invest 2024; 134:e173934. [PMID: 38618956 PMCID: PMC11014672 DOI: 10.1172/jci173934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/24/2024] [Indexed: 04/16/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by dysregulated hypoxia signaling and a tumor microenvironment (TME) highly enriched in myeloid and lymphoid cells. Loss of the von Hippel Lindau (VHL) gene is a critical early event in ccRCC pathogenesis and promotes stabilization of HIF. Whether VHL loss in cancer cells affects immune cells in the TME remains unclear. Using Vhl WT and Vhl-KO in vivo murine kidney cancer Renca models, we found that Vhl-KO tumors were more infiltrated by immune cells. Tumor-associated macrophages (TAMs) from Vhl-deficient tumors demonstrated enhanced in vivo glucose consumption, phagocytosis, and inflammatory transcriptional signatures, whereas lymphocytes from Vhl-KO tumors showed reduced activation and a lower response to anti-programmed cell death 1 (anti-PD-1) therapy in vivo. The chemokine CX3CL1 was highly expressed in human ccRCC tumors and was associated with Vhl deficiency. Deletion of Cx3cl1 in cancer cells decreased myeloid cell infiltration associated with Vhl loss to provide a mechanism by which Vhl loss may have contributed to the altered immune landscape. Here, we identify cancer cell-specific genetic features that drove environmental reprogramming and shaped the tumor immune landscape, with therapeutic implications for the treatment of ccRCC.
Collapse
Affiliation(s)
- Melissa M. Wolf
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | - Emily N. Arner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - Logan Vlach
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Megan L. Tigue
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Patrick B. Jonker
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Zaid Hatem
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
| | - KayLee K. Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Dakim K. Gaines
- Department of Radiation Oncology
- Vanderbilt-Ingram Cancer Center
| | - Bradley I. Reinfeld
- Graduate Program in Cancer Biology and
- Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, VUMC, Nashville, Tennessee, USA
| | - Emma S. Hathaway
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Graduate Program in Cancer Biology and
| | - Fuxue Xin
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - M. Noor Tantawy
- Department of Radiology and Radiological Sciences, and
- Vanderbilt University Institute of Imaging Science, VUMC, Nashville, Tennessee, USA
| | - Scott M. Haake
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Vivian L. Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - Kathryn E. Beckermann
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
| | - W. Kimryn Rathmell
- Department of Medicine, VUMC, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville (VUMC), Tennessee, USA
- Vanderbilt-Ingram Cancer Center
- Vanderbilt Center for Immunobiology, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Xu Z, Jiang W, Liu L, Qiu Y, Wang J, Dai S, Guo J, Xu J. Dual-loss of PBRM1 and RAD51 identifies hyper-sensitive subset patients to immunotherapy in clear cell renal cell carcinoma. Cancer Immunol Immunother 2024; 73:95. [PMID: 38607586 DOI: 10.1007/s00262-024-03681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Homologous recombination deficiency (HRD), though largely uncharacterized in clear cell renal cell carcinoma (ccRCC), was found associated with RAD51 loss of expression. PBRM1 is the second most common mutated genes in ccRCC. Here, we introduce a HRD function-based PBRM1-RAD51 ccRCC classification endowed with diverse immune checkpoint blockade (ICB) responses. METHODS Totally 1542 patients from four independent cohorts were enrolled, including our localized Zhongshan hospital (ZSHS) cohort and Zhongshan hospital metastatic RCC (ZSHS-mRCC) cohort, The Cancer Genome Atlas (TCGA) cohort and CheckMate cohort. The genomic profile and immune microenvironment were depicted by genomic, transcriptome data and immunohistochemistry. RESULTS We observed that PBRM1-loss ccRCC harbored enriched HRD-associated mutational signature 3 and loss of RAD51. Dual-loss of PBRM1 and RAD51 identified patients hyper-sensitive to immunotherapy. This dual-loss subtype was featured by M1 macrophage infiltration. Dual-loss was, albeit homologous recombination defective, with high chromosomal stability. CONCLUSIONS PBRM1 and RAD51 dual-loss ccRCC indicates superior responses to immunotherapy. Dual-loss ccRCC harbors an immune-desert microenvironment but enriched with M1 macrophages. Dual-loss ccRCC is susceptible to defective homologous recombination but possesses high chromosomal stability.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Youqi Qiu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Siyuan Dai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Betancor YZ, Ferreiro-Pantín M, Anido-Herranz U, Fuentes-Losada M, León-Mateos L, García-Acuña SM, Vaamonde-Rodríguez V, García-Pinel B, Cebey-López V, Villaverde-Viaño R, Lombardía-Rodríguez H, Kotrulev M, Fernández-Díaz N, Gomez-Tourino I, Fernández-Baltar C, García-González J, Tubio JMC, López-López R, Ruiz-Bañobre J. A three-gene expression score for predicting clinical benefit to anti-PD-1 blockade in advanced renal cell carcinoma. Front Immunol 2024; 15:1374728. [PMID: 38660294 PMCID: PMC11039903 DOI: 10.3389/fimmu.2024.1374728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
In the advanced renal cell carcinoma (RCC) scenario, there are no consistent biomarkers to predict the clinical benefit patients derived from immune checkpoint blockade (ICB). Taking this into consideration, herein, we conducted a retrospective study in order to develop and validate a gene expression score for predicting clinical benefit to the anti-PD-1 antibody nivolumab in the context of patients diagnosed with advanced clear cell RCC enrolled in the CheckMate-009, CheckMate-010, and CheckMate-025 clinical trials. First, a three-gene expression score (3GES) with prognostic value for overall survival integrating HMGA1, NUP62, and ARHGAP42 transcripts was developed in a cohort of patients treated with nivolumab. Its prognostic value was then validated in the TCGA-KIRC cohort. Second, the predictive value for nivolumab was confirmed in a set of patients from the CheckMate-025 phase 3 clinical trial. Lastly, we explored the correlation of our 3GES with different clinical, molecular, and immune tumor characteristics. If the results of this study are definitively validated in other retrospective and large-scale, prospective studies, the 3GES will represent a valuable tool for guiding the design of ICB-based clinical trials in the aRCC scenario in the near future.
Collapse
Affiliation(s)
- Yoel Z. Betancor
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miriam Ferreiro-Pantín
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Urbano Anido-Herranz
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Mar Fuentes-Losada
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Luis León-Mateos
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Margarita García-Acuña
- Department of Pathology, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Vanessa Vaamonde-Rodríguez
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Beatriz García-Pinel
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Víctor Cebey-López
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rosa Villaverde-Viaño
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Helena Lombardía-Rodríguez
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Natalia Fernández-Díaz
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Iria Gomez-Tourino
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Jorge García-González
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. C. Tubio
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Rafael López-López
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Department of Medical Oncology, University Clinical Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
20
|
Bursch KL, Goetz CJ, Jiao G, Nuñez R, Olp MD, Dhiman A, Khurana M, Zimmermann MT, Urrutia RA, Dykhuizen EC, Smith BC. Cancer-associated polybromo-1 bromodomain 4 missense variants variably impact bromodomain ligand binding and cell growth suppression. J Biol Chem 2024; 300:107146. [PMID: 38460939 PMCID: PMC11002309 DOI: 10.1016/j.jbc.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mallika Khurana
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul A Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
21
|
Fei C, Zhen X, Shiqiang Z, Jun P. Frontier knowledge and future directions of programmed cell death in clear cell renal cell carcinoma. Cell Death Discov 2024; 10:113. [PMID: 38443363 PMCID: PMC10914743 DOI: 10.1038/s41420-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common renal malignancies of the urinary system. Patient outcomes are relatively poor due to the lack of early diagnostic markers and resistance to existing treatment options. Programmed cell death, also known as apoptosis, is a highly regulated and orchestrated form of cell death that occurs ubiquitously throughout various physiological processes. It plays a crucial role in maintaining homeostasis and the balance of cellular activities. The combination of immune checkpoint inhibitors plus targeted therapies is the first-line therapy to advanced RCC. Immune checkpoint inhibitors(ICIs) targeted CTLA-4 and PD-1 have been demonstrated to prompt tumor cell death by immunogenic cell death. Literatures on the rationale of VEGFR inhibitors and mTOR inhibitors to suppress RCC also implicate autophagic, apoptosis and ferroptosis. Accordingly, investigations of cell death modes have important implications for the improvement of existing treatment modalities and the proposal of new therapies for RCC. At present, the novel modes of cell death in renal cancer include ferroptosis, immunogenic cell death, apoptosis, pyroptosis, necroptosis, parthanatos, netotic cell death, cuproptosis, lysosomal-dependent cell death, autophagy-dependent cell death and mpt-driven necrosis, all of which belong to programmed cell death. In this review, we briefly describe the classification of cell death, and discuss the interactions and development between ccRCC and these novel forms of cell death, with a focus on ferroptosis, immunogenic cell death, and apoptosis, in an effort to present the theoretical underpinnings and research possibilities for the diagnosis and targeted treatment of ccRCC.
Collapse
Affiliation(s)
- Cao Fei
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xu Zhen
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zhang Shiqiang
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Pang Jun
- Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
22
|
Tao J, Cui J, Xu Y, Fan Y, Hong G, Zhou Q, Wang G, Li L, Han Y, Xu C, Wang W, Cai S, Zhang X. MAEL in human cancers and implications in prognostication and predicting benefit from immunotherapy over VEGFR/mTOR inhibitors in clear cell renal cell carcinoma: a bioinformatic analysis. Aging (Albany NY) 2024; 16:2090-2122. [PMID: 38301040 PMCID: PMC10911358 DOI: 10.18632/aging.205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Maelstrom (MAEL), a novel cancer/testis-associated gene, may facilitate the initiation and progression of human malignancies, warranting comprehensive investigations. Single-cell and tissue-bulk transcriptomic data demonstrated higher MAEL expression in testis (spermatogonia/spermatocyte), kidney (proximal tubular cell), and brain (neuron/astrocyte), and corresponding cancers, including testicular germ cell tumor, glioma, papillary renal cell carcinoma, and clear cell renal cell carcinoma (ccRCC). Of these cancers, only in ccRCC did MAEL expression exhibit associations with both recurrence-free survival and overall survival. High MAEL expression was associated with an anti-inflammatory tumor immune microenvironment and VEGFR/mTOR activation in ccRCC tissues and high sensitivities to VEGFR/PI3K-AKT-mTOR inhibitors in ccRCC cell lines. Consistent with these, low rather than high MAEL expression indicated remarkable progression-free survival benefits from immune checkpoint inhibitor (ICI)-based immunotherapies over VEGFR/mTOR inhibitors in two large phase III trials (JAVELIN Renal 101 and CheckMate-025). MAEL is a biologically and clinically significant determinant with potential for prognostication after nephrectomy and patient selection for VEGFR/mTOR inhibitors and immunotherapy-based treatments.
Collapse
Affiliation(s)
- Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinshan Cui
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yafeng Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guodong Hong
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiaoxia Zhou
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Bi W, Xu Z, Liu F, Xie Z, Liu H, Zhu X, Zhong W, Zhang P, Tang X. Genome-wide analyses reveal the contribution of somatic variants to the immune landscape of multiple cancer types. PLoS Genet 2024; 20:e1011134. [PMID: 38241355 PMCID: PMC10829993 DOI: 10.1371/journal.pgen.1011134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/31/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
It has been well established that cancer cells can evade immune surveillance by mutating themselves. Understanding genetic alterations in cancer cells that contribute to immune regulation could lead to better immunotherapy patient stratification and identification of novel immune-oncology (IO) targets. In this report, we describe our effort of genome-wide association analyses across 22 TCGA cancer types to explore the associations between genetic alterations in cancer cells and 74 immune traits. Results showed that the tumor microenvironment (TME) is shaped by different gene mutations in different cancer types. Out of the key genes that drive multiple immune traits, top hit KEAP1 in lung adenocarcinoma (LUAD) was selected for validation. It was found that KEAP1 mutations can explain more than 10% of the variance for multiple immune traits in LUAD. Using public scRNA-seq data, further analysis confirmed that KEAP1 mutations activate the NRF2 pathway and promote a suppressive TME. The activation of the NRF2 pathway is negatively correlated with lower T cell infiltration and higher T cell exhaustion. Meanwhile, several immune check point genes, such as CD274 (PD-L1), are highly expressed in NRF2-activated cancer cells. By integrating multiple RNA-seq data, a NRF2 gene signature was curated, which predicts anti-PD1 therapy response better than CD274 gene alone in a mixed cohort of different subtypes of non-small cell lung cancer (NSCLC) including LUAD, highlighting the important role of KEAP1-NRF2 axis in shaping the TME in NSCLC. Finally, a list of overexpressed ligands in NRF2 pathway activated cancer cells were identified and could potentially be targeted for TME remodeling in LUAD.
Collapse
Affiliation(s)
- Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
- Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
- Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, People’s Republic of China
| | - Zhiyu Xu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Feng Liu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Zhi Xie
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Hao Liu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Xiaotian Zhu
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Wenge Zhong
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| | - Peipei Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People’s Republic of China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, People’s Republic of China
| | - Xing Tang
- Regor Pharmaceuticals Inc., Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Saliby RM, Saad E, Kashima S, Schoenfeld DA, Braun DA. Update on Biomarkers in Renal Cell Carcinoma. Am Soc Clin Oncol Educ Book 2024; 44:e430734. [PMID: 38207251 DOI: 10.1200/edbk_430734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Immune checkpoint inhibitors have significantly transformed the treatment paradigm for metastatic renal cell carcinoma (RCC), offering prolonged overall survival and achieving remarkable deep and durable responses. However, given the multiple ICI-containing, standard-of-care regimens approved for RCC, identifying biomarkers that predict therapeutic response and resistance is of critical importance. Although tumor-intrinsic features such as pathological characteristics, genomic alterations, and transcriptional signatures have been extensively investigated, they have yet to provide definitive, robust predictive biomarkers. Current research is exploring host factors through in-depth characterization of the immune system. Additionally, innovative technological approaches are being developed to overcome challenges presented by existing techniques, such as tumor heterogeneity. Promising avenues in biomarker discovery include the study of the microbiome, radiomics, and spatial transcriptomics.
Collapse
Affiliation(s)
- Renée M Saliby
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
- Yale Center of Cellular and Molecular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - Eddy Saad
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Soki Kashima
- Yale Center of Cellular and Molecular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
| | - David A Schoenfeld
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - David A Braun
- Yale Center of Cellular and Molecular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| |
Collapse
|
25
|
Fukagawa A, Hama N, Totoki Y, Nakamura H, Arai Y, Saito-Adachi M, Maeshima A, Matsui Y, Yachida S, Ushiku T, Shibata T. Genomic and epigenomic integrative subtypes of renal cell carcinoma in a Japanese cohort. Nat Commun 2023; 14:8383. [PMID: 38104198 PMCID: PMC10725467 DOI: 10.1038/s41467-023-44159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Renal cell carcinoma (RCC) comprises several histological types characterised by different genomic and epigenomic aberrations; however, the molecular pathogenesis of each type still requires further exploration. We perform whole-genome sequencing of 128 Japanese RCC cases of different histology to elucidate the significant somatic alterations and mutagenesis processes. We also perform transcriptomic and epigenomic sequencing to identify distinguishing features, including assay for transposase-accessible chromatin sequencing (ATAC-seq) and methyl sequencing. Genomic analysis reveals that the mutational signature differs among the histological types, suggesting that different carcinogenic factors drive each histology. From the ATAC-seq results, master transcription factors are identified for each histology. Furthermore, clear cell RCC is classified into three epi-subtypes, one of which expresses highly immune checkpoint molecules with frequent loss of chromosome 14q. These genomic and epigenomic features may lead to the development of effective therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
26
|
Jang A, Lichterman JN, Zhong JY, Shoag JE, Garcia JA, Zhang T, Barata PC. Immune approaches beyond traditional immune checkpoint inhibitors for advanced renal cell carcinoma. Hum Vaccin Immunother 2023; 19:2276629. [PMID: 37947202 PMCID: PMC10653627 DOI: 10.1080/21645515.2023.2276629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Renal cell carcinoma (RCC), especially clear cell RCC, is generally considered an immunotherapy-responsive cancer. Recently, the prognosis for patients with locally advanced and metastatic RCC has significantly improved with the regulatory approvals of anti-PD-1/PD-L1/CTLA-4 immune checkpoint inhibitor (ICI)-based regimens. Yet in most cases, RCC will remain initially unresponsive to treatment or will develop resistance over time. Hence, there remains an unmet need to understand what leads to ICI resistance and to develop novel immune and nonimmune treatments to enhance the response to ICIs. In this review, we highlight recently published studies and the latest clinical studies investigating the next generation of immune approaches to locally advanced and metastatic RCC beyond traditional ICIs. These trials include cytokines, gut microbiota-based therapies, novel immune checkpoint agents, vaccines, and chimeric antigen receptor T cells. These agents are being evaluated as monotherapy or in combination with traditional ICIs and will hopefully provide improved outcomes to patients with RCC soon.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jake N. Lichterman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Y. Zhong
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan E. Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jorge A. Garcia
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pedro C. Barata
- Division of Solid Tumor Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Wang R, Qiu M, Zhang L, Sui M, Xiao L, Yu Q, Ye C, Chen S, Zhou X. Augmenting Immunotherapy via Bioinspired MOF-Based ROS Homeostasis Disruptor with Nanozyme-Cascade Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306748. [PMID: 37689996 DOI: 10.1002/adma.202306748] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Indexed: 09/11/2023]
Abstract
Despite its remarkable clinical breakthroughs, immune checkpoint blockade (ICB) therapy remains limited by the insufficient immune response in the "cold" tumor. Nanozyme-based antitumor catalysis is associated with precise immune activation in the tumor microenvironment (TME). In this study, a cascade-augmented nanoimmunomodulator (CMZM) with multienzyme-like activities, which includes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and glutathione oxidase (GSHOx), that dissociates under an acidic and abundant GSH TME, is proposed for multimodal imaging-guided chemodynamic therapy (CDT)/photodynamic therapy (PDT) enhanced immunotherapy. Vigorous multienzyme-like activities can not only produce O2 to alleviate hypoxia and promote the polarization of M2 to M1 macrophages, but also generate ROS (•OH and 1 O2 ) and deplete GSH in the TME to expose necrotic cell fragments and reverse immunosuppressive TME by eliciting the maturation of dendritic cells and infiltration of cytotoxic T lymphocytes (CTLs) in tumors. Therefore, inhibitory effects on both primary and distant tumors are achieved through synergy with an α-PD-L1 blocking antibody. This cascade multienzyme-based nanoplatform provides a smart strategy for highly efficient ICB immunotherapy against "cold" tumors by revising immunosuppressive TME.
Collapse
Affiliation(s)
- Ruifang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maosong Qiu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| | - Meiju Sui
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Long Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiao Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| |
Collapse
|
28
|
Chang Q, Sun J, Zhao S, Li L, Zhang N, Yan L, Fan Y, Liu J. PBRM1 mutation and WDR72 expression as potential combinatorial biomarker for predicting the response to Nivolumab in patients with ccRCC: a tumor marker prognostic study. Aging (Albany NY) 2023; 15:13753-13775. [PMID: 38048211 PMCID: PMC10756125 DOI: 10.18632/aging.205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE Immune checkpoint therapy (ICT) provides a new idea for the treatment of advanced clear cell renal cell carcinoma (ccRCC), which can bring significant benefits to patients. However, the clinical application of ICT is limited because of the lack of predictive biomarkers to select potential responders. This study aims to propose a new biomarker to predict the response to Nivolumab in patients with ccRCC. MATERIALS AND METHODS The genes that significantly improve the prognosis of ccRCC were retrieved from The Cancer Genome Atlas (TCGA) database. The genomic and clinical data were from patients that had been registered in prospective clinical trials (CheckMate 009, CheckMate 010 and CheckMate 025). TCGA, Gene Expression Omnibus (GEO), and The Human Protein Atlas database were used to analyze the gene and protein expression of WD repeat-containing protein 72 (WDR72) in ccRCC. Gene Ontology (GO) & The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) were performed to dig relevant mechanisms of WDR72. Single sample gene set enrichment analysis (ssGSEA) was conducted to evaluate the role of WDR72 in immune infiltration. Cell proliferation assay, FAO and ATP quantification were used to explore and verify the molecular mechanisms. The expression of WDR72, FOXP3, CD8, and CPT1A was examined by IHC in 20 advanced ccRCC tissue samples at the Urology Department of our hospital. The MethSurv was used to identify PBRM1 and WDR72 gene methylation and its effect on prognosis of ccRCC. RESULTS WDR72 is the most significant gene for improving overall survival (OS) in ccRCC. In all three checkmates, OS and progression free survival (PFS) were found to be significantly higher in WDR72 high expression group than that in WDR72 low expression group (P=0.040 and P=0.012, respectively), and similar conclusions could be drawn from the PBRM1-mutation (MUT) compared with the PBRM1-wildtype (WT) (P=0.007 and P=0.006, respectively). What's more, high expression of WDR72 plus PBRM1-MUT as a combinatorial biomarker showed improved OS (HR=0.388, P=0.0026) and PFS (HR=0.39, P=0.0066) compared to low expression of WDR72 plus PBRM1-WT. Functional enrichment analysis showed that WDR72 was closely positively related to fatty acid degradation and fatty acid beta oxidation pathway in ccRCC. In vitro experiments showed that high expression of WDR72 can promote fatty acids oxidation and inhibit the proliferation of ccRCC cells. Immune analysis revealed that WDR72 high expression was associated with decreased infiltration of Treg cells and low ssGSEA score of check-point. IHC results showed that WDR72 was negatively correlated with FOXP3 expression (r=-0.506, P=0.023) and positively correlated with CPT1A expression (r=0.529, P=0.017). CONCLUSIONS The present study indicated that high expression of WDR72 may indicate a good prognosis of patients treated with Nivolumab and WDR72 expression combined with PBRM1 mutation could be more persuasive to predict the response for ICT in ccRCC patients.
Collapse
Affiliation(s)
- Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Luchao Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Yan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
29
|
Wang B, Jiang B, Du L, Chen W, Zhang Q, Chen W, Ding M, Cao W, Gao J, Deng Y, Fu Y, Li Y, Xiao Y, Diao W, Guo H. Tumor-intrinsic RGS1 potentiates checkpoint blockade response via ATF3-IFNGR1 axis. Oncoimmunology 2023; 12:2279800. [PMID: 38264343 PMCID: PMC10804258 DOI: 10.1080/2162402x.2023.2279800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/01/2023] [Indexed: 01/25/2024] Open
Abstract
Background Non-responsiveness is a major barrier in current cancer immune checkpoint blockade therapies, and the mechanism has not been elucidated yet. Therefore, it is necessary to discover the mechanism and biomarkers of tumor immunotherapeutic resistance. Methods Bioinformatics analysis was performed based on CD8+ T cell infiltration in multiple tumor databases to screen out genes related to anti-tumor immunity. Associations between Regulator of G-protein signaling 1 (RGS1) and IFNγ-STAT1 signaling, and MHCI antigen presentation pathway were examined by RT-qPCR, western blotting, and flow cytometry. The modulatory mechanisms of RGS1 were investigated via CHIP-qPCR and dual-luciferase assay. The clinical and therapeutic implications of RGS1 were comprehensively investigated using tumor cell lines, mouse models, and clinical samples receiving immunotherapy. Results RGS1 was identified as the highest gene positively correlated with immunogenicity among RGS family. Inhibition of RGS1 in neoplastic cells dampened anti-tumor immune response and elicited resistance to immunotherapy in both renal and lung murine subcutaneous tumors. Mechanistically, RGS1 enhanced the binding of activating transcription factor 3 (ATF3) to the promoter of interferon gamma receptor 1 (IFNGR1), activated STAT1 and the subsequent expression of IFNγ-inducible genes, especially CXCL9 and MHC class I (MHCI), thereby influenced CD8+ T cell infiltration and antigen presentation and processing. Clinically, lower expression level of RGS1 was associated with resistance of PD1 inhibition therapy and shortened progression-free survival among 21 NSCLC patients receiving immunotherapy. Conclusions Together, these findings uncover a novel mechanism that elicits immunotherapy resistance and highlight the function of tumor-intrinsic RGS1, which brings new insights for future strategies to sensitize anti-PD1 immunotherapy.
Collapse
Affiliation(s)
- Baojun Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Lin Du
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Southeast University Medical School, Nanjing, Jiangsu, China
| | - Wenyuan Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yongming Deng
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yonglong Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Liu XD, Zhang YT, McGrail DJ, Zhang X, Lam T, Hoang A, Hasanov E, Manyam G, Peterson CB, Zhu H, Kumar SV, Akbani R, Pilie PG, Tannir NM, Peng G, Jonasch E. SETD2 Loss and ATR Inhibition Synergize to Promote cGAS Signaling and Immunotherapy Response in Renal Cell Carcinoma. Clin Cancer Res 2023; 29:4002-4015. [PMID: 37527013 PMCID: PMC10592192 DOI: 10.1158/1078-0432.ccr-23-1003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/13/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Immune checkpoint blockade (ICB) demonstrates durable clinical benefits in a minority of patients with renal cell carcinoma (RCC). We aimed to identify the molecular features that determine the response and develop approaches to enhance it. EXPERIMENTAL DESIGN We investigated the effects of SET domain-containing protein 2 (SETD2) loss on the DNA damage response pathway, the cytosolic DNA-sensing pathway, the tumor immune microenvironment, and the response to ataxia telangiectasia and rad3-related (ATR) and checkpoint inhibition in RCC. RESULTS ATR inhibition activated the cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3)-dependent cytosolic DNA-sensing pathway, resulting in the concurrent expression of inflammatory cytokines and immune checkpoints. Among the common RCC genotypes, SETD2 loss is associated with preferential ATR activation and sensitizes cells to ATR inhibition. SETD2 knockdown promoted the cytosolic DNA-sensing pathway in response to ATR inhibition. Treatment with the ATR inhibitor VE822 concurrently upregulated immune cell infiltration and immune checkpoint expression in Setd2 knockdown Renca tumors, providing a rationale for ATR inhibition plus ICB combination therapy. Setd2-deficient Renca tumors demonstrated greater vulnerability to ICB monotherapy or combination therapy with VE822 than Setd2-proficient tumors. Moreover, SETD2 mutations were associated with a higher response rate and prolonged overall survival in patients with ICB-treated RCC but not in patients with non-ICB-treated RCC. CONCLUSIONS SETD2 loss and ATR inhibition synergize to promote cGAS signaling and enhance immune cell infiltration, providing a mechanistic rationale for the combination of ATR and checkpoint inhibition in patients with RCC with SETD2 mutations.
Collapse
Affiliation(s)
- Xian-De Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- These authors contributed equally
| | - Yan-Ting Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- These authors contributed equally
| | - Daniel J. McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xuesong Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anh Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elshad Hasanov
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ganiraju Manyam
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haifeng Zhu
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick G. Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention at The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
31
|
Li BE, Li GY, Cai W, Zhu Q, Seruggia D, Fujiwara Y, Vakoc CR, Orkin SH. In vivo CRISPR/Cas9 screening identifies Pbrm1 as a regulator of myeloid leukemia development in mice. Blood Adv 2023; 7:5281-5293. [PMID: 37428871 PMCID: PMC10506108 DOI: 10.1182/bloodadvances.2022009455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
CRISPR/Cas9 screening approaches are powerful tool for identifying in vivo cancer dependencies. Hematopoietic malignancies are genetically complex disorders in which the sequential acquisition of somatic mutations generates clonal diversity. Over time, additional cooperating mutations may drive disease progression. Using an in vivo pooled gene editing screen of epigenetic factors in primary murine hematopoietic stem and progenitor cells (HSPCs), we sought to uncover unrecognized genes that contribute to leukemia progression. We, first, modeled myeloid leukemia in mice by functionally abrogating both Tet2 and Tet3 in HSPCs, followed by transplantation. We, then, performed pooled CRISPR/Cas9 editing of genes encoding epigenetic factors and identified Pbrm1/Baf180, a subunit of the polybromo BRG1/BRM-associated factor SWItch/Sucrose Non-Fermenting chromatin-remodeling complex, as a negative driver of disease progression. We found that Pbrm1 loss promoted leukemogenesis with a significantly shortened latency. Pbrm1-deficient leukemia cells were less immunogenic and were characterized by attenuated interferon signaling and reduced major histocompatibility complex class II (MHC II) expression. We explored the potential relevance to human leukemia by assessing the involvement of PBRM1 in the control of interferon pathway components and found that PBRM1 binds to the promoters of a subset of these genes, most notably IRF1, which in turn regulates MHC II expression. Our findings revealed a novel role for Pbrm1 in leukemia progression. More generally, CRISPR/Cas9 screening coupled with phenotypic readouts in vivo has helped identify a pathway by which transcriptional control of interferon signaling influences leukemia cell interactions with the immune system.
Collapse
Affiliation(s)
- Bin E. Li
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Grace Y. Li
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Wenqing Cai
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Qian Zhu
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | - Davide Seruggia
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Yuko Fujiwara
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| | | | - Stuart H. Orkin
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
32
|
Brummer O, Pölönen P, Mustjoki S, Brück O. Computational textural mapping harmonises sampling variation and reveals multidimensional histopathological fingerprints. Br J Cancer 2023; 129:683-695. [PMID: 37391505 PMCID: PMC10421901 DOI: 10.1038/s41416-023-02329-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Technical factors can bias H&E digital slides potentially compromising computational histopathology studies. Here, we hypothesised that sample quality and sampling variation can introduce even greater and undocumented technical fallacy. METHODS Using The Cancer Genome Atlas (TCGA) clear-cell renal cell carcinoma (ccRCC) as a model disease, we annotated ~78,000 image tiles and trained deep learning models to detect histological textures and lymphocyte infiltration at the tumour core and its surrounding margin and correlated these with clinical, immunological, genomic, and transcriptomic profiles. RESULTS The models reached 95% validation accuracy for classifying textures and 95% for lymphocyte infiltration enabling reliable profiling of ccRCC samples. We validated the lymphocyte-per-texture distributions in the Helsinki dataset (n = 64). Texture analysis indicated constitutive sampling bias by TCGA clinical centres and technically suboptimal samples. We demonstrate how computational texture mapping (CTM) can abrogate these issues by normalising textural variance. CTM-harmonised histopathological architecture resonated with both expected associations and novel molecular fingerprints. For instance, tumour fibrosis associated with histological grade, epithelial-to-mesenchymal transition, low mutation burden and metastasis. CONCLUSIONS This study highlights texture-based standardisation to resolve technical bias in computational histopathology and understand the molecular basis of tissue architecture. All code, data and models are released as a community resource.
Collapse
Affiliation(s)
- Otso Brummer
- Hematoscope Lab, Helsinki University Hospital, Comprehensive Cancer Center and Center of Diagnostics, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Oscar Brück
- Hematoscope Lab, Helsinki University Hospital, Comprehensive Cancer Center and Center of Diagnostics, Helsinki, Finland.
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
33
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
34
|
Li L, Tan H, Zhou J, Hu F. Predicting response of immunotherapy and targeted therapy and prognosis characteristics for renal clear cell carcinoma based on m1A methylation regulators. Sci Rep 2023; 13:12645. [PMID: 37542141 PMCID: PMC10403615 DOI: 10.1038/s41598-023-39935-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023] Open
Abstract
In recent years, RNA methylation modification has been found to be related to a variety of tumor mechanisms, such as rectal cancer. Clear cell renal cell carcinoma (ccRCC) is most common in renal cell carcinoma. In this study, we get the RNA profiles of ccRCC patients from ArrayExpress and TCGA databases. The prognosis model of ccRCC was developed by the least absolute shrinkage and selection operator (LASSO) regression analysis, and the samples were stratified into low-high risk groups. In addition, our prognostic model was validated through the receiver operating characteristic curve (ROC). "pRRophetic" package screened five potential small molecule drugs. Protein interaction networks explore tumor driving factors and drug targeting factors. Finally, polymerase chain reaction (PCR) was used to verify the expression of the model in the ccRCC cell line. The mRNA matrix in ArrayExpress and TCGA databases was used to establish a prognostic model for ccRCC through LASSO regression analysis. Kaplan Meier analysis showed that the overall survival rate (OS) of the high-risk group was poor. ROC verifies the reliability of our model. Functional enrichment analysis showed that there was a obviously difference in immune status between the high-low risk groups. "pRRophetic" package screened five potential small molecule drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706). Protein interaction network shows that epidermal growth factor receptor [EGRF] and estrogen receptor 1 [ESR1] are tumor drivers and drug targeting factors. To further analyze the differential expression and pathway correlation of the prognosis risk model species. Finally, polymerase chain reaction (PCR) showed the expression of YTHN6-Methyladenosine RNA Binding Protein 1[YTHDF1], TRNA Methyltransferase 61B [TRMT61B], TRNA Methyltransferase 10C [TRMT10C] and AlkB Homolog 1[ALKBH1] in ccRCC cell lines. To sum up, the prognosis risk model we created not only has good predictive value, but also can provide guidance for accurately predicting the prognosis of ccRCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongwei Tan
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Jiexue Zhou
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.
| | - Fengming Hu
- Department of Organ Transplantation, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
35
|
Petell CJ, Burkholder NT, Ruiz PA, Skela J, Foreman JR, Southwell LE, Temple BR, Krajewski K, Strahl BD. The bromo-adjacent homology domains of PBRM1 associate with histone tails and contribute to PBAF-mediated gene regulation. J Biol Chem 2023; 299:104996. [PMID: 37394010 PMCID: PMC10425938 DOI: 10.1016/j.jbc.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paloma A Ruiz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica Skela
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jake R Foreman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren E Southwell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brenda R Temple
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; R L Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
36
|
Wolf MM, Rathmell WK, de Cubas AA. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat Rev Nephrol 2023; 19:440-450. [PMID: 36973495 PMCID: PMC10801831 DOI: 10.1038/s41581-023-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Melissa M Wolf
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Program in Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Aguirre A de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
37
|
Masson C, Thouvenin J, Boudier P, Maillet D, Kuchler-Bopp S, Barthélémy P, Massfelder T. Biological Biomarkers of Response and Resistance to Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:3159. [PMID: 37370768 DOI: 10.3390/cancers15123159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Renal cell carcinoma (RCC) represents around 2% of cancer-related deaths worldwide per year. RCC is an immunogenic malignancy, and treatment of metastatic RCC (mRCC) has greatly improved since the advent of the new immunotherapy agents, including immune checkpoint inhibitors (ICIs). However, it should be stressed that a large proportion of patients does not respond to these therapies. There is thus an urgent need to identify predictive biomarkers of efficacy or resistance associated with ICIs or ICI/Tyrosine kinase inhibitor (TKI) combinations; this is a major challenge to achieve precision medicine for mRCC in routine practice. To identify potential biomarkers, it is necessary to improve our knowledge on the biology of immune checkpoints. A lot of efforts have been made over the last decade in the field of immuno-oncology. We summarize here the main data obtained in this field when considering mRCC. As for clinical biomarkers, clinician and scientific experts of the domain are facing difficulties in identifying such molecular entities, probably due to the complexity of immuno-oncology and the constant adaptation of tumor cells to their changing environment.
Collapse
Affiliation(s)
- Claire Masson
- Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France
| | - Jonathan Thouvenin
- Medical Oncology Department, Hospices Civils de Lyon, Hôpital Lyon Sud, 69310 Pierre-Bénite, France
| | - Philippe Boudier
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Denis Maillet
- Medical Oncology Department, Hospices Civils de Lyon, Hôpital Lyon Sud, 69310 Pierre-Bénite, France
| | - Sabine Kuchler-Bopp
- Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France
| | - Philippe Barthélémy
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Thierry Massfelder
- Regenerative NanoMedicine, Centre de Recherche en Biomédecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), UMR_S U1260 INSERM and University of Strasbourg, 67085 Strasbourg, France
| |
Collapse
|
38
|
Wang D, Wang J, Zhou D, Wu Z, Liu W, Chen Y, Chen G, Zhang J. SWI/SNF Complex Genomic Alterations as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors in Multiple Cancers. Cancer Immunol Res 2023; 11:646-656. [PMID: 36848524 PMCID: PMC10155041 DOI: 10.1158/2326-6066.cir-22-0813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Whether there is an association between SWI/SNF genomic alterations in tumors and response to immune checkpoint inhibitors (ICI) remains unclear because prior studies have focused on either an individual gene or a predefined set of genes. Herein, using mutational and clinical data from 832 ICI-treated patients who underwent whole-exome sequencing, including sequencing of all 31 genes of the SWI/SNF complex, we found that SWI/SNF complex alterations were associated with significantly improved overall survival (OS) in melanoma, clear-cell renal cell carcinoma, and gastrointestinal cancer, as well as improved progression-free survival (PFS) in non-small cell lung cancer. Including tumor mutational burden as a variable, the multivariate Cox regression analysis showed SWI/SNF genomic alterations had prognostic value in melanoma [HR, 0.63 (95% confidence interval, CI, 0.47-0.85), P = 0.003], clear-cell renal cell carcinoma [HR, 0.62 (95% CI, 0.46-0.85), P = 0.003], and gastrointestinal cancer [HR, 0.42 (95% CI, 0.18-1.01), P = 0.053]. Furthermore, we used the random forest method for variable screening, identifying 14 genes as a SWI/SNF signature for potential clinical application. Significant correlations were observed between SWI/SNF signature alterations and improved OS and PFS in all cohorts. This suggests that SWI/SNF gene alterations are associated with better clinical outcomes in ICI-treated patients and may serve as a predictive marker for ICI therapy in multiple cancers.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Dongmei Zhou
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Zhixian Wu
- Health Management Center, the First People's Hospital of Yibin, Yibin, P.R. China
| | - Wei Liu
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Yanping Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Jing Zhang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| |
Collapse
|
39
|
Shapiro DD, Dolan B, Laklouk IA, Rassi S, Lozar T, Emamekhoo H, Wentland AL, Lubner MG, Abel EJ. Understanding the Tumor Immune Microenvironment in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15092500. [PMID: 37173966 PMCID: PMC10177515 DOI: 10.3390/cancers15092500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Scientific understanding of how the immune microenvironment interacts with renal cell carcinoma (RCC) has substantially increased over the last decade as a result of research investigations and applying immunotherapies, which modulate how the immune system targets and eliminates RCC tumor cells. Clinically, immune checkpoint inhibitor therapy (ICI) has revolutionized the treatment of advanced clear cell RCC because of improved outcomes compared to targeted molecular therapies. From an immunologic perspective, RCC is particularly interesting because tumors are known to be highly inflamed, but the mechanisms underlying the inflammation of the tumor immune microenvironment are atypical and not well described. While technological advances in gene sequencing and cellular imaging have enabled precise characterization of RCC immune cell phenotypes, multiple theories have been suggested regarding the functional significance of immune infiltration in RCC progression. The purpose of this review is to describe the general concepts of the anti-tumor immune response and to provide a detailed summary of the current understanding of the immune response to RCC tumor development and progression. This article describes immune cell phenotypes that have been reported in the RCC microenvironment and discusses the application of RCC immunophenotyping to predict response to ICI therapy and patient survival.
Collapse
Affiliation(s)
- Daniel D Shapiro
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Division of Urology, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Brendan Dolan
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Israa A Laklouk
- Department of Pathology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sahar Rassi
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Taja Lozar
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Hamid Emamekhoo
- Department of Medical Oncology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Andrew L Wentland
- Department of Radiology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Meghan G Lubner
- Department of Radiology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Edwin Jason Abel
- Department of Urology, The University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
40
|
Yao X, Hong JH, Nargund AM, Ng MSW, Heng HL, Li Z, Guan P, Sugiura M, Chu PL, Wang LC, Ye X, Qu J, Kwek XY, Lim JCT, Ooi WF, Koh J, Wang Z, Pan YF, Ong YS, Tan KY, Goh JY, Ng SR, Pignata L, Huang D, Lezhava A, Tay ST, Lee M, Yeo XH, Tam WL, Rha SY, Li S, Guccione E, Futreal A, Tan J, Yeong JPS, Hong W, Yauch R, Chang KTE, Sobota RM, Tan P, Teh BT. PBRM1-deficient PBAF complexes target aberrant genomic loci to activate the NF-κB pathway in clear cell renal cell carcinoma. Nat Cell Biol 2023; 25:765-777. [PMID: 37095322 DOI: 10.1038/s41556-023-01122-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
PBRM1 encodes an accessory subunit of the PBAF SWI/SNF chromatin remodeller, and the inactivation of PBRM1 is a frequent event in kidney cancer. However, the impact of PBRM1 loss on chromatin remodelling is not well examined. Here we show that, in VHL-deficient renal tumours, PBRM1 deficiency results in ectopic PBAF complexes that localize to de novo genomic loci, activating the pro-tumourigenic NF-κB pathway. PBRM1-deficient PBAF complexes retain the association between SMARCA4 and ARID2, but have loosely tethered BRD7. The PBAF complexes redistribute from promoter proximal regions to distal enhancers containing NF-κB motifs, heightening NF-κB activity in PBRM1-deficient models and clinical samples. The ATPase function of SMARCA4 maintains chromatin occupancy of pre-existing and newly acquired RELA specific to PBRM1 loss, activating downstream target gene expression. Proteasome inhibitor bortezomib abrogates RELA occupancy, suppresses NF-κB activation and delays growth of PBRM1-deficient tumours. In conclusion, PBRM1 safeguards the chromatin by repressing aberrant liberation of pro-tumourigenic NF-κB target genes by residual PBRM1-deficient PBAF complexes.
Collapse
Affiliation(s)
- Xiaosai Yao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA.
| | - Jing Han Hong
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | | | - Michelle Shu Wen Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Hong Lee Heng
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Zhimei Li
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Masahiro Sugiura
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Pek Lim Chu
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xiaofen Ye
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - James Qu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xiu Yi Kwek
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Joanna Koh
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Zhenxun Wang
- Duke-NUS Medical School, Singapore, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - You-Fu Pan
- National Cancer Centre Singapore, Singapore, Republic of Singapore
- Department of Medical Genetics, Zunyi Medical University, Zunyi, China
| | - Yan Shan Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Kiat-Yi Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Jian Yuan Goh
- Duke-NUS Medical School, Singapore, Republic of Singapore
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Dachuan Huang
- National Cancer Centre Singapore, Singapore, Republic of Singapore
| | - Alexander Lezhava
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Su Ting Tay
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Minghui Lee
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Xun Hui Yeo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Sun Young Rha
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University Health System, Seoul, Republic of Korea
| | - Shang Li
- Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Ernesto Guccione
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Tan
- Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Robert Yauch
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | - Kenneth Tou-En Chang
- Duke-NUS Medical School, Singapore, Republic of Singapore
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Patrick Tan
- Duke-NUS Medical School, Singapore, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Bin Tean Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Duke-NUS Medical School, Singapore, Republic of Singapore.
- National Cancer Centre Singapore, Singapore, Republic of Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
41
|
Liu K, Huang Y, Xu Y, Wang G, Cai S, Zhang X, Shi T. BAP1-related signature predicts benefits from immunotherapy over VEGFR/mTOR inhibitors in ccRCC: a retrospective analysis of JAVELIN Renal 101 and checkmate-009/010/025 trials. Cancer Immunol Immunother 2023:10.1007/s00262-023-03424-4. [PMID: 37046008 DOI: 10.1007/s00262-023-03424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND In patients with advanced clear cell renal cell carcinoma, despite the undoubted benefits from immune checkpoint inhibitor (ICI)-based therapies over monotherapies of angiogenic/mTOR inhibitors in the intention-to-treat population, approximately a quarter of the patients can scarcely gain advantage from ICIs, prompting the search for predictive biomarkers for patient selection. METHODS Clinical and multi-omic data of 2428 ccRCC patients were obtained from The Cancer Genome Atlas (TCGA, n = 537), JAVELIN Renal 101 (avelumab plus axitinib vs. sunitinib, n = 885), and CheckMate-009/010/025 (nivolumab vs. everolimus, n = 1006). RESULTS BAP1 mutations were associated with large progression-free survival (PFS) benefits from ICI-based immunotherapies over sunitinib/everolimus (pooled estimate of interaction HR = 0.71, 95% CI 0.51-0.99, P = 0.045). Using the top 20 BAP1 mutation-associated differentially expressed genes (DEGs) generated from the TCGA cohort, we developed the BAP1-score, negatively correlated with angiogenesis and positively correlated with multiple immune-related signatures concerning immune cell infiltration, antigen presentation, B/T cell receptor, interleukin, programmed death-1, and interferon. A high BAP1-score indicated remarkable PFS benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors (avelumab plus axitinib vs. sunitinib: HR = 0.55, 95% CI 0.43-0.70, P < 0.001; nivolumab vs. everolimus: HR = 0.72, 95% CI 0.52-1.00, P = 0.045), while these benefits were negligible in the low BAP1-score subgroup (HR = 1.16 and 1.02, respectively). CONCLUSION In advanced ccRCCs, the BAP1-score is a biologically and clinically significant predictor of immune microenvironment and the clinical benefits from ICI-based immunotherapies over angiogenic/mTOR inhibitors, demonstrating its potential utility in optimizing the personalized therapeutic strategies in patients with advanced ccRCC.
Collapse
Affiliation(s)
- Kan Liu
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yan Huang
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Xu Zhang
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Taoping Shi
- Department of Urology, The Third Medical Center of PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| |
Collapse
|
42
|
Pan Y, Shu G, Fu L, Huang K, Zhou X, Gui C, Liu H, Jin X, Chen M, Li P, Cen J, Feng Z, Lu J, Chen Z, Li J, Xu Q, Wang Y, Liang H, Wang Z, Deng Q, Chen W, Luo J, Yang J, Zhang J, Wei J. EHBP1L1 Drives Immune Evasion in Renal Cell Carcinoma through Binding and Stabilizing JAK1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206792. [PMID: 36775874 PMCID: PMC10104659 DOI: 10.1002/advs.202206792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
High lymphocyte infiltration and immunosuppression characterize the tumor microenvironment (TME) in renal cell carcinoma (RCC). There is an urgent need to elucidate how tumor cells escape the immune attack and to develop novel therapeutic targets to enhance the efficacy of immune checkpoint blockade (ICB) in RCC. Overactivated IFN-γ-induced JAK/STAT signaling involves in such TME, but the underlying mechanisms remain elusive. Here, EH domain-binding protein 1-like protein 1 (EHBP1L1) is identified as a crucial mediator of IFN-γ/JAK1/STAT1/PD-L1 signaling in RCC. EHBP1L1 is highly expressed in RCC, and high EHBP1L1 expression levels are correlated with poor prognosis and resistance to ICB. EHBP1L1 depletion significantly inhibits tumor growth, which is attributed to enhanced CD8+ T cell-mediated antitumor immunity. Mechanistically, EHBP1L1 interacts with and stabilizes JAK1. By competing with SOCS1, EHBP1L1 protects JAK1 from proteasomal degradation, which leads to elevated JAK1 protein levels and JAK1/STAT1/PD-L1 signaling activity, thereby forming an immunosuppressive TME. Furthermore, the combination of EHBP1L1 inhibition and ICB reprograms the immunosuppressive TME and prevents tumor immune evasion, thus significantly reinforcing the therapeutic efficacy of ICB in RCC patient-derived xenograft (PDX) models. These findings reveal the vital role of EHBP1L1 in immune evasion in RCC, which may be a potential complement for ICB therapy.
Collapse
Affiliation(s)
- Yihui Pan
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of UrologyThe Third Affiliated HospitalSoochow UniversityChangzhouJiangsu213003China
| | - Guannan Shu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Liangmin Fu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Kangbo Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xinwei Zhou
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Chengpeng Gui
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaohan Jin
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Minyu Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Pengju Li
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Junjie Cen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Zihao Feng
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jun Lu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Zhenhua Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiaying Li
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Quanhui Xu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Yinghan Wang
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Hui Liang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Zhu Wang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Qiong Deng
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Wei Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Junhang Luo
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiefeng Yang
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiaxing Zhang
- Department of OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jinhuan Wei
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
43
|
Yamashita N, Morimoto Y, Fushimi A, Ahmad R, Bhattacharya A, Daimon T, Haratake N, Inoue Y, Ishikawa S, Yamamoto M, Hata T, Akiyoshi S, Hu Q, Liu T, Withers H, Liu S, Shapiro GI, Yoshizumi T, Long MD, Kufe D. MUC1-C Dictates PBRM1-Mediated Chronic Induction of Interferon Signaling, DNA Damage Resistance, and Immunosuppression in Triple-Negative Breast Cancer. Mol Cancer Res 2023; 21:274-289. [PMID: 36445328 PMCID: PMC9975675 DOI: 10.1158/1541-7786.mcr-22-0772] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The polybromo-1 (PBRM1) chromatin-targeting subunit of the SWI/SNF PBAF chromatin remodeling complex drives DNA damage resistance and immune evasion in certain cancer cells through mechanisms that remain unclear. STAT1 and IRF1 are essential effectors of type I and II IFN pathways. Here, we report that MUC1-C is necessary for PBRM1 expression and that it forms a nuclear complex with PBRM1 in triple-negative breast cancer (TNBC) cells. Analysis of global transcriptional (RNA-seq) and chromatin accessibility (ATAC-seq) profiles further demonstrated that MUC1-C and PBRM1 drive STAT1 and IRF1 expression by increasing chromatin accessibility of promoter-like signatures (PLS) on their respective genes. We also found that MUC1-C, PBRM1, and IRF1 increase the expression and chromatin accessibility on PLSs of the (i) type II IFN pathway IDO1 and WARS genes and (ii) type I IFN pathway RIG-I, MDA5, and ISG15 genes that collectively contribute to DNA damage resistance and immune evasion. In support of these results, targeting MUC1-C in wild-type BRCA TNBC cells enhanced carboplatin-induced DNA damage and the loss of self-renewal capacity. In addition, MUC1-C was necessary for DNA damage resistance, self-renewal, and tumorigenicity in olaparib-resistant BRCA1-mutant TNBC cells. Analysis of TNBC tumors corroborated that (i) MUC1 and PBRM1 are associated with decreased responsiveness to chemotherapy and (ii) MUC1-C expression is associated with the depletion of tumor-infiltrating lymphocytes (TIL). These findings demonstrate that MUC1-C activates PBRM1, and thereby chromatin remodeling of IFN-stimulated genes that promote chronic inflammation, DNA damage resistance, and immune evasion. IMPLICATIONS MUC1-C is necessary for PBRM1-driven chromatin remodeling in chronic activation of IFN pathway genes that promote DNA damage resistance and immunosuppression.
Collapse
Affiliation(s)
- Nami Yamashita
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atsushi Fushimi
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Rehan Ahmad
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tatsuaki Daimon
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Naoki Haratake
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Yuka Inoue
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Ishikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Masaaki Yamamoto
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hata
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Sayuri Akiyoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Qiang Hu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Henry Withers
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mark D. Long
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| | - Donald Kufe
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
- Corresponding Authors: Donald Kufe, Dana-Farber Cancer Institute, 450 Brookline Avenue, D830, Boston, MA 02215. E-mail: ; and Mark D. Long,
| |
Collapse
|
44
|
Deutsch JS, Lipson EJ, Danilova L, Topalian SL, Jedrych J, Baraban E, Ged Y, Singla N, Choueiri TK, Gupta S, Motzer RJ, McDermott D, Signoretti S, Atkins M, Taube JM. Combinatorial biomarker for predicting outcomes to anti-PD-1 therapy in patients with metastatic clear cell renal cell carcinoma. Cell Rep Med 2023; 4:100947. [PMID: 36812889 PMCID: PMC9975323 DOI: 10.1016/j.xcrm.2023.100947] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
With a rapidly developing immunotherapeutic landscape for patients with metastatic clear cell renal cell carcinoma, biomarkers of efficacy are highly desirable to guide treatment strategy. Hematoxylin and eosin (H&E)-stained slides are inexpensive and widely available in pathology laboratories, including in resource-poor settings. Here, H&E scoring of tumor-infiltrating immune cells (TILplus) in pre-treatment tumor specimens using light microscopy is associated with improved overall survival (OS) in three independent cohorts of patients receiving immune checkpoint blockade. Necrosis score alone does not associate with OS; however, necrosis modifies the predictive effect of TILplus, a finding that has broad translational relevance for tissue-based biomarker development. PBRM1 mutational status is combined with H&E scores to further refine outcome predictions (OS, p = 0.007, and objective response, p = 0.04). These findings bring H&E assessment to the fore for biomarker development in future prospective, randomized trials, and emerging multi-omics classifiers.
Collapse
Affiliation(s)
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ludmila Danilova
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Suzanne L Topalian
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jaroslaw Jedrych
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Dermatology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ezra Baraban
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yasser Ged
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Nirmish Singla
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Robert J Motzer
- Department of Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David McDermott
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Janis M Taube
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Dermatology, Johns Hopkins University, Baltimore, MD 21287, USA; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
45
|
Tomlins SA, Khazanov NA, Bulen BJ, Hovelson DH, Shreve MJ, Lamb LE, Matrana MR, Burkard ME, Yang ESH, Edenfield WJ, Dees EC, Onitilo AA, Thompson M, Buchschacher GL, Miller AM, Menter A, Parsons B, Wassenaar T, Hwang LC, Suga JM, Siegel R, Irvin W, Nair S, Slim JN, Misleh J, Khatri J, Masters G, Thomas S, Safa M, Anderson DM, Kwiatkowski K, Mitchell K, Hu-Seliger T, Drewery S, Fischer A, Plouffe K, Czuprenski E, Hipp J, Reeder T, Vakil H, Johnson DB, Rhodes DR. Development and validation of an integrative pan-solid tumor predictor of PD-1/PD-L1 blockade benefit. COMMUNICATIONS MEDICINE 2023; 3:14. [PMID: 36750617 PMCID: PMC9905474 DOI: 10.1038/s43856-023-00243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Anti-PD-1 and PD-L1 (collectively PD-[L]1) therapies are approved for many advanced solid tumors. Biomarkers beyond PD-L1 immunohistochemistry, microsatellite instability, and tumor mutation burden (TMB) may improve benefit prediction. METHODS Using treatment data and genomic and transcriptomic tumor tissue profiling from an observational trial (NCT03061305), we developed Immunotherapy Response Score (IRS), a pan-tumor predictive model of PD-(L)1 benefit. IRS real-world progression free survival (rwPFS) and overall survival (OS) prediction was validated in an independent cohort of trial patients. RESULTS Here, by Cox modeling, we develop IRS-which combines TMB with CD274, PDCD1, ADAM12 and TOP2A quantitative expression-to predict pembrolizumab rwPFS (648 patients; 26 tumor types; IRS-High or -Low groups). In the 248 patient validation cohort (248 patients; 24 tumor types; non-pembrolizumab PD-[L]1 monotherapy treatment), median rwPFS and OS are significantly longer in IRS-High vs. IRS-Low patients (rwPFS adjusted hazard ratio [aHR] 0.52, p = 0.003; OS aHR 0.49, p = 0.005); TMB alone does not significantly predict PD-(L)1 rwPFS nor OS. In 146 patients treated with systemic therapy prior to pembrolizumab monotherapy, pembrolizumab rwPFS is only significantly longer than immediately preceding therapy rwPFS in IRS-High patients (interaction test p = 0.001). In propensity matched lung cancer patients treated with first-line pembrolizumab monotherapy or pembrolizumab+chemotherapy, monotherapy rwPFS is significantly shorter in IRS-Low patients, but is not significantly different in IRS-High patients. Across 24,463 molecularly-evaluable trial patients, 7.6% of patients outside of monotherapy PD-(L)1 approved tumor types are IRS-High/TMB-Low. CONCLUSIONS The validated, predictive, pan-tumor IRS model can expand PD-(L)1 monotherapy benefit outside currently approved indications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark E Burkard
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Eddy Shih-Hsin Yang
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | | | - E Claire Dees
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Adedayo A Onitilo
- Cancer Care and Research Center, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Michael Thompson
- Aurora Cancer Care, Advocate Aurora Health, Milwaukee, WI, USA
- Tempus Labs, Chicago, IL, USA
| | | | - Alan M Miller
- SCL Health-CO, Broomfield, CO, USA
- Translational Drug Development, Scottsdale, USA
| | | | | | | | - Leon C Hwang
- Kaiser Permanente of the Mid-Atlantic States, Rockville, MD, USA
| | - J Marie Suga
- Kaiser Permanente Northern California, Vallejo, CA, USA
| | - Robert Siegel
- Bon Secours St. Francis Cancer Center, Greenville, SC, USA
| | | | - Suresh Nair
- Lehigh Valley Topper Cancer Institute, Allentown, PA, USA
| | | | | | - Jamil Khatri
- ChristianaCare Oncology Hematology, Newark, DE, USA
| | - Gregory Masters
- Medical Oncology Hematology Consultants, Helen F Graham Cancer Center and Research Institute,, Newark, DE, USA
| | - Sachdev Thomas
- Kaiser Permanente - Northern California, Oakland, CA, USA
| | | | - Daniel M Anderson
- Metro-Minnesota Community Oncology Research Consortium, St. Louis Park, MN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Current and Future Biomarkers in the Management of Renal Cell Carcinoma. Urol Clin North Am 2023; 50:151-159. [DOI: 10.1016/j.ucl.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Bai J, Shi J, Zhang Y, Li C, Xiong Y, Koka H, Wang D, Zhang T, Song L, Luo W, Zhu B, Hicks B, Hutchinson A, Kirk E, Troester MA, Li M, Shen Y, Ma T, Wang J, Liu X, Wang S, Gui S, McMaster ML, Chanock SJ, Parry DM, Goldstein AM, Yang XR. Gene Expression Profiling Identifies Two Chordoma Subtypes Associated with Distinct Molecular Mechanisms and Clinical Outcomes. Clin Cancer Res 2023; 29:261-270. [PMID: 36260525 PMCID: PMC11293090 DOI: 10.1158/1078-0432.ccr-22-1865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Chordoma is a rare bone tumor with a high recurrence rate and limited treatment options. The aim of this study was to identify molecular subtypes of chordoma that may improve clinical management. EXPERIMENTAL DESIGN We conducted RNA sequencing in 48 tumors from patients with Chinese skull-base chordoma and identified two major molecular subtypes. We then replicated the classification using a NanoString panel in 48 patients with chordoma from North America. RESULTS Tumors in one subtype were more likely to have somatic mutations and reduced expression in chromatin remodeling genes, such as PBRM1 and SETD2, whereas the other subtype was characterized by the upregulation of genes in epithelial-mesenchymal transition and Sonic Hedgehog pathways. IHC staining of top differentially expressed genes between the two subtypes in 312 patients with Chinese chordoma with long-term follow-up data showed that the expression of some markers such as PTCH1 was significantly associated with survival outcomes. CONCLUSIONS Our findings may improve the understanding of subtype-specific tumorigenesis of chordoma and inform clinical prognostication and targeted options.
Collapse
Affiliation(s)
- Jiwei Bai
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Yazhuo Zhang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Yujia Xiong
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Erin Kirk
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Melissa A. Troester
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Mingxuan Li
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Yutao Shen
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Tianshun Ma
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Junmei Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Xing Liu
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Shuai Wang
- Beijing Neurosurgery Institute, Capital Medical University, Beijing, 100070, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
48
|
Yu L, Ding L, Wang ZY, Zhao XZ, Wang YH, Liang C, Li J. Hybrid Metabolic Activity-Related Prognostic Model and Its Effect on Tumor in Renal Cell Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1147545. [PMID: 36591111 PMCID: PMC9797315 DOI: 10.1155/2022/1147545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Background Tumor cells with a hybrid metabolic state, in which glycolysis and oxidative phosphorylation (OXPHOS) can be used, usually have a strong ability to adapt to different stress environments due to their metabolic plasticity. However, few studies on tumor cells with this phenotype have been conducted in the field of renal cell carcinoma (RCC). Methods The metabolic pathway (glycolysis, OXPHOS) related gene sets were obtained from the Molecular Signatures Database (V7.5.1). The gene expression matrix, clinical information, and mutation data were obtained by Perl programming language (5.32.0) mining, the Cancer Genome Atlas and International Cancer Genome Consortium database. Gene Set Enrichment Analysis (GSEA) software (4.0.3) was utilised to analyse glycolysis-related gene sets. Analysis of survival, immune infiltration, mutation, etc. was performed using the R programming language (4.1.0). Results Eight genes that are highly associated with glycolysis and OXHPOS were used to construct the cox proportional hazards model, and risk scores were calculated based on this to predict the prognosis of clear cell RCC patients and to classify patients into risk groups. Gene Ontology, the Kyoto Encyclopaedia of Genes and Genomes, and GSEA were analysed according to the differential genes to investigate the signal pathways related to the hybrid metabolic state. Immunoinfiltration analysis revealed that CD8+T cells, M2 macrophages, etc., had significant differences in infiltration. In addition, the analysis of mutation data showed significant differences in the number of mutations of PBRM1, SETD2, and BAP1 between groups. Cell experiments demonstrated that the DLD gene expression was abnormally high in various tumor cells and is associated with the strong migration ability of RCC. Conclusions We successfully constructed a risk score system based on glycolysis and OXPHOS-related genes to predict the prognosis of RCC patients. Bioinformatics analysis and cell experiments also revealed the effect of the hybrid metabolic activity on the migration ability and immune activity of RCC and the possible therapeutic targets for patients.
Collapse
Affiliation(s)
- Lei Yu
- Department of Urology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Ding
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhong-Yuan Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing-Zhi Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Hao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Golkaram M, Kuo F, Gupta S, Carlo MI, Salmans ML, Vijayaraghavan R, Tang C, Makarov V, Rappold P, Blum KA, Zhao C, Mehio R, Zhang S, Godsey J, Pawlowski T, DiNatale RG, Morris LGT, Durack J, Russo P, Kotecha RR, Coleman J, Chen YB, Reuter VE, Motzer RJ, Voss MH, Liu L, Reznik E, Chan TA, Hakimi AA. Spatiotemporal evolution of the clear cell renal cell carcinoma microenvironment links intra-tumoral heterogeneity to immune escape. Genome Med 2022; 14:143. [PMID: 36536472 PMCID: PMC9762114 DOI: 10.1186/s13073-022-01146-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Intratumoral heterogeneity (ITH) is a hallmark of clear cell renal cell carcinoma (ccRCC) that reflects the trajectory of evolution and influences clinical prognosis. Here, we seek to elucidate how ITH and tumor evolution during immune checkpoint inhibitor (ICI) treatment can lead to therapy resistance. METHODS Here, we completed a single-arm pilot study to examine the safety and feasibility of neoadjuvant nivolumab in patients with localized RCC. Primary endpoints were safety and feasibility of neoadjuvant nivolumab. Then, we spatiotemporally profiled the genomic and immunophenotypic characteristics of 29 ccRCC patients, including pre- and post-therapy samples from 17 ICI-treated patients. Deep multi-regional whole-exome and transcriptome sequencing were performed on 29 patients at different time points before and after ICI therapy. T cell repertoire was also monitored from tissue and peripheral blood collected from a subset of patients to study T cell clonal expansion during ICI therapy. RESULTS Angiogenesis, lymphocytic infiltration, and myeloid infiltration varied significantly across regions of the same patient, potentially confounding their utility as biomarkers of ICI response. Elevated ITH associated with a constellation of both genomic features (HLA LOH, CDKN2A/B loss) and microenvironmental features, including elevated myeloid expression, reduced peripheral T cell receptor (TCR) diversity, and putative neoantigen depletion. Hypothesizing that ITH may itself play a role in shaping ICI response, we derived a transcriptomic signature associated with neoantigen depletion that strongly associated with response to ICI and targeted therapy treatment in several independent clinical trial cohorts. CONCLUSIONS These results argue that genetic and immune heterogeneity jointly co-evolve and influence response to ICI in ccRCC. Our findings have implications for future biomarker development for ICI response across ccRCC and other solid tumors and highlight important features of tumor evolution under ICI treatment. TRIAL REGISTRATION The study was registered on ClinicalTrial.gov (NCT02595918) on November 4, 2015.
Collapse
Affiliation(s)
- Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria I Carlo
- Department of Medicine, Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, NY, 10065, USA
| | | | | | - Cerise Tang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Vlad Makarov
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Phillip Rappold
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyle A Blum
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chen Zhao
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Rami Mehio
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Shile Zhang
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Jim Godsey
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Traci Pawlowski
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Luc G T Morris
- Department of Surgery, Head & Neck Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeremy Durack
- Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ritesh R Kotecha
- Department of Medicine, Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, NY, 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert J Motzer
- Department of Medicine, Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, NY, 10065, USA
| | - Martin H Voss
- Department of Medicine, Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, NY, 10065, USA
| | - Li Liu
- Illumina, Inc., 5200 Illumina Way, San Diego, CA, 92122, USA.
| | - Ed Reznik
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- National Center for Regenerative Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - A Ari Hakimi
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
50
|
Renal Carcinoma and Angiogenesis: Therapeutic Target and Biomarkers of Response in Current Therapies. Cancers (Basel) 2022; 14:cancers14246167. [PMID: 36551652 PMCID: PMC9776425 DOI: 10.3390/cancers14246167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the aberrant hypervascularization and the high immune infiltration of renal tumours, current therapeutic regimens of renal cell carcinoma (RCC) target angiogenic or immunosuppressive pathways or both. Tumour angiogenesis plays an essential role in tumour growth and immunosuppression. Indeed, the aberrant vasculature promotes hypoxia and can also exert immunosuppressive functions. In addition, pro-angiogenic factors, including VEGF-A, have an immunosuppressive action on immune cells. Despite the progress of treatments in RCC, there are still non responders or acquired resistance. Currently, no biomarkers are used in clinical practice to guide the choice between the different available treatments. Considering the role of angiogenesis in RCC, angiogenesis-related markers are interesting candidates. They have been studied in the response to antiangiogenic drugs (AA) and show interest in predicting the response. They have been less studied in immunotherapy alone or combined with AA. In this review, we will discuss the role of angiogenesis in tumour growth and immune escape and the place of angiogenesis-targeted biomarkers to predict response to current therapies in RCC.
Collapse
|