1
|
Sweetlove LJ, Ratcliffe RG, Fernie AR. Non-canonical plant metabolism. NATURE PLANTS 2025; 11:696-708. [PMID: 40164785 DOI: 10.1038/s41477-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Metabolism is essential for plant growth and has become a major target for crop improvement by enhancing nutrient use efficiency. Metabolic engineering is also the basis for producing high-value plant products such as pharmaceuticals, biofuels and industrial biochemicals. An inherent problem for such engineering endeavours is the tendency to view metabolism as a series of distinct metabolic pathways-glycolysis, the tricarboxylic acid cycle, the Calvin-Benson cycle and so on. While these canonical pathways may represent a dominant or frequently occurring flux mode, systematic analyses of metabolism via computational modelling have emphasized the inherent flexibility of the metabolic network to carry flux distributions that are distinct from the canonical pathways. Recent experimental estimates of metabolic network fluxes using 13C-labelling approaches have revealed numerous instances in which non-canonical pathways occur under different conditions and in different tissues. In this Review, we bring these non-canonical pathways to the fore, summarizing the evidence for their occurrence and the context in which they operate. We also emphasize the importance of non-canonical pathways for metabolic engineering. We argue that the introduction of a high-flux pathway to a desired metabolic product will, by necessity, require non-canonical supporting fluxes in central metabolism to provide the necessary carbon skeletons, energy and reducing power. We illustrate this using the overproduction of isoprenoids and fatty acids as case studies.
Collapse
Affiliation(s)
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Qin X, Guo J, Li H, He H, Cai F, Chen X, Chen M, Chen T, Ma L. Selenium Electrophilic Center Responsive to Biological Electron Donors for Efficient Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412062. [PMID: 39950936 PMCID: PMC11984860 DOI: 10.1002/advs.202412062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/24/2024] [Indexed: 04/12/2025]
Abstract
Designing drugs to intelligently respond to different ratio of biological electron donors/receptors in cancer cells and normal cells is a promising strategy to achieve highly effective and less toxic chemotherapy. Herein by employing metal center to active the selenium-containing electrophilic center drug Ru(phtpy-NO2)(phenSe)Cl (RuSe) with strongly polarization characteristics are synthesized which can efficiently shuttle electrons from biological electron donors to convert to oxidative stress. The rate of electron transfer at the selenium electrophilic center is 1.81 times higher in cancer cell environments compared to normal cell environments. This results in the selenium electrophilic center being 14.98 times more lethal to cancer cells than to normal cells. Experimental results demonstrate that the transport of electrons process is carried out via selenium radicals intermediate and the rate of electron transport is positively correlated with the polarization properties of the electrophilic center atoms. The selenium electrophilic center transports bioactive electrons to generate a large number of superoxide anions leading to DNA damage and a decrease in mitochondrial membrane potential which further activates the p53 signaling pathway and amplifies the cancer cell-killing effect after transporting bioactive electrons. This work provides a new avenue for the design of efficient and less toxic chemotherapeutic agents.
Collapse
Affiliation(s)
- Xiaoyu Qin
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Junxian Guo
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Hui Li
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Hanlong He
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Fei Cai
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Xinyan Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Mingkai Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Tianfeng Chen
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| | - Li Ma
- Department of Pharmacy and General Surgery of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), College of Chemistry and Materials Science, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionJinan UniversityGuangzhou510632China
| |
Collapse
|
3
|
Ren Y, Han Y, Zhou Y, Yu P, Chen Y, Wei L, Zhang B, Zou T, Yang Z, Chen R, Liu X, Ma H, Cheng Y. Chloroplast-targeting gold nanoclusters promoting leafy and fruit vegetables yields through improving photosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109852. [PMID: 40168860 DOI: 10.1016/j.plaphy.2025.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Low solar energy utilization and reactive oxygen species (ROS) accumulation limit the growth of photosynthetic plants, including leafy and fruit vegetables. Herein, we developed chloroplast-targeted peptide-modified bovine serum albumin-gold nanoclusters (TBSA-Au NCs) for improving vegetable yields. The incorporation of chloroplast-targeted peptide could effectively improve the binding ability of Au NCs whether by foliar spraying or root fertilization. After being accumulated in chloroplast, on the one hand, TBSA-Au NCs can absorb sunlight and emit red light to activate photosystem I and photosystem II through fluorescence resonance energy transfer, improving photosynthetic efficacy; on the other hand, they could effectively scarify ROS due to their radical scavenging capacities, further promoting plant growth. Taken Romaine lettuce and tomato as model plants, in foliar spraying Romaine lettuce, TBSA-Au NCs could promote the dry weight of leaves by 1.29 and 1.58 times compared to BSA-Au NCs and the control group, and 1.30 and 1.63 times in root fertilization Romaine lettuce, respectively. The net photosynthesis efficiency (Pn) in tomato leaves, which was 1.18 and 2.61 times of the BSA-Au NCs and the control group. Furthermore, lettuce leaves and tomato fruit juice from TBSA-Au treated vegetables show well biocompatibility against mice. This study develops a multifunctional photosynthetic synergist for effectively boosting crop yield.
Collapse
Affiliation(s)
- Yiping Ren
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yu Han
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yunzhu Zhou
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Pengcheng Yu
- School of Materials Science and Engineering, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun, 130022, PR China
| | - Yining Chen
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Liqi Wei
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Biao Zhang
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Tianshu Zou
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Zhiqi Yang
- School of Materials Science and Engineering, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun, 130022, PR China
| | - Rui Chen
- School of Materials Science and Engineering, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun, 130022, PR China
| | - Xin Liu
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Hongxia Ma
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yan Cheng
- College of Life Science, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
4
|
Zhang W, Munyaneza V, Wang D, Huang C, Wu S, Han M, Wang X, Kant S, Ding G. Partial replacement by ammonium nutrition enhances Brassica napus growth by promoting root development, photosynthesis, and nitrogen metabolism. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154411. [PMID: 39721300 DOI: 10.1016/j.jplph.2024.154411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Nitrogen (N) is crucial for plant growth, available primarily as nitrate (NO3-) and ammonium (NH4+). However, its presence in soil is often limited, necessitating strategies to augment N availability. This study delves into the enigmatic interplay between NO3- and NH4+ in fostering the growth of Brassica napus, an important oil crop worldwide. Here, we examined the growth responses of 49 B. napus varieties to five NH4+:NO3- ratios (12:0, 9:3, 3:9, 1:11, 0:12). In general, the biomass of 49 rapeseed varieties increased with the decrease of NH4+ to NO3- ratios in the growth environment. However, different varieties may respond diversely to the mixed N sources, or sole NO3- or NH4+ condition. For some cultivars, the mixed N supply significantly enhanced the plant growth compared with the sole NO3- conditions. Thus, we further investigate the morphological, physiological and molecular response of rapeseed to the mixed N source condition using sole NO3- as a control. The results show that partial replacement by ammonium nutrition in the environment can promote rapeseed root development, net photosynthetic rate and NO3- reduction compared to NO3--only conditions. Using transcriptome analysis, we found a total of 399 and 465 genes which were differentially expressed in root and shoot under A1N11 compared to A0N12 treatments, respectively. Genes involved in photosynthesis, N uptake and assimilation were upregulated by mixed N supplies. These findings highlight that the mixed N supply primarily stimulates B. napus growth by enhancing root development, photosynthesis and N metabolism in the shoot. Such insights are crucial for optimizing N form selection in B. napus to enhance plant performance and N use efficiency.
Collapse
Affiliation(s)
- Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Dandan Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Chenfeng Huang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Siyuan Wu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Mingcun Han
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, PR China
| | - Surya Kant
- School of Agriculture, Biomedicine & Environment, La Trobe University, AgriBio, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, PR China.
| |
Collapse
|
5
|
Chen G, Li Y, Jin K, Gao J, Wu S, Cui X, Mao C, Yin X, Lu T, Zhang Z. Synthetic photorespiratory bypass improves rice productivity by enhancing photosynthesis and nitrogen uptake. THE PLANT CELL 2024; 37:koaf015. [PMID: 39820482 PMCID: PMC11779382 DOI: 10.1093/plcell/koaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Photorespiration, often considered as a wasteful process, is a key target for bioengineering to improve crop yields. Several photorespiratory bypasses have been designed to efficiently metabolize 2-phosphoglycolate and increase the CO2 concentration in chloroplasts, thereby reducing photorespiration. However, the suppression of primary nitrate assimilation remains an issue when photorespiration is inhibited. In this study, we designed a carbon and nitrogen metabolism-coupled photorespiratory bypass, termed the GCBG bypass, in rice (Oryza sativa) chloroplasts. Our results demonstrated efficient assembly and expression of the GCBG bypass in rice chloroplasts, which affected the levels of typical metabolites and their derivatives of natural photorespiration and enhanced the photosynthetic efficiency. Metabolomic analyses revealed that oxaloacetate, produced from glycolate in chloroplasts, positively impacted amino acid synthesis, energy metabolism, and sugar synthesis. The engineered GCBG plants showed an average yield increase of 19.0% (17.8% to 20.2%) compared with wild-type plants under natural growth conditions, alongside improved nitrogen uptake, which compensated for 44.1% of yield losses under nitrogen-limited conditions. In summary, the GCBG bypass substantially improved the photosynthetic efficiency, biomass, and yield in rice by integrating carbon and nitrogen metabolism. This study introduces a strategy for engineering high-yielding rice or other crops with improved photosynthetic efficiency and nitrogen uptake.
Collapse
Affiliation(s)
- Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yanni Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, 6700 AK Wageningen, The Netherlands
| | - Jiabei Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Suting Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinyou Yin
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, 6700 AK Wageningen, The Netherlands
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
6
|
Chen X, Song Y, Ling C, Shen Y, Zhan X, Xing B. Fate of emerging antibiotics in soil-plant systems: A case on fluoroquinolones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175487. [PMID: 39153616 DOI: 10.1016/j.scitotenv.2024.175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Fluoroquinolones (FQs), a class of broad-spectrum antibiotics widely used to treat human and animal diseases globally, have limited adsorption and are often excreted unchanged or as metabolites. These compounds enter the soil environment through feces, urban wastewater, or discharge of biological solids. The fluorine atoms in FQs impart high electronegativity, chemical stability, and resistance to microbial degradation, allowing them to potentially enter food chains. The persistence of FQs in soils raises questions about their impacts on plant growth, an aspect not yet conclusively determined. We reviewed whether, like other organic compounds, FQs are actively absorbed by plants, resulting in bioaccumulation and posing threats to human health. The influx of FQs has led to antibiotic resistance in soil microbes by exerting selective pressure and contributing to multidrug-resistant bacteria. Therefore, the environmental risks of FQs warrant further attention. This work provides a comprehensive review of the fate and behavior of FQs at the plant-environment interface, their migration and transport from the environment into plants, and associated toxicity. Current limitations in research are discussed and prospects for future investigations outlined. Thus, understanding antibiotic behavior in plants and translocation within tissues is not only crucial for ecosystem health (plant health), but also assessing potential human health risks. In addition, it can offer insights into the fate of emerging soil pollutants in plant-soil systems.
Collapse
Affiliation(s)
- Xiaohan Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yixuan Song
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Ling
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Shen
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
7
|
Liu J, Chustecki JM, Lim BL. Dynamic motion of mitochondria, plastids, and NAD(P)H zoning in Arabidopsis pollen tubes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109132. [PMID: 39316923 DOI: 10.1016/j.plaphy.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Pollen tubes consume a tremendous amount of energy and are the fastest-growing cells known in plants. Mitochondria are key organelles that supply energy and play important roles in modulating cellular redox homeostasis. Here, we found that endogenous NAD(P)H in Arabidopsis pollen tubes was spatially highly correlated with the distribution of mitochondria, both peaking in the subapex region. A weak association was also observed between the NAD(P)H levels and pollen plastids. Further studies using Class XI myosin mutants confirmed that altered mitochondrial distribution and trafficking concomitantly affected intracellular NAD(P)H zoning in pollen tubes. By targeting the NADPH- and NADH/NAD+-specific biosensors to the pollen tube cytosol of the myo11c1/myo11c2 double mutants, we showed that the growing pollen tubes in the double mutants possessed a lower level of cytosolic NADPH but a higher cytosolic NADH/NAD+ ratio than the WT. We also found that the knockout of Myo11C1 and Myo11C2 led to fragmented mitochondria with reduced motility. Therefore, altered cytosolic NAD(P)H levels may be secondary to changes in mitochondrial mobility, positioning, or morphology. Our results suggest that the spatial distribution and movement of mitochondria and plastids affect NAD(P)H zoning in Arabidopsis growing pollen tubes and that their movements depend on Class XI myosins.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong China
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong China.
| |
Collapse
|
8
|
Jang JH, Kim DB, Choi Y, Amir R, Cheong DE, Chung HJ, Ahn SH, Kim GJ, Lee DW, Lee OR, Kim ES. Real-time monitoring of stromal NADPH levels in Arabidopsis using a metagenome-derived NADPH-binding fluorescent protein. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109260. [PMID: 39509737 DOI: 10.1016/j.plaphy.2024.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The light irradiation to the plant chloroplasts drives NADPH and ATP synthesis in the stroma via the electron transport chains within the thylakoid membranes. Conventional methods for assessing photosynthetic light reactions are often invasive or require specific conditions. While detection markers do not significantly affect plant growth itself, developing a method for the real-time and non-invasive detection of NADPH is a highly impactful and important research area in plant physiology and biochemistry. This study introduces a genetically encoded NADPH-binding blue fluorescent protein (mBFP) targeted to the chloroplast stroma or thylakoid membrane in Arabidopsis thaliana and Nicotiana benthamiana. Using two-photon microscopy, we monitored real-time stromal NADPH levels in transgenic leaves of Arabidopsis in response to light exposure. A mutant mBFP construct targeted to the thylakoid membrane allowed us to detect the stromal NADPH levels in real time under different light conditions. This in planta biosensor provides a non-invasive tool for studying photosynthetic responses to light more quantitatively and holds potential for optimizing light conditions in controlled-environment agriculture, such as indoor vertical farms, to improve crop productivity.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Da Been Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeonsu Choi
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Roshanzadeh Amir
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dae-Eun Cheong
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju, 61751, Republic of Korea
| | - Sun-Hee Ahn
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute, Gwangju, 61007, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong Wook Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea; Research Center of Ecomimetics, Chonnam National University, Gwangju, 61186, Republic of Korea; Research Center of Next-Generation Sensors, Institute of Sustainable Ecological Environment, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Degen GE, Johnson MP. Photosynthetic control at the cytochrome b6f complex. THE PLANT CELL 2024; 36:4065-4079. [PMID: 38668079 PMCID: PMC11449013 DOI: 10.1093/plcell/koae133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/18/2024] [Indexed: 10/05/2024]
Abstract
Photosynthetic control (PCON) is a protective mechanism that prevents light-induced damage to PSI by ensuring the rate of NADPH and ATP production via linear electron transfer (LET) is balanced by their consumption in the CO2 fixation reactions. Protection of PSI is a priority for plants since they lack a dedicated rapid-repair cycle for this complex, meaning that any damage leads to prolonged photoinhibition and decreased growth. The imbalance between LET and the CO2 fixation reactions is sensed at the level of the transthylakoid ΔpH, which increases when light is in excess. The canonical mechanism of PCON involves feedback control by ΔpH on the plastoquinol oxidation step of LET at cytochrome b6f. PCON thereby maintains the PSI special pair chlorophylls (P700) in an oxidized state, which allows excess electrons unused in the CO2 fixation reactions to be safely quenched via charge recombination. In this review we focus on angiosperms, consider how photo-oxidative damage to PSI comes about, explore the consequences of PSI photoinhibition on photosynthesis and growth, discuss recent progress in understanding PCON regulation, and finally consider the prospects for its future manipulation in crop plants to improve photosynthetic efficiency.
Collapse
Affiliation(s)
- Gustaf E Degen
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Matthew P Johnson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
10
|
Balcke GU, Vahabi K, Giese J, Finkemeier I, Tissier A. Coordinated metabolic adaptation of Arabidopsis thaliana to high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:387-405. [PMID: 39175460 DOI: 10.1111/tpj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
SUMMARYIn plants, exposure to high light irradiation induces various stress responses, which entail complex metabolic rearrangements. To explore these dynamics, we conducted time‐course experiments spanning 2 min to 72 h with Arabidopsis thaliana under high and control light. Comparative metabolomics, transcriptomics, redox proteomics, and stable isotope labeling on leaf rosettes identified a series of synchronous and successive responses that provide a deeper insight into well‐orchestrated mechanisms contributing to high‐light acclimation. We observed transient transcriptome downregulation related to light harvesting and electron flow before the profound remodeling of the photosynthetic apparatus. Throughout the entire time course, redox homeostasis is tightly balanced between downregulation of production and enhanced transformation of NADPH accompanied by redistribution of reducing equivalents across several subcellular compartments. In both light conditions, C4 acids such as malate and fumarate are produced via anaplerosis. In carbon units, their accumulation in vacuoles surpasses plastidic levels of starch and intensifies notably under high light. In parallel, citrate synthesis from pyruvate is significantly hindered diurnally. Isotopic labeling in 2‐oxoglutarate and glutamate suggests a moderate de novo synthesis of C5 acids from a vacuolar citrate reservoir during the light phase while they are largely renewed during the night. In the absence of a diurnal clockwise flow through the tricarboxylic acid (TCA) cycle, increased oxidation of photorespiratory glycine takes over as a source of reductants to fuel mitochondrial ATP production. These findings, along with previous research, contribute to a model integrating redox balance and linking increased carbon assimilation and nitrogen metabolism, especially in the context of an incomplete TCA cycle.
Collapse
Affiliation(s)
- Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Jonas Giese
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
11
|
Müller-Schüssele SJ. Chloroplast thiol redox dynamics through the lens of genetically encoded biosensors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5312-5324. [PMID: 38401159 DOI: 10.1093/jxb/erae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
Chloroplasts fix carbon by using light energy and have evolved a complex redox network that supports plastid functions by (i) protecting against reactive oxygen species and (ii) metabolic regulation in response to environmental conditions. In thioredoxin- and glutathione/glutaredoxin-dependent redox cascades, protein cysteinyl redox steady states are set by varying oxidation and reduction rates. The specificity and interplay of these different redox-active proteins are still under investigation, for example to understand how plants cope with adverse environmental conditions by acclimation. Genetically encoded biosensors with distinct specificity can be targeted to subcellular compartments such as the chloroplast stroma, enabling in vivo real-time measurements of physiological parameters at different scales. These data have provided unique insights into dynamic behaviours of physiological parameters and redox-responsive proteins at several levels of the known redox cascades. This review summarizes current applications of different biosensor types as well as the dynamics of distinct protein cysteinyl redox steady states, with an emphasis on light responses.
Collapse
|
12
|
Vera-Vives AM, Novel P, Zheng K, Tan SL, Schwarzländer M, Alboresi A, Morosinotto T. Mitochondrial respiration is essential for photosynthesis-dependent ATP supply of the plant cytosol. THE NEW PHYTOLOGIST 2024; 243:2175-2186. [PMID: 39073122 DOI: 10.1111/nph.19989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
Plants rely on solar energy to synthesize ATP and NADPH for photosynthetic carbon fixation and all cellular need. Mitochondrial respiration is essential in plants, but this may be due to heterotrophic bottlenecks during plant development or because it is also necessary in photosynthetically active cells. In this study, we examined in vivo changes of cytosolic ATP concentration in response to light, employing a biosensing strategy in the moss Physcomitrium patens and revealing increased cytosolic ATP concentration caused by photosynthetic activity. Plants depleted of respiratory Complex I showed decreased cytosolic ATP accumulation, highlighting a critical role of mitochondrial respiration in light-dependent ATP supply of the cytosol. Consistently, targeting mitochondrial ATP production directly, through the construction of mutants deficient in mitochondrial ATPase (complex V), led to drastic growth reduction, despite only minor alterations in photosynthetic electron transport activity. Since P. patens is photoautotrophic throughout its development, we conclude that heterotrophic bottlenecks cannot account for the indispensable role of mitochondrial respiration in plants. Instead, our results support that mitochondrial respiration is essential for ATP provision to the cytosol in photosynthesizing cells. Mitochondrial respiration provides metabolic integration, ensuring supply of cytosolic ATP essential for supporting plant growth and development.
Collapse
Affiliation(s)
- Antoni M Vera-Vives
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Piero Novel
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Shun-Ling Tan
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, Münster, D-48143, Germany
| | - Alessandro Alboresi
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, Padova, 35131, Italy
| |
Collapse
|
13
|
Ding N, Yuan Z, Sun L, Yin L. Dynamic and Static Regulation of Nicotinamide Adenine Dinucleotide Phosphate: Strategies, Challenges, and Future Directions in Metabolic Engineering. Molecules 2024; 29:3687. [PMID: 39125091 PMCID: PMC11314019 DOI: 10.3390/molecules29153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial cofactor in metabolic networks. The efficient regeneration of NADPH is one of the limiting factors for productivity in biotransformation processes. To date, many metabolic engineering tools and static regulation strategies have been developed to regulate NADPH regeneration. However, traditional static regulation methods often lead to the NADPH/NADP+ imbalance, causing disruptions in cell growth and production. These methods also fail to provide real-time monitoring of intracellular NADP(H) or NADPH/NADP+ levels. In recent years, various biosensors have been developed for the detection, monitoring, and dynamic regulate of the intracellular NADP(H) levels or the NADPH/NADP+ balance. These NADPH-related biosensors are mainly used in the cofactor engineering of bacteria, yeast, and mammalian cells. This review analyzes and summarizes the NADPH metabolic regulation strategies from both static and dynamic perspectives, highlighting current challenges and potential solutions, and discusses future directions for the advanced regulation of the NADPH/NADP+ balance.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Zenan Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (L.S.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
14
|
Li J, Lardon R, Mangelinckx S, Geelen D. A practical guide to the discovery of biomolecules with biostimulant activity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3797-3817. [PMID: 38630561 DOI: 10.1093/jxb/erae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
The growing demand for sustainable solutions in agriculture, which are critical for crop productivity and food quality in the face of climate change and the need to reduce agrochemical usage, has brought biostimulants into the spotlight as valuable tools for regenerative agriculture. With their diverse biological activities, biostimulants can contribute to crop growth, nutrient use efficiency, and abiotic stress resilience, as well as to the restoration of soil health. Biomolecules include humic substances, protein lysates, phenolics, and carbohydrates have undergone thorough investigation because of their demonstrated biostimulant activities. Here, we review the process of the discovery and development of extract-based biostimulants, and propose a practical step-by-step pipeline that starts with initial identification of biomolecules, followed by extraction and isolation, determination of bioactivity, identification of active compound(s), elucidation of mechanisms, formulation, and assessment of effectiveness. The different steps generate a roadmap that aims to expedite the transfer of interdisciplinary knowledge from laboratory-scale studies to pilot-scale production in practical scenarios that are aligned with the prevailing regulatory frameworks.
Collapse
Affiliation(s)
- Jing Li
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Robin Lardon
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Danny Geelen
- HortiCell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Wang Y, Cui Y, Li J, Xu N, Shi T, Sun Y, Zhang C. Glyphosate hormesis stimulates tomato (Solanum lycopersicum L.) plant growth and enhances tolerance against environmental abiotic stress by triggering nonphotochemical quenching. PEST MANAGEMENT SCIENCE 2024; 80:3628-3639. [PMID: 38456569 DOI: 10.1002/ps.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glyphosate is the most widely applied herbicide in the world. Hormesis caused by low glyphosate doses has been widely documented in many plant species. However, the specific adaptative mechanism of plants responding to glyphosate hormesis stimulation remains unclear. This study focused on the biphasic relationship between glyphosate dose and tomato plant growth, and how glyphosate hormesis stimulates plant growth and enhances tolerance to environmental stress. RESULTS We constructed a hormesis model to describe the biphasic relationship with a maximal stimulation (MAX) of 162% above control by glyphosate at 0.063 g ha-1. Low-dose glyphosate increased photosynthetic pigment contents and improve photosynthetic efficiency, leading to plant growth stimulation. We also found that glyphosate hormesis enhanced plant tolerance to diuron (DCMU; a representative photosynthesis inhibitor) by triggering the nonphotochemical chlorophyll fluorescence quenching (NPQ) reaction to dissipate excess energy stress from photosystem II (PSII). Transcriptomic analysis and quantitative real-time polymerase chain reaction results revealed that the photosynthesis-antenna proteins pathway was the most sensitive to glyphosate hormesis, and PsbS (encoding photosystem II subunit S), ZEP (encoding zeaxanthin epoxidase) and VDE (encoding violaxanthin de-epoxidase) involved in NPQ played crucial roles in the plant response to glyphosate hormesis. CONCLUSION These results provide novel insights into the mechanisms of plant hormesis and is meaningful to the application of glyphosate hormesis in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuru Wang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Yidi Cui
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Jing Li
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Nuo Xu
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
16
|
Timm S, Klaas N, Niemann J, Jahnke K, Alseekh S, Zhang Y, Souza PVL, Hou LY, Cosse M, Selinski J, Geigenberger P, Daloso DM, Fernie AR, Hagemann M. Thioredoxins o1 and h2 jointly adjust mitochondrial dihydrolipoamide dehydrogenase-dependent pathways towards changing environments. PLANT, CELL & ENVIRONMENT 2024; 47:2542-2560. [PMID: 38518065 DOI: 10.1111/pce.14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Nicole Klaas
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Janice Niemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Kathrin Jahnke
- Plant Physiology Department, University of Rostock, Rostock, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Youjun Zhang
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Paulo V L Souza
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Liang-Yu Hou
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Maike Cosse
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Christian-Albrechts University Kiel, Kiel, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Danilo M Daloso
- LabPlant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Rostock, Germany
| |
Collapse
|
17
|
Liu H, Sun R, Yang Y, Zhang C, Zhao G, Zhang K, Liang L, Huang X. Review on Microreactors for Photo-Electrocatalysis Artificial Photosynthesis Regeneration of Coenzymes. MICROMACHINES 2024; 15:789. [PMID: 38930759 PMCID: PMC11205774 DOI: 10.3390/mi15060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In recent years, with the outbreak of the global energy crisis, renewable solar energy has become a focal point of research. However, the utilization efficiency of natural photosynthesis (NPS) is only about 1%. Inspired by NPS, artificial photosynthesis (APS) was developed and utilized in applications such as the regeneration of coenzymes. APS for coenzyme regeneration can overcome the problem of high energy consumption in comparison to electrocatalytic methods. Microreactors represent a promising technology. Compared with the conventional system, it has the advantages of a large specific surface area, the fast diffusion of small molecules, and high efficiency. Introducing microreactors can lead to more efficient, economical, and environmentally friendly coenzyme regeneration in artificial photosynthesis. This review begins with a brief introduction of APS and microreactors, and then summarizes research on traditional electrocatalytic coenzyme regeneration, as well as photocatalytic and photo-electrocatalysis coenzyme regeneration by APS, all based on microreactors, and compares them with the corresponding conventional system. Finally, it looks forward to the promising prospects of this technology.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Rui Sun
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, China;
| | - Yujing Yang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Chuanhao Zhang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Gaozhen Zhao
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Lijuan Liang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowen Huang
- Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China; (H.L.); (Y.Y.); (C.Z.); (G.Z.)
| |
Collapse
|
18
|
Hao Z, Guo S, Tu W, Wang Q, Wang J, Zhang X, He Y, Gao D. Piezoelectric Catalysis Induces Tumor Cell Senescence to Boost Chemo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309487. [PMID: 38197548 DOI: 10.1002/smll.202309487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Cellular senescence, a vulnerable state of growth arrest, has been regarded as a potential strategy to weaken the resistance of tumor cells, leading to dramatic improvements in treatment efficacy. However, a selective and efficient strategy for inducing local tumor cellular senescence has not yet been reported. Herein, piezoelectric catalysis is utilized to reduce intracellular NAD+ to NADH for local tumor cell senescence for the first time. In detail, a biocompatible nanomedicine (BTO/Rh-D@M) is constructed by wrapping the piezoelectric BaTiO3/(Cp*RhCl2)2 (BTO/Rh) and doxorubicin (DOX) in the homologous cytomembrane with tumor target. After tumors are stimulated by ultrasound, negative and positive charges are generated on the BTO/Rh by piezoelectric catalysis, which reduce the intracellular NAD+ to NADH for cellular senescence and oxidize H2O to reactive oxygen species (ROS) for mitochondrial damage. Thus, the therapeutic efficacy of tumor immunogenic cell death-induced chemo-immunotherapy is boosted by combining cellular senescence, DOX, and ROS. The results indicate that 23.9% of the piezoelectric catalysis-treated tumor cells senesced, and solid tumors in mice disappeared completely after therapy. Collectively, this study highlights a novel strategy to realize cellular senescence utilizing piezoelectric catalysis and the significance of inducing tumor cellular senescence to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Zining Hao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Shu Guo
- School of Vehicle and Energy, Yanshan University, Qinhuangdao, 066004, China
| | - Wenkang Tu
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Qiang Wang
- School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
19
|
Ishikawa K, Kodama Y. Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. PLANT & CELL PHYSIOLOGY 2024; 65:762-769. [PMID: 38466577 PMCID: PMC11138361 DOI: 10.1093/pcp/pcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
20
|
Lim SL, Liu J, Dupouy G, Singh G, Baudrey S, Yang L, Zhong JY, Chabouté ME, Lim BL. In planta imaging of pyridine nucleotides using second-generation fluorescent protein biosensors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38761168 DOI: 10.1111/tpj.16796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Redox changes of pyridine nucleotides in cellular compartments are highly dynamic and their equilibria are under the influence of various reducing and oxidizing reactions. To obtain spatiotemporal data on pyridine nucleotides in living plant cells, typical biochemical approaches require cell destruction. To date, genetically encoded fluorescent biosensors are considered to be the best option to bridge the existing technology gap, as they provide a fast, accurate, and real-time readout. However, the existing pyridine nucleotides genetically encoded fluorescent biosensors are either sensitive to pH change or slow in dissociation rate. Herein, we employed the biosensors which generate readouts that are pH stable for in planta measurement of NADH/NAD+ ratio and NADPH level. We generated transgenic Arabidopsis lines that express these biosensors in plastid stroma and cytosol of whole plants and pollen tubes under the control of CaMV 35S and LAT52 promoters, respectively. These transgenic biosensor lines allow us to monitor real-time dynamic changes in NADH/NAD+ ratio and NADPH level in the plastids and cytosol of various plant tissues, including pollen tubes, root hairs, and mesophyll cells, using a variety of fluorescent instruments. We anticipate that these valuable transgenic lines may allow improvements in plant redox biology studies.
Collapse
Affiliation(s)
- Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Gilles Dupouy
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Gaurav Singh
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Stéphanie Baudrey
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, UPR 9002, Strasbourg, 67000, France
| | - Lang Yang
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Zhou Y, Liu X, Liang X, Li H, Lai J, Liao Y, Liu K. Biochemical and metabolomics analyses reveal the mechanisms underlying ascorbic acid and chitosan coating mediated energy homeostasis in postharvest papaya fruit. Food Chem 2024; 439:138168. [PMID: 38103491 DOI: 10.1016/j.foodchem.2023.138168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Papaya is a climacteric fruit that undergoes rapid ripening and quality deterioration during postharvest storage, resulting in significant economic losses. This study employed biochemical techniques and targeted metabolomics to investigate the impact of exogenous AsA + CTS application on the energy metabolism regulation of papaya fruit during postharvest storage. We found that AsA + CTS treatment significantly increased the levels of key metabolic compounds and enzymes, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and the energy charge, as well as the succinic acid content and the activities of succinic dehydrogenase (SDH), cytochrome c oxidase (CCO), H+-ATPase, and Ca2+-ATPase. Moreover, AsA + CTS coating augmented the nicotinamide adenine dinucleotide kinase (NADK) activity and increased the NADH and NADPH concentrations. Regarding sugar metabolism, it increased the activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase and raised d-glucose-6-phosphate levels. These findings suggest that AsA + CTS coating application can mitigate the metabolic deterioration and sustain a primary metabolism homeostasis in papaya fruit by enhancing the tricarboxylic acid (TCA) cycle and pentose phosphate pathway (PPP), thereby preserving their quality attributes during postharvest storage.
Collapse
Affiliation(s)
- Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| | - Xiaocheng Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Xinyuan Liang
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Huangming Li
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Jiahui Lai
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Yiran Liao
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China.
| |
Collapse
|
22
|
Chen J, Yang L, Zhang H, Ruan J, Wang Y. Role of sugars in the apical hook development of Arabidopsis etiolated seedlings. PLANT CELL REPORTS 2024; 43:131. [PMID: 38656568 DOI: 10.1007/s00299-024-03217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, 264025, China.
| | - Hehua Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Junbin Ruan
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
23
|
Uflewski M, Rindfleisch T, Korkmaz K, Tietz E, Mielke S, Correa Galvis V, Dünschede B, Luzarowski M, Skirycz A, Schwarzländer M, Strand DD, Hertle AP, Schünemann D, Walther D, Thalhammer A, Wolff M, Armbruster U. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status. Nat Commun 2024; 15:2792. [PMID: 38555362 PMCID: PMC10981695 DOI: 10.1038/s41467-024-47151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.
Collapse
Affiliation(s)
- Michał Uflewski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Tobias Rindfleisch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
- Computational Biology Unit, Department of Chemistry, University of Bergen, Bergen, Norway
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Enrico Tietz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Sarah Mielke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Viviana Correa Galvis
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), Universität Münster, Schlossplatz 8, D-48143, Münster, Germany
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Alexander P Hertle
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Faculty of Biology and Biotechnology, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Martin Wolff
- Department of Physical Biochemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Potsdam, D-14476, Germany.
- Molecular Photosynthesis, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
24
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
25
|
Smith K, Strand DD, Kramer DM, Walker BJ. The role of photorespiration in preventing feedback regulation via ATP synthase in Nicotiana tabacum. PLANT, CELL & ENVIRONMENT 2024; 47:416-428. [PMID: 37937663 PMCID: PMC10842328 DOI: 10.1111/pce.14759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reductant than the C3 cycle meaning increased flux disproportionally increases ATP demand relative to reductant. Here we explore how energetic consumption from photorespiration impacts the flexibility of the light reactions in nicotiana tabacum. Specifically, we demonstrate that decreased photosynthetic efficiency (ϕII ) at low photorespiratory flux was related to feedback regulation at the chloroplast ATP synthase. Additionally, decreased ϕII at high photorespiratory flux resulted in the accumulation of photoinhibition at photosystem II centers. These results are contrary to the proposed role of photorespiration as a photoprotective electron sink. Instead, our results suggest a novel role of ATP consumption from photorespiration in maintaining ATP synthase activity, with implications for maintaining energy balance and preventing photodamage that will be critical for plant engineering strategies.
Collapse
Affiliation(s)
- Kaila Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Biotechnology for Health and Sustainability Program, Michigan State University, East Lansing, MI 48824, USA
| | - Deserah D Strand
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J. Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Zhang Y, Fan Y, Lv X, Zeng X, Zhang Q, Wang P. Deficiency in NDH-cyclic electron transport retards heat acclimation of photosynthesis in tobacco over day and night shift. FRONTIERS IN PLANT SCIENCE 2023; 14:1267191. [PMID: 38023894 PMCID: PMC10644794 DOI: 10.3389/fpls.2023.1267191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 12/01/2023]
Abstract
In order to cope with the impact of global warming and frequent extreme weather, thermal acclimation ability is particularly important for plant development and growth, but the mechanism behind is still not fully understood. To investigate the role of NADH dehydrogenase-like complex (NDH) mediated cyclic electron flow (CEF) contributing to heat acclimation, wild type (WT) tobacco (Nicotiana tabacum) and its NDH-B or NDH-C, J, K subunits deficient mutants (ΔB or ΔCJK) were grown at 25/20°C before being shifted to a moderate heat stress environment (35/30°C). The photosynthetic performance of WT and ndh mutants could all eventually acclimate to the increased temperature, but the acclimation process of ndh mutants took longer. Transcriptome profiles revealed that ΔB mutant exhibited distinct photosynthetic-response patterns and stress-response genes compared to WT. Metabolite analysis suggested over-accumulated reducing power and production of more reactive oxygen species in ΔB mutant, which were likely associated with the non-parallel recovery of CO2 assimilation and light reactions shown in ΔB mutant during heat acclimation. Notably, in the warm night periods that could happen in the field, NDH pathway may link to the re-balance of excess reducing power accumulated during daytime. Thus, understanding the diurnal cycle contribution of NDH-mediated CEF for thermal acclimation is expected to facilitate efforts toward enhanced crop fitness and survival under future climates.
Collapse
Affiliation(s)
- You Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanfei Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Lv
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiyu Zeng
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Chen Y, Shi J, Wu Y, Guo Z, Li S, Li W, Wu Z, Wang H, Jiang H, Jiang Z. NADH Photosynthesis System with Affordable Electron Supply and Inhibited NADH Oxidation. Angew Chem Int Ed Engl 2023; 62:e202310238. [PMID: 37665568 DOI: 10.1002/anie.202310238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 09/05/2023]
Abstract
Photosynthesis offers a green approach for the recycling of nicotinamide cofactors primarily NADH in bio-redox reactions. Herein, we report an NADH photosynthesis system where the oxidation of biomass derivatives is designed as an electron supply module (ESM) to afford electrons and superoxide dismutase/catalase (SOD/CAT) cascade catalysis is designed as a reactive oxygen species (ROS) elimination module (REM) to inhibit NADH degradation. Glucose as the electron donor guarantees the reaction sustainability accompanied with oxidative products of gluconic acid and formic acid. Meanwhile, enzyme cascades of SOD/CAT greatly eliminate ROS, leading to a ≈2.00-fold elevation of NADH yield (61.1 % vs. 30.7 %). The initial reaction rate and turnover frequency (TOF) increased by 2.50 times and 2.54 times, respectively, compared with those systems without REM. Our study establishes a novel and efficient platform for NADH photosynthesis coupled to biomass-to-chemical conversion.
Collapse
Affiliation(s)
- Yu Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 10090, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yizhou Wu
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China
| | - Zheyuan Guo
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Wenping Li
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhenhua Wu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Hongjian Wang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Haifei Jiang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
28
|
Xi Y, Cai J, Li G, Huang H, Peng X, Zhu G. High CO 2 facilitates fatty acid biosynthesis and mitigates cellular oxidative stress caused by CAC2 dysfunction in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1316-1330. [PMID: 37235700 DOI: 10.1111/tpj.16321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Increasing concentration of CO2 has significant impacts on many biological processes in plants, and its impact is closely associated with changes in the ratio of photosynthesis to photorespiration. Studies have reported that high CO2 can promote carbon fixing and alleviate plant oxidative damage in response to environmental stresses. However, the effect of high CO2 on fatty acid (FA) metabolism and cellular redox balance in FA-deficient plants is rarely reported. In this study, we identified a high-CO2 -requiring mutant cac2 through forward genetic screening. CAC2 encodes biotin carboxylase, which is one of the subunits of plastid acetyl-CoA carboxylase and participates in de novo FA biosynthesis. Null mutation of CAC2 is embryonic lethal. A point mutation of CAC2 in cac2 mutants produces severe defects in chloroplast development, plant growth and photosynthetic performance. These morphological and physiological defects were largely absent under high CO2 conditions. Metabolite analyses showed that FA contents in cac2-1 leaves were decreased, while photorespiratory metabolites, such as glycine and glycolate, did not significantly change. Meanwhile, cac2 exhibited higher reactive oxygen species (ROS) levels and mRNA expression of stress-responsive genes than the wild-type, indicating that cac2 plants may suffer oxidative stress under ambient CO2 conditions. Elevated CO2 significantly increased FA contents, especially C18:3-FA, and reduced ROS accumulation in cac2-1 leaves. We propose that stress mitigation by high CO2 in cac2 could be due to increased FA levels by promoting carbon assimilation, and the prevention of over-reduction due to decreased photorespiration.
Collapse
Affiliation(s)
- Yue Xi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jiajia Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ganting Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Haijian Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guohui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, China
| |
Collapse
|
29
|
Zhang Y, Fernie AR. The Role of TCA Cycle Enzymes in Plants. Adv Biol (Weinh) 2023; 7:e2200238. [PMID: 37341441 DOI: 10.1002/adbi.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/29/2023] [Indexed: 06/22/2023]
Abstract
As one of the iconic pathways in plant metabolism, the tricarboxylic acid (TCA) cycle is commonly thought to not only be responsible for the oxidization of respiratory substrate to drive ATP synthesis but also provide carbon skeletons to anabolic processes and contribute to carbon-nitrogen interaction and biotic stress responses. The functions of the TCA cycle enzymes are characterized by a saturation transgenesis approach, whereby the constituent expression of proteins is knocked out or reduced in order to investigate their function in vivo. The alteration of TCA cycle enzyme expression results in changed plant growth and photosynthesis under controlled conditions. Moreover, improvements in plant performance and postharvest properties are reported by overexpression of either endogenous forms or heterologous genes of a number of the enzymes. Given the importance of the TCA cycle in plant metabolism regulation, here, the function of each enzyme and its roles in different tissues are discussed. This article additionally highlights the recent finding that the plant TCA cycle, like that of mammals and microbes, dynamically assembles functional substrate channels or metabolons and discusses the implications of this finding to the current understanding of the metabolic regulation of the plant TCA cycle.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| |
Collapse
|
30
|
Molinari PE, Krapp AR, Zurbriggen MD, Carrillo N. Lighting the light reactions of photosynthesis by means of redox-responsive genetically encoded biosensors for photosynthetic intermediates. Photochem Photobiol Sci 2023; 22:2005-2018. [PMID: 37195389 DOI: 10.1007/s43630-023-00425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/17/2023] [Indexed: 05/18/2023]
Abstract
Oxygenic photosynthesis involves light and dark phases. In the light phase, photosynthetic electron transport provides reducing power and energy to support the carbon assimilation process. It also contributes signals to defensive, repair, and metabolic pathways critical for plant growth and survival. The redox state of components of the photosynthetic machinery and associated routes determines the extent and direction of plant responses to environmental and developmental stimuli, and therefore, their space- and time-resolved detection in planta becomes critical to understand and engineer plant metabolism. Until recently, studies in living systems have been hampered by the inadequacy of disruptive analytical methods. Genetically encoded indicators based on fluorescent proteins provide new opportunities to illuminate these important issues. We summarize here information about available biosensors designed to monitor the levels and redox state of various components of the light reactions, including NADP(H), glutathione, thioredoxin, and reactive oxygen species. Comparatively few probes have been used in plants, and their application to chloroplasts poses still additional challenges. We discuss advantages and limitations of biosensors based on different principles and propose rationales for the design of novel probes to estimate the NADP(H) and ferredoxin/flavodoxin redox poise, as examples of the exciting questions that could be addressed by further development of these tools. Genetically encoded fluorescent biosensors are remarkable tools to monitor the levels and/or redox state of components of the photosynthetic light reactions and accessory pathways. Reducing equivalents generated at the photosynthetic electron transport chain in the form of NADPH and reduced ferredoxin (FD) are used in central metabolism, regulation, and detoxification of reactive oxygen species (ROS). Redox components of these pathways whose levels and/or redox status have been imaged in plants using biosensors are highlighted in green (NADPH, glutathione, H2O2, thioredoxins). Analytes with available biosensors not tried in plants are shown in pink (NADP+). Finally, redox shuttles with no existing biosensors are circled in light blue. APX, ASC peroxidase; ASC, ascorbate; DHA, dehydroascorbate; DHAR, DHA reductase; FNR, FD-NADP+ reductase; FTR, FD-TRX reductase; GPX, glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; GSSG, oxidized glutathione; MDA, monodehydroascorbate; MDAR, MDA reductase; NTRC, NADPH-TRX reductase C; OAA, oxaloacetate; PRX, peroxiredoxin; PSI, photosystem I; PSII: photosystem II; SOD, superoxide dismutase; TRX, thioredoxin.
Collapse
Affiliation(s)
- Pamela E Molinari
- Instituto de Biología Molecular y Celular de Rosario (UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, Germany
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
31
|
Han SY, Kim WY, Kim JS, Hwang I. Comparative transcriptomics reveals the role of altered energy metabolism in the establishment of single-cell C 4 photosynthesis in Bienertia sinuspersici. FRONTIERS IN PLANT SCIENCE 2023; 14:1202521. [PMID: 37476170 PMCID: PMC10354284 DOI: 10.3389/fpls.2023.1202521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023]
Abstract
Single-cell C4 photosynthesis (SCC4) in terrestrial plants without Kranz anatomy involves three steps: initial CO2 fixation in the cytosol, CO2 release in mitochondria, and a second CO2 fixation in central chloroplasts. Here, we investigated how the large number of mechanisms underlying these processes, which occur in three different compartments, are orchestrated in a coordinated manner to establish the C4 pathway in Bienertia sinuspersici, a SCC4 plant. Leaves were subjected to transcriptome analysis at three different developmental stages. Functional enrichment analysis revealed that SCC4 cycle genes are coexpressed with genes regulating cyclic electron flow and amino/organic acid metabolism, two key processes required for the production of energy molecules in C3 plants. Comparative gene expression profiling of B. sinuspersici and three other species (Suaeda aralocaspica, Amaranthus hypochondriacus, and Arabidopsis thaliana) showed that the direction of metabolic flux was determined via an alteration in energy supply in peripheral chloroplasts and mitochondria via regulation of gene expression in the direction of the C4 cycle. Based on these results, we propose that the redox homeostasis of energy molecules via energy metabolism regulation is key to the establishment of the SCC4 pathway in B. sinuspersici.
Collapse
Affiliation(s)
- Sang-Yun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and Research Institute of Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
32
|
Ishikawa K, Xie X, Osaki Y, Miyawaki A, Numata K, Kodama Y. Bilirubin is produced nonenzymatically in plants to maintain chloroplast redox status. SCIENCE ADVANCES 2023; 9:eadh4787. [PMID: 37285441 DOI: 10.1126/sciadv.adh4787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Bilirubin, a potent antioxidant, is a product of heme catabolism in heterotrophs. Heterotrophs mitigate oxidative stress resulting from free heme by catabolism into bilirubin via biliverdin. Although plants also convert heme to biliverdin, they are generally thought to be incapable of producing bilirubin because they lack biliverdin reductase, the enzyme responsible for bilirubin biosynthesis in heterotrophs. Here, we demonstrate that bilirubin is produced in plant chloroplasts. Live-cell imaging using the bilirubin-dependent fluorescent protein UnaG revealed that bilirubin accumulated in chloroplasts. In vitro, bilirubin was produced nonenzymatically through a reaction between biliverdin and reduced form of nicotinamide adenine dinucleotide phosphate at concentrations comparable to those in chloroplasts. In addition, increased bilirubin production led to lower reactive oxygen species levels in chloroplasts. Our data refute the generally accepted pathway of heme degradation in plants and suggest that bilirubin contributes to the maintenance of redox status in chloroplasts.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Yasuhide Osaki
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics; Saitama, 351-0198, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University; Kyoto, 615-8246, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama 351-0198, Japan
| |
Collapse
|
33
|
Molinari PE, Krapp AR, Weiner A, Beyer HM, Kondadi AK, Blomeier T, López M, Bustos-Sanmamed P, Tevere E, Weber W, Reichert AS, Calcaterra NB, Beller M, Carrillo N, Zurbriggen MD. NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems. Nat Commun 2023; 14:3277. [PMID: 37280202 DOI: 10.1038/s41467-023-38739-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
NADP(H) is a central metabolic hub providing reducing equivalents to multiple biosynthetic, regulatory and antioxidative pathways in all living organisms. While biosensors are available to determine NADP+ or NADPH levels in vivo, no probe exists to estimate the NADP(H) redox status, a determinant of the cell energy availability. We describe herein the design and characterization of a genetically-encoded ratiometric biosensor, termed NERNST, able to interact with NADP(H) and estimate ENADP(H). NERNST consists of a redox-sensitive green fluorescent protein (roGFP2) fused to an NADPH-thioredoxin reductase C module which selectively monitors NADP(H) redox states via oxido-reduction of the roGFP2 moiety. NERNST is functional in bacterial, plant and animal cells, and organelles such as chloroplasts and mitochondria. Using NERNST, we monitor NADP(H) dynamics during bacterial growth, environmental stresses in plants, metabolic challenges to mammalian cells, and wounding in zebrafish. NERNST estimates the NADP(H) redox poise in living organisms, with various potential applications in biochemical, biotechnological and biomedical research.
Collapse
Affiliation(s)
- Pamela E Molinari
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Andrea Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Hannes M Beyer
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany
| | - Melina López
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Pilar Bustos-Sanmamed
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Evelyn Tevere
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- INM - Leibniz Institute for New Materials and Department of Materials Sciences and Engineering, Saarland University, Saarbrücken, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Mathias Beller
- Institute of Mathematical Modeling of Biological Systems, University of Düsseldorf, Düsseldorf, Germany
| | - Nestor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina.
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
34
|
Buckley CR, Li X, Martí MC, Haydon MJ. A bittersweet symphony: Metabolic signals in the circadian system. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102333. [PMID: 36640635 DOI: 10.1016/j.pbi.2022.102333] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 06/10/2023]
Abstract
Plants must match their metabolism to daily and seasonal fluctuations in their environment to maximise performance in natural conditions. Circadian clocks enable organisms to anticipate and adapt to these predictable and unpredictable environmental challenges. Metabolism is increasingly recognised as an integrated feature of the plant circadian system. Metabolism is an important circadian-regulated output but also provides input to this dynamic timekeeping mechanism. The spatial organisation of metabolism within cells and between tissues, and the temporal features of metabolism across days, seasons and development, raise interesting questions about how metabolism influences circadian timekeeping. The various mechanisms by which metabolic signals influence the transcription-translation feedback loops of the circadian oscillator are emerging. These include roles for major metabolic signalling pathways, various retrograde signals, and direct metabolic modifications of clock genes or proteins. Such metabolic feedback loops enable intra- and intercellular coordination of rhythmic metabolism, and recent discoveries indicate these contribute to diverse aspects of daily, developmental and seasonal timekeeping.
Collapse
Affiliation(s)
| | - Xiang Li
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - María Carmen Martí
- Department of Stress Biology and Plant Pathology, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), 30110 Murcia, Spain
| | - Michael J Haydon
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
35
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
36
|
O’Leary BM, Scafaro AP, York LM. High-throughput, dynamic, multi-dimensional: an expanding repertoire of plant respiration measurements. PLANT PHYSIOLOGY 2023; 191:2070-2083. [PMID: 36638140 PMCID: PMC10069890 DOI: 10.1093/plphys/kiac580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
A recent burst of technological innovation and adaptation has greatly improved our ability to capture respiration rate data from plant sources. At the tissue level, several independent respiration measurement options are now available, each with distinct advantages and suitability, including high-throughput sampling capacity. These advancements facilitate the inclusion of respiration rate data into large-scale biological studies such as genetic screens, ecological surveys, crop breeding trials, and multi-omics molecular studies. As a result, our understanding of the correlations of respiration with other biological and biochemical measurements is rapidly increasing. Difficult questions persist concerning the interpretation and utilization of respiration data; concepts such as allocation of respiration to growth versus maintenance, the unnecessary or inefficient use of carbon and energy by respiration, and predictions of future respiration rates in response to environmental change are all insufficiently grounded in empirical data. However, we emphasize that new experimental designs involving novel combinations of respiration rate data with other measurements will flesh-out our current theories of respiration. Furthermore, dynamic recordings of respiration rate, which have long been used at the scale of mitochondria, are increasingly being used at larger scales of size and time to reflect processes of cellular signal transduction and physiological response to the environment. We also highlight how respiratory methods are being better adapted to different plant tissues including roots and seeds, which have been somewhat neglected historically.
Collapse
Affiliation(s)
- Brendan M O’Leary
- Saskatoon Research and Development Centre, Agriculture and Agri-food Canada, Saskatoon S7N 0X2, Canada
| | - Andrew P Scafaro
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Larry M York
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
37
|
Igamberdiev AU, Bykova NV. Mitochondria in photosynthetic cells: Coordinating redox control and energy balance. PLANT PHYSIOLOGY 2023; 191:2104-2119. [PMID: 36440979 PMCID: PMC10069911 DOI: 10.1093/plphys/kiac541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 05/21/2023]
Abstract
In photosynthetic tissues in the light, the function of energy production is associated primarily with chloroplasts, while mitochondrial metabolism adjusts to balance ATP supply, regulate the reduction level of pyridine nucleotides, and optimize major metabolic fluxes. The tricarboxylic acid cycle in the light transforms into a noncyclic open structure (hemicycle) maintained primarily by the influx of malate and the export of citrate to the cytosol. The exchange of malate and citrate forms the basis of feeding redox energy from the chloroplast into the cytosolic pathways. This supports the level of NADPH in different compartments, contributes to the biosynthesis of amino acids, and drives secondary metabolism via a supply of substrates for 2-oxoglutarate-dependent dioxygenase and for cytochrome P450-catalyzed monooxygenase reactions. This results in the maintenance of redox and energy balance in photosynthetic plant cells and in the formation of numerous bioactive compounds specific to any particular plant species. The noncoupled mitochondrial respiration operates in coordination with the malate and citrate valves and supports intensive fluxes of respiration and photorespiration. The metabolic system of plants has features associated with the remarkable metabolic plasticity of mitochondria that permit the use of energy accumulated during photosynthesis in a way that all anabolic and catabolic pathways become optimized and coordinated.
Collapse
|
38
|
Fan S, Amombo E, Avoga S, Li Y, Yin Y. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. FRONTIERS IN PLANT SCIENCE 2023; 14:1141295. [PMID: 36875615 PMCID: PMC9975589 DOI: 10.3389/fpls.2023.1141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Bermudagrass (Cynodon dactylon L.) is a warm-season grass with high drought and salt tolerance. However, its cultivation as a silage crop is limited by its lower forage value when compared to other C4 crops. Because of its high genetic variability in abiotic stress tolerance, bermudagrass-mediated genetic breeding offers significant promise for introducing alternative fodder crops in saline and drought-affected regions, and improved photosynthetic capacity is one way for increasing forage yield. METHODS Here, we used RNA sequencing to profile miRNAs in two bermudagrass genotypes with contrasting salt tolerance growing under saline conditions. RESULTS Putatively, 536 miRNA variants were salt-inducible, with the majority being downregulated in salt-tolerant vs sensitive varieties. Also, seven miRNAs putatively targeted 6 genes which were significantly annotated to light reaction photosynthesis. Among the microRNAs, highly abundant miRNA171f in the salt tolerant regime targeted Pentatricopeptide repeat-containing protein and dehydrogenase family 3 member F1 both annotated to electron transport and Light harvesting protein complex 1 genes annotated to light photosynthetic reaction in salt tolerant regime vs salt sensitive counterparts. To facilitate genetic breeding for photosynthetic capacity, we overexpressed miR171f in Medicago tracantula which resulted in a substantial increase in the chlorophyll transient curve, electron transport rate, quantum yield of photosystem II non photochemical quenching, NADPH and biomass accumulation under saline conditions while its targets were downregulated. At ambient light level the electron transport was negatively correlated with all parameters while the NADPH was positively associated higher dry matter in mutants. DISCUSSION These results demonstrate that miR171f improves photosynthetic performance and dry matter accumulation via transcriptional repression of genes in the electron transport pathway under saline conditions and thus a target for breeding.
Collapse
Affiliation(s)
- Shugao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Erick Amombo
- African Sustainable Agriculture Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Sheila Avoga
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, China
| | - Yating Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yanling Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
39
|
Wei Y, Li K, Chong Z, Aamir Khan M, Liang C, Meng Z, Wang Y, Guo S, Chen Q, Zhang R. Genetic and transcriptome analysis of a cotton leaf variegation mutant. Gene 2023; 866:147257. [PMID: 36754177 DOI: 10.1016/j.gene.2023.147257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
In eukaryotic photosynthetic organisms, chloroplast is not only a site for photosynthesis, but it also have a vital role in signal transduction mechanisms. Plants exhibit various colors in nature with various mutants induced by EMS, whose traits are regulated by developmental and environmental factors, making them ideal for studying the regulation of chloroplast development. In this study, the cotton leaf variegated mutant (VAR) induced by EMS was used for this experiment. Genetic analysis revealed that VAR phenotype was a dominant mutation and by performing freehand section inspection, it was noticed that the vascular bundles of VAR were smaller. Chloroplast ultrastructure showed that the stacking of grana thylakoid was thinner and the starch granules were increased significantly in VAR comparedto wild type (WT). Transcriptome analysis found that the KEGG was enriched in photosynthesis pathway, and GO was abundant in zinc ion transmembrane transport, electron transporter and cation binding terms. In addition, GhFTSH5 expression in VAR was significantly higher than WT and the promoter sequence of GhFTSH5 had differences. The results showed that the VAR plant had altered GhFTSH5 expression and disrupted chloroplast structure, which in turn affects plant photosynthesis. More importantly, this study lays a foundation for further analyzing molecular mechanism of cotton variegated phenotypes.
Collapse
Affiliation(s)
- Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Kaili Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhili Chong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China; College of Plant Science, Tarim University, 1487 East Tarim Avenue, Aral City 843300, China
| | - Muhammad Aamir Khan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi 830052, China.
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, Beijing 100081, China.
| |
Collapse
|
40
|
Li W, Li J, Wei J, Niu C, Yang D, Jiang B. Response of photosynthesis, the xanthophyll cycle, and wax in Japanese yew ( Taxus cuspidata L.) seedlings and saplings under high light conditions. PeerJ 2023; 11:e14757. [PMID: 36718441 PMCID: PMC9884039 DOI: 10.7717/peerj.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/27/2022] [Indexed: 01/26/2023] Open
Abstract
In order to understand the adaptative changes of the Japanese yew (Taxus cuspidate L.) to high light conditions, this study investigated gas-exchange, chlorophyll fluorescence, chlorophyll, and the impact of epicuticular wax on the gas-exchange and photoinhibition of Japanese yew seedlings and saplings. The chlorophyll content per unit area and photosynthetic rate in seedling leaves were significantly lower than in sapling leaves. When leaves from seedlings and saplings were exposed to 1,200 μmol·m-2·s-1 photon flux density (PFD) for 2 h, seedling leaves exhibited a greater down-regulation of maximum quantum yield (Fv/Fm) and actual photosystem II efficiency ( Φ PSII). Non-photochemical quenching (NPQ) and high energy quenching (qE) in sapling leaves were much higher than in seedling leaves when both were exposed to 1,200 μmol·m-2·s-1 PFD for 2 h. At a low level of O2, the photorespiration rate (Pr) and the ratio of photorespiration/gross photosynthetic rate (Pr/Pg) in seedling leaves were lower than in sapling leaves when both were exposed to 1,200 μmol·m-2·s-1 PFD, but this difference did not reach statistical significance (P < 0.05). Compared with sapling leaves, seedling leaves exhibited lower levels of xanthophyll pool. Epicuticular wax content on seedling leaves was significantly lower than on sapling leaves. The results of this study showed that wax coverage on the leaf surface decreased the photosynthetic rate in sapling leaves as a consequence of decreased stomatal conductance. Epicuticular wax is related to tree age and photoinhibition prevention in the Japanese yew. It is possible that lower photosynthetic rate, lower NPQ depending on the xanthophyll cycle, and lower deposition of epicuticular wax results in seedling plants that are not adapted to high light conditions.
Collapse
Affiliation(s)
- Wei Li
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China,Northeast Agricultural University, College of Agriculture, Harbin, Heilongjiang, China
| | - Jiacheng Li
- Northeast Agricultural University, College of Horticulture and Landscape Architecture, Harbin, Heilongjiang, China
| | - Jia Wei
- Northeast Agricultural University, College of Horticulture and Landscape Architecture, Harbin, Heilongjiang, China
| | - Chunda Niu
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China
| | - Deguang Yang
- Northeast Agricultural University, College of Agriculture, Harbin, Heilongjiang, China
| | - Baiwen Jiang
- Northeast Agricultural University, College of Resources and Environment, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. PLANT COMMUNICATIONS 2023; 4:100501. [PMID: 36463409 PMCID: PMC9860193 DOI: 10.1016/j.xplc.2022.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial retrograde signaling (MRS) supports photosynthetic function under a variety of conditions. Induction of mitochondrial dysfunction with myxothiazol (a specific inhibitor of the mitochondrial bc1 complex) or antimycin A (an inhibitor of the mitochondrial bc1 complex and cyclic electron transport in the chloroplast under light conditions) in the light and dark revealed diurnal control of MRS. This was evidenced by (1) significantly enhanced binding of ANAC017 to promoters in the light compared with the dark in Arabidopsis plants treated with myxothiazol (but not antimycin A), (2) overlap in the experimentally determined binding sites for ANAC017 and circadian clock regulators in the promoters of ANAC013 and AOX1a, (3) a diurnal expression pattern for ANAC017 and transcription factors it regulates, (4) altered expression of ANAC017-regulated genes in circadian clock mutants with and without myxothiazol treatment, and (5) a decrease in the magnitude of LHY and CCA1 expression in an ANAC017-overexpressing line and protein-protein interaction between ANAC017 and PIF4. This study also shows a large difference in transcriptome responses to antimycin A and myxothiazol in the dark: these responses are ANAC017 independent, observed in shoots and roots, similar to biotic challenge and salicylic acid responses, and involve ERF and ZAT transcription factors. This suggests that antimycin A treatment stimulates a second MRS pathway that is mediated or converges with salicylic acid signaling and provides a merging point with chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
42
|
He C, Berkowitz O, Hu S, Zhao Y, Qian K, Shou H, Whelan J, Wang Y. Co-regulation of mitochondrial and chloroplast function: Molecular components and mechanisms. PLANT COMMUNICATIONS 2023; 4:100496. [PMID: 36435968 PMCID: PMC9860188 DOI: 10.1016/j.xplc.2022.100496] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The metabolic interdependence, interactions, and coordination of functions between chloroplasts and mitochondria are established and intensively studied. However, less is known about the regulatory components that control these interactions and their responses to external stimuli. Here, we outline how chloroplastic and mitochondrial activities are coordinated via common components involved in signal transduction pathways, gene regulatory events, and post-transcriptional processes. The endoplasmic reticulum emerges as a point of convergence for both transcriptional and post-transcriptional pathways that coordinate chloroplast and mitochondrial functions. Although the identification of molecular components and mechanisms of chloroplast and mitochondrial signaling increasingly suggests common players, this raises the question of how these allow for distinct organelle-specific downstream pathways. Outstanding questions with respect to the regulation of post-transcriptional pathways and the cell and/or tissue specificity of organelle signaling are crucial for understanding how these pathways are integrated at a whole-plant level to optimize plant growth and its response to changing environmental conditions.
Collapse
Affiliation(s)
- Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shanshan Hu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yang Zhao
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kun Qian
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Huixia Shou
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia; International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, Zhejiang 314400, P.R. China
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
43
|
Alipour S, Wojciechowska N, Bujarska-Borkowska B, Kalemba EM. Distinct redox state regulation in the seedling performance of Norway maple and sycamore. JOURNAL OF PLANT RESEARCH 2023; 136:83-96. [PMID: 36385674 PMCID: PMC9831958 DOI: 10.1007/s10265-022-01419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Norway maple and sycamore, two Acer genus species, have an important ecological value and different sensitivity to stressing factors being currently aggravated by climate change. Seedling growth is postulated to be the main barrier for successful plant establishment under the climate change scenarios. Therefore, the differences in redox regulation during the seedling performance of Norway maple and sycamore were investigated. Seeds of the two Acer species exhibited an identical high germination capacity, whereas seedling emergence was higher in sycamores. PCA analyses revealed that there is more diversification in the leaf characteristics than roots. Norway maple displayed a higher chlorophyll content index (CCI) with a similar leaf mass whereas sycamore seedlings exhibited a higher normalized difference vegetation index (NDVI), higher water content, higher root biomass and higher shoot height. Based on NDVI, sycamore seedlings appeared as very healthy plants, whereas Norway maple seedlings displayed a moderate healthy phenotype. Therefore, redox basis of seedling performance was investigated. The total pool of glutathione was four times higher in sycamore leaves than in Norway maple leaves and was reflected in highly reduced half-cell reduction potential of glutathione. Sycamore leaves contained more ascorbate because the content of its reduced form (AsA) was twice as high as in Norway maple. Therefore, the AsA/DHA ratio was balanced in sycamore leaves, reaching 1, and was halved in Norway maple leaves. Nicotinamide adenine dinucleotide phosphate content was twice as high in sycamore leaves than in Norway maples; however, its reduced form (NADPH) was predominant in Norway maple seedlings. Norway maple leaves exhibited the highest anabolic and catabolic redox charge. The higher reduction capacity and the activity of NADPH-dependent reductases in Norway maple leaves possibly resulted in higher CCI, whereas the larger root system contributed to higher NDVI in sycamore. The different methods of controlling redox parameters in Acer seedlings grown at controlled conditions provided here can be useful in understanding how tree species can cope with a changing environment in the future.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
| | - Natalia Wojciechowska
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, Poland
| | | | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62035, Kórnik, Poland.
| |
Collapse
|
44
|
Liu J, Lim SL, Zhong JY, Lim BL. Bioenergetics of pollen tube growth in Arabidopsis thaliana revealed by ratiometric genetically encoded biosensors. Nat Commun 2022; 13:7822. [PMID: 36535933 PMCID: PMC9763403 DOI: 10.1038/s41467-022-35486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Pollen tube is the fastest-growing plant cell. Its polarized growth process consumes a tremendous amount of energy, which involves coordinated energy fluxes between plastids, the cytosol, and mitochondria. However, how the pollen tube obtains energy and what the biological roles of pollen plastids are in this process remain obscure. To investigate this energy-demanding process, we developed second-generation ratiometric biosensors for pyridine nucleotides which are pH insensitive between pH 7.0 to pH 8.5. By monitoring dynamic changes in ATP and NADPH concentrations and the NADH/NAD+ ratio at the subcellular level in Arabidopsis (Arabidopsis thaliana) pollen tubes, we delineate the energy metabolism that underpins pollen tube growth and illustrate how pollen plastids obtain ATP, NADPH, NADH, and acetyl-CoA for fatty acid biosynthesis. We also show that fermentation and pyruvate dehydrogenase bypass are not essential for pollen tube growth in Arabidopsis, in contrast to other plant species like tobacco and lily.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Shey-Li Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Jia Yi Zhong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, China.
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Li X, Liao M, Huang J, Chen L, Huang H, Wu K, Pan Q, Zhang Z, Peng X. Dynamic and fluctuating generation of hydrogen peroxide via photorespiratory metabolic channeling in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1429-1446. [PMID: 36382906 DOI: 10.1111/tpj.16022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The homeostasis of hydrogen peroxide (H2 O2 ), a key regulator of basic biological processes, is a result of the cooperation between its generation and scavenging. However, the mechanistic basis of this balance is not fully understood. We previously proposed that the interaction between glycolate oxidase (GLO) and catalase (CAT) may serve as a molecular switch that modulates H2 O2 levels in plants. In this study, we demonstrate that the GLO-CAT complex in plants exists in different states, which are dynamically interchangeable in response to various stimuli, typically salicylic acid (SA), at the whole-plant level. More crucially, changes in the state of the complex were found to be closely linked to peroxisomal H2 O2 fluctuations, which were independent of the membrane-associated NADPH oxidase. Furthermore, evidence suggested that H2 O2 channeling occurred even in vitro when GLO and CAT worked cooperatively. These results demonstrate that dynamic changes in H2 O2 levels are physically created via photorespiratory metabolic channeling in plants, and that such H2 O2 fluctuations may serve as signals that are mechanistically involved in the known functions of photorespiratory H2 O2 . In addition, our study also revealed a new way for SA to communicate with H2 O2 in plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Linru Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiyin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Kaixin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qing Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
46
|
Li T, Zou Y, Liu S, Yang Y, Zhang Z, Zhao Y. Monitoring NAD(H) and NADP(H) dynamics during organismal development with genetically encoded fluorescent biosensors. CELL REGENERATION 2022; 11:5. [PMID: 35103852 PMCID: PMC8807777 DOI: 10.1186/s13619-021-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Cell metabolism plays vital roles in organismal development, but it has been much less studied than transcriptional and epigenetic control of developmental programs. The difficulty might be largely attributed to the lack of in situ metabolite assays. Genetically encoded fluorescent sensors are powerful tools for noninvasive metabolic monitoring in living cells and in vivo by highly spatiotemporal visualization. Among all living organisms, the NAD(H) and NADP(H) pools are essential for maintaining redox homeostasis and for modulating cellular metabolism. Here, we introduce NAD(H) and NADP(H) biosensors, present example assays in developing organisms, and describe promising prospects for how sensors contribute to developmental biology research.
Collapse
|
47
|
Barreto P, Koltun A, Nonato J, Yassitepe J, Maia IDG, Arruda P. Metabolism and Signaling of Plant Mitochondria in Adaptation to Environmental Stresses. Int J Mol Sci 2022; 23:ijms231911176. [PMID: 36232478 PMCID: PMC9570015 DOI: 10.3390/ijms231911176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Collapse
Affiliation(s)
- Pedro Barreto
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Alessandra Koltun
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Nonato
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Juliana Yassitepe
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Embrapa Agricultura Digital, Campinas 13083-886, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu 18618-970, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas 13083-875, Brazil
- Correspondence:
| |
Collapse
|
48
|
Mitra S, Chakraborty S, Mukherjee S, Sau A, Das S, Chakraborty B, Mitra S, Adak S, Goswami A, Hessel V. A comparative study on the modulatory role of mesoporous silica nanoparticles MCM 41 and MCM 48 on growth and metabolism of dicot Vigna radiata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 187:25-36. [PMID: 35944400 DOI: 10.1016/j.plaphy.2022.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
With the advent of nanoscience, nanotechnology and their applications in various fields, mesoporous silica nanoparticles have gained popularity due to their stability, biocompatibility, unique honeycomb-like structures - ordered and random by nature, large surface to volume ratio, porosity, active surfaces, high loading capacity, ease of interactions with solvent, solute and suspended particles. These multitudes of intrinsic properties have motivated us towards an interdisciplinary detailed study on applications of mesoporous silica with an intention in increasing efficacy of productivity, growth if any, in plant life. This study aims at finding modus operandi of the structural uniqueness and eccentricity of various types of mesoporous silica in maneuvering their own functionality as a potential regulator for growth of seedlings of model plant Vigna radiata. We undertook characterization of surface, morphology, epitome of porosity for MCM 41 and MCM 48 using various experimental techniques followed by application of the same to growing seedlings at various dosages. It turned out that mesoporous silica nanoparticles, inarguably have higher efficacy in promoting plant growth, reducing stress, and enhancing basic metabolic rates at optimum dosage. Optimal operation point was determined at effective dosages for MCM 41 and MCM 48 those are being much lower than that of conventional silica nanoparticles. This optimum dosage is attributed to the structures of the nanoparticles used and implied further that higher pore volume, higher surface to volume ratio in case of MCM 41 at higher dosage lead to better adsorption of ions and functionality in contrast to that of MCM 48.
Collapse
Affiliation(s)
| | | | | | - Anurag Sau
- Indian Statistical Institute, Kolkata, India
| | - Sambit Das
- Indian Statistical Institute, Kolkata, India
| | | | | | - Serene Adak
- Indian Statistical Institute, Kolkata, India
| | | | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Australia.
| |
Collapse
|
49
|
Lima RPM, Nunes-Laitz AV, Arcuri MDLC, Campos FG, Joca TAC, Monteiro GC, Kushima H, Lima GPP, de Almeida LFR, Barreto P, de Godoy Maia I. The double knockdown of the mitochondrial uncoupling protein isoforms reveals partial redundant roles during Arabidopsis thaliana vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111365. [PMID: 35779675 DOI: 10.1016/j.plantsci.2022.111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial uncoupling proteins (UCPs) are specialized proteins capable of dissipating the proton electrochemical gradient generated in respiration independent of ATP synthesis. Three UCP coding genes with distinct expression patterns have been identified in Arabidopsis thaliana (namely UCP1, UCP2 and UCP3). Here, we generated T-DNA double-insertion mutants (ucp1 ucp2, ucp1 ucp3 and ucp2 ucp3) to investigate the functionality of the Arabidopsis UCP isoforms. A strong compensatory effect of the wild-type UCP gene was found in the double-knockdown lines. Higher levels of reactive oxygen species (ROS) were observed in vegetative and reproductive organs of double mutant plants. This exacerbated oxidative stress in plants also increased lipid peroxidation but was not compensated by the activation of the antioxidant system. Alterations in O2 consumption and ADP/ATP ratio were also observed, suggesting a change in mitochondrial energy-generating processes. Deficiencies in double-mutants were not limited to mitochondria and also changed photosynthetic efficiency and redox state. Our results indicate that UCP2 and UCP3 have complementary function with UCP1 in plant reproductive and vegetative organ/tissues, as well as in stress adaptation. The partial redundancy between the UCP isoforms suggests that they could act separately or jointly on mitochondrial homeostasis during A. thaliana development.
Collapse
Affiliation(s)
- Rômulo Pedro Macêdo Lima
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | | | - Mariana de Lara Campos Arcuri
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Felipe Girotto Campos
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia (Setor Botânica), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Thaís Arruda Costa Joca
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia (Setor Botânica), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Gean Charles Monteiro
- Departamento de Ciências Químicas e Biológicas (Setor de Química e Bioquímica), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Hélio Kushima
- Departamento de Biofísica e Farmacologia (Setor Farmacologia), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Giuseppina Pace Pereira Lima
- Departamento de Ciências Químicas e Biológicas (Setor de Química e Bioquímica), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Luiz Fernando Rolim de Almeida
- Departamento de Bioestatística, Biologia Vegetal, Parasitologia e Zoologia (Setor Botânica), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Pedro Barreto
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil
| | - Ivan de Godoy Maia
- Departamento de Ciências Químicas e Biológicas (Setor Genética), Instituto de Biociências, UNESP, CEP 18618-689 Botucatu, SP, Brazil.
| |
Collapse
|
50
|
Zhou Y, Yu H, Tang Y, Chen R, Luo J, Shi C, Tang S, Li X, Shen X, Chen R, Zhang Y, Lu Y, Ye Z, Guo L, Ouyang B. Critical roles of mitochondrial fatty acid synthesis in tomato development and environmental response. PLANT PHYSIOLOGY 2022; 190:576-591. [PMID: 35640121 PMCID: PMC9434154 DOI: 10.1093/plphys/kiac255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/30/2023]
Abstract
Plant mitochondrial fatty acid synthesis (mtFAS) appears to be important in photorespiration based on the reverse genetics research from Arabidopsis (Arabidopsis thaliana) in recent years, but its roles in plant development have not been completely explored. Here, we identified a tomato (Solanum lycopersicum) mutant, fern-like, which displays pleiotropic phenotypes including dwarfism, yellowing, curly leaves, and increased axillary buds. Positional cloning and genetic and heterozygous complementation tests revealed that the underlying gene FERN encodes a 3-hydroxyl-ACP dehydratase enzyme involved in mtFAS. FERN was causally involved in tomato morphogenesis by affecting photorespiration, energy supply, and the homeostasis of reactive oxygen species. Based on lipidome data, FERN and the mtFAS pathway may modulate tomato development by influencing mitochondrial membrane lipid composition and other lipid metabolic pathways. These findings provide important insights into the roles and importance of mtFAS in tomato development.
Collapse
Affiliation(s)
- Yuhong Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Huiyang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Tang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinying Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Chunmei Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyan Shen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Guo
- Author for correspondence: (B.O.), (L.G.)
| | - Bo Ouyang
- Author for correspondence: (B.O.), (L.G.)
| |
Collapse
|