1
|
Wang H, Lin X, Li X, Lv D, Zhang J, Wei L, Tang J, Lin Y, Wu X, Xu X. Antiswelling, Ultrastretchable, and Ultrastable Hydrogel Sensors for Long-Term Underwater Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503067. [PMID: 40400497 DOI: 10.1002/smll.202503067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Wearable strain sensors designed for underwater environments and monitoring users' health status and safety are highly desirable. However, constructing antiswelling, stretchable, and stable hydrogel strain sensors for prolonged underwater monitoring is still a great challenge. In this work, conductive hydrogel sensors suitable for comprehensive environmental monitoring are developed by integrating conductive montmorillonite (MMT) into hydrogels. The conductive hydrogels demonstrate exceptional stretchability, elasticity, electrical conductivity, a wide operational range, and high sensing accuracy. Additionally, the sensors exhibit excellent underwater stability, making them suitable for use in underwater communication and alert systems. The conductive hydrogels developed herein present a novel pathway for advancing underwater sensing applications, human-robot interaction, soft robotics, and underwater intelligent devices.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xingyue Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Jing Zhang
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
| | - Linjie Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiahui Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yintong Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiubin Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Hwang H, Heo SH, Jang JH, Choi C, Gu GH, Cha C, Shin TJ, Kim HS, Choi MK, Son JS. Multiple Phase Transition Induced Enhancement of Low-Temperature Thermoelectric Power in Ductile AgCuS-Based Thin Films. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24229-24238. [PMID: 40223327 DOI: 10.1021/acsami.5c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The increasing demand for energy autonomy in microscale and wearable electronics has intensified research interest in thermoelectric thin-film-based power generators. However, the development of such devices is challenging due to the intrinsic brittleness of inorganic materials and the poor performance of thin films. Recently, Ag2S-based compounds have emerged as ductile thermoelectric semiconductors. Nonetheless, the thermoelectric performance of their thin films remains constrained, especially at low temperatures. Herein, we present a solution-processed fabrication of a high-performance AgCuS/Cu2S composite thin film operable below 100 °C. These composite thin films underwent multiple phase transitions below 100 °C, notably increasing the thermoelectric power factors. Furthermore, the films exhibited significant intrinsic stretchability up to a strain of 16.1% owing to their intrinsic ductility. Wrinkled thin-film-based devices demonstrated enhanced power generation owing to multiple phase transitions and retained properties under 30% stretching, highlighting the potential of these films as viable energy harvesters for emerging electronic systems.
Collapse
Affiliation(s)
- Hyein Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Seung Hwae Heo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Cholong Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gang Hee Gu
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae Joo Shin
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyoung Seop Kim
- Graduate Institute of Ferrous & Eco Materials Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Lin R, Guo W, Chen Y, Li H, Luo Z, Fan Z, Tu J, Ling P, Liu R. Liquid Bridge Cutting Valves for Microfluidic Passive Distribution and Sequential Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411708. [PMID: 40059515 DOI: 10.1002/smll.202411708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Indexed: 04/25/2025]
Abstract
In bioanalysis, precisely isolating liquid reactions in distinct systems or at different temporal sequences is vital for ensuring accurate results devoid of crosstalk. However, passive liquid isolation is unattainable through existing microfluidic valves. Here, liquid bridge cutting valves (LBCVs) are introduced to automatically segregate liquids by establishing airlocks, offering an innovative microfluidic structure for liquid distribution. The principle of liquid bridge breakup is studied and applied to the design of LBCVs. Additionally, monolithic chips connecting units with LBCVs in different topologies facilitate sequential sampling and reactions, achieving the detection of sweat glucose and lactate in wearable applications, as well as cortisol ELISA on the chips. As a missing puzzle piece of microfluidic elements in liquid separation, LBCVs can be seamlessly integrated with maturing microfluidic structures, creating a lab-on-a-chip device to enable complex fluid manipulation for individual healthcare monitoring and clinical scenarios.
Collapse
Affiliation(s)
- Rongzan Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen Guo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuqiu Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haojie Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyang Luo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zixiao Fan
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinying Tu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Peng Ling
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wang X, Shen S, Sun N, Zhu Y, Zhang J. Neural Network-Assisted Dual-Functional Hydrogel-Based Microfluidic SERS Sensing for Divisional Recognition of Multimolecule Fingerprint. ACS Sens 2025; 10:1197-1205. [PMID: 39964084 DOI: 10.1021/acssensors.4c03096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
To enhance the sensitivity, integration, and practicality of the Raman detection system, a deep learning-based dual-functional subregional microfluidic integrated hydrogel surface-enhanced Raman scattering (SERS) platform is proposed in this paper. First, silver nanoparticles (Ag NPs) with a homogeneous morphology were synthesized using a one-step reduction method. Second, these Ag NPs were embedded in N-isopropylacrylamide/poly(vinyl alcohol) (Ag NPs-NIPAM/PVA) hydrogels. Finally, a dual-functional SERS platform featuring four channels, each equipped with a switch and a detection region, was developed in conjunction with microfluidics. This platform effectively allows the flow of the test material to be directed to a specific detection region by sequential activation of the hydrogel switches with an external heating element. It then utilizes the corresponding heating element in the detection region to adjust the gaps between Ag NPs, enabling the measurement of the Raman enhancement performance in the designated SERS detection area. The dual-functional microfluidic-integrated hydrogel SERS platform enables subregional sampling and simultaneous detection of multiple molecules. The platform demonstrated excellent detection performance for Rhodamine 6G (R6G), achieving a detection limit as low as 10-10 mol/L and an enhancement factor of 107, with relative standard deviations of the main characteristic peaks below 10%. Additionally, the platform is capable of simultaneous subarea detection of four real molecules─thiram, pyrene, anthracene, and dibutyl phthalate─combined with fully connected neural network technology, which offers improved predictability, practicality, and applicability for their classification and identification.
Collapse
Affiliation(s)
- Xing Wang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Shen Shen
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ning Sun
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yong Zhu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Jie Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Liu Z, Hu J, Shen G. Bioinspired Intelligent Electronic Skin for Medicine and Healthcare. SMALL METHODS 2025:e2402164. [PMID: 39906020 DOI: 10.1002/smtd.202402164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Intelligent electronic skin aims to mimic, enhance, and even surpass the functions of biological skin, enabling artificial systems to sense environmental stimuli and interact more naturally with humans. In healthcare, intelligent electronic skin is revolutionizing diagnostics and personalized medicine by detecting early signs of diseases and programming exogenous stimuli for timely intervention and on-demand treatment. This review discusses latest progress in bioinspired intelligent electronic skin and its application in medicine and healthcare. First, strategies for the development of intelligent electronic skin to simulate or even surpass human skin are discussed, focusing on its basic characteristics, as well as sensing and regulating functions. Then, the applications of electronic skin in health monitoring and wearable therapies are discussed, illustrating its potential to provide early warning and on-demand treatment. Finally, the significance of electronic skin in bridging the gap between electronic and biological systems is emphasized and the challenges and future perspectives of intelligent electronic skin are summarized.
Collapse
Affiliation(s)
- Zhirong Liu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Junhao Hu
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
6
|
Guo X, Zhang Q, Zhang C, Mi M, Li X, Zhang X, Ramakrishna S, Ji D, Qin X. Pumpless microfluidic sweat sensing yarn. Biosens Bioelectron 2024; 266:116713. [PMID: 39232436 DOI: 10.1016/j.bios.2024.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA μM-1), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.
Collapse
Affiliation(s)
- Xinyue Guo
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiangqiang Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Chentian Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mingyue Mi
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xinxin Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xueping Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 117574, Singapore
| | - Dongxiao Ji
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
7
|
Govinda Raj C, Odeh M, Salyards C, Stockton A. Early Technology Readiness Level (TRL) Development of the Microfluidic Inorganic Conductivity Detector for Europa and the Solenoid-Based Actuator Assembly for Impact Penetrators. SENSORS (BASEL, SWITZERLAND) 2024; 24:7704. [PMID: 39686241 DOI: 10.3390/s24237704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
This study introduces an innovative in situ lander/impact-penetrator design tailored for Discovery-class missions to Europa, specifically focused on conducting astrobiological analyses. The platform integrates a microfluidic capacitively coupled contactless conductivity detector (C4D), optimized for the detection of low-concentration salts potentially indicative of biological activity. Our microfluidic system allows for automated sample routing and precise conductivity-based detection, making it suitable for the harsh environmental and logistical demands of Europa's icy surface. This technology provides a robust toolset for exploring extraterrestrial habitability by enabling in situ chemical analyses with minimal operational intervention, paving the way for advanced astrobiological investigations on Europa.
Collapse
Affiliation(s)
- Chinmayee Govinda Raj
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Mohamed Odeh
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Cambrie Salyards
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| | - Amanda Stockton
- Georgia Institute of Technology, School of Chemistry and Biochemistry, 901 Atlantic Dr. NW, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Xu Y, Lin H, Xiao B, Tanoto H, Berinstein J, Khoshnaw A, Young S, Zhou Y, Dong X. Wirelessly Actuated Microfluidic Pump and Valve for Controlled Liquid Delivery in Dental Implants. Adv Healthc Mater 2024; 13:e2402373. [PMID: 39109957 PMCID: PMC11650432 DOI: 10.1002/adhm.202402373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 07/31/2024] [Indexed: 12/18/2024]
Abstract
Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported. A magnet-screw mechanism in a fluidic channel to function as a piston pump, alongside a flexible magnetic valve designed to open and close the fluidic channel, is proposed. The mechanisms are showcased by storing and releasing of liquid up to 52 µL in a dental implant. The liquid cargos are delivered directly to the implant-bone interface, a region traditionally difficult to access. On-demand liquid delivery is further showed by a metal implant inside both dental phantoms and porcine jawbones. The mechanisms are promising for controllable liquid release after implant placement with minimal invasion, paving the way for implantable devices that enable long-term and targeted delivery of therapeutic agents in various bioengineering applications.
Collapse
Affiliation(s)
- Yilan Xu
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37212USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Honglu Lin
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Boyang Xiao
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37212USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Hutomo Tanoto
- Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Joel Berinstein
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Alend Khoshnaw
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTN37212USA
| | - Simon Young
- Katz Department of Oral and Maxillofacial SurgeryThe University of Texas Health Science Center at HoustonSchool of DentistryHoustonTX77054USA
| | - Yuxiao Zhou
- Department of Mechanical EngineeringTexas A&M UniversityCollege StationTX77840USA
| | - Xiaoguang Dong
- Department of Mechanical EngineeringVanderbilt UniversityNashvilleTN37212USA
- Vanderbilt Institute for Surgery and EngineeringVanderbilt UniversityNashvilleTN37212USA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTN37212USA
| |
Collapse
|
9
|
Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406424. [PMID: 39390819 DOI: 10.1002/adma.202406424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Flexible electronics are integral in numerous domains such as wearables, healthcare, physiological monitoring, human-machine interface, and environmental sensing, owing to their inherent flexibility, stretchability, lightweight construction, and low profile. These systems seamlessly conform to curvilinear surfaces, including skin, organs, plants, robots, and marine species, facilitating optimal contact. This capability enables flexible electronic systems to enhance or even supplant the utilization of cumbersome instrumentation across a broad range of monitoring and actuation tasks. Consequently, significant progress has been realized in the development of flexible electronic systems. This study begins by examining the key components of standalone flexible electronic systems-sensors, front-end circuitry, data management, power management and actuators. The next section explores different integration strategies for flexible electronic systems as well as their recent advancements. Flexible hybrid electronics, which is currently the most widely used strategy, is first reviewed to assess their characteristics and applications. Subsequently, transformational electronics, which achieves compact and high-density system integration by leveraging heterogeneous integration of bare-die components, is highlighted as the next era of flexible electronic systems. Finally, the study concludes by suggesting future research directions and outlining critical considerations and challenges for developing and miniaturizing fully integrated standalone flexible electronic systems.
Collapse
Affiliation(s)
- Min Sung Kim
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Amani S Almuslem
- Department of Physics, College of Science, King Faisal University, Prince Faisal bin Fahd bin Abdulaziz Street, Al-Ahsa, 31982, Saudi Arabia
| | - Wedyan Babatain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rabab R Bahabry
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Uttam K Das
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nazek El-Atab
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamed Ghoneim
- Logic Technology Development Quality and Reliability, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Aftab M Hussain
- International Institute of Information Technology (IIIT) Hyderabad, Gachibowli, Hyderabad, 500 032, India
| | - Arwa T Kutbee
- Department of Physics, College of Science, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Joanna Nassar
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nadeem Qaiser
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jhonathan P Rojas
- Electrical Engineering Department & Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261, Saudi Arabia
| | | | - Galo A Torres Sevilla
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Muhammad M Hussain
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
10
|
Salih IL, Alshatteri AH, Omer KM. Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review. ANAL SCI 2024; 40:1969-1986. [PMID: 39093545 DOI: 10.1007/s44211-024-00635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.
Collapse
Affiliation(s)
- Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
- Department of Chemistry, College of Science, University of Raparin, RaniaSulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Azad H Alshatteri
- Department of Chemistry, University of Garmian, Darbandikhan Road, Kalar City, Sulaimaniyah, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
11
|
Zhang Y, Zheng XT, Zhang X, Pan J, Thean AVY. Hybrid Integration of Wearable Devices for Physiological Monitoring. Chem Rev 2024; 124:10386-10434. [PMID: 39189683 DOI: 10.1021/acs.chemrev.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Wearable devices can provide timely, user-friendly, non- or minimally invasive, and continuous monitoring of human health. Recently, multidisciplinary scientific communities have made significant progress regarding fully integrated wearable devices such as sweat wearable sensors, saliva sensors, and wound sensors. However, the translation of these wearables into markets has been slow due to several reasons associated with the poor system-level performance of integrated wearables. The wearability consideration for wearable devices compromises many properties of the wearables. Besides, the limited power capacity of wearables hinders continuous monitoring for extended duration. Furthermore, peak-power operations for intensive computations can quickly create thermal issues in the compact form factor that interfere with wearability and sensor operations. Moreover, wearable devices are constantly subjected to environmental, mechanical, chemical, and electrical interferences and variables that can invalidate the collected data. This generates the need for sophisticated data analytics to contextually identify, include, and exclude data points per multisensor fusion to enable accurate data interpretation. This review synthesizes the challenges surrounding the wearable device integration from three aspects in terms of hardware, energy, and data, focuses on a discussion about hybrid integration of wearable devices, and seeks to provide comprehensive guidance for designing fully functional and stable wearable devices.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
12
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
13
|
Huang Y, Zhong H, Yang R, Pan Y, Lin J, Lee CKW, Chen S, Tan M, Lu X, Poon WY, Yuan Q, Li MG. Multifunctional laser-induced graphene circuits and laser-printed nanomaterials toward non-invasive human kidney function monitoring. Biosens Bioelectron 2024; 259:116386. [PMID: 38749285 DOI: 10.1016/j.bios.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/03/2024]
Abstract
Faced with the increasing prevalence of chronic kidney disease (CKD), portable monitoring of CKD-related biomarkers such as potassium ion (K+), creatinine (Cre), and lactic acid (Lac) levels in sweat has shown tremendous potential for early diagnosis. However, a rapidly manufacturable portable device integrating multiple CKD-related biomarker sensors for ease of sweat testing use has yet to be reported. Here, a portable electrochemical sensor integrated with multifunctional laser-induced graphene (LIG) circuits and laser-printed nanomaterials based working electrodes fabricated by fully automatic laser manufacturing is proposed for non-invasive human kidney function monitoring. The sensor comprises a two-electrode LIG circuit for K+ sensing, a three-electrode LIG circuit with a Kelvin compensating connection for Cre and Lac sensing, and a printed circuit board based portable electrochemical workstation. The working electrodes containing Cu and Cu2O nanoparticles fabricated by two-step laser printing show good sensitivity and selectivity toward Cre and Lac sensing. The sensor circuits are fabricated by generating a hydrophilic-hydrophobic interface on a patterned LIG through laser. This sensor recruited rapid laser manufacturing and integrated with multifunctional LIG circuits and laser-printed nanomaterials based working electrodes, which is a potential kidney function monitoring solution for healthy people and kidney disease patients.
Collapse
Affiliation(s)
- Yangyi Huang
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Haosong Zhong
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Rongliang Yang
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yexin Pan
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Lin
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Connie Kong Wai Lee
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Siyu Chen
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Min Tan
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xupeng Lu
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Wing Yan Poon
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Qiaoyaxiao Yuan
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Mitch Guijun Li
- Center for Smart Manufacturing, Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
14
|
Ding H, Yang H, Tsujimura S. Nature-Inspired Superhydrophilic Biosponge as Structural Beneficial Platform for Sweating Analysis Patch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401947. [PMID: 38868908 PMCID: PMC11321618 DOI: 10.1002/advs.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Perspiration plays a pivotal role not only in thermoregulation but also in reflecting the body's internal state and its response to external stimuli. The up-to-date skin-based wearable platforms have facilitated the monitoring and simultaneous analysis of sweat, offering valuable physiological insights. Unlike conventional passive sweating, dynamic normal perspiration, which occurs during various activities and rest periods, necessitates a more reliable method of collection to accurately capture its real-time fluctuations. An innovative microfluidic patch incorporating a hierarchical superhydrophilic biosponge, poise to significantly improve the efficiency capture of dynamic sweat is introduced. The seamlessly integrated biosponge microchannel showcases exceptional absorption capabilities, efficiently capturing non-sensitive sweat exuding from the skin surface, mitigating sample loss and minimizing sweat volatilization. Furthermore, the incorporation of sweat-rate sensors alongside a suite of functional electrochemical sensors endows the patch of uninterrupted monitoring and analysis of dynamic sweat during various activities, stress events, high-energy intake, and other scenarios.
Collapse
Affiliation(s)
- Hanlin Ding
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Hao Yang
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Seiya Tsujimura
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| |
Collapse
|
15
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
16
|
Leon-Cecilla A, Gila-Vilchez C, Vazquez-Perez FJ, Capitan-Vallvey LF, Martos V, Fernandez-Ramos MD, Álvarez de Cienfuegos L, Medina-Castillo AL, Lopez-Lopez MT. Highly deformable and strongly magnetic semi-interpenetrating hydrogels based on alginate or cellulose. Int J Biol Macromol 2024; 260:129368. [PMID: 38219926 DOI: 10.1016/j.ijbiomac.2024.129368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The effective implementation of many of the applications of magnetic hydrogels requires the development of innovative systems capable of withstanding a substantial load of magnetic particles to ensure exceptional responsiveness, without compromising their reliability and stability. To address this challenge, double-network hydrogels have emerged as a promising foundation, thanks to their extraordinary mechanical deformability and toughness. Here, we report a semi-interpenetrating polymer networks (SIPNs) approach to create diverse magnetic SIPNs hydrogels based on alginate or cellulose, exhibiting remarkable deformability under certain stresses. Achieving strong responsiveness to magnetic fields is a key objective, and this characteristic is realized by the incorporation of highly magnetic iron microparticles at moderately large concentrations into the polymer network. Remarkably, the SIPNs hydrogels developed in this research accommodate high loadings of magnetic particles without significantly compromising their physical properties. This feature is essential for their use in applications that demand robust responsiveness to applied magnetic fields and overall stability, such as a hydrogel luminescent oxygen sensor controlled by magnetic fields that we designed and tested as proof-of-concept. These findings underscore the potential and versatility of magnetic SIPNs hydrogels based on carbohydrate biopolymers as fundamental components in driving the progress of advanced hydrogels for diverse practical implementations.
Collapse
Affiliation(s)
- Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Cristina Gila-Vilchez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Francisco J Vazquez-Perez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain
| | - Luis F Capitan-Vallvey
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Vanesa Martos
- Universidad de Granada, Departamento de Fisiología Vegetal, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Biotecnología, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada, Spain
| | - María D Fernandez-Ramos
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain; Universidad de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Campus de Fuentenueva, E-18071 Granada, Spain
| | - Antonio L Medina-Castillo
- Universidad de Granada, Departamento de Química Analítica, Campus de Fuentenueva, E-18071 Granada, Spain.
| | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, Campus de Fuentenueva, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014 Granada, Spain.
| |
Collapse
|
17
|
Deng M, Li X, Song K, Yang H, Wei W, Duan X, Ouyang X, Cheng H, Wang X. Skin-Interfaced Bifluidic Paper-Based Device for Quantitative Sweat Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306023. [PMID: 38133495 PMCID: PMC10933605 DOI: 10.1002/advs.202306023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Indexed: 12/23/2023]
Abstract
The erratic, intermittent, and unpredictable nature of sweat production, resulting from physiological or psychological fluctuations, poses intricacies to consistently and accurately sample and evaluate sweat biomarkers. Skin-interfaced microfluidic devices that rely on colorimetric mechanisms for semi-quantitative detection are particularly susceptible to these inaccuracies due to variations in sweat secretion rate or instantaneous volume. This work introduces a skin-interfaced colorimetric bifluidic sweat device with two synchronous channels to quantify sweat rate and biomarkers in real-time, even during uncertain sweat activities. In the proposed bifluidic-distance metric approach, with one channel to measure sweat rate and quantify collected sweat volume, the other channel can provide an accurate analysis of the biomarkers based on the collected sweat volume. The closed channel design also reduces evaporation and resists contamination from the external environment. The feasibility of the device is highlighted in a proof-of-the-concept demonstration to analyze sweat chloride for evaluating hydration status and sweat glucose for assessing glucose levels. The low-cost yet highly accurate device provides opportunities for clinical sweat analysis and disease screening in remote and low-resource settings. The developed device platform can be facilely adapted for the other biomarkers when corresponding colorimetric reagents are exploited.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaofeng Li
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Kui Song
- Department of Engineering Science and MechanicsXiangtan UniversityXiangtanHunan411105China
| | - Hanlin Yang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Wenkui Wei
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaojun Duan
- Hunan Provincial Children's HospitalChangshaHunan410000China
| | - Xiaoping Ouyang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiufeng Wang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| |
Collapse
|
18
|
Saha T, Mukherjee S, Dickey MD, Velev OD. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. LAB ON A CHIP 2024; 24:1244-1265. [PMID: 38197332 DOI: 10.1039/d3lc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
19
|
Wu ZQ, Cao XQ, Hua Y, Yu CM. A Bifunctional Wearable Sensor Based on a Nanoporous Membrane for Simultaneous Detection of Sweat Lactate and Temperature. Anal Chem 2024. [PMID: 38320230 DOI: 10.1021/acs.analchem.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Wearable sensors for non-invasive, real-time detection of sweat lactate have far-reaching implications in the fields of health care and exercise physiological responses. Here, we propose a wearable electrochemical sensor with gold nanoelectrode arrays fabricated on the nanoporous polycarbonate (PC) membrane by encapsulating lactate oxidase (LOx) in chitosan (CS) hydrogel for detecting body temperature and sweat lactate concurrently. Flexible gold nanoporous electrodes not only enhance electrode area but also offer a nanoconfined space to accelerate the catalytic reaction of LOx and control substrate concentration on the surface of LOx to decrease substrate inhibition. The proposed sensor has a long durability of 13 days and better selectivity for the detection of sweat lactate over a wide linear range (0.01-35 mM) with a low detection limit (0.144 μM). Furthermore, temperature-dependent transmembrane currents passing through the sensor are used to estimate body temperature. We then use multiple linear regression to adjust the effect of temperature on lactate detection and succeed in monitoring lactate molecules in sweat and body temperature during exercise.
Collapse
Affiliation(s)
- Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Qing Cao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Chun-Mei Yu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
20
|
Mao Z, Hosoya N, Maeda S. Flexible Electrohydrodynamic Fluid-Driven Valveless Water Pump via Immiscible Interface. CYBORG AND BIONIC SYSTEMS 2024; 5:0091. [PMID: 38318499 PMCID: PMC10843178 DOI: 10.34133/cbsystems.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
The conventional electrohydrodynamic (EHD) pump is limited to pumping functional and dielectric liquids, which restricts its applications in fields like microfluidics, food safety, and materials production. In this study, we present a flexible water pump driven by EHD fluid, achieved by integrating valveless elements into the fluidic channel. Our approach leverages the water-EHD interface to propel the immiscible aqueous liquid and reciprocate this process using the nozzle-diffuser system. All components of the water pump are digitally fabricated and assembled. The valveless parts are created using a laser cutting machine. Additionally, we develop a model for the EHD pump and nozzle-diffuser system to predict the generated flow rate, considering factors such as the asymmetrical performance of the EHD pump, pulse frequency, applied voltage, and structural parameters. Finally, we experimentally characterize the flow rates of both the EHD pump and water pump and apply the newly developed device to air bubble manipulation and droplet generation. This research broadens the range of specialized liquids pumped by EHD pumps to include other aqueous liquids or mixtures.
Collapse
Affiliation(s)
- Zebing Mao
- Department of Mechanical engineering,
Tokyo Institute of Technology, Tokyo, Japan
| | - Naoki Hosoya
- Department of Engineering Science and Mechanics,
Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Shingo Maeda
- Department of Mechanical engineering,
Tokyo Institute of Technology, Tokyo, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI),
Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
21
|
Sun Y, Wang J, Lu Q, Fang T, Wang S, Yang C, Lin Y, Wang Q, Lu YQ, Kong D. Stretchable and Smart Wettable Sensing Patch with Guided Liquid Flow for Multiplexed in Situ Perspiration Analysis. ACS NANO 2024; 18:2335-2345. [PMID: 38189251 DOI: 10.1021/acsnano.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Ting Fang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Shaolei Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yong Lin
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
22
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
23
|
Pour SRS, Calabria D, Emamiamin A, Lazzarini E, Pace A, Guardigli M, Zangheri M, Mirasoli M. Microfluidic-Based Non-Invasive Wearable Biosensors for Real-Time Monitoring of Sweat Biomarkers. BIOSENSORS 2024; 14:29. [PMID: 38248406 PMCID: PMC10813635 DOI: 10.3390/bios14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Wearable biosensors are attracting great interest thanks to their high potential for providing clinical-diagnostic information in real time, exploiting non-invasive sampling of biofluids. In this context, sweat has been demonstrated to contain physiologically relevant biomarkers, even if it has not been exhaustively exploited till now. This biofluid has started to gain attention thanks to the applications offered by wearable biosensors, as it is easily collectable and can be used for continuous monitoring of some parameters. Several studies have reported electrochemical and optical biosensing strategies integrated with flexible, biocompatible, and innovative materials as platforms for biospecific recognition reactions. Furthermore, sampling systems as well as the transport of fluids by microfluidics have been implemented into portable and compact biosensors to improve the wearability of the overall analytical device. In this review, we report and discuss recent pioneering works about the development of sweat sensing technologies, focusing on opportunities and open issues that can be decisive for their applications in routine-personalized healthcare practices.
Collapse
Affiliation(s)
- Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
24
|
Saha T, Del Caño R, De la Paz E, Sandhu SS, Wang J. Access and Management of Sweat for Non-Invasive Biomarker Monitoring: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206064. [PMID: 36433842 DOI: 10.1002/smll.202206064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sweat is an important biofluid presents in the body since it regulates the internal body temperature, and it is relatively easy to access on the skin unlike other biofluids and contains several biomarkers that are also present in the blood. Although sweat sensing devices have recently displayed tremendous progress, most of the emerging devices primarily focus on the sensor development, integration with electronics, wearability, and data from in vitro studies and short-term on-body trials during exercise. To further the advances in sweat sensing technology, this review aims to present a comprehensive report on the approaches to access and manage sweat from the skin toward improved sweat collection and sensing. It is begun by delineating the sweat secretion mechanism through the skin, and the historical perspective of sweat, followed by a detailed discussion on the mechanisms governing sweat generation and management on the skin. It is concluded by presenting the advanced applications of sweat sensing, supported by a discussion of robust, extended-operation epidermal wearable devices aiming to strengthen personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
- Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, Cordoba, E-14014, Spain
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Samar S Sandhu
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| |
Collapse
|
25
|
Hou Z, Gao T, Liu X, Guo W, Bai L, Wang W, Yang L, Yang H, Wei D. Dual detection of human motion and glucose in sweat with polydopamine and glucose oxidase doped self-healing nanocomposite hydrogels. Int J Biol Macromol 2023; 252:126473. [PMID: 37619684 DOI: 10.1016/j.ijbiomac.2023.126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The detection of human motion and sweat composition are important for human health or sports training, so it is necessary to develop flexible sensors for monitoring exercise processes and sweat detection. Mussel secretion of adhesion proteins enables self-healing of byssus and adhesion to surfaces. We prepared Au nanoparticles@polydopamine (AuNPs@PDA) nanomaterials based on mussel-inspired chemistry and compounded them with polyvinyl alcohol (PVA) hydrogels to obtain PVA/AuNPs@PDA self-healing nanocomposite hydrogels. Dopamine (DA) was coated on the surface of AuNPs to obtain AuNPs based composite (AuNPs@PDA) and the AuNPs@PDA was implanted into the PVA hydrogels to obtain nanocomposite hydrogel through facile freeze-thaw cycle. Glucose oxidase (GOD) was added to the hydrogel matrix to achieve specific detection of glucose in sweat. The obtained hydrogels exhibit high deformability (573.7 %), excellent mechanical strength (550.3 KPa) and self-healing properties (85.1 %). The PVA/AuNPs@PDA hydrogel sensors exhibit quick response time (185.0 ms), wide strain sensing range (0-500 %), superior stability and anti-fatigue properties in motion detection. The detection of glucose had wide concentration detection range (1.0 μmol/L-200.0 μmol/L), low detection limits (0.9 μmol/L) and high sensitivity (24.4 μA/mM). This work proposes a reference method in dual detection of human exercise and sweat composition analysis.
Collapse
Affiliation(s)
- Zehua Hou
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Teng Gao
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Xinyue Liu
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Wenzhe Guo
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China.
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Yantai 264025, China
| |
Collapse
|
26
|
Dashtian K, Binabaji F, Zare-Dorabei R. Enhancing On-Skin Analysis: A Microfluidic Device and Smartphone Imaging Module for Real-Time Quantitative Detection of Multianalytes in Sweat. Anal Chem 2023; 95:16315-16326. [PMID: 37897415 DOI: 10.1021/acs.analchem.3c03516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Wearable sweat sensors present exciting opportunities for advancing personal health monitoring and noninvasive biomarker measurements. However, existing sensors often fall short in accurate detection of low analyte volumes and concentrations and lack multimodal sensing capabilities. Herein, we present a highly portable four-channel microfluidic device capable of conducting simultaneous sweat sampling and fluorometric sensing of potential biomarkers, such as l-Tyr, l-Trp, Crt, and NH4+, specifically designed for kidney disease monitoring. Our microfluidic device seamlessly integrates with smartphones, facilitating easy data retrieval and analysis. The core of the sensing array is a novel fluorometric solid-state mechanism utilizing carbon polymer dots derived from dopamine, catechol, and o-phenylenediamine monomers embedded in gelatin hydrogels. The sensors exhibit exceptional performance, offering linear ranges of 5-275, 6-170, 4-220, and 5-170 μM, with impressively low detection limits of 1.5, 1.2, 1.3, and 1.4 μM for l-Tyr, l-Trp, Crt, and NH4+, respectively. Through meticulous optimization of operational variables, comprising the temperature, sample volume, and assay time, we achieved the best performance of the device. Furthermore, the sensors exhibited remarkable selectivity, effectively distinguishing between biologically similar species and other potential biological compounds found in sweat. Our evaluation also extended to monitoring kidney diseases in patients and healthy individuals, showcasing the device's utility in world scenarios. Promising results showcase the potential of low-cost, multidiagnostic microfluidic sensor arrays, especially with synthetic skin integration, for enhanced disease detection and healthcare outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Binabaji
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
27
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
28
|
Yi L, Hou B, Liu X. Optical Integration in Wearable, Implantable and Swallowable Healthcare Devices. ACS NANO 2023; 17:19491-19501. [PMID: 37807286 DOI: 10.1021/acsnano.3c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Recent advances in materials and semiconductor technologies have led to extensive research on optical integration in wearable, implantable, and swallowable health devices. These optical systems utilize the properties of light─intensity, wavelength, polarization, and phase─to monitor and potentially intervene in various biological events. The potential of these devices is greatly enhanced through the use of multifunctional optical materials, adaptable integration processes, advanced optical sensing principles, and optimized artificial intelligence algorithms. This synergy creates many possibilities for clinical applications. This Perspective discusses key opportunities, challenges, and future directions, particularly with respect to sensing modalities, multifunctionality, and the integration of miniaturized optoelectronic devices. We present fundamental insights and illustrative examples of such devices in wearable, implantable, and swallowable forms. The constant pursuit of innovation and the dedicated approach to critical challenges are poised to influence diverse fields.
Collapse
Affiliation(s)
- Luying Yi
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Bo Hou
- Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
29
|
Yadav A, Patil R, Dutta S. Advanced Self-Powered Biofuel Cells with Capacitor and Nanogenerator for Biomarker Sensing. ACS APPLIED BIO MATERIALS 2023; 6:4060-4080. [PMID: 37787456 DOI: 10.1021/acsabm.3c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-powered biofuel cells (BFCs) have evolved for highly sensitive detection of biomarkers such as noncodon micro ribonucleic acids (miRNAs) in the presence of interfering substrates. Self-charging supercapacitive BFCs for in vivo and in vitro cellular microenvironments represent the most prevalent sensing mechanism for diagnosis. Therefore, self-powered biosensing (SPB) with a capacitor and contact separation with a triboelectric nanogenerator (TENG) offers electrochemical and colorimetric dual-mode detection via improved electrical signal intensity. In this review, we discuss three major components: stretchable self-powered BFC design, miRNA sensing, and impedance spectroscopy. A specific focus is given to 1) assembling of sensors for biomarkers, 2) electrical output signal intensification, and 3) role of supercapacitors and nanogenerators in SPBs. We outline the key features of stretchable SPBs and the sequence of miRNA sensing by SPBs. We have emphasized the need of a supercapacitor and nanogenerator for SPBs in the context of advanced assembly of the sensing unit. Finally, we outline the role of impedance spectroscopy in the detection and estimation of biomarkers. We highlight key challenges in SPBs for biomarker sensing, which needs improved sensing accuracy, integration strategies of electrochemical biosensing for in vitro and in vivo microenvironments, and the impact of miRNA sensing on cancer diagnostics. This article attempts a specific focus on the accuracy and limitations of sensing unit for miRNA biomarkers and associated tool for boosting electrical signal intensity for a potential big step further.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Rahul Patil
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory Amity Institute of Click Chemistry Research & Studies, Amity University, Sector 125, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
30
|
Tu J, Min J, Song Y, Xu C, Li J, Moore J, Hanson J, Hu E, Parimon T, Wang TY, Davoodi E, Chou TF, Chen P, Hsu JJ, Rossiter HB, Gao W. A wireless patch for the monitoring of C-reactive protein in sweat. Nat Biomed Eng 2023; 7:1293-1306. [PMID: 37349389 PMCID: PMC10592261 DOI: 10.1038/s41551-023-01059-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
The quantification of protein biomarkers in blood at picomolar-level sensitivity requires labour-intensive incubation and washing steps. Sensing proteins in sweat, which would allow for point-of-care monitoring, is hindered by the typically large interpersonal and intrapersonal variations in its composition. Here we report the design and performance of a wearable and wireless patch for the real-time electrochemical detection of the inflammatory biomarker C-reactive (CRP) protein in sweat. The device integrates iontophoretic sweat extraction, microfluidic channels for sweat sampling and for reagent routing and replacement, and a graphene-based sensor array for quantifying CRP (via an electrode functionalized with anti-CRP capture antibodies-conjugated gold nanoparticles), ionic strength, pH and temperature for the real-time calibration of the CRP sensor. In patients with chronic obstructive pulmonary disease, with active or past infections or who had heart failure, the elevated concentrations of CRP measured via the patch correlated well with the protein's levels in serum. Wearable biosensors for the real-time sensitive analysis of inflammatory proteins in sweat may facilitate the management of chronic diseases.
Collapse
Affiliation(s)
- Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jeff Moore
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Justin Hanson
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Erin Hu
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Tanyalak Parimon
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Elham Davoodi
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Peter Chen
- Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey J Hsu
- Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
31
|
Yang S, Li Y, Deng L, Tian S, Yao Y, Yang F, Feng C, Dai J, Wang P, Gao M. Flexible thermoelectric generator and energy management electronics powered by body heat. MICROSYSTEMS & NANOENGINEERING 2023; 9:106. [PMID: 37636323 PMCID: PMC10449853 DOI: 10.1038/s41378-023-00583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 08/29/2023]
Abstract
Uninterrupted, efficient power supplies have posed a significant hurdle to the ubiquitous adoption of wearable devices, despite their potential for revolutionizing human‒machine interactions. This challenge is further compounded by the requirement of these devices to supply dependable energy for data-intensive sensing and transmission. Traditional thermoelectric solutions fail to deliver satisfactory performance under conditions of extremely low voltages. Here, we present a novel solution of a wearable thermoelectric generator integrated with an energy management system, which is capable of powering sensors and Bluetooth by harnessing body heat. Distinct from previous works, our innovation lies in its ability to consistently operate even with a minimal temperature difference (i.e., 4 K) between the human skin and the ambient environment, ensuring reliable data transmission within a time as short as 1.6 s. Furthermore, our system can recharge utilizing body heat under ultralow voltage conditions (30 mV). Our developed system provides a novel pathway for the continuous, reliable monitoring of self-contained wearable devices without depending on batteries.
Collapse
Affiliation(s)
- Shuai Yang
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
- Chongqing Key Laboratory of Agricultural Equipment in Hilly Area, 400716 Chongqing, China
| | - Yumei Li
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
- Chongqing Key Laboratory of Agricultural Equipment in Hilly Area, 400716 Chongqing, China
| | - Ling Deng
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
- Chongqing Key Laboratory of Agricultural Equipment in Hilly Area, 400716 Chongqing, China
| | - Song Tian
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
- Chongqing Key Laboratory of Agricultural Equipment in Hilly Area, 400716 Chongqing, China
| | - Ye Yao
- Gies College of Business, University of Illinois at Urbana–Champaign, Champaign, IL 61820 USA
| | - Fan Yang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Changlei Feng
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, 100081 Beijing, China
| | - Ping Wang
- School of Civil Engineering, Southwest Jiaotong University, 610031 Chengdu, China
| | - Mingyuan Gao
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
- Chongqing Key Laboratory of Agricultural Equipment in Hilly Area, 400716 Chongqing, China
| |
Collapse
|
32
|
Lin PH, Nien HH, Li BR. Wearable Microfluidics for Continuous Assay. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:181-203. [PMID: 36888989 DOI: 10.1146/annurev-anchem-091322-082930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers. An efficient use of space in one small device is a promising resolution to increase the functions of wearable devices. Through integration of a microfluidic system into wearable devices, embedding complicated structures in one design becomes possible and can enable multifunction analyses within a limited device volume. This article reviews the reported microfluidic wearable devices, introduces applications to different biofluids, discusses characteristics of the design strategies and sensing principles, and highlights the attractive configurations of each device. This review seeks to provide a detailed summary of recent advanced microfluidic wearable devices. The overview of advanced key components is the basis for the development of future microfluidic wearable devices.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Hua Nien
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
33
|
Wu CH, Ma HJH, Baessler P, Balanay RK, Ray TR. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis. SCIENCE ADVANCES 2023; 9:eadg4272. [PMID: 37134158 PMCID: PMC10881187 DOI: 10.1126/sciadv.adg4272] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023]
Abstract
Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic ("epifluidic") devices. A 3D printed epifluidic platform, called a "sweatainer," demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts.
Collapse
Affiliation(s)
- Chung-Han Wu
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Howin Jian Hing Ma
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Paul Baessler
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Roxanne Kate Balanay
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaiʻi at Mānoa, Honolulu, HI 96813, USA
| |
Collapse
|
34
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
35
|
Wang B, Li Y, Zhou M, Han Y, Zhang M, Gao Z, Liu Z, Chen P, Du W, Zhang X, Feng X, Liu BF. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat Commun 2023; 14:1341. [PMID: 36906581 PMCID: PMC10007670 DOI: 10.1038/s41467-023-36017-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/10/2023] [Indexed: 03/13/2023] Open
Abstract
The frequent outbreak of global infectious diseases has prompted the development of rapid and effective diagnostic tools for the early screening of potential patients in point-of-care testing scenarios. With advances in mobile computing power and microfluidic technology, the smartphone-based mobile health platform has drawn significant attention from researchers developing point-of-care testing devices that integrate microfluidic optical detection with artificial intelligence analysis. In this article, we summarize recent progress in these mobile health platforms, including the aspects of microfluidic chips, imaging modalities, supporting components, and the development of software algorithms. We document the application of mobile health platforms in terms of the detection objects, including molecules, viruses, cells, and parasites. Finally, we discuss the prospects for future development of mobile health platforms.
Collapse
Affiliation(s)
- Bangfeng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yulong Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Mingyu Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaolong Gao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zetai Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
36
|
Kashaninejad N, Nguyen NT. Microfluidic solutions for biofluids handling in on-skin wearable systems. LAB ON A CHIP 2023; 23:913-937. [PMID: 36628970 DOI: 10.1039/d2lc00993e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
On-skin wearable systems for biofluid sampling and biomarker sensing can revolutionize the current practices in healthcare monitoring and personalized medicine. However, there is still a long path toward complete market adoption and acceptance of this fascinating technology. Accordingly, microfluidic science and technology can provide excellent solutions for bridging the gap between basic research and clinical research. The research gap has led to the emerging field of epidermal microfluidics. Moreover, recent advances in the fabrication of highly flexible and stretchable microfluidic systems have revived the concept of micro elastofluidics, which can provide viable solutions for on-skin wearable biofluid handling. In this context, this review highlights the current state-of-the-art platforms in this field and discusses the potential technologies that can be used for on-skin wearable devices. Toward this aim, we first compare various microfluidic platforms that could be used for on-skin wearable devices. These platforms include semiconductor-based, polymer-based, liquid metal-based, paper-based, and textile-based microfluidics. Next, we discuss how these platforms can enhance the stretchability of on-skin wearable biosensors at the device level. Next, potential microfluidic solutions for collecting, transporting, and controlling the biofluids are discussed. The application of finger-powered micropumps as a viable solution for precise and on-demand biofluid pumping is highlighted. Finally, we present the future directions of this field by emphasizing the applications of droplet-based microfluidics, stretchable continuous-flow micro elastofluidics, stretchable superhydrophobic surfaces, liquid beads as a form of digital micro elastofluidics, and topological liquid diodes that received less attention but have enormous potential to be integrated into on-skin wearable devices.
Collapse
Affiliation(s)
- Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
37
|
Wu J, Liu H, Chen W, Ma B, Ju H. Device integration of electrochemical biosensors. NATURE REVIEWS BIOENGINEERING 2023; 1:346-360. [PMID: 37168735 PMCID: PMC9951169 DOI: 10.1038/s44222-023-00032-w] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
Electrochemical biosensors incorporate a recognition element and an electronic transducer for the highly sensitive detection of analytes in body fluids. Importantly, they can provide rapid readouts and they can be integrated into portable, wearable and implantable devices for point-of-care diagnostics; for example, the personal glucose meter enables at-home assessment of blood glucose levels, greatly improving the management of diabetes. In this Review, we discuss the principles of electrochemical biosensing and the design of electrochemical biosensor devices for health monitoring and disease diagnostics, with a particular focus on device integration into wearable, portable and implantable systems. Finally, we outline the key engineering challenges that need to be addressed to improve sensing accuracy, enable multiplexing and one-step processes, and integrate electrochemical biosensing devices in digital health-care pathways.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Yuan X, Li C, Yin X, Yang Y, Ji B, Niu Y, Ren L. Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. BIOSENSORS 2023; 13:313. [PMID: 36979525 PMCID: PMC10045998 DOI: 10.3390/bios13030313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biological information detection technology is mainly used for the detection of physiological and biochemical parameters closely related to human tissues and organ lesions, such as biomarkers. This technology has important value in the clinical diagnosis and treatment of chronic diseases in their early stages. Wearable biosensors can be integrated with the Internet of Things and Big Data to realize the detection, transmission, storage, and comprehensive analysis of human physiological and biochemical information. This technology has extremely wide applications and considerable market prospects in frontier fields including personal health monitoring, chronic disease diagnosis and management, and home medical care. In this review, we systematically summarized the sweat biomarkers, introduced the sweat extraction and collection methods, and discussed the application and development of epidermal wearable biosensors for monitoring biomarkers in sweat in preclinical research in recent years. In addition, the current challenges and development prospects in this field were discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xu Yin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yinbo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
39
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
40
|
Lapizco-Encinas BH, Zhang YV. Microfluidic systems in clinical diagnosis. Electrophoresis 2023; 44:217-245. [PMID: 35977346 DOI: 10.1002/elps.202200150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
The use of microfluidic devices is highly attractive in the field of biomedical and clinical assessments, as their portability and fast response time have become crucial in providing opportune therapeutic treatments to patients. The applications of microfluidics in clinical diagnosis and point-of-care devices are continuously growing. The present review article discusses three main fields where miniaturized devices are successfully employed in clinical applications. The quantification of ions, sugars, and small metabolites is examined considering the analysis of bodily fluids samples and the quantification of this type of analytes employing real-time wearable devices. The discussion covers the level of maturity that the devices have reached as well as cost-effectiveness. The analysis of proteins with clinical relevance is presented and organized by the function of the proteins. The last section covers devices that can perform single-cell metabolomic and proteomic assessments. Each section discusses several strategically selected recent reports on microfluidic devices successfully employed for clinical assessments, to provide the reader with a wide overview of the plethora of novel systems and microdevices developed in the last 5 years. In each section, the novel aspects and main contributions of each reviewed report are highlighted. Finally, the conclusions and future outlook section present a summary and speculate on the future direction of the field of miniaturized devices for clinical applications.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
41
|
A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat Commun 2022; 13:7757. [PMID: 36522334 PMCID: PMC9755152 DOI: 10.1038/s41467-022-35455-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic patches, based on various mechanisms, allow continuous and noninvasive monitoring of biomolecules on the skin surface. However, to date, such devices are unable to sense biomolecules in deep tissues, which have a stronger and faster correlation with the human physiological status than those on the skin surface. Here, we demonstrate a photoacoustic patch for three-dimensional (3D) mapping of hemoglobin in deep tissues. This photoacoustic patch integrates an array of ultrasonic transducers and vertical-cavity surface-emitting laser (VCSEL) diodes on a common soft substrate. The high-power VCSEL diodes can generate laser pulses that penetrate >2 cm into biological tissues and activate hemoglobin molecules to generate acoustic waves, which can be collected by the transducers for 3D imaging of the hemoglobin with a high spatial resolution. Additionally, the photoacoustic signal amplitude and temperature have a linear relationship, which allows 3D mapping of core temperatures with high accuracy and fast response. With access to biomolecules in deep tissues, this technology adds unprecedented capabilities to wearable electronics and thus holds significant implications for various applications in both basic research and clinical practice.
Collapse
|
42
|
Lin H, Yu W, Suarez JEDD, Athavan H, Wang Y, Yeung C, Lin S, Sankararaman S, Milla C, Emaminejad S. Autonomous wearable sweat rate monitoring based on digitized microbubble detection. LAB ON A CHIP 2022; 22:4267-4275. [PMID: 36268642 PMCID: PMC9757655 DOI: 10.1039/d2lc00670g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Advancements in wearable bioanalytical microsystems have enabled diurnal and (semi)continuous monitoring of physiologically-relevant indices that are accessible through probing sweat. To deliver an undistorted and physiologically-meaningful interpretation of these readings, tracking the sweat secretion rate is essential, because it allows for calibrating the biomarker readings against variations in sweat secretion and inferring the body's hydration/electrolyte homeostasis status. To realize an autonomous wearable solution with intrinsically high signal-to-noise ratio sweat rate sensing capabilities, here, we devise a digitized microbubble detection mechanism-delivered by a hybrid microfluidic/electronic system with a compact footprint. This mechanism is based on the intermittent generation of microliter-scale bubbles via electrolysis and the instantaneous measurement of their time-of-flight (and thus, velocity) via impedimetric sensing. In this way, we overcome the limitations of previously proposed sweat rate sensing modalities that are inherently susceptible to non-targeted secretion characteristics (pH, conductivity, and temperature), constrained by volume, or lack system integration for autonomous on-body operation. By deploying our solution in human subject trials, we validate the utility of our solution for seamless monitoring of exercise- and iontophoretically-induced sweat secretion profiles.
Collapse
Affiliation(s)
- Haisong Lin
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong.
| | - Wenzhuo Yu
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| | - Jorge Emiliano De Dios Suarez
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| | - Harish Athavan
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| | - Yibo Wang
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| | | | - Shuyu Lin
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| | | | - Carlos Milla
- Stanford School of Medicine, Stanford University, USA
| | - Sam Emaminejad
- Interconnected & Integrated Bioelectronics Lab (I2BL), Department of Electrical and Computer Engineering, UCLA, USA.
| |
Collapse
|
43
|
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7670. [PMID: 36236769 PMCID: PMC9573257 DOI: 10.3390/s22197670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Sweat analysis offers non-invasive real-time on-body measurement for wearable sensors. However, there are still gaps in current developed sweat-sensing devices (SSDs) regarding the concerns of mixing fresh and old sweat and real-time measurement, which are the requirements to ensure accurate the measurement of wearable devices. This review paper discusses these limitations by aiding model designs, features, performance, and the device operation for exploring the SSDs used in different sweat collection tools, focusing on continuous and non-continuous flow sweat analysis. In addition, the paper also comprehensively presents various sweat biomarkers that have been explored by earlier works in order to broaden the use of non-invasive sweat samples in healthcare and related applications. This work also discusses the target analyte's response mechanism for different sweat compositions, categories of sweat collection devices, and recent advances in SSDs regarding optimal design, functionality, and performance.
Collapse
Affiliation(s)
- Nur Fatin Adini Ibrahim
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Norhayati Sabani
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shazlina Johari
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Asnida Abdul Wahab
- Department of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Zulkarnay Zakaria
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Sports Engineering Research Center, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Anas Mohd Noor
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellance Micro System Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| |
Collapse
|
44
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
45
|
Lu X, Zhang L, Zhang J, Wang C, Zhang A. Facile Preparation of Dual Functional Wearable Devices Based on Hindered Urea Bond-Integrated Reprocessable Polyurea and AgNWs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41421-41432. [PMID: 36049051 DOI: 10.1021/acsami.2c11875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the advancement of material science and electronic technology, wearable devices have been integrated into daily lives, no longer just a stirring idea in science fiction. In the future, robust multifunctionalized wearable devices with low cost and long-term service life are urgently required. However, preparing multifunctional wearable devices robust enough to resist harsh conditions using a commercially available raw material through a simple process still remains challenging. In this work, reprocessable polyurea (HUBTPU) with a hard segment of hindered urea bonds (HUBs) and a soft segment of polyether is synthesized via a facile one-pot method. The robust dual functional wearable devices were obtained by simply spray-coating silver nanowires (AgNWs) on HUBTPU elastomer substrates. Due to the dynamic combination and decomposition of the HUBs and hydrogen bonds at 130 °C, the robust elastomer demonstrates favorable adhesion to various substrates. Especially, the partially embedded AgNW structure is also achieved by using ethanol as a spray solvent. The adhesion of HUBTPU substrates and embedded structure leads to stronger interfacial adhesion and stability compared to non-adhesive substrates. The as-obtained HUBTPU electrodes are able to be heated to 115 °C by applying a low voltage and sensing the strain deformation caused by human movement, which means that the electrodes are endowed with both electrical heating capability and strain sensing functionality. Therefore, this strategy reveals a potential way to prepare multifunctional wearable devices using other conductive particles and adhesive functional polymer substrates.
Collapse
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Lun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC, Beijing Research Institute of Chemical Industry, Yanshan Branch, Beijing 102500, China
| | - Aimin Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| |
Collapse
|
46
|
Yeung KK, Li J, Huang T, Hosseini II, Al Mahdi R, Alam MM, Sun H, Mahshid S, Yang J, Ye TT, Gao Z. Utilizing Gradient Porous Graphene Substrate as the Solid-Contact Layer To Enhance Wearable Electrochemical Sweat Sensor Sensitivity. NANO LETTERS 2022; 22:6647-6654. [PMID: 35943807 DOI: 10.1021/acs.nanolett.2c01969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable sweat monitoring represents an attractive opportunity for personalized healthcare and for evaluating sports performance. One of the limitations with such monitoring, however, is water layer formation upon cycling of ion-selective sensors, leading to degraded sensitivity and long-term instability. Our report is the first to use chemical vapor deposition-grown, three-dimensional, graphene-based, gradient porous electrodes to minimize such water layer formation. The proposed design reduces the ion diffusion path within the polymeric ion-selective membrane and enhances the electroactive surface for highly sensitive, real-time detection of Na+ ions in human sweat with high selectivity. We obtained a 7-fold enhancement in electroactive surface against 2D electrodes (e.g., carbon, gold), yielding a sensitivity of 65.1 ± 0.25 mV decade-1 (n = 3, RSD = 0.39%), the highest to date for wearable Na+ sweat sensors. The on-body sweat sensing performance is comparable to that of ICP-MS, suggesting its feasibility for health evaluation through sweat.
Collapse
Affiliation(s)
- Kan Kan Yeung
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Jingwei Li
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ting Huang
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Imman I Hosseini
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Rakib Al Mahdi
- Department of Biomedical Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Md Masruck Alam
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Honglin Sun
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Jian Yang
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoli Gao
- Biomedical Engineering Department, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
47
|
Wearable Sensors for Healthcare: Fabrication to Application. SENSORS 2022; 22:s22145137. [PMID: 35890817 PMCID: PMC9323732 DOI: 10.3390/s22145137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.
Collapse
|
48
|
Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin-Interfaced Sensors and Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200260. [PMID: 36176721 PMCID: PMC9514151 DOI: 10.1002/adfm.202200260] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 05/05/2023]
Abstract
The practical applications of skin-interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bio-inspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health-relevant information and sustained energy for next-generation stretchable self-powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on-body electronics. In this review, we first summarize the commonly used approaches to tune the surface wettability for target applications toward stretchable self-powered devices. By considering the existing challenges, we also discuss the opportunities as a small fraction of potential future developments, which can lead to a new class of skin-interfaced devices for use in digital health and personalized medicine.
Collapse
Affiliation(s)
- Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
49
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mirzajani H, Abbasiasl T, Mirlou F, Istif E, Bathaei MJ, Dağ Ç, Deyneli O, Yazıcı D, Beker L. An ultra-compact and wireless tag for battery-free sweat glucose monitoring. Biosens Bioelectron 2022; 213:114450. [PMID: 35688025 DOI: 10.1016/j.bios.2022.114450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Glucose monitoring before, during, and after exercise is essential for people with diabetes as exercise increases the risk of activity-induced hyper- and hypo-glycemic events. The situation is even more challenging for athletes with diabetes as they have impaired metabolic control compared to sedentary individuals. In this regard, a compact and noninvasive wearable glucose monitoring device that can be easily worn is critical to enabling glucose monitoring. This report presents an ultra-compact glucose tag with a footprint and weight of 1.2 cm2 and 0.13 g, respectively, for sweat analysis. The device comprises a near field communication (NFC) chip, antenna, electrochemical sensor, and microfluidic channels implemented in different material layers. The device has a flexible and conformal structure and can be easily attached to different body parts. The battery-less operation of the device was enabled by NFC-based wireless power transmission and the compact antenna. Femtosecond laser ablation was employed to fabricate a highly compact and flexible NFC antenna. The proposed device demonstrated excellent operating characteristics with a limit of detection (LOD), limit of quantification (LOQ), and sensitivity of 24 μM, 74 μM, and 1.27 μA cm-2 mM-1, respectively. The response of the proposed sensor in sweat glucose detection and quantification was validated by nuclear magnetic resonance spectroscopy (NMR). Also, the device's capability in attachment to the body, sweat collection, and glucose measurement was demonstrated through in vitro and in vivo experiments, and satisfactory results were obtained.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Taher Abbasiasl
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Fariborz Mirlou
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Çağdaş Dağ
- Department of Molecular Biology and Genetics, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Nanofabrication and Nanocharacterization Centre for Scientific and Technological Advanced Research, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University İşBank Centre for Infectious Diseases, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Oğuzhan Deyneli
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, Koç University Hospital, Topkapı Caddesi, Zeytinburnu, Istanbul, Turkey
| | - Dilek Yazıcı
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, Koç University Hospital, Topkapı Caddesi, Zeytinburnu, Istanbul, Turkey
| | - Levent Beker
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey; Koç University Research Center for Translational Research (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|