1
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC affects tumor evolution and age at onset of lung cancer in smokers. Nat Commun 2025; 16:4711. [PMID: 40394004 PMCID: PMC12092836 DOI: 10.1038/s41467-025-59923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/02/2025] [Indexed: 05/22/2025] Open
Abstract
Most solid tumors harbor somatic mutations attributed to off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B). However, how APOBEC3A/B enzymes affect tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, multi-omics profiling of 309 lung cancers from smokers identifies two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations; HAS for A3A-like mutagenesis and TP53 mutations. Compared to LAS, HAS have older age at onset and high proportions of newly generated progenitor-like cells likely due to the combined tobacco smoking- and APOBEC3A-associated DNA damage and apoptosis. Consistently, HAS exhibit high expression of pulmonary healing signaling pathway, stemness markers, distal cell-of-origin, more neoantigens, slower clonal expansion, but no smoking-associated genomic/epigenomic changes. With validation in 184 lung tumor samples, these findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
SooHoo JF, Davis CN, Han A, Jinwala Z, Gelernter J, Feinn R, Kranzler HR. Associations of childhood adversity and substance use disorder polygenic scores with disorder severity and diagnostic criteria. Psychol Med 2025; 55:e132. [PMID: 40314172 DOI: 10.1017/s0033291725001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
BACKGROUND Genetic and environmental factors, including adverse childhood experiences (ACEs), contribute to substance use disorders (SUDs). However, the interactions between these factors are poorly understood. METHODS We examined associations between SUD polygenic scores (PGSs), ACEs, and the initiation of use and severity of alcohol (AUD), opioid use disorder (OUD), and cannabis use disorder (CanUD) in 10,275 individuals (43.5% female, 47.2% African-like ancestry [AFR], and 52.8% European-like ancestry [EUR]). ACEs and SUD severity were modeled as latent factors. We conducted logistic and linear regressions within ancestry groups to examine the associations of ACEs, PGS, and their interaction with substance use initiation and SUD severity. RESULTS All three SUD PGS were associated with ACEs in EUR individuals, indicating a gene-environment correlation. Among EUR individuals, only the CanUD PGS was associated with initiating use, whereas ACEs were associated with initiating use of all three substances in both ancestry groups. Additionally, a negative gene-by-environment interaction was identified for opioid initiation in EUR individuals. ACEs were associated with all three SUD severity latent factors in EUR individuals and with AUD and CanUD severity in AFR individuals. PGS were associated with AUD severity in both ancestry groups and with CanUD severity in AFR individuals. Gene-by-environment interactions were identified for AUD and CanUD severity among EUR individuals. CONCLUSIONS Findings highlight the roles of ACEs and polygenic risk in substance use initiation and SUD severity. Gene-by-environment interactions implicate ACEs as moderators of genetic susceptibility, reinforcing the importance of considering both genetic and environmental influences on SUD risk.
Collapse
Affiliation(s)
- Jackson F SooHoo
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Christal N Davis
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Angela Han
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Zeal Jinwala
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Richard Feinn
- Department of Medical Sciences, Frank H. Netter School of Medicine, Quinnipiac University, North Haven, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
| |
Collapse
|
3
|
Al-Soufi L, Hindley G, Rødevand L, Shadrin AA, Jaholkowski P, Fominykh V, Icick R, Tesfaye M, Costas J, Andreassen OA. Polygenic overlap of substance use behaviors and disorders with externalizing and internalizing problems independent of genetic correlations. Psychol Med 2025; 55:e100. [PMID: 40162501 DOI: 10.1017/s0033291725000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Externalizing and internalizing pathways may lead to the development of substance use behaviors (SUBs) and substance use disorders (SUDs), which are all heritable phenotypes. Genetic correlation studies have indicated differences in the genetic susceptibility between SUBs and SUDs. We investigated whether these substance use phenotypes are differently related to externalizing and internalizing problems at a genetic level. METHODS We analyzed data from genome-wide association studies (GWAS) of four SUBs and SUDs, five externalizing traits, and five internalizing traits using the bivariate causal mixture model (MiXeR) to estimate genetic overlap beyond genetic correlation. RESULTS Two distinct patterns were found. SUBs demonstrated high genetic overlap but low genetic correlation of shared variants with internalizing traits, suggesting a pattern of mixed effect directions of shared genetic variants. Conversely, SUDs and externalizing traits exhibited considerable genetic overlap with moderate to high positive genetic correlation of shared variants, suggesting concordant effect direction of shared risk variants. CONCLUSIONS These results highlight the importance of the externalizing pathway in SUDs as well as the limited role of the internalizing pathway in SUBs. As MiXeR is not intended for the identification of specific genes, further studies are needed to reveal the underlying shared mechanisms of these traits.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Guy Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Romain Icick
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Université Paris-Cité, INSERM, Optimisation thérapeutique en neuropsychopharmacologie OPTEN U1144, 75006, Paris, France
| | - Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Canida T, Ke H, Chen S, Ye Z, Ma T. Multivariate Bayesian variable selection for multi-trait genetic fine mapping. J R Stat Soc Ser C Appl Stat 2025; 74:331-351. [PMID: 40092670 PMCID: PMC11905884 DOI: 10.1093/jrsssc/qlae055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2024] [Accepted: 10/01/2024] [Indexed: 03/19/2025]
Abstract
Genome-wide association studies (GWAS) have identified thousands of single-nucleotide polymorphisms (SNPs) associated with complex traits, but determining the underlying causal variants remains challenging. Fine mapping aims to pinpoint the potentially causal variants from a large number of correlated SNPs possibly with group structure in GWAS-enriched genomic regions using variable selection approaches. In multi-trait fine mapping, we are interested in identifying the causal variants for multiple related traits. Existing multivariate variable selection methods for fine mapping select variables for all responses without considering the possible heterogeneity across different responses. Here, we develop a novel multivariate Bayesian variable selection method for multi-trait fine mapping to select causal variants from a large number of grouped SNPs that target at multiple correlated and possibly heterogeneous traits. Our new method is featured by its selection at multiple levels, incorporation of prior biological knowledge to guide selection and identification of best subset of traits the variants target at. We showed the advantage of our method over existing methods via comprehensive simulations that mimic typical fine-mapping settings and a real-world fine-mapping example in UK Biobank, where we identified critical causal variants potentially targeting at different subsets of addictive behaviours and risk factors.
Collapse
Affiliation(s)
- Travis Canida
- Department of Epidemiology and Biostatistics, University of Maryland, 4200 Valley Drive, College Park, MD 20742, USA
| | - Hongjie Ke
- Department of Epidemiology and Biostatistics, University of Maryland, 4200 Valley Drive, College Park, MD 20742, USA
| | - Shuo Chen
- Department of Epidemiology and Public Health, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Zhenyao Ye
- Department of Epidemiology and Public Health, University of Maryland, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, University of Maryland, 4200 Valley Drive, College Park, MD 20742, USA
| |
Collapse
|
6
|
Johnson EC, Lai D, Miller AP, Hatoum AS, Deak JD, Balbona JV, Baranger DA, Galimberti M, Sanichwankul K, Thorgeirsson T, Colbert SM, Sanchez-Roige S, Adhikari K, Docherty A, Degenhardt L, Edwards T, Fox L, Giannelis A, Jeffries P, Korhonen T, Morrison C, Nunez YZ, Palviainen T, Su MH, Villela PNR, Wetherill L, Willoughby EA, Zellers S, Bierut L, Buchwald J, Copeland W, Corley R, Friedman NP, Foroud TM, Gillespie NA, Gizer IR, Heath AC, Hickie IB, Kaprio JA, Keller MC, Lee JL, Lind PA, Madden PA, Maes HH, Martin NG, McGue M, Medland SE, Nelson EC, Pearson JV, Porjesz B, Stallings M, Vrieze S, Wilhelmsen KC, Walters RK, Polimanti R, Malison RT, Zhou H, Stefansson K, Potenza MN, Mutirangura A, Shotelersuk V, Kalayasiri R, Edenberg HJ, Gelernter J, Agrawal A. Multi-ancestral genome-wide association study of clinically defined nicotine dependence reveals strong genetic correlations with other substance use disorders and health-related traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.29.25320962. [PMID: 39974067 PMCID: PMC11838619 DOI: 10.1101/2025.01.29.25320962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetic research on nicotine dependence has utilized multiple assessments that are in weak agreement. We conducted a genome-wide association study of nicotine dependence defined using the Diagnostic and Statistical Manual of Mental Disorders (DSM-NicDep) in 61,861 individuals (47,884 of European ancestry, 10,231 of African ancestry, 3,746 of East Asian ancestry) and compared the results to other nicotine-related phenotypes. We replicated the well-known association at the CHRNA5 locus (lead SNP: rs147144681, p =1.27E-11 in European ancestry; lead SNP = rs2036527, p = 6.49e-13 in cross-ancestry analysis). DSM-NicDep showed strong positive genetic correlations with cannabis use disorder, opioid use disorder, problematic alcohol use, lung cancer, material deprivation, and several psychiatric disorders, and negative correlations with respiratory function and educational attainment. A polygenic score of DSM-NicDep predicted DSM-5 tobacco use disorder and 6 of 11 individual diagnostic criteria, but none of the Fagerström Test for Nicotine Dependence (FTND) items, in the independent NESARC-III sample. In genomic structural equation models, DSM-NicDep loaded more strongly on a previously identified factor of general addiction liability than did a "problematic tobacco use" factor (a combination of cigarettes per day and nicotine dependence defined by the FTND). Finally, DSM-NicDep was strongly genetically correlated with a GWAS of tobacco use disorder as defined in electronic health records, suggesting that combining the wide availability of diagnostic EHR data with nuanced criterion-level analyses of DSM tobacco use disorder may produce new insights into the genetics of this disorder.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex P Miller
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Jared V Balbona
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in St Louis, Saint Louis, MO, USA
| | - Marco Galimberti
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | | | | | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keyrun Adhikari
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Anna Docherty
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Louisa Degenhardt
- National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Tobias Edwards
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Alexandros Giannelis
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Paul Jeffries
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Claire Morrison
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Yaira Z Nunez
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mei-Hsin Su
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Pamela N Romero Villela
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emily A Willoughby
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Stephanie Zellers
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Jadwiga Buchwald
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - William Copeland
- Department of Psychiatry, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robin Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Naomi P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Ian B Hickie
- Brain and Mind Institute, University of Sydney, New South Wales, Sydney, Australia
| | - Jaakko A Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Matthew C Keller
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - James L Lee
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Pamela A Madden
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - Hermine Hm Maes
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| | - John V Pearson
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Health Science University, Brooklyn, NY, USA
| | - Michael Stallings
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kirk C Wilhelmsen
- Department of Neurology and Genetics and the Bowles Center of Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Raymond K Walters
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Robert T Malison
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Rasmon Kalayasiri
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine in St Louis, Saint Louis, MO, USA
| |
Collapse
|
7
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Halayko AJ, Pascoe CD, Jones MJ. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024; 19:2322386. [PMID: 38436597 PMCID: PMC10913724 DOI: 10.1080/15592294.2024.2322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, Cyp1a1. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D. Pascoe
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Liao YC, Wang LH, Hung MC, Cheng TC, Lin YC, Chang J, Tu SH, Wu CH, Yen Y, Hsieh YC, Chen LC, Ho YS. Investigation of the α9-nicotinic receptor single nucleotide polymorphisms induced oncogenic properties and molecular mechanisms in breast cancer. Hum Mol Genet 2024; 33:1948-1965. [PMID: 39251229 DOI: 10.1093/hmg/ddae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404328, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ying-Chi Lin
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Chen Hsieh
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
9
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Kember RL, Davis CN, Feuer KL, Kranzler HR. Considerations for the application of polygenic scores to clinical care of individuals with substance use disorders. J Clin Invest 2024; 134:e172882. [PMID: 39403926 PMCID: PMC11473164 DOI: 10.1172/jci172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Substance use disorders (SUDs) are highly prevalent and associated with excess morbidity, mortality, and economic costs. Thus, there is considerable interest in the early identification of individuals who may be more susceptible to developing SUDs and in improving personalized treatment decisions for those who have SUDs. SUDs are known to be influenced by both genetic and environmental factors. Polygenic scores (PGSs) provide a single measure of genetic liability that could be used as a biomarker in predicting disease development, progression, and treatment response. Although PGSs are rapidly being integrated into clinical practice, there is little information to guide clinicians in their responsible use and interpretation. In this Review, we discuss the potential benefits and pitfalls of the use of PGSs in the clinical care of SUDs, highlighting current research. We also provide suggestions for important considerations prior to implementing the clinical use of PGSs and recommend future directions for research.
Collapse
|
11
|
Foo JC, Völker MP, Streit F, Frank J, Zacharias N, Zillich L, Sirignano L, Nürnberg P, Wienker TF, Wagner M, Nöthen MM, Nothnagel M, Walter H, Lenz B, Spanagel R, Kiefer F, Winterer G, Rietschel M, Witt SH. Polygenic risk scores for nicotine use and family history of smoking are associated with smoking behaviour. Drug Alcohol Depend 2024; 263:112415. [PMID: 39197361 DOI: 10.1016/j.drugalcdep.2024.112415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Formal genetics studies show that smoking is influenced by genetic factors; exploring this on the molecular level can offer deeper insight into the etiology of smoking behaviours. METHODS Summary statistics from the latest wave of the GWAS and Sequencing Consortium of Alcohol and Nicotine (GSCAN) were used to calculate polygenic risk scores (PRS) in a sample of ~2200 individuals who smoke/individuals who never smoked. The associations of smoking status with PRS for Smoking Initiation (i.e., Lifetime Smoking; SI-PRS), and Fagerström Test for Nicotine Dependence (FTND) score with PRS for Cigarettes per Day (CpD-PRS) were examined, as were distinct/additive effects of parental smoking on smoking status. RESULTS SI-PRS explained 10.56% of variance (Nagelkerke-R2) in smoking status (p=6.45x10-30). In individuals who smoke, CpD-PRS was associated with FTND score (R2=5.03%, p=1.88x10-12). Parental smoking alone explained R2=3.06% (p=2.43×10-12) of smoking status, and 0.96% when added to the most informative SI-PRS model (total R²=11.52%). CONCLUSION These results show the potential utility of molecular genetic data for research investigating smoking prevention. The fact that PRS explains more variance than family history highlights progress from formal to molecular genetics; the partial overlap and increased predictive value when using both suggests the importance of combining these approaches.
Collapse
Affiliation(s)
- Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; College of Health Sciences, Department of Psychiatry, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Maja P Völker
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Norman Zacharias
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Benjamin Franklin, Berlin, Germany
| | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50931, Germany
| | - Thomas F Wienker
- Department of Molecular Human Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute for Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Michael Nothnagel
- Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Division of Mind and Brain Research, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Lenz
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany; Pharmaimage Biomarker Solutions GmbH, Berlin, Germany; PI Health Solutions GmbH, Berlin, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany.
| |
Collapse
|
12
|
Johnson EC, Austin-Zimmerman I, Thorpe HHA, Levey DF, Baranger DAA, Colbert SMC, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Di Forti M, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. Neuropsychopharmacology 2024; 49:1655-1665. [PMID: 38906991 PMCID: PMC11399264 DOI: 10.1038/s41386-024-01886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 06/23/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz; European ancestry N = 161,405; African ancestry N = 15,846), cannabis use disorder (CanUD; European ancestry N = 886,025; African ancestry N = 120,208), and ever-regular tobacco smoking (Smk; European ancestry N = 805,431; African ancestry N = 24,278) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17-0.62). Genetic instrumental variable analyses suggested the presence of shared heritable factors, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for these shared genetic factors. We identified 327 pleiotropic loci with 439 lead SNPs in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both shared genetic factors and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David A A Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Sarah M C Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Galimberti M, Levey DF, Deak JD, Zhou H, Stein MB, Gelernter J. Genetic influences and causal pathways shared between cannabis use disorder and other substance use traits. Mol Psychiatry 2024; 29:2905-2910. [PMID: 38580809 PMCID: PMC11419938 DOI: 10.1038/s41380-024-02548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Cannabis use disorder (CanUD) has increased with the legalization of the use of cannabis. Around 20% of individuals using cannabis develop CanUD, and the number of users has grown with increasing ease of access. CanUD and other substance use disorders (SUDs) are associated phenotypically and genetically. We leveraged new CanUD genomics data to undertake genetically-informed analyses with unprecedented power, to investigate the genetic architecture and causal relationships between CanUD and lifetime cannabis use with risk for developing SUDs and substance use traits. Analyses included calculating local and global genetic correlations, genomic structural equation modeling (genomicSEM), and Mendelian Randomization (MR). Results from the genetic correlation and genomicSEM analyses demonstrated that CanUD and cannabis use differ in their relationships with SUDs and substance use traits. We found significant causal effects of CanUD influencing all the analyzed traits: opioid use disorder (OUD) (Inverse variant weighted, IVW β = 0.925 ± 0.082), problematic alcohol use (PAU) (IVW β = 0.443 ± 0.030), drinks per week (DPW) (IVW β = 0.182 ± 0.025), Fagerström Test for Nicotine Dependence (FTND) (IVW β = 0.183 ± 0.052), cigarettes per day (IVW β = 0.150 ± 0.045), current versus former smokers (IVW β = 0.178 ± 0.052), and smoking initiation (IVW β = 0.405 ± 0.042). We also found evidence of bidirectionality showing that OUD, PAU, smoking initiation, smoking cessation, and DPW all increase risk of developing CanUD. For cannabis use, bidirectional relationships were inferred with PAU, smoking initiation, and DPW; cannabis use was also associated with a higher risk of developing OUD (IVW β = 0.785 ± 0.266). GenomicSEM confirmed that CanUD and cannabis use load onto different genetic factors. We conclude that CanUD and cannabis use can increase the risk of developing other SUDs. This has substantial public health implications; the move towards legalization of cannabis use may be expected to increase other kinds of problematic substance use. These harmful outcomes are in addition to the medical harms associated directly with CanUD.
Collapse
Affiliation(s)
- Marco Galimberti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Murray B Stein
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA.
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Lai D, Zhang M, Green N, Abreu M, Schwantes-An TH, Parker C, Zhang S, Jin F, Sun A, Zhang P, Edenberg H, Liu Y, Foroud T. Genome-wide meta-analyses of cross substance use disorders in European, African, and Latino ancestry populations. RESEARCH SQUARE 2024:rs.3.rs-3955955. [PMID: 39070649 PMCID: PMC11275984 DOI: 10.21203/rs.3.rs-3955955/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic risks for substance use disorders (SUDs) are due to both SUD-specific and SUD-shared genes. We performed the largest multivariate analyses to date to search for SUD-shared genes using samples of European (EA), African (AA), and Latino (LA) ancestries. By focusing on variants having cross-SUD and cross-ancestry concordant effects, we identified 45 loci. Through gene-based analyses, gene mapping, and gene prioritization, we identified 250 SUD-shared genes. These genes are highly expressed in amygdala, cortex, hippocampus, hypothalamus, and thalamus, primarily in neuronal cells. Cross-SUD concordant variants explained ~ 50% of the heritability of each SUD in EA. The top 5% individuals having the highest polygenic scores were approximately twice as likely to have SUDs as others in EA and LA. Polygenic scores had higher predictability in females than in males in EA. Using real-world data, we identified five drugs targeting identified SUD-shared genes that may be repurposed to treat SUDs.
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | | | | | | | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | | | | | | | - Anna Sun
- Indiana University School of Medicine
| | | | | | | | | |
Collapse
|
15
|
Toikumo S, Jennings MV, Pham BK, Lee H, Mallard TT, Bianchi SB, Meredith JJ, Vilar-Ribó L, Xu H, Hatoum AS, Johnson EC, Pazdernik VK, Jinwala Z, Pakala SR, Leger BS, Niarchou M, Ehinmowo M, Jenkins GD, Batzler A, Pendegraft R, Palmer AA, Zhou H, Biernacka JM, Coombes BJ, Gelernter J, Xu K, Hancock DB, Cox NJ, Smoller JW, Davis LK, Justice AC, Kranzler HR, Kember RL, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nat Hum Behav 2024; 8:1177-1193. [PMID: 38632388 PMCID: PMC11199106 DOI: 10.1038/s41562-024-01851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hyunjoon Lee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heng Xu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Emma C Johnson
- Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shreya R Pakala
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Maria Niarchou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Greg D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Richard Pendegraft
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | | | - Nancy J Cox
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Zhang T, Sang J, Hoang PH, Zhao W, Rosenbaum J, Johnson KE, Klimczak LJ, McElderry J, Klein A, Wirth C, Bergstrom EN, Díaz-Gay M, Vangara R, Colon-Matos F, Hutchinson A, Lawrence SM, Cole N, Zhu B, Przytycka TM, Shi J, Caporaso NE, Homer R, Pesatori AC, Consonni D, Imielinski M, Chanock SJ, Wedge DC, Gordenin DA, Alexandrov LB, Harris RS, Landi MT. APOBEC shapes tumor evolution and age at onset of lung cancer in smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587805. [PMID: 38617360 PMCID: PMC11014539 DOI: 10.1101/2024.04.02.587805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.
Collapse
Affiliation(s)
- Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jian Sang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Phuc H. Hoang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | - Leszek J. Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John McElderry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alyssa Klein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Wirth
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Erik N. Bergstrom
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Frank Colon-Matos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Scott M. Lawrence
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Angela C. Pesatori
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Consonni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - David C. Wedge
- Manchester Cancer Research Centre, The University of Manchester, Manchester, UK
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
17
|
Romero Villela PN, Evans LM, Palviainen T, Border R, Kaprio J, Palmer RHC, Keller MC, Ehringer MA. Loci on chromosome 20 interact with rs16969968 to influence cigarettes per day in European ancestry individuals. Drug Alcohol Depend 2024; 257:111126. [PMID: 38387257 PMCID: PMC11062023 DOI: 10.1016/j.drugalcdep.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND The understanding of the molecular genetic contributions to smoking is largely limited to the additive effects of individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include dominance, epistatic, and gene-environment interactions. METHODS To begin to address this complexity, we attempted to identify genetic interactions between rs16969968, the most replicated SNP associated with smoking quantity, and all SNPs and genes across the genome. RESULTS Using the UK Biobank European subsample, we found one SNP, rs1892967, and two genes, PCNA and TMEM230, that showed a significant genome-wide interaction with rs16969968 for log10 CPD and raw CPD, respectively, in a sample of 116 442 individuals who self-reported currently or previously smoking. We extended these analyses to individuals of South Asian descent and meta-analyzed the combined sample of 117 212 individuals of European and South Asian ancestry. We replicated the gene findings in a meta-analysis of five Finnish samples (N=40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and Health-2000-2011. CONCLUSIONS To our knowledge, this represents the first reliable epistatic association between single nucleotide polymorphisms for smoking behaviors and provides a novel direction for possible future functional studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses by pooling multiple datasets across various ancestries, which may be applied to other top SNPs for smoking and/or other phenotypes.
Collapse
Affiliation(s)
- Pamela N Romero Villela
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Luke M Evans
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Richard Border
- Departments of Neurology and Computer Science, University of California, Los Angeles, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, USA
| | - Rohan H C Palmer
- Behavioral Genetics of Addiction Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, Boulder, USA; Departments of Neurology and Computer Science, University of California, Los Angeles, USA; Department of Integrative Physiology, University of Colorado, Boulder, USA.
| |
Collapse
|
18
|
Cinciripini PM, Wetter DW, Wang J, Yu R, Kypriotakis G, Kumar T, Robinson JD, Cui Y, Green CE, Bergen AW, Kosten TR, Scherer SE, Shete S. Deep sequencing of candidate genes identified 14 variants associated with smoking abstinence in an ethnically diverse sample. Sci Rep 2024; 14:6385. [PMID: 38493193 PMCID: PMC10944542 DOI: 10.1038/s41598-024-56750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Despite the large public health toll of smoking, genetic studies of smoking cessation have been limited with few discoveries of risk or protective loci. We investigated common and rare variant associations with success in quitting smoking using a cohort from 8 randomized controlled trials involving 2231 participants and a total of 10,020 common and 24,147 rare variants. We identified 14 novel markers including 6 mapping to genes previously related to psychiatric and substance use disorders, 4 of which were protective (CYP2B6 (rs1175607105), HTR3B (rs1413172952; rs1204720503), rs80210037 on chr15), and 2 of which were associated with reduced cessation (PARP15 (rs2173763), SCL18A2 (rs363222)). The others mapped to areas associated with cancer including FOXP1 (rs1288980) and ZEB1 (rs7349). Network analysis identified significant canonical pathways for the serotonin receptor signaling pathway, nicotine and bupropion metabolism, and several related to tumor suppression. Two novel markers (rs6749438; rs6718083) on chr2 are flanked by genes associated with regulation of bodyweight. The identification of novel loci in this study can provide new targets of pharmacotherapy and inform efforts to develop personalized treatments based on genetic profiles.
Collapse
Affiliation(s)
- Paul M Cinciripini
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - David W Wetter
- Department of Department of Population Health Sciences, University of Utah and Huntsman Cancer Institute, Salt Lake City, Utah, 84112, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert Yu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - George Kypriotakis
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Tapsi Kumar
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason D Robinson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yong Cui
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles E Green
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | | | - Thomas R Kosten
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven E Scherer
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sanjay Shete
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Xavier RM. The Potential and Challenges of Genomics Informed Precision Care for Substance Use Disorders. J Psychosoc Nurs Ment Health Serv 2024; 62:11-14. [PMID: 38446624 DOI: 10.3928/02793695-20240206-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Substance use disorders (SUDs) are complex brain disorders with heritability rooted in the interplay of multiple genetic factors, alongside significant environmental influences. Gaining insights into the genetic mechanisms that heighten SUD risk can guide precision care, specifically in the development of targeted tools for prevention, early intervention, and the discovery of therapeutic targets. Nurses are ideally placed to advance genomics-informed precision care for individuals with SUDs. To fulfill this role, they must be adequately prepared to assess the value and utility of current genomics knowledge, its limitations, and ways to incorporate this understanding into clinical practice, education, research, and health care policy. [Journal of Psychosocial Nursing and Mental Health Services, 62(3), 11-14.].
Collapse
|
20
|
Koller D, Mitjans M, Kouakou M, Friligkou E, Cabrera-Mendoza B, Deak JD, Llonga N, Pathak GA, Stiltner B, Løkhammer S, Levey DF, Zhou H, Hatoum AS, Kember RL, Kranzler HR, Stein MB, Corominas R, Demontis D, Artigas MS, Ramos-Quiroga JA, Gelernter J, Ribasés M, Cormand B, Polimanti R. Genetic contribution to the comorbidity between attention-deficit/hyperactivity disorder and substance use disorders. Psychiatry Res 2024; 333:115758. [PMID: 38335780 PMCID: PMC11157987 DOI: 10.1016/j.psychres.2024.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
We characterized the genetic architecture of the attention-deficit hyperactivity disorder-substance use disorder (ADHD-SUD) relationship by investigating genetic correlation, causality, pleiotropy, and common polygenic risk. Summary statistics from genome-wide association studies (GWAS) were used to investigate ADHD (Neff = 51,568), cannabis use disorder (CanUD, Neff = 161,053), opioid use disorder (OUD, Neff = 57,120), problematic alcohol use (PAU, Neff = 502,272), and problematic tobacco use (PTU, Neff = 97,836). ADHD, CanUD, and OUD GWAS meta-analyses included cohorts with case definitions based on different diagnostic criteria. PAU GWAS combined information related to alcohol use disorder, alcohol dependence, and the items related to alcohol problematic consequences assessed by the alcohol use disorders identification test. PTU GWAS was generated a multi-trait analysis including information regarding Fagerström Test for Nicotine Dependence and cigarettes per day. Linkage disequilibrium score regression analyses indicated positive genetic correlation with CanUD, OUD, PAU, and PTU. Genomic structural equation modeling showed that these genetic correlations were related to two latent factors: one including ADHD, CanUD, and PTU and the other with OUD and PAU. The evidence of a causal effect of PAU and PTU on ADHD was stronger than the reverse in the two-sample Mendelian randomization analysis. Conversely, similar strength of evidence was found between ADHD and CanUD. CADM2 rs62250713 was a pleiotropic SNP between ADHD and all SUDs. We found seven, one, and twenty-eight pleiotropic variants between ADHD and CanUD, PAU, and PTU, respectively. Finally, OUD, CanUD, and PAU PRS were associated with increased odds of ADHD. Our findings demonstrated the contribution of multiple pleiotropic mechanisms to the comorbidity between ADHD and SUDs.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain.
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Manuela Kouakou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA
| | - Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Joseph D Deak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Natalia Llonga
- Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gita A Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Brendan Stiltner
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Daniel F Levey
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, USA; Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, USA; VA San Diego Healthcare System, San Diego, CA, La Jolla, USA
| | - Roser Corominas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ditte Demontis
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Center for Genomics and Personalized Medicine, Aarhus, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - María Soler Artigas
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Josep Antoni Ramos-Quiroga
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Joel Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Marta Ribasés
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Psychiatric Genetics Unit, Group of Psychiatry Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bru Cormand
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Catalonia Spain; Sant Joan de Déu Research Institute (IR-SJD), Esplugues de Llobregat, Catalonia, Spain; Biomedical Network Research Centre on Rare Disorders (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, CA, USA; Veterans Affairs Connecticut Healthcare Center, West Haven, CA, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Du X, Choa FS, Chiappelli J, Bruce H, Kvarta M, Summerfelt A, Ma Y, Regenold WT, Walton K, Wittenberg GF, Hare S, Gao S, van der Vaart A, Zhao Z, Chen S, Kochunov P, Hong LE. Combining neuroimaging and brain stimulation to test alternative causal pathways for nicotine addiction in schizophrenia. Brain Stimul 2024; 17:324-332. [PMID: 38453003 PMCID: PMC11445730 DOI: 10.1016/j.brs.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
The smoking rate is high in patients with schizophrenia. Brain stimulation targeting conventional brain circuits associated with nicotine addiction has also yielded mixed results. We aimed to identify alternative circuitries associated with nicotine addiction in both the general population and schizophrenia, and then test whether modulation of such circuitries may alter nicotine addiction behaviors in schizophrenia. In Study I of 40 schizophrenia smokers and 51 non-psychiatric smokers, cross-sectional neuroimaging analysis identified resting state functional connectivity (rsFC) between the dorsomedial prefrontal cortex (dmPFC) and multiple extended amygdala regions to be most robustly associated with nicotine addiction severity in healthy controls and schizophrenia patients (p = 0.006 to 0.07). In Study II with another 30 patient smokers, a proof-of-concept, patient- and rater-blind, randomized, sham-controlled rTMS design was used to test whether targeting the newly identified dmPFC location may causally enhance the rsFC and reduce nicotine addiction in schizophrenia. Although significant interactions were not observed, exploratory analyses showed that this dmPFC-extended amygdala rsFC was enhanced by 4-week active 10Hz rTMS (p = 0.05) compared to baseline; the severity of nicotine addiction showed trends of reduction after 3 and 4 weeks (p ≤ 0.05) of active rTMS compared to sham; Increased rsFC by active rTMS predicted reduction of cigarettes/day (R = -0.56, p = 0.025 uncorrected) and morning smoking severity (R = -0.59, p = 0.016 uncorrected). These results suggest that the dmPFC-extended amygdala circuit may be linked to nicotine addiction in schizophrenia and healthy individuals, and future efforts targeting its underlying pathophysiological mechanisms may yield more effective treatment for nicotine addiction.
Collapse
Affiliation(s)
- Xiaoming Du
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yizhou Ma
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William T Regenold
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Division of Intramural Research Program, National Institute of Mental Health, National Institutes of Health, NIH Clinical Center, Bethesda, MD, USA
| | - Kevin Walton
- Clinical Research Grants Branch, Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Si Gao
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andrew van der Vaart
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhiwei Zhao
- Department of Mathematics, University of Maryland, College Park, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L Elliot Hong
- Louis A. Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
22
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 826] [Impact Index Per Article: 826.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
23
|
Johnson EC, Austin-Zimmerman I, Thorpe HH, Levey DF, Baranger DA, Colbert SM, Demontis D, Khokhar JY, Davis LK, Edenberg HJ, Forti MD, Sanchez-Roige S, Gelernter J, Agrawal A. Cross-ancestry genetic investigation of schizophrenia, cannabis use disorder, and tobacco smoking. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301430. [PMID: 38293235 PMCID: PMC10827265 DOI: 10.1101/2024.01.17.24301430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Individuals with schizophrenia frequently experience co-occurring substance use, including tobacco smoking and heavy cannabis use, and substance use disorders. There is interest in understanding the extent to which these relationships are causal, and to what extent shared genetic factors play a role. We explored the relationships between schizophrenia (Scz), cannabis use disorder (CanUD), and ever-regular tobacco smoking (Smk) using the largest available genome-wide studies of these phenotypes in individuals of African and European ancestries. All three phenotypes were positively genetically correlated (rgs = 0.17 - 0.62). Causal inference analyses suggested the presence of horizontal pleiotropy, but evidence for bidirectional causal relationships was also found between all three phenotypes even after correcting for horizontal pleiotropy. We identified 439 pleiotropic loci in the European ancestry data, 150 of which were novel (i.e., not genome-wide significant in the original studies). Of these pleiotropic loci, 202 had lead variants which showed convergent effects (i.e., same direction of effect) on Scz, CanUD, and Smk. Genetic variants convergent across all three phenotypes showed strong genetic correlations with risk-taking, executive function, and several mental health conditions. Our results suggest that both horizontal pleiotropy and causal mechanisms may play a role in the relationship between CanUD, Smk, and Scz, but longitudinal, prospective studies are needed to confirm a causal relationship.
Collapse
Affiliation(s)
- Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Isabelle Austin-Zimmerman
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Hayley Ha Thorpe
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - David Aa Baranger
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, MO USA
| | - Sarah Mc Colbert
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Ditte Demontis
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Aarhus, Denmark
- Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marta Di Forti
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
24
|
Jing C, Kuai H, Matsumoto H, Yamaguchi T, Liao IY, Wang S. Addiction-related brain networks identification via Graph Diffusion Reconstruction Network. Brain Inform 2024; 11:1. [PMID: 38190053 PMCID: PMC10774517 DOI: 10.1186/s40708-023-00216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
Collapse
Affiliation(s)
- Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Hiroki Matsumoto
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | | | - Iman Yi Liao
- University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
25
|
Levey DF, Galimberti M, Deak JD, Wendt FR, Bhattacharya A, Koller D, Harrington KM, Quaden R, Johnson EC, Gupta P, Biradar M, Lam M, Cooke M, Rajagopal VM, Empke SLL, Zhou H, Nunez YZ, Kranzler HR, Edenberg HJ, Agrawal A, Smoller JW, Lencz T, Hougaard DM, Børglum AD, Demontis D, Gaziano JM, Gandal MJ, Polimanti R, Stein MB, Gelernter J. Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications. Nat Genet 2023; 55:2094-2103. [PMID: 37985822 PMCID: PMC10703690 DOI: 10.1038/s41588-023-01563-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
As recreational use of cannabis is being decriminalized in many places and medical use widely sanctioned, there are growing concerns about increases in cannabis use disorder (CanUD), which is associated with numerous medical comorbidities. Here we performed a genome-wide association study of CanUD in the Million Veteran Program (MVP), followed by meta-analysis in 1,054,365 individuals (ncases = 64,314) from four broad ancestries designated by the reference panel used for assignment (European n = 886,025, African n = 123,208, admixed American n = 38,289 and East Asian n = 6,843). Population-specific methods were applied to calculate single nucleotide polymorphism-based heritability within each ancestry. Statistically significant single nucleotide polymorphism-based heritability for CanUD was observed in all but the smallest population (East Asian). We discovered genome-wide significant loci unique to each ancestry: 22 in European, 2 each in African and East Asian, and 1 in admixed American ancestries. A genetically informed causal relationship analysis indicated a possible effect of genetic liability for CanUD on lung cancer risk, suggesting potential unanticipated future medical and psychiatric public health consequences that require further study to disentangle from other known risk factors such as cigarette smoking.
Collapse
Affiliation(s)
- Daniel F Levey
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Marco Galimberti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Joseph D Deak
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Frank R Wendt
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
- Department of Anthropology, University of Toronto, Mississauga, Ontario, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dora Koller
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Catalonia, Spain
| | - Kelly M Harrington
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Rachel Quaden
- VA Boston Healthcare System, Massachusetts Veterans Epidemiology Research and Information Center, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Priya Gupta
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Mahantesh Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Max Lam
- Research Division, Institute of Mental Health, Singapore, Singapore
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Megan Cooke
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Veera M Rajagopal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Stefany L L Empke
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Yaira Z Nunez
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC and Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Todd Lencz
- Department of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Ditte Demontis
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J Michael Gaziano
- Harvard Medical School, Boston, MA, USA
- Million Veteran Program Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Division of Aging, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael J Gandal
- Departments of Psychiatry and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Lifespan Brain Institute, Penn Medicine and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Renato Polimanti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and Herbert Wertheim School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| |
Collapse
|
26
|
Baranger DAA, Hatoum AS, Polimanti R, Gelernter J, Edenberg HJ, Bogdan R, Agrawal A. Multi-omics cannot replace sample size in genome-wide association studies. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12846. [PMID: 36977197 PMCID: PMC10733567 DOI: 10.1111/gbb.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023]
Abstract
The integration of multi-omics information (e.g., epigenetics and transcriptomics) can be useful for interpreting findings from genome-wide association studies (GWAS). It has been suggested that multi-omics could circumvent or greatly reduce the need to increase GWAS sample sizes for novel variant discovery. We tested whether incorporating multi-omics information in earlier and smaller-sized GWAS boosts true-positive discovery of genes that were later revealed by larger GWAS of the same/similar traits. We applied 10 different analytic approaches to integrating multi-omics data from 12 sources (e.g., Genotype-Tissue Expression project) to test whether earlier and smaller GWAS of 4 brain-related traits (alcohol use disorder/problematic alcohol use, major depression/depression, schizophrenia, and intracranial volume/brain volume) could detect genes that were revealed by a later and larger GWAS. Multi-omics data did not reliably identify novel genes in earlier less-powered GWAS (PPV <0.2; 80% false-positive associations). Machine learning predictions marginally increased the number of identified novel genes, correctly identifying 1-8 additional genes, but only for well-powered early GWAS of highly heritable traits (i.e., intracranial volume and schizophrenia). Although multi-omics, particularly positional mapping (i.e., fastBAT, MAGMA, and H-MAGMA), can help to prioritize genes within genome-wide significant loci (PPVs = 0.5-1.0) and translate them into information about disease biology, it does not reliably increase novel gene discovery in brain-related GWAS. To increase power for discovery of novel genes and loci, increasing sample size is required.
Collapse
Affiliation(s)
- David A. A. Baranger
- Department of Psychological & Brain SciencesWashington University in St. Louis Medical SchoolSaint LouisMissouriUSA
| | - Alexander S. Hatoum
- Department of PsychiatryWashington University School of MedicineSaint LouisMissouriUSA
| | - Renato Polimanti
- Department of Psychiatry, Division of Human GeneticsYale School of MedicineNew HavenConnecticutUSA
- PsychiatryVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticutUSA
| | - Joel Gelernter
- Department of Psychiatry, Division of Human GeneticsYale School of MedicineNew HavenConnecticutUSA
- PsychiatryVeterans Affairs Connecticut Healthcare SystemWest HavenConnecticutUSA
- Department of GeneticsYale School of MedicineNew HavenConnecticutUSA
- Department of NeuroscienceYale School of MedicineNew HavenConnecticutUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ryan Bogdan
- Department of Psychological & Brain SciencesWashington University in St. Louis Medical SchoolSaint LouisMissouriUSA
| | - Arpana Agrawal
- Department of PsychiatryWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
27
|
Rødevand L, Rahman Z, Hindley GFL, Smeland OB, Frei O, Tekin TF, Kutrolli G, Bahrami S, Hoseth EZ, Shadrin A, Lin A, Djurovic S, Dale AM, Steen NE, Andreassen OA. Characterizing the Shared Genetic Underpinnings of Schizophrenia and Cardiovascular Disease Risk Factors. Am J Psychiatry 2023; 180:815-826. [PMID: 37752828 PMCID: PMC11780279 DOI: 10.1176/appi.ajp.20220660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
OBJECTIVE Schizophrenia is associated with increased risk of cardiovascular disease (CVD), although there is variation in risk among individuals. There are indications of shared genetic etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim of this study was to fill this gap in knowledge. METHODS Overlapping genetic architectures between schizophrenia and CVD risk factors were assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate causal mixture model (MiXeR) was applied to estimate the number of shared variants and the conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci. RESULTS Extensive genetic overlap was found between schizophrenia and CVD risk factors, particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue and immune cells. CONCLUSIONS These findings indicate a genetic propensity to smoking and a reduced genetic risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared loci with the other CVD risk factors may imply differences in genetic liability to CVD across schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.
Collapse
Affiliation(s)
- Linn Rødevand
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Zillur Rahman
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Guy F L Hindley
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Olav B Smeland
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Oleksandr Frei
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Tahir Filiz Tekin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Gleda Kutrolli
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Shahram Bahrami
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Eva Z Hoseth
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Alexey Shadrin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Aihua Lin
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Srdjan Djurovic
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Anders M Dale
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Nils Eiel Steen
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| | - Ole A Andreassen
- Norwegian Center for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo (Rødevand, Rahman, Hindley, Smeland, Frei, Tekin, Kutrolli, Bahrami, Hoseth, Shadrin, Lin, Steen, Andreassen); Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London (Hindley); Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo (Frei); Division of Mental Health, Helse Møre Romsdal HF, Kristiansund, Norway (Hoseth); Department of Medical Genetics, Oslo University Hospital, Oslo, and NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway (Djurovic); Multimodal Imaging Laboratory and Departments of Radiology, Psychiatry, and Neurosciences, University of California San Diego, La Jolla (Dale)
| |
Collapse
|
28
|
Schmengler H, Oldehinkel AJ, Vollebergh WAM, Pasman JA, Hartman CA, Stevens GWJM, Nolte IM, Peeters M. Disentangling the interplay between genes, cognitive skills, and educational level in adolescent and young adult smoking - The TRAILS study. Soc Sci Med 2023; 336:116254. [PMID: 37751630 DOI: 10.1016/j.socscimed.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Recent studies suggest that smoking and lower educational attainment may have genetic influences in common. However, little is known about the mechanisms through which genetics contributes to educational inequalities in adolescent and young adult smoking. Common genetic liabilities may underlie cognitive skills associated with both smoking and education, such as IQ and effortful control, in line with indirect health-related selection explanations. Additionally, by affecting cognitive skills, genes may predict educational trajectories and hereby adolescents' social context, which may be associated with smoking, consistent with social causation explanations. Using data from the Dutch TRAILS Study (N = 1581), we estimated the extent to which polygenic scores (PGSs) for ever smoking regularly (PGSSMOK) and years of education (PGSEDU) predict IQ and effortful control, measured around age 11, and whether these cognitive skills then act as shared predictors of smoking and educational level around age 16, 19, 22, and 26. Second, we assessed if educational level mediated associations between PGSs and smoking. Both PGSs were associated with lower effortful control, and PGSEDU also with lower IQ. Lower IQ and effortful control, in turn, predicted having a lower educational level. However, neither of these cognitive skills were directly associated with smoking behaviour after controlling for covariates and PGSs. This suggests that IQ and effortful control are not shared predictors of smoking and education (i.e., no indirect health-related selection related to cognitive skills). Instead, PGSSMOK and PGSEDU, partly through their associations with lower cognitive skills, predicted selection into a lower educational track, which in turn was associated with more smoking, in line with social causation explanations. Our findings suggest that educational differences in the social context contribute to associations between genetic liabilities and educational inequalities in smoking.
Collapse
Affiliation(s)
- Heiko Schmengler
- Department of Interdisciplinary Social Science, Utrecht University, the Netherlands.
| | - Albertine J Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University Medical Center of Groningen, University of Groningen, the Netherlands
| | - Wilma A M Vollebergh
- Department of Interdisciplinary Social Science, Utrecht University, the Netherlands
| | - Joëlle A Pasman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Sweden
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University Medical Center of Groningen, University of Groningen, the Netherlands
| | | | - Ilja M Nolte
- Department of Epidemiology, University Medical Center of Groningen, University of Groningen, the Netherlands
| | - Margot Peeters
- Department of Interdisciplinary Social Science, Utrecht University, the Netherlands
| |
Collapse
|
29
|
Leon C, Manley E, Neely AM, Castillo J, Ramos Correa M, Velarde DA, Yang M, Puente PE, Romero DI, Ren B, Chai W, Gladstone M, Lamango NS, Huang Y, Offringa IA. Lack of racial and ethnic diversity in lung cancer cell lines contributes to lung cancer health disparities. Front Oncol 2023; 13:1187585. [PMID: 38023251 PMCID: PMC10651223 DOI: 10.3389/fonc.2023.1187585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in the United States and worldwide, and a major source of cancer health disparities. Lung cancer cell lines provide key in vitro models for molecular studies of lung cancer development and progression, and for pre-clinical drug testing. To ensure health equity, it is imperative that cell lines representing different lung cancer histological types, carrying different cancer driver genes, and representing different genders, races, and ethnicities should be available. This is particularly relevant for cell lines from Black men, who experience the highest lung cancer mortality in the United States. Here, we undertook a review of the available lung cancer cell lines and their racial and ethnic origin. We noted a marked imbalance in the availability of cell lines from different races and ethnicities. Cell lines from Black patients were strongly underrepresented, and we identified no cell lines from Hispanic/Latin(x) (H/L), American Indian/American Native (AI/AN), or Native Hawaiian or other Pacific Islander (NHOPI) patients. The majority of cell lines were derived from White and Asian patients. Also missing are cell lines representing the cells-of-origin of the major lung cancer histological types, which can be used to model lung cancer development and to study the effects of environmental exposures on lung tissues. To our knowledge, the few available immortalized alveolar epithelial cell lines are all derived from White subjects, and the race and ethnicity of a handful of cell lines derived from bronchial epithelial cells are unknown. The lack of an appropriately diverse collection of lung cancer cell lines and lung cancer cell-of-origin lines severely limits racially and ethnically inclusive lung cancer research. It impedes the ability to develop inclusive models, screen comprehensively for effective compounds, pre-clinically test new drugs, and optimize precision medicine. It thereby hinders the development of therapies that can increase the survival of minority and underserved patients. The noted lack of cell lines from underrepresented groups should constitute a call to action to establish additional cell lines and ensure adequate representation of all population groups in this critical pre-clinical research resource.
Collapse
Affiliation(s)
- Christopher Leon
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Aaron M. Neely
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Castillo
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michele Ramos Correa
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Diego A. Velarde
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Minxiao Yang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pablo E. Puente
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Diana I. Romero
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Bing Ren
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Matthew Gladstone
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Nazarius S. Lamango
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, United States
| | - Ite A. Offringa
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
30
|
John U, Rumpf HJÜ, Hanke M, Meyer C. Alcohol and Nicotine Dependence and Time to Death in a General Adult Population: A Mortality Cohort Study. Eur Addict Res 2023; 29:394-405. [PMID: 37883933 DOI: 10.1159/000534233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Findings from general population studies are lacking in regard to the co-occurrence of alcohol and nicotine dependence in relation to later mortality. The aim of this study was to analyze potential interactions of risky alcohol drinking, tobacco smoking, alcohol and nicotine dependence, and time until the first cigarette is smoked in the morning after awakening in the prediction of mortality. METHODS This study analyzed a random sample of the general population in Northern Germany, which comprised adults aged 18-64 years. Risky alcohol drinking, tobacco smoking, alcohol and nicotine dependence, and the time until the first cigarette in the morning after awakening were assessed for the period of 1996-1997 by applying the Munich-Composite International Diagnostic Interview. Data about all-cause mortality were gathered for the period of 2017-2018 and analyzed using Cox proportional hazards models. RESULTS Risky alcohol drinking, tobacco smoking, alcohol and nicotine dependence, and the time until the first cigarette in the morning were associated with each other and predicted the time to death. Among participants with a former alcohol dependence, 29.59% had a current nicotine dependence. Participants who had ever been dependent on alcohol at some point in their life before and currently smoked their first cigarette in the morning within 30 min or less after awakening had a hazard ratio of 5.28 (95% confidence interval: 3.33-8.38) for early death compared to low-risk alcohol consumers who had never smoked. CONCLUSION Risky alcohol drinking, tobacco smoking, alcohol and nicotine dependence, and the time until the first cigarette in the morning may have a cumulative impact on time to death. The findings suggest that it could be beneficial to provide support for quitting both risky alcohol drinking and tobacco smoking among nondependent individuals in addition to supporting remission from dependence.
Collapse
Affiliation(s)
- Ulrich John
- Prevention Research and Social Medicine, Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans-J Ürgen Rumpf
- Department of Psychiatry and Psychotherapy, Research Group S:TEP, University of Lübeck, Lübeck, Germany
| | - Monika Hanke
- Prevention Research and Social Medicine, Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Meyer
- Prevention Research and Social Medicine, Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
31
|
Xu H, Toikumo S, Crist RC, Glogowska K, Jinwala Z, Deak JD, Justice AC, Gelernter J, Johnson EC, Kranzler HR, Kember RL. Identifying genetic loci and phenomic associations of substance use traits: A multi-trait analysis of GWAS (MTAG) study. Addiction 2023; 118:1942-1952. [PMID: 37156939 PMCID: PMC10754226 DOI: 10.1111/add.16229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Genome-wide association studies (GWAS) of opioid use disorder (OUD) and cannabis use disorder (CUD) have lagged behind those of alcohol use disorder (AUD) and smoking, where many more loci have been identified. We sought to identify novel loci for substance use traits (SUTs) in both African- (AFR) and European- (EUR) ancestry individuals to enhance our understanding of the traits' genetic architecture. DESIGN We used multi-trait analysis of GWAS (MTAG) to analyze four SUTs in EUR subjects (OUD, CUD, AUD and smoking initiation [SMKinitiation]), and three SUTs in AFR subjects (OUD, AUD and smoking trajectory [SMKtrajectory]). We conducted gene-set and protein-protein interaction analyses and calculated polygenic risk scores (PRS) in two independent samples. SETTING This study was conducted in the United States. PARTICIPANTS A total of 5692 EUR and 4918 AFR individuals in the Yale-Penn sample and 29 054 EUR and 10 265 AFR individuals in the Penn Medicine BioBank sample. FINDINGS MTAG identified genome-wide significant (GWS) single nucleotide polymorphisms (SNPs) for all four traits in EUR: 41 SNPs in 36 loci for OUD; 74 SNPs in 60 loci for CUD; 63 SNPs in 52 loci for AUD; and 183 SNPs in 144 loci for SMKinitiation. MTAG also identified GWS SNPs in AFR: 2 SNPs in 2 loci for OUD; 3 SNPs in 3 loci for AUD; and 1 SNP in 1 locus for SMKtrajectory. In the Yale-Penn sample, the MTAG-derived PRS consistently yielded more significant associations with both the corresponding substance use disorder diagnosis and multiple related phenotypes than the GWAS-derived PRS. CONCLUSIONS Multi-trait analysis of genome-wide association studies boosted the number of loci found for substance use traits, identifying genes not previously linked to any substance, and increased the power of polygenic risk scores. Multi-trait analysis of genome-wide association studies can be used to identify novel associations for substance use, especially those for which the samples are smaller than those for historically legal substances.
Collapse
Affiliation(s)
- Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sylvanus Toikumo
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Richard C. Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Klaudia Glogowska
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph D. Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut, USA
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut, USA
| | - Emma C. Johnson
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Henry R. Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Rachel L. Kember
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mental Illness Research, Education and Clinical Center, Veterans Integrated Service Network 4, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Guerri L, Dobbs LK, da Silva e Silva DA, Meyers A, Ge A, Lecaj L, Djakuduel C, Islek D, Hipolito D, Martinez AB, Shen PH, Marietta CA, Garamszegi SP, Capobianco E, Jiang Z, Schwandt M, Mash DC, Alvarez VA, Goldman D. Low Dopamine D2 Receptor Expression Drives Gene Networks Related to GABA, cAMP, Growth and Neuroinflammation in Striatal Indirect Pathway Neurons. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1104-1115. [PMID: 37881572 PMCID: PMC10593893 DOI: 10.1016/j.bpsgos.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the Drd2 gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs). Methods Cre-conditional, translating ribosome affinity purification (TRAP) was used to purify and analyze the translatome (ribosome-bound messenger RNA) of iMSNs from mice with low/heterozygous or wild-type Drd2 expression in iMSNs. Complementary electrophysiological recordings and gene expression analysis of postmortem brain tissue from human cocaine users were performed. Results Innate low expression of Drd2 in iMSNs led to differential expression of genes involved in GABA (gamma-aminobutyric acid) and cAMP (cyclic adenosine monophosphate) signaling, neural growth, lipid metabolism, neural excitability, and inflammation. Creb1 was identified as a likely upstream regulator, among others. In human brain, expression of FXYD2, a modulatory subunit of the Na/K pump, was negatively correlated with DRD2 messenger RNA expression. In iMSN-TRAP-Drd2HET mice, increased Cartpt and reduced S100a10 (p11) expression recapitulated previous observations in cocaine paradigms. Electrophysiology experiments supported a higher GABA tone in iMSN-Drd2HET mice. Conclusions This study provides strong molecular evidence that, in addiction, inhibition by the indirect pathway is constitutively enhanced through neural growth and increased GABA signaling.
Collapse
Affiliation(s)
- Lucia Guerri
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Lauren K. Dobbs
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
- Department of Neurology, University of Texas at Austin, Austin, Texas
| | - Daniel A. da Silva e Silva
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Allen Meyers
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Aaron Ge
- University of Maryland, College Park, Maryland
| | - Lea Lecaj
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Caroline Djakuduel
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Damien Islek
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Dionisio Hipolito
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Abdiel Badillo Martinez
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Pei-Hong Shen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Cheryl A. Marietta
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Enrico Capobianco
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Zhijie Jiang
- Institute for Data Science and Computing, University of Miami, Miami, Florida
| | - Melanie Schwandt
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
- Institute for Data Science and Computing, University of Miami, Miami, Florida
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Veronica A. Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, NIAAA, National Institutes of Health, Bethesda, Maryland
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, Maryland
- Office of the Clinical Director, NIAAA, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
Toikumo S, Jennings MV, Pham BK, Lee H, Mallard TT, Bianchi SB, Meredith JJ, Vilar-Ribó L, Xu H, Hatoum AS, Johnson EC, Pazdernik V, Jinwala Z, Pakala SR, Leger BS, Niarchou M, Ehinmowo M, Penn Medicine BioBank, Million Veteran Program, PsycheMERGE Substance Use Disorder Workgroup, Jenkins GD, Batzler A, Pendegraft R, Palmer AA, Zhou H, Biernacka JM, Coombes BJ, Gelernter J, Xu K, Hancock DB, Cox NJ, Smoller JW, Davis LK, Justice AC, Kranzler HR, Kember RL, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder prioritizes novel candidate risk genes and reveals associations with numerous health outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.27.23287713. [PMID: 37034728 PMCID: PMC10081388 DOI: 10.1101/2023.03.27.23287713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Hyunjoon Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heng Xu
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Vanessa Pazdernik
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shreya R Pakala
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Program in Biomedical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Maria Niarchou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Greg D Jenkins
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Richard Pendegraft
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Joanna M Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Dana B Hancock
- Behavioral and Urban Health Program, Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC, USA
| | - Nancy J Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amy C Justice
- Yale University School of Public Health, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Thorpe HHA, Fontanillas P, Pham BK, Meredith JJ, Jennings MV, Courchesne-Krak NS, Vilar-Ribó L, Bianchi SB, Mutz J, 23andMe Research Team, Elson SL, Khokhar JY, Abdellaoui A, Davis LK, Palmer AA, Sanchez-Roige S. Genome-Wide Association Studies of Coffee Intake in UK/US Participants of European Ancestry Uncover Gene-Cohort Influences. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.09.23295284. [PMID: 37745582 PMCID: PMC10516045 DOI: 10.1101/2023.09.09.23295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Benjamin K Pham
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - John J Meredith
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - 23andMe Research Team
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah L Elson
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K Davis
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Bountress KE, Bustamante D, de Viteri SSS, Chatzinakos C, Sheerin C, Daskalakis NP, Edenberg HJ, The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group, Peterson RE, Webb BT, Meyers J, Amstadter A. Differences in genetic correlations between posttraumatic stress disorder and alcohol-related problems phenotypes compared to alcohol consumption-related phenotypes. Psychol Med 2023; 53:5767-5777. [PMID: 36177877 PMCID: PMC10060434 DOI: 10.1017/s0033291722002999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Posttraumatic Stress Disorder (PTSD) tends to co-occur with greater alcohol consumption as well as alcohol use disorder (AUD). However, it is unknown whether the same etiologic factors that underlie PTSD-alcohol-related problems comorbidity also contribute to PTSD- alcohol consumption. METHODS We used summary statistics from large-scale genome-wide association studies (GWAS) of European-ancestry (EA) and African-ancestry (AA) participants to estimate genetic correlations between PTSD and a range of alcohol consumption-related and alcohol-related problems phenotypes. RESULTS In EAs, there were positive genetic correlations between PTSD phenotypes and alcohol-related problems phenotypes (e.g. Alcohol Use Disorders Identification Test (AUDIT) problem score) (rGs: 0.132-0.533, all FDR adjusted p < 0.05). However, the genetic correlations between PTSD phenotypes and alcohol consumption -related phenotypes (e.g. drinks per week) were negatively associated or non-significant (rGs: -0.417 to -0.042, FDR adjusted p: <0.05-NS). For AAs, the direction of correlations was sometimes consistent and sometimes inconsistent with that in EAs, and the ranges were larger (rGs for alcohol-related problems: -0.275 to 0.266, FDR adjusted p: NS, alcohol consumption-related: 0.145-0.699, FDR adjusted p: NS). CONCLUSIONS These findings illustrate that the genetic associations between consumption and problem alcohol phenotypes and PTSD differ in both strength and direction. Thus, the genetic factors that may lead someone to develop PTSD and high levels of alcohol consumption are not the same as those that lead someone to develop PTSD and alcohol-related problems. Discussion around needing improved methods to better estimate heritabilities and genetic correlations in diverse and admixed ancestry samples is provided.
Collapse
Affiliation(s)
| | | | | | - Chris Chatzinakos
- VIPBG. VCU, Richmond, VA, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | | | | | | | | | - Bradley T. Webb
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
36
|
Prom-Wormley EC, Wells JL, Landes L, Edmondson AN, Sankoh M, Jamieson B, Delk KJ, Surya S, Bhati S, Clifford J. A scoping review of smoking cessation pharmacogenetic studies to advance future research across racial, ethnic, and ancestral populations. Front Genet 2023; 14:1103966. [PMID: 37359362 PMCID: PMC10285878 DOI: 10.3389/fgene.2023.1103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Abstinence rates among smokers attempting to quit remain low despite the wide availability and accessibility of pharmacological smoking cessation treatments. In addition, the prevalence of cessation attempts and abstinence differs by individual-level social factors such as race and ethnicity. Clinical treatment of nicotine dependence also continues to be challenged by individual-level variability in effectiveness to promote abstinence. The use of tailored smoking cessation strategies that incorporate information on individual-level social and genetic factors hold promise, although additional pharmacogenomic knowledge is still needed. In particular, genetic variants associated with pharmacological responses to smoking cessation treatment have generally been conducted in populations with participants that self-identify as White race or who are determined to be of European genetic ancestry. These results may not adequately capture the variability across all smokers as a result of understudied differences in allele frequencies across genetic ancestry populations. This suggests that much of the current pharmacogenetic study results for smoking cessation may not apply to all populations. Therefore, clinical application of pharmacogenetic results may exacerbate health inequities by racial and ethnic groups. This scoping review examines the extent to which racial, ethnic, and ancestral groups that experience differences in smoking rates and smoking cessation are represented in the existing body of published pharmacogenetic studies of smoking cessation. We will summarize results by race, ethnicity, and ancestry across pharmacological treatments and study designs. We will also explore current opportunities and challenges in conducting pharmacogenomic research on smoking cessation that encourages greater participant diversity, including practical barriers to clinical utilization of pharmacological smoking cessation treatment and clinical implementation of pharmacogenetic knowledge.
Collapse
Affiliation(s)
- Elizabeth C. Prom-Wormley
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Jonathan L. Wells
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Lori Landes
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Amy N. Edmondson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Mariam Sankoh
- Department of Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA, United States
| | - Brendan Jamieson
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Kayla J. Delk
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Sanya Surya
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Shambhavi Bhati
- Division of Epidemiology, Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - James Clifford
- Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, United States
| |
Collapse
|
37
|
Cheng Y, Dao C, Zhou H, Li B, Kember RL, Toikumo S, Zhao H, Gelernter J, Kranzler HR, Justice AC, Xu K. Multi-trait genome-wide association analyses leveraging alcohol use disorder findings identify novel loci for smoking behaviors in the Million Veteran Program. Transl Psychiatry 2023; 13:148. [PMID: 37147289 PMCID: PMC10162964 DOI: 10.1038/s41398-023-02409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/07/2023] Open
Abstract
Smoking behaviors and alcohol use disorder (AUD), both moderately heritable traits, commonly co-occur in the general population. Single-trait genome-wide association studies (GWAS) have identified multiple loci for smoking and AUD. However, GWASs that have aimed to identify loci contributing to co-occurring smoking and AUD have used small samples and thus have not been highly informative. Applying multi-trait analysis of GWASs (MTAG), we conducted a joint GWAS of smoking and AUD with data from the Million Veteran Program (N = 318,694). By leveraging GWAS summary statistics for AUD, MTAG identified 21 genome-wide significant (GWS) loci associated with smoking initiation and 17 loci associated with smoking cessation compared to 16 and 8 loci, respectively, identified by single-trait GWAS. The novel loci for smoking behaviors identified by MTAG included those previously associated with psychiatric or substance use traits. Colocalization analysis identified 10 loci shared by AUD and smoking status traits, all of which achieved GWS in MTAG, including variants on SIX3, NCAM1, and near DRD2. Functional annotation of the MTAG variants highlighted biologically important regions on ZBTB20, DRD2, PPP6C, and GCKR that contribute to smoking behaviors. In contrast, MTAG of smoking behaviors and alcohol consumption (AC) did not enhance discovery compared with single-trait GWAS for smoking behaviors. We conclude that using MTAG to augment the power of GWAS enables the identification of novel genetic variants for commonly co-occuring phenotypes, providing new insights into their pleiotropic effects on smoking behavior and AUD.
Collapse
Affiliation(s)
- Youshu Cheng
- Yale School of Public Health, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Cecilia Dao
- Yale School of Public Health, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Hang Zhou
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Medicine, New Haven, CT, 06511, USA
| | - Boyang Li
- Yale School of Public Health, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Rachel L Kember
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Sylvanus Toikumo
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Hongyu Zhao
- Yale School of Public Health, New Haven, CT, 06511, USA
- Yale School of Medicine, New Haven, CT, 06511, USA
| | - Joel Gelernter
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Medicine, New Haven, CT, 06511, USA
| | - Henry R Kranzler
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Crescenz Veterans Affairs Medical Center, Philadelphia, PA, 19104, USA
| | - Amy C Justice
- Yale School of Public Health, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Yale School of Medicine, New Haven, CT, 06511, USA
| | - Ke Xu
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
- Yale School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
38
|
Schaefer JD, Jang SK, Clark DA, Deak JD, Hicks BM, Iacono WG, Liu M, McGue M, Vrieze SI, Wilson S. Associations between polygenic risk of substance use and use disorder and alcohol, cannabis, and nicotine use in adolescence and young adulthood in a longitudinal twin study. Psychol Med 2023; 53:2296-2306. [PMID: 37310313 PMCID: PMC10123833 DOI: 10.1017/s0033291721004116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Recent well-powered genome-wide association studies have enhanced prediction of substance use outcomes via polygenic scores (PGSs). Here, we test (1) whether these scores contribute to prediction over-and-above family history, (2) the extent to which PGS prediction reflects inherited genetic variation v. demography (population stratification and assortative mating) and indirect genetic effects of parents (genetic nurture), and (3) whether PGS prediction is mediated by behavioral disinhibition prior to substance use onset. METHODS PGSs for alcohol, cannabis, and nicotine use/use disorder were calculated for Minnesota Twin Family Study participants (N = 2483, 1565 monozygotic/918 dizygotic). Twins' parents were assessed for histories of substance use disorder. Twins were assessed for behavioral disinhibition at age 11 and substance use from ages 14 to 24. PGS prediction of substance use was examined using linear mixed-effects, within-twin pair, and structural equation models. RESULTS Nearly all PGS measures were associated with multiple types of substance use independently of family history. However, most within-pair PGS prediction estimates were substantially smaller than the corresponding between-pair estimates, suggesting that prediction is driven in part by demography and indirect genetic effects of parents. Path analyses indicated the effects of both PGSs and family history on substance use were mediated via disinhibition in preadolescence. CONCLUSIONS PGSs capturing risk of substance use and use disorder can be combined with family history measures to augment prediction of substance use outcomes. Results highlight indirect sources of genetic associations and preadolescent elevations in behavioral disinhibition as two routes through which these scores may relate to substance use.
Collapse
Affiliation(s)
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - D. Angus Clark
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Joseph D. Deak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Brian M. Hicks
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute for Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
39
|
Hatoum AS, Colbert SM, Johnson EC, Huggett SB, Deak JD, Pathak G, Jennings MV, Paul SE, Karcher NR, Hansen I, Baranger DA, Edwards A, Grotzinger A, Substance Use Disorder Working Group of the Psychiatric Genomics
Consortium, Tucker-Drob EM, Kranzler HR, Davis LK, Sanchez-Roige S, Polimanti R, Gelernter J, Edenberg HJ, Bogdan R, Agrawal A. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. NATURE. MENTAL HEALTH 2023; 1:210-223. [PMID: 37250466 PMCID: PMC10217792 DOI: 10.1038/s44220-023-00034-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/10/2023] [Indexed: 05/31/2023]
Abstract
Genetic liability to substance use disorders can be parsed into loci that confer general or substance-specific addiction risk. We report a multivariate genome-wide association meta-analysis that disaggregates general and substance-specific loci for published summary statistics of problematic alcohol use, problematic tobacco use, cannabis use disorder, and opioid use disorder in a sample of 1,025,550 individuals of European descent and 92,630 individuals of African descent. Nineteen independent SNPs were genome-wide significant (P < 5e-8) for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries, PDE4B was significant (among other genes), suggesting dopamine regulation as a cross-substance vulnerability. An addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions, and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included metabolic and receptor genes. These findings provide insight into genetic risk loci for substance use disorders that could be leveraged as treatment targets.
Collapse
Affiliation(s)
- Alexander S. Hatoum
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Sarah M.C. Colbert
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Emma C. Johnson
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | | | - Joseph D. Deak
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven,
CT, USA
| | - Gita Pathak
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
| | - Mariela V. Jennings
- UC San Diego School of Medicine, Department of Psychiatry,
San Diego, CA, USA
| | - Sarah E. Paul
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - Nicole R. Karcher
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Isabella Hansen
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - David A.A. Baranger
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| | - Alexis Edwards
- Virginia Institute of Psychiatric and Behavioral Genetics,
Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Grotzinger
- University of Colorado-Boulder, Institute for Behavioral
Genetics, Boulder, CO, USA
| | | | - Elliot M. Tucker-Drob
- University of Texas at Austin, Department of Psychology and
Population Research Center, Austin, TX, USA
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of
Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia,
PA, USA
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, USA
| | - Lea K. Davis
- Department of Medicine, Division of Genetic Medicine,
Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences,
Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt
University Medical Center, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- UC San Diego School of Medicine, Department of Psychiatry,
San Diego, CA, USA
- Department of Medicine, Division of Genetic Medicine,
Vanderbilt University, Nashville, TN, USA
| | - Renato Polimanti
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven,
CT, USA
| | - Joel Gelernter
- Department of Psychiatry, Division of Human Genetics, Yale
School of Medicine, New Haven, CT, USA
- University of Texas at Austin, Department of Psychology and
Population Research Center, Austin, TX, USA
- Department of Genetics, Yale School of Medicine, New
Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New
Haven, CT, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana
University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, IN, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences,
Washington University in St. Louis
| | - Arpana Agrawal
- Washington University School of Medicine, Department of
Psychiatry, Saint Louis, USA
| |
Collapse
|
40
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2289] [Impact Index Per Article: 1144.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
41
|
Chen F, Wang X, Jang SK, Quach BC, Weissenkampen JD, Khunsriraksakul C, Yang L, Sauteraud R, Albert CM, Allred NDD, Arnett DK, Ashley-Koch AE, Barnes KC, Barr RG, Becker DM, Bielak LF, Bis JC, Blangero J, Boorgula MP, Chasman DI, Chavan S, Chen YDI, Chuang LM, Correa A, Curran JE, David SP, de las Fuentes L, Deka R, Duggirala R, Faul JD, Garrett ME, Gharib SA, Guo X, Hall ME, Hawley NL, He J, Hobbs BD, Hokanson JE, Hsiung CA, Hwang SJ, Hyde TM, Irvin MR, Jaffe AE, Johnson EO, Kaplan R, Kardia SLR, Kaufman JD, Kelly TN, Kleinman JE, Kooperberg C, Lee IT, Levy D, Lutz SM, Manichaikul AW, Martin LW, Marx O, McGarvey ST, Minster RL, Moll M, Moussa KA, Naseri T, North KE, Oelsner EC, Peralta JM, Peyser PA, Psaty BM, Rafaels N, Raffield LM, Reupena MS, Rich SS, Rotter JI, Schwartz DA, Shadyab AH, Sheu WHH, Sims M, Smith JA, Sun X, Taylor KD, Telen MJ, Watson H, Weeks DE, Weir DR, Yanek LR, Young KA, Young KL, Zhao W, Hancock DB, Jiang B, Vrieze S, Liu DJ. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat Genet 2023; 55:291-300. [PMID: 36702996 PMCID: PMC9925385 DOI: 10.1038/s41588-022-01282-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2022] [Indexed: 01/27/2023]
Abstract
Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.
Collapse
Affiliation(s)
- Fang Chen
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Xingyan Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | | | - J Dylan Weissenkampen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, Penn State College of Medicine, Hershey, PA, USA
| | | | - Lina Yang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Renan Sauteraud
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Christine M Albert
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
| | - Kathleen C Barnes
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Meher Preethi Boorgula
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sameer Chavan
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Yii-Der I Chen
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Joanne E Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Sean P David
- University of Chicago, Chicago, IL, USA
- NorthShore University Health System, Evanston, IL, USA
| | - Lisa de las Fuentes
- Department of Medicine, Division of Biostatistics and Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ravindranath Duggirala
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Sina A Gharib
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Xiuqing Guo
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Michael E Hall
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nicola L Hawley
- Department of Epidemiology (Chronic Disease), School of Public Health, Yale University, New Haven, CT, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Brian D Hobbs
- Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Jen Hwang
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health and Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Human Genetics and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, The Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington Seattle, Seattle, WA, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - I-Te Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Daniel Levy
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon M Lutz
- Department of Population Medicine, Harvard Pilgrim Health Care, Boston, MA, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lisa W Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Olivia Marx
- Department of Biomedical Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen T McGarvey
- Department of Epidemiology, International Health Institute, Brown University School of Public Health, Providence, RI, USA
| | - Ryan L Minster
- Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Karine A Moussa
- Penn State Huck Institutes of Life Sciences, Penn State College of Medicine, University Park, PA, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Juan M Peralta
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | | | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Kent D Taylor
- Department of Pediatrics, Institute for Translational Genomics and Population Sciences, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Harold Watson
- Faculty of Medical Sciences, University of the West Indies, Cave Hill Campus, Barbados
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Bibo Jiang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
42
|
Bogdan R, Hatoum AS, Johnson EC, Agrawal A. The Genetically Informed Neurobiology of Addiction (GINA) model. Nat Rev Neurosci 2023; 24:40-57. [PMID: 36446900 PMCID: PMC10041646 DOI: 10.1038/s41583-022-00656-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
Addictions are heritable and unfold dynamically across the lifespan. One prominent neurobiological theory proposes that substance-induced changes in neural circuitry promote the progression of addiction. Genome-wide association studies have begun to characterize the polygenic architecture undergirding addiction liability and revealed that genetic loci associated with risk can be divided into those associated with a general broad-spectrum liability to addiction and those associated with drug-specific addiction risk. In this Perspective, we integrate these genomic findings with our current understanding of the neurobiology of addiction to propose a new Genetically Informed Neurobiology of Addiction (GINA) model.
Collapse
Affiliation(s)
- Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma C Johnson
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
43
|
Sey NYA, Pratt BM, Won H. Annotating genetic variants to target genes using H-MAGMA. Nat Protoc 2023; 18:22-35. [PMID: 36289406 PMCID: PMC10026181 DOI: 10.1038/s41596-022-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/28/2022] [Indexed: 01/14/2023]
Abstract
An outstanding goal in modern genomics is to systematically predict the functional outcome of noncoding variation associated with complex traits. To address this, we developed Hi-C-coupled multi-marker analysis of genomic annotation (H-MAGMA), which builds on traditional MAGMA-a gene-based analysis tool that assigns variants to their target genes-by incorporating 3D chromatin configuration in assigning variants to their putative target genes. Applying this approach, we identified key biological pathways implicated in a wide range of brain disorders and showed its utility in complementing other functional genomic resources such as expression quantitative trait loci-based variant annotation. Here, we provide a detailed protocol for generating the H-MAGMA variant-gene annotation file by using chromatin interaction data from the adult human brain. In addition, we provide an example of how H-MAGMA is run by using genome-wide association study summary statistics of Parkinson's disease. Lastly, we generated variant-gene annotation files for 28 tissues and cell types, with the hope of contributing a resource for researchers studying a broad set of complex genetic disorders. H-MAGMA can be performed in <2 h for any cell type in which Hi-C data are available.
Collapse
Affiliation(s)
- Nancy Y A Sey
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Brandon M Pratt
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Hyejung Won
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Piga NN, Boua PR, Soremekun C, Shrine N, Coley K, Brandenburg JT, Tobin MD, Ramsay M, Fatumo S, Choudhury A, Batini C. Genetic insights into smoking behaviours in 10,558 men of African ancestry from continental Africa and the UK. Sci Rep 2022; 12:18828. [PMID: 36335192 PMCID: PMC9637114 DOI: 10.1038/s41598-022-22218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Smoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1.3 billion smokers globally, 80% live in low- and middle-income countries, where the number of deaths due to tobacco use is expected to double in the next decade according to the World Health Organization. Genetic studies have helped to identify biological pathways for smoking behaviours, but have mostly focussed on individuals of European ancestry or living in either North America or Europe. We performed a genome-wide association study of two smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Eight independent variants were associated with either smoking initiation or cessation at P-value < 5 × 10-6, four being monomorphic or rare in European populations. Gene prioritisation strategy highlighted five genes, including SEMA6D, previously described as associated with several smoking behaviour traits. These results confirm the importance of analysing underrepresented populations in genetic epidemiology, and the urgent need for larger genomic studies to boost discovery power to better understand smoking behaviours, as well as many other traits.
Collapse
Affiliation(s)
- Noemi-Nicole Piga
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Palwende Romuald Boua
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de La Santé, Nanoro, Burkina Faso
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chisom Soremekun
- Department of Immunology and Molecular Biology, College of Health Science, Makerere University, Kampala, Uganda
- H3Africa Bioinformatics Network (H3ABioNet) Node, Center for Genomics Research and Innovation (CGRI), National Biotechnology Development Agency CGRI/NABDA, Abuja, Nigeria
- The African Computational Genomics (TACG) Research Group, MRC/UVRI LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Nick Shrine
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Kayesha Coley
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Martin D Tobin
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Segun Fatumo
- H3Africa Bioinformatics Network (H3ABioNet) Node, Center for Genomics Research and Innovation (CGRI), National Biotechnology Development Agency CGRI/NABDA, Abuja, Nigeria
- The African Computational Genomics (TACG) Research Group, MRC/UVRI LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Non-Communicable Disease Epidemiology (NCDE), London School of Hygiene and Tropical Medicine, London, UK
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chiara Batini
- Genetic Epidemiology Group, Department of Population Health Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
45
|
Barr PB, Driver MN, Kuo SIC, Stephenson M, Aliev F, Linnér RK, Marks J, Anokhin AP, Bucholz K, Chan G, Edenberg HJ, Edwards AC, Francis MW, Hancock DB, Harden KP, Kamarajan C, Kaprio J, Kinreich S, Kramer JR, Kuperman S, Latvala A, Meyers JL, Palmer AA, Plawecki MH, Porjesz B, Rose RJ, Schuckit MA, Salvatore JE, Dick DM. Clinical, environmental, and genetic risk factors for substance use disorders: characterizing combined effects across multiple cohorts. Mol Psychiatry 2022; 27:4633-4641. [PMID: 36195638 PMCID: PMC9938102 DOI: 10.1038/s41380-022-01801-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Substance use disorders (SUDs) incur serious social and personal costs. The risk for SUDs is complex, with risk factors ranging from social conditions to individual genetic variation. We examined whether models that include a clinical/environmental risk index (CERI) and polygenic scores (PGS) are able to identify individuals at increased risk of SUD in young adulthood across four longitudinal cohorts for a combined sample of N = 15,134. Our analyses included participants of European (NEUR = 12,659) and African (NAFR = 2475) ancestries. SUD outcomes included: (1) alcohol dependence, (2) nicotine dependence; (3) drug dependence, and (4) any substance dependence. In the models containing the PGS and CERI, the CERI was associated with all three outcomes (ORs = 01.37-1.67). PGS for problematic alcohol use, externalizing, and smoking quantity were associated with alcohol dependence, drug dependence, and nicotine dependence, respectively (OR = 1.11-1.33). PGS for problematic alcohol use and externalizing were also associated with any substance dependence (ORs = 1.09-1.18). The full model explained 6-13% of the variance in SUDs. Those in the top 10% of CERI and PGS had relative risk ratios of 3.86-8.04 for each SUD relative to the bottom 90%. Overall, the combined measures of clinical, environmental, and genetic risk demonstrated modest ability to distinguish between affected and unaffected individuals in young adulthood. PGS were significant but added little in addition to the clinical/environmental risk index. Results from our analysis demonstrate there is still considerable work to be done before tools such as these are ready for clinical applications.
Collapse
Affiliation(s)
- Peter B Barr
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
- VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| | - Morgan N Driver
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Sally I-Chun Kuo
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Mallory Stephenson
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| | | | - Jesse Marks
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Durham, NC, USA
| | - Andrey P Anokhin
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Kathleen Bucholz
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Grace Chan
- Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Alexis C Edwards
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Meredith W Francis
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Dana B Hancock
- Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, Durham, NC, USA
| | - K Paige Harden
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - John R Kramer
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Samuel Kuperman
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Antti Latvala
- Institute of Criminology and Legal Policy, University of Helsinki, Helsinki, Finland
| | - Jacquelyn L Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Martin H Plawecki
- Department of Psychiatry, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
46
|
Jang SK, Evans L, Fialkowski A, Arnett DK, Ashley-Koch AE, Barnes KC, Becker DM, Bis JC, Blangero J, Bleecker ER, Boorgula MP, Bowden DW, Brody JA, Cade BE, Jenkins BWC, Carson AP, Chavan S, Cupples LA, Custer B, Damrauer SM, David SP, de Andrade M, Dinardo CL, Fingerlin TE, Fornage M, Freedman BI, Garrett ME, Gharib SA, Glahn DC, Haessler J, Heckbert SR, Hokanson JE, Hou L, Hwang SJ, Hyman MC, Judy R, Justice AE, Kaplan RC, Kardia SLR, Kelly S, Kim W, Kooperberg C, Levy D, Lloyd-Jones DM, Loos RJF, Manichaikul AW, Gladwin MT, Martin LW, Nouraie M, Melander O, Meyers DA, Montgomery CG, North KE, Oelsner EC, Palmer ND, Payton M, Peljto AL, Peyser PA, Preuss M, Psaty BM, Qiao D, Rader DJ, Rafaels N, Redline S, Reed RM, Reiner AP, Rich SS, Rotter JI, Schwartz DA, Shadyab AH, Silverman EK, Smith NL, Smith JG, Smith AV, Smith JA, Tang W, Taylor KD, Telen MJ, Vasan RS, Gordeuk VR, Wang Z, Wiggins KL, Yanek LR, Yang IV, Young KA, Young KL, Zhang Y, Liu DJ, Keller MC, Vrieze S. Rare genetic variants explain missing heritability in smoking. Nat Hum Behav 2022; 6:1577-1586. [PMID: 35927319 PMCID: PMC9985486 DOI: 10.1038/s41562-022-01408-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.
Collapse
Affiliation(s)
- Seon-Kyeong Jang
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Luke Evans
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Ecology & Evolution, University of Colorado Boulder, Boulder, CO, USA
| | | | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KY, USA
| | | | - Kathleen C Barnes
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | | | - Meher Preethi Boorgula
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brian E Cade
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda W Campbell Jenkins
- Jackson Heart Study Graduate Training and Education Center, Jackson State University School of Public Health, Jackson, MS, USA
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sameer Chavan
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
| | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Sean P David
- Department of Family Medicine, Prtizker School of Medicine, University of Chicago, Chicago, IL, USA
- NorthShore University HealthSystem, Evanston, IL, USA
| | - Mariza de Andrade
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Tasha E Fingerlin
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E Garrett
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hosptial and Harvard Medical School, Boston, MA, USA
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew C Hyman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renae Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne E Justice
- Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA
| | - Robert C Kaplan
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Shannon Kelly
- Department of Pediatrics, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Wonji Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ani W Manichaikul
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Courtney G Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth C Oelsner
- Division of General Medicine, Columbia University Irving Medical Center, Columbia University, New York, NY, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marinelle Payton
- Department of Epidemiology and Biostatistics, Jackson Heart Study Graduate Training and Education Center, Jackson State University School of Public Health, Jackson, MS, USA
| | - Anna L Peljto
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert M Reed
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A Schwartz
- Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Aladdin H Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - J Gustav Smith
- Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Albert V Smith
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Marilyn J Telen
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Victor R Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhe Wang
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristin L Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
47
|
Chongtham J, Pandey N, Sharma LK, Mohan A, Srivastava T. SNP rs9387478 at ROS1-DCBLD1 Locus is Significantly Associated with Lung Cancer Risk and Poor Survival in Indian Population. Asian Pac J Cancer Prev 2022; 23:3553-3561. [PMID: 36308382 PMCID: PMC9924343 DOI: 10.31557/apjcp.2022.23.10.3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Receptor tyrosine kinases (RTK) are relevant therapeutic targets in the treatment of lung cancer. Germline susceptibility variants that influence these RTKs may provide new insights into their regulation. rs9387478 is located in the genomic interval between two RTK-genes ROS1/DCBLD1, of which ROS1 alterations are implicated in lung carcinogenesis and treatment response while the latter remains poorly understood. MATERIALS AND METHODS Venous blood was drawn from 100 control and 231 case subjects. Genotype was scored by restriction fragment length polymorphism (RFLP), PCR amplification followed by HindIII digestion. Logistic regression was applied to compare the association between variables. Survival curve was plotted to draw a correlation between the genotype and overall survival. Also, eQTL and chromatin state changes were analyzed and correlated with the survival of patients using available datasets. RESULTS In our population smoking correlated significantly with lung cancer [OR= 2.607] with the presence of the minor allele 'A' enhancing the nicotine dependence [CA (OR=3.23)]. Individuals with homozygous risk allele 'A' had a higher chance of developing lung cancer [OR=2.65] than individuals with CA/CC implying a recessive model of association. Patients with CC/CA genotype had better overall survival than patients with AA genotype [161 days/142 days vs 54 days, p=0.005]. The homozygous risk allele was significantly associated with increased DCBLD1 and ROS1 expression in lung cancer, with enriched active histone marks due to the polymorphism. Interestingly, increased DCBLD1 expression was associated with poor outcomes in lung cancer. CONCLUSION Overall, our study provides strong evidence that rs9387478 is significantly associated with both nicotine dependence and lung cancer in our North Indian cohort. The association of the SNP with prognostic genes, DCBLD1 and ROS1 make rs9387478 a promising prognostic marker in the North Indian population. The results obtained are significant, however, the study needs to be performed in a larger sample size.
Collapse
Affiliation(s)
- Jonita Chongtham
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| | - Namita Pandey
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,Current affiliation: Clinical Genomic Knowledgebase, PerianDx, Pune, Maharashtra, India.
| | | | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Tapasya Srivastava
- Department of Genetics, University of Delhi South Campus, New Delhi, India.,For Correspondence:
| |
Collapse
|
48
|
Sanchez-Roige S, Kember RL, Agrawal A. Substance use and common contributors to morbidity: A genetics perspective. EBioMedicine 2022; 83:104212. [PMID: 35970022 PMCID: PMC9399262 DOI: 10.1016/j.ebiom.2022.104212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive substance use and substance use disorders (SUDs) are common, serious and relapsing medical conditions. They frequently co-occur with other diseases that are leading contributors to disability worldwide. While heavy substance use may potentiate the course of some of these illnesses, there is accumulating evidence suggesting common genetic architectures. In this narrative review, we focus on four heritable medical conditions - cardiometabolic disease, chronic pain, depression and COVID-19, which are commonly overlapping with, but not necessarily a direct consequence of, SUDs. We find persuasive evidence of underlying genetic liability that predisposes to both SUDs and chronic pain, depression, and COVID-19. For cardiometabolic disease, there is greater support for a potential causal influence of problematic substance use. Our review encourages de-stigmatization of SUDs and the assessment of substance use in clinical settings. We assert that identifying shared pathways of risk has high translational potential, allowing tailoring of treatments for multiple medical conditions. FUNDING: SSR acknowledges T29KT0526, T32IR5226 and DP1DA054394; RLK acknowledges AA028292; AA acknowledges DA054869 & K02DA032573. The funders had no role in the conceptualization or writing of the paper.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Rachel L Kember
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
49
|
Novel biological insights into the common heritable liability to substance involvement: a multivariate genome-wide association study. Biol Psychiatry 2022. [DOI: 10.1016/j.biopsych.2022.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
de Marco A, Scozia G, Manfredi L, Conversi D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes (Basel) 2022; 13:genes13081303. [PMID: 35893041 PMCID: PMC9330731 DOI: 10.3390/genes13081303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
It is currently unknown which genetic polymorphisms are involved in substance use disorder (SUD) comorbid with bipolar disorder (BD). The research on polymorphisms in BD comorbid with SUD (BD + SUD) is summarized in this systematic review. We looked for case-control studies that genetically compared adults and adolescents with BD and SUD, healthy controls, and BD without SUD. PRISMA was used to create our protocol, which is PROSPERO-registered (identification: CRD4221270818). The following bibliographic databases were searched indefinitely until December 2021 to identify potentially relevant articles: PubMed, PsycINFO, Scopus, and Web of Science. This systematic review, after the qualitative analysis of the study selection, included 17 eligible articles. In the selected studies, 66 polymorphisms in 29 genes were investigated. The present work delivers a group of potentially valuable genetic polymorphisms associated with BD + SUD: rs11600996 (ARNTL), rs228642/rs228682/rs2640909 (PER3), PONQ192R (PON1), rs945032 (BDKRB2), rs1131339 (NR4A3), and rs6971 (TSPO). It is important to note that none of those findings have been confirmed by two or more studies; thus, we believe that all the polymorphisms identified in this review require additional evidence to be confirmed.
Collapse
Affiliation(s)
- Adriano de Marco
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - Gabriele Scozia
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- PhD Program in Behavioral Neuroscience, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy
| | - Lucia Manfredi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
| | - David Conversi
- Department of Psychology, Università degli Studi di Roma ‘La Sapienza’, 00185 Rome, Italy; (A.d.M.); (G.S.); (L.M.)
- Correspondence:
| |
Collapse
|